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ABSTRACT 

A general methodology is presented for the consideration of both parameter and model 

uncertainty in the determination of the response of geometrically nonlinear structural dynamic 

systems. The approach is rooted in the availability of reduced order models of these nonlinear 

systems with a deterministic basis extracted from a reference model (the mean model). 

Uncertainty, both from parameters and model, is introduced by randomizing the coefficients of 

the reduced order model in a manner that guarantees the physical appropriateness of every 

realization of the reduced order model, i.e. while maintaining the fundamental properties of 

symmetry and positive definiteness of every such reduced order model. This randomization is 

achieved not by postulating a specific joint statistical distribution of the reduced order model 

coefficients but rather by deriving this distribution through the principle of maximization of the 

entropy constrained to satisfy the necessary symmetry and positive definiteness properties. 

Several desirable features of this approach are that the uncertainty can be characterized by a 

single measure of dispersion, affects all coefficients of the reduced order model, and is 

computationally easily achieved. The reduced order modeling strategy and this stochastic 

modeling of its coefficients are presented in details and several applications to a beam 

undergoing large displacement are presented. These applications demonstrate the appropriateness 

and computational efficiency of the method to the broad class of uncertain geometrically 

nonlinear dynamic systems. 

KEYWORDS
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INTRODUCTION

 The need to include system uncertainty in dynamic analyses has long been recognized in 

the context of some specific problems. For example, the response of turbomachinery/engine 
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bladed disks has been known since the late 1960’s (e.g. [1]) to be highly sensitive to small blade-

to-blade variations in their material/geometrical properties. This lack of robustness has thus 

motivated numerous stochastic analyses in which the uncertainty/variations in blade properties 

was introduced through the representation of certain blade characteristics as random variables. 

This stochastic modeling has however typically been ad-hoc, i.e. only some of the blade 

properties were considered as random, most notably natural frequencies, based on 

demonstrated/perceived sensitivity. 

 With predictive capabilities becoming always faster and allowing always more complex 

models, the limitations associated with the uncertainty in the parameters of the systems

(parameter uncertainty, e.g. in the material properties) and in the computational modeling of the 

physical system (model uncertainty, e.g. in the finite element representation of fasteners, lap 

joints, etc., the approximation of the physical geometry, and the introduction of reduced 

kinematics during the construction of the mean model) now appear clearly in many areas of 

structural dynamics. Accordingly, it has become quite important to dispose of general

methodologies for the inclusion of uncertainty in dynamic analyses, as opposed to the ad-hoc 

approaches used in the past, and a series of recent investigations have focused on devising such 

general techniques that are consistent with state-of-the-art computational tools. An attractive 

approach of this type for parameter uncertainty is the stochastic finite element method (see in 

particular [2]) in which the random fields characterizing both the uncertain material properties 

and the response of the system are described by polynomial chaos expansions. Then, given a 

complete characterization of the uncertain material properties, a similarly complete 

representation of the stochastic response is obtained. Note however that this probabilistic 

approach relies on a given computational model and thus does not allow the consideration of 

model uncertainty. 



 A probabilistic approach that does include both parameter and model uncertainty has 

recently been devised (Soize, [3-5]) and applied/validated (see [6] for a review) on a variety of 

dynamic problems involving linear structures with possible additional local nonlinearities. The 

inclusion of parameter and model uncertainty is accomplished in reduced order models of the 

structure through an appropriate stochastic representation of the elements of its mass, damping, 

and stiffness matrices. The variations of these random matrices around a baseline model (referred 

to as the mean model) is characterized by a single measure of dispersion, as opposed to a large 

number of parameters from statistical distributions. Accordingly, this probabilistic approach has 

been referred to as nonparametric and thus exhibits the following advantageous properties: 

i) includes both model and parameter uncertainty, 

ii) is characterized by only a mean reduced order model and a measure of dispersion, 

and,

 iii) is computationally expedient because it relies on reduced order models for the Monte 

Carlo simulations typically involved in the stochastic analysis of uncertain systems. 

 These important properties motivate the extension of the nonparametric approach to 

dynamic systems with distributed, geometric nonlinearity, which is the focus of the present 

investigation. This extension will rely in particular on recent developments in the formulation of 

reduced order models of geometrically nonlinear systems (e.g. [7-10]) and will be accomplished 

in the general framework of linearly elastic geometrically nonlinear structures which 

encompasses as special cases beams and plates with the von Karman strain definition. 

GEOMETRIC NONLINEAR FORMULATION 

 While many of the classical structural dynamic problems involving geometric 

nonlinearity relate to beam, plates, and shells in which the von Karman strain definition is used, 



it is of interest here to demonstrate the general applicability of the nonparametric stochastic 

modeling approach. To this end, an arbitrary linearly elastic (i.e. with a linear relation between 

the Green strain and second Piola-Kirchhoff stress tensors) structure undergoing large 

deformations will be considered in the sequel. 

The position vector of a point of the structure will be denoted by X in the reference configuration 

and as x in the deformed one so that the displacement vector is Xxu !" . The deformation 

gradient tensor F , which is assumed to be orientation preserving, is then defined by its 

components  as ijF
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where  denotes the Kronecker symbol. Associated with the displacement field ij% u are 

deformations which are characterized by the Green strain tensor E  of components 
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Note in the above equation and in the ensuing ones that summation is implied on all repeated 

indices.

 The equation of motion of the structure is then given by (e.g. see [11]) 
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where S  denotes the second Piola-Kirchhoff stress tensor, & ' 00 +( X  for all 0)*X  is the 

density in the reference configuration, and 0b  is the vector of body forces, all of which are 

assumed to depend on the coordinates  and be expressed in the reference configuration in 

which the structure occupies the domain 

iX

0) . The boundary, 0)# , of the reference configuration 



domain , is composed of two parts,  on which the tractions 0) t
0)# 0t  are given and  on 

which the displacements are specified.  Accordingly, the boundary conditions are  

u
0)#

            for 00
ikjkij tnSF " tX 0)#*           (4) 

and

            0"u      for uX 0)#* .          (5) 

in which 0n  is the external unit normal to . Note further in Eqs (3) and (4) that the vectors t
0)#

0b  and 0t  correspond to the transport of the body forces and tractions applied on the deformed 

configuration, i.e. b and t, back to the reference configuration. This operation is accomplished 

through the relations 
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where J is the Jacobian of the transformation & 'Xxx " , i.e. & 'FJ det" . Since the deformation 

gradient satisfies the orientation-preserving condition, we have & ' 0+XJ  for all 

0)*X .Further, the area ratio  can be expressed evaluated from [12] dAda /
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dA
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where N is the unit normal vector to 0)#  at the boundary point X and n is its counterpart on the 

deformed configuration. 

 To complete the formulation of the elastodynamic problem, it remains to specify the 

constitutive behavior of the material. In this regard, adopting a linear elastic model between the 

Green strain and second Piola-Kirchhoff stress tensors yields the linear relation 

                   klijklij ECS "             (8) 



where the fourth order elasticity tensor C  satisfies the symmetry conditions 

                ijlkjiklijkl CCC ""            (9) 

as well as 

                   klijijkl CC "           (10) 

and the positive definiteness property 

                        (11) 0+klijklij ACA

for any non zero second order tensor A .

REDUCED ORDER MODELING

 The previous section has provided the governing equations for the infinite dimensional 

problem of determining the stress and displacement fields everywhere in the structure 

considered. Following the discussion of the introduction, it is next desired to construct finite 

dimensional reduced order models of Eqs (1)-(8) that can be used for a nonparametric stochastic 

modeling of uncertainty. Before introducing the basis for the reduction, it is necessary to express 

the problem in its weak form. 

 To this end, denote by & 'Xvv "  a vector function of X that is sufficiently differentiable 

and such that 0"v  on . Then, the weak formulation of the geometric nonlinear 

elastodynamic problem of Eqs (3)-(5) is to find the displacement field 

u
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is satisfied for all  satisfying the above conditions. iv



 A reduced order model of the nonlinear geometric problem can then be obtained by 

assuming the displacement field u in the form 
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and applying Eq. (12) with  for m = 1, 2, ..., M where M is the order of the model, i.e. 

the number of basis functions  in Eq. (13). After some algebraic manipulations, this process 

yields
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and, finally, 
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Following standard practice, a damping term  has been added in Eq. (14) to represent 

various dissipation mechanisms in which 

jij qD !

D  is assumed to be a symmetric positive-definite 

matrix. 

 The matrices and tensors involved in Eq. (14) have a variety of properties that arise both 

from their definitions and the characteristics of the elasticity tensor C , see Eqs (9)-(11). In 

particular and as expected, it is readily shown that M  and 
)1(K  are both symmetric and positive 

definite. Further, it is seen from Eqs (10) and (18) that  which, coupled with the 

definition of , Eq. (17), implies that  is invariant under any permutation of its 

indices. Next, it is found from Eqs (9), (10) and (19) that the fourth order tensor
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the same symmetry properties, i.e. Eq. (9) and (10), as C  and further that it is also positive 

definite.

 In addition to the above properties, which involve each matrix separately, there is also 

one notable property that involves 
)1(K ,

)2(
K̂ , and

)3(K  together. To demonstrate it, consider 

the reshaping operating that transforms the MxMxM third order tensor 
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K̂  into a MxM
2

rectangular array 
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K  and the MxMxMxM fourth order tensor 
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 square matrix 
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K . These operations are achieved as follows: 
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Next, denote similarly 
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and introduce the PxP symmetric matrix 
B

K  as 
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where 2MMP $" .

 It is next desired to demonstrate that 
B

K is positive definite. To this end, introduce first 

the P-component vector W partitioned as 

        4 5TTT VqW "           (25) 

where q and V have M and M
 2

 components, respectively. Next, note that 
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Renaming the dummy indices in the above equation and using the symmetries of Eqs (9) and 

(10), it is found that 
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which is positive for all vectors q and V given Eq. (11). It is then concluded that the matrix 
B

K is

indeed positive definite. Note that this property also implies the positive definiteness of 
)1(K

and
)3(K  which was stated earlier. 



 The availability of the displacement field in the form of Eq. (13) leads to the knowledge 

of all quantities of interest in both reference and deformed configurations. For example, 

combining Eqs (1), (2), (8), and (13) leads to the expression for any component of the second 

Piola-Kirchhoff stress tensor as 
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ESTIMATION OF THE REDUCED ORDER MODEL PARAMETERS 

 Equations (15)-(20) provide direct expressions for all of the reduced order model 

parameters given the basis functions & 'XU
m

i
)(

 and the geometrical and material properties of the 

structure, e.g. , , , etc., and thus, technically, complete the reduced order modeling 

strategy. In practice, however, it is likely that a finite element model of the structure is available 

and was relied upon to determine the basis functions 

0( ijklC 0)
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. Then, the integration over 0)

should be split into integrals over the various elements forming the mesh and the appropriate 

interpolation functions should be used to evaluate the basis functions & 'XU
m

i
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 and their 

derivatives. Although fairly straightforward, this effort appears quite cumbersome and may 



require a more detailed knowledge of the inner workings of the finite element package used than 

may be available, especially for commercially available codes. Accordingly, it would be very 

desirable to dispose of an indirect approach to determine the various stiffness and mass terms 

that is compatible with standard finite element packages. One such technique, referred to as the 

STEP method (STiffness Evaluation Procedure), was initially conceived in [7] and later modified 

in [8, 9]. 

 The fundamental idea behind the STEP approach is to identify the stiffness parameters 

, , and  by successive static finite element computations in which the 

displacement field is prescribed to 
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ijK
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& 'Xu  and the required surface tractions 0t  are estimated. The 

STEP approach starts with the imposition of displacement fields that are proportional to a single 

basis function, i.e., 
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for each value of n in turn. In these conditions, , , and  are three constants scaling 

factors differing from each other and such that the displacements induced (
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iu ) are large 

enough to induce significant geometric nonlinear effects but small enough to stay within the 

convergence limits of the finite element code. Inserting the imposed displacement fields of Eq. 

(32) in the elastostatic equation associated with Eq. (14) implies that 
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where the force terms , p=1, 2, or 3, are computed by Eq. (20) from the traction 
)( pn

iF
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predicted in each case by the finite element code with body force & ' 00 "Xb  for all 0)*X .

Equations (33)-(35) represent for each i and n a set of three linear equations in the unknown 

, , and  which is readily solved. 
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 The next stage of the STEP algorithm focuses on the determination of the parameters 
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fields and determining the necessary tractions 
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However, the procedure is slightly different from the one above in that involving the parameters 

, , and requires a displacement field that has components in both  and 
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Expressing the reduced order model governing equation, Eq. (14), for these 3 displacement fields 

and the associated force terms , p = 4, 5, and 6, yields a set of three equations for each i,

m, and n which is readily solved to obtain the parameters , , and . The 

choice of scaling factors  and  does lead to some 

simplifications of the equations. 
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 The last stage of the STEP algorithm is concerned with the evaluation of the coefficients 

(and its permutations of indices) for m, n, and s all different. This effort is readily 

achieved from the above results using the final displacement field 
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and the associated force term .
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 The series of finite element computations performed for the evaluation of the stiffness 

parameters can serve as well for the estimation of the coefficients & 'XSij , & 'XS
m

ij
)(ˆ , and 
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 of the reduced order model for the stress  at location ijS X provided that the values of 

this stress are output during each run. The procedure is similar to the one conducted above and 

will not be repeated here. 

It should however be noted that the stress is a second order polynomial of the generalized 

coordinates  as compared to the cubic nature of the nonlinear stiffness terms. Thus, many 

fewer computations would be necessary to estimate 
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actually performed. The redundant cases can then be used to assess the accuracy of the estimates 

of these stress coefficients and thus provide a first mean to quantify the robustness of the STEP 

algorithm. A second perspective on this robustness can be obtained from a check of the 

symmetries of the tensors 
)1(K ,

)2(K , and 
)3(K  which were not used in the determination of 

their components. For example, the properties  were not relied upon in Eqs (35)-

(37). Similarly, the symmetry  was not used in the computations while the property 

was assumed. A similar discussion also holds with the elements of 
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detailed discussion of these issues in connection with a flat plate (see [8]) has shown that there 

exists a fairly broad range of the scaling factors  over which the estimates of the stiffness 

coefficients are accurate and stable. 
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 Once the above computations have been performed, all coefficients of the reduced order 

model equations of motion, Eq. (14), are known but it still remains to evaluate the third order 

tensor  that appears in the matrix )2(ˆ
mnpK

B
K  through its reshaped array
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K . To this end, note 

that Eq. (17) implies that 
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and thus the coefficients  can be evaluated through the integration of/finding the potential 

associated with .
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NONPARAMETRIC STOCHASTIC MODELING OF UNCERTAINTY 

 As discussed in the introduction, there are two particular types of uncertainty to be 

considered in structural dynamic models: parameter uncertainty and model uncertainty. The 

former is associated with variations of the material properties of the structure that arise from the 

manufacturing process, in service operation, and the modeling process. At the contrary, model 

uncertainty recognizes that the computational model is a simplified representation of the physical 

structure. For example, components such as fasteners (rivets, bolts,...) and joints (lap joints, 

welds, ...) etc. are usually only approximately represented, i.e. modeled. A similar discussion 

holds with the geometry of the structure which differs slightly from the computational one, plates 

may be slightly warped, beams out of straight, etc. Thus, deviations in the behaviors of actual 



structures and their computational counterparts are expected and variable and form the model 

uncertainty. 

 The consideration of parameter uncertainty in the infinite dimensional problem of Eqs 

(1)-(8) is in principle quite straightforward, it can be achieved by letting the material properties 

,0( C , ... be random field. The inclusion of model uncertainty in the same framework is 

however very challenging. For example, the consideration of variations of geometry would 

require changing the computational model (i.e. the finite element mesh) for every realization of 

the geometry. The consideration of other model issues, as related to the approximate 

representation of joints, fasteners, etc. appears even more difficult if at all possible. 

 On the contrary, the consideration of uncertainty, from parameters or model, appears 

much more straightforward in the reduced order model, as it is characterized by a finite number 

of mass and stiffness coefficients which can be treated as random variables and are physically 

expected to be correlated. In addition to those coefficients, the reduced order model also involves 

the basis functions  and it is worthwhile to ask whether that basis should be deterministic 

(i.e. related to the mean model) or random (e.g. based on the full computational model with some 

parameter uncertainty). The most significant advantage of using a random basis would be to 

obtain certain special properties of the uncertain reduced order model, e.g. diagonal nature of 

some of the matrices involved. However, the inclusion of model uncertainty would likely destroy 

these special features. On the contrary, the use of a deterministic basis is computationally 

efficient as it needs to be determined only once and focuses the uncertainty of the reduced order 

model on its coefficients. On the basis of this discussion, deterministic basis functions will be 

adopted in the sequel but their choice must be such that the response of the uncertain systems, 

not just the mean one, is well represented. Additional comments in this respect will be made in 

the Numerical Results section. 

)(n
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 Parameter and model uncertainty will thus be included through randomizing the various 

mass, damping and stiffness coefficients of Eq. (14), see Eqs (15)-(20). This apparently simple 

statement has far ranging implications as a complete characterization of this ensemble of random 

variables requires the specification of their joint probability density function, an information 

which is unlikely to be available in any practical application. A first approach to resolve this 

difficulty is to allow only some of the coefficients to be uncertain as was done in the ad-hoc 

strategies discussed in the Introduction. Clearly such an approach does not have the accuracy and 

generality required here. A second approach might be to specify the form of this distribution with 

unknown parameters to be estimated. Even with a single parameter per uncertain coefficient to 

describe its variations, there would be a very large number of such parameters to estimate 

especially given the generally poor knowledge on the uncertainty in physical systems. 

 A third approach, which is the one adopted here, is to rely on a higher principle to derive

the necessary joint probability density function. As discussed by Soize [3-6], the maximum 

entropy principle provides such a framework and leads to statistical distributions that place 

particular emphasis on “larger” deviations from the mean value, a desirable feature to assess the 

robustness of a design to uncertainty. The maximization of the entropy must however be 

achieved carefully to guarantee the physical meaningfulness of the ensemble of mass, damping, 

and stiffness coefficients simulated, especially in view of the emphasis on the tail of the 

distribution just stated. Physical meaningfulness of the mass, damping, and stiffness coefficients 

of the reduced order model of Eq. (14) implies here that these coefficients satisfy all properties 

that are expected from Eq. (14) for an arbitrary dynamic system, i.e. 

 (1) the stated symmetry properties of the tensors M
"

, D
"

,
)1(

K
"

,
)2(

K
"

, and 
)3(

K
"

 (2) the positive definiteness of the matrices M
"

, D
"

, and 
B

K
"



 (3) the nonsingularity of the matrices  M
"

, D
"

, and 
B

K
"

 (if true for the mean model). 

Note in the above conditions that M
"

 is the uncertain mass matrix resulting from the 

consideration of uncertainty in contrast to the deterministic mass matrix M  of the mean model. 

A similar convention was also used above for D
"

,
B

K
"

,
)1(

K
"

,
)2(

K
"

, and 
)3(

K
"

 and will be 

employed in the sequel to distinguish all random quantities. 

 The consideration of uncertainty in the reduced order model of Eq. (14) is then achieved 

by analyzing the response of the uncertain system 
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Note as well that the excitation  of Eq. (14) has been replaced by the uncertain term iF iF
"

 in Eq. 

(39). This randomization of the excitation reflects the possible uncertain nature of the transport 

of the specified traction from the (uncertain) deformed configuration back to the (deterministic) 

reference one. 

 In his original formulation of the nonparametric stochastic modeling approach, Soize 

[3,4] addressed the problem of determining the joint probability density function & 'apA
"  of the 

elements ijA
"

 of a random symmetric positive definite nnx  matrix A
"

 that maximizes the entropy 

              & ' & '2
)

!" adapapS AA
"" ln          (40) 

in which ad  is the appropriate volume element. Further, )  denotes the domain of support of 

& 'apA
"  which should be such that any matrix )*a  is symmetric and positive definite. These 

conditions are equivalent to stating that a  admits a Cholesky decomposition TLLa "  so that 



D & '4 5 4 '4 5E.,0,,:,...,1,,; $F*G+$FF!*""") iiijij
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The maximization of S, Eq. (40), must be achieved under the following constraints 

           & '2
)

" 1adapA
"           (42) 

                         4 5 & '2
)

"" AadapaAE A
"

"
         (43) 

and

                      & '4 5 & ' & '2
)

H" finite  detln adapa A
"          (44) 

where  denotes the operation of mathematical expectation and det(4 5.E W ) is the determinant of 

an arbitrary matrix W . The first two of the above constraints correspond to the normalization of 

the total probability to 1 (Eq. (42)) and the specification of the mean matrix (Eq.  (43)). The third 

one, Eq. (44), implies the existence of the mean squared Frobenius norm of the inverse matrix 

1!
A
"

(see [3,4] for discussion) and thus guarantees the nonsingularity of A
"

 for mean square 

norm, i.e. $FI
6
6
7

8

9
9
:

; ! 2
1

F
AE
"

, where 
F
J  denotes the Frobenius norm of matrices. 

 The determination of the probability density function maximizing Eq. (40) while 

satisfying the constraints of Eqs (42)-(44) was accomplished in [3,4] by calculus of variations 

with Lagrange multipliers. The resulting stochastic description of A
"

 is most easily stated in 

terms of the random lower triangular matrix H
"

 such that 

           
TT

LHHLA
"""

"                 (45) 



where L  is any decomposition, e.g. Cholesky, of A  satisfying 
T

LLA " . Specifically, it was 

found [3,4] that 
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where iC , i=1,..., n , and ilC , i=1,..., n ; l=1,...,i-1, are appropriate normalization constants and 
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It is concluded from Eq.  (46) that: 

(i) the elements ilH
"

, i>l, are all independent of each other and independent of the elements iiH
"

.

Further, they are normally distributed with mean 0 and standard deviation iiil L"O 2/1 .

(ii) the elements iiH
"

 are all independent of each other. Further, they are distributed according to 
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      where 
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       and  denotes the Gamma function. & '.Q

 The generation of samples of iiH
"

 is simplified by considering the variable 2
iiiiii HY

""
L" .

Proceeding with the change of variables, it is found that the probability density function of iiY
"

 is 
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Accordingly, it is found that iiY
"

 is a Gamma distributed random variable for which efficient 



simulation algorithms exist, e.g. see [13]. Once a sample of iiY
"

 has been simulated according to 

the Gamma distribution, the corresponding value of iiH
"

 is found as

              
ii

ii
ii

Y
H

L
"

"
"

          (52) 

where  is given by Eq. (48). iiL

 The parameter N  which appears in Eq. (47) and (48) is in fact the Lagrange multiplier 

associated with the constraint of Eq. (44) and could be evaluated from this condition. However, 

since Eq. (44) was enforced to ensure an appropriately flat zero of & 'apA
"  near its singular 

boundary (i.e. an appropriately flat zero of & 'iiH hp
ii

"  at 0"iih ), it is more appropriate to use the 

parameter  to control the variations of the random matrices N A
"

 from their mean value A , as 

will be clarified in the Numerical Results section. In particular, the parameter N can also be 

expressed [4] as 
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2
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in which % is the coefficient of variation of the random matrix  
T

HHG
"""

" , i.e. 

67
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"
 where I  is the identity matrix. 

 Equations (45)-(52) form here the core methodology for the simulation of the uncertain 

mass, damping, and stiffness coefficients of Eq. (39) as described below. It should be noted that 

Eq. (45)-(52) follow the original formulation of the nonparametric approach of Ref. [3] but that 

extensions of the methodology have been carried out which permit a more detailed modeling of 

the structural uncertainty present. For example, knowledge of the level of uncertainty of multiple 

natural frequencies (and related data) can also be included, see [14] for details. A more complex 



structure of the uncertain mass, stiffness, and damping matrices generated, e.g. with the 

capability of exhibiting topological zeros, can also be simulated (see [15]). The use of these 

extended uncertainty models would closely follow the steps described here except for Eq. (45)-

(52) which would be replaced by different relations, see [14,15] for details. 

For the uncertain mass matrix M
"

:

A Cholesky decomposition of the mass matrix of the mean model M  is first performed as 

              
T

MM
LLM " .          (54) 

Next, a value MN"N  is specified and an ensemble of nnx lower triangular matrices 
M

H
"

, with 

Mn " , are generated according to Eq. (45)-(52). For each realization of 
M

H
"

, the 

corresponding sample of the mass matrix M
"

 is generated as 

              
T

M

T

MMM
LHHLM

"""
" .               (55) 

For the uncertain damping matrix D
"

:

A Cholesky decomposition of the damping matrix of the mean model D  is first performed as 

              
T

DD
LLD " .          (56) 

Next, a value  is specified and an ensemble of DN"N nnx lower triangular matrices 
D

H
"

, with 

Mn " , are generated according to Eq. (45)-(52). For each realization of 
D

H
"

, the corresponding 

sample of the damping matrix D
"

 is generated as 

       
T

D

T

DDD
LHHLD

"""
" .               (57) 



For the uncertain stiffness tensors 
)1(

K
"

,
)2(

K
"

, and 
)3(

K
"

:

A Cholesky decomposition of the matrix 
B

K  of the mean model is first performed as 

            
T

KKB
LLK " .          (58) 

Next, a value  is specified and an ensemble of KN"N nnx lower triangular matrices 
K

H
"

, with 

2MMn $" , are generated according to Eq. (45)-(52). For each realization of 
K

H
"

, the 

corresponding sample of the matrix 
B

K
"

 is generated as 

                
T

K

T

KKKB
LHHLK

"""
" .               (59) 

The partitioning of the uncertain matrix 
B

K
"

 is consistent with the one of its mean value, i.e. Eq. 

(24), and thus permits to extract the corresponding uncertain matrices 
)1(

K
"

,
)2(~

K
"

, and 
)3(~

K
"

. No 

further manipulation is needed in connection with the linear stiffness matrix 
)1(

K
"

 but 
)2(~

K
"

 and 

)3(~
K
"

 must next be reshaped into uncertain third and fourth order tensors 
)2(

ˆ
NS

K
"

 and 
)3( NS

K
"

 as 

in Eq. (21) and (22) for 
)2(

K̂  and 
)3(K  from 

)2(~
K  and 

)3(~
K . Note that the additional 

superscript NS indicates that these matrices do not exhibit the appropriate symmetries, for 

example 
)2(ˆ NS

mnpK
"

 is in general not equal to 
)2(ˆ NS

mpnK
"

. This issue is easily resolved and tensors 

)2(
K̂
"

 and 
)3(

K
"

 with  the appropriate symmetries are then generated as 
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0
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and
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since the property )3()3( NS
npms

NS
msnp KK

""
"  already exists as a result of the symmetry of 

B
K
"

, see Eq. 

(59) and (24). 

 It remains finally to obtain the realization of the third order tensor 
)2(

K
"

from 
)2(

K̂
"

. This 

is achieved as in Eq. (17), i.e. 
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NUMERICAL RESULTS 

 To demonstrate the above concepts, a beam of dimensions 0.2286m long, 0.0127m wide, 

and 7.75×10
-4

m high was discretized by the finite element method (with MSC NASTRAN) into 

40 CBEAM elements of equal lengths (selected computations were repeated with a 160 element 

model which confirmed the adequacy of the 40 element model). The two ends of the beam were 

assumed to be fully clamped. This model thus included 234 degrees-of-freedom. The beam 

material was high-carbon steel with a Young’s modulus of 205,000 MPa, a shear modulus of 

80,000 MPa, and a mass density of 7,875 kg/m
3
. The damping in the mean system was assumed 

to be classical with a damping ratio of 2% on all modes. 

 The beam was assumed to be excited by a single, deterministic, concentrated force acting 

on its middle in the direction perpendicular to the beam axis in the undeformed configuration, 

see Fig. 1 for a representative time history of the force and Fig. 2 for its frequency content, i.e. 

flat in the range [-2000, +2000] Hz.

 The time marching of the response of the reduced order models (mean and uncertain) was 

achieved with an unconditionally stable Newmark-R  algorithm (e.g. see [16]) in which the 

nonlinear algebraic equations were solved by a fixed point algorithm. The time step for the most 



of the computations was set at = 5×tS 510! s and the computations were carried out for 

=15000 time steps. No convergence problem with the fixed point algorithm was encountered 

with the above time step. 

totn

 The basis for the reduced order modeling effort included the first  transverse linear 

modes and  in-plane linear modes exhibiting the natural frequencies shown in Table 1. The 

selection of the appropriate values of  and  was performed in each case by monitoring the 

convergence of the total modal signal energy of the mean model: 

tn

in

tn in

                        (63) & ' &33
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totn

n

M

i

iit tnqnnE

1 1
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where  is the order of the reduced order model. In general, it was found that the 

selection =10 and =12 led to convergence. For the cases in which these parameters were 

changed, their values will be stated explicitly. It should be noted that the mean system is 

symmetric with respect to the location of the force and thus the second, fourth, and sixth 

transverse modes, which are antisymmetric, will not appear in the mean model response. 

However, the introduction of uncertainty in the beam reduced order model will in general break 

the symmetry and induce contributions of the response on these antisymmetric transverse modes. 

The same observation holds in regards to the in-plane modes. 

it nnM $"

tn in

 The direction of the force induced transverse motions in the weak bending direction (“z”)

with much smaller motions along the beam axis (“x”) taking place by nonlinear interaction. The 

magnitude of these displacements satisfied the assumptions of the von Karman strain definition,  

i.e.
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Note that the above expressions result from Eq. (2) by ignoring the second order terms in  and 

. In fact, the  displacement  is identically zero for this problem. The close applicability of 

the von Karman strain definition led to a peculiarity of the matrix 

1u

2u 2u

B
K . Specifically, the absence 

of second order terms in  in the displacement-strain relation can be shown to imply the 

vanishing of all terms  and  in which two or more indices m, n, p, and s refer to in-

plane modes. This property leads theoretically to a matrix 

1u

)2(
mnpK )3(

msnpK

B
K  exhibiting a significant number of 

zero eigenvalues and computationally (given the finite accuracy of the STEP algorithm) to the 

same number of small generally both positive and negative eigenvalues. Clearly, the negative 

eigenvalues are unphysical (see Eq. (27)) and must be removed before the consideration of 

uncertainty takes place. In doing so, it is necessary to demonstrate that these computationally 

negative values do not have an effect on the response. This check was accomplished on the mean 

model by computing the response with the identified 
B

K  matrix (exhibiting small negative 

eigenvalues) and the singular value decomposition of 
B

K  in which only the positive eigenvalues  

were retained. In all cases considered, the match of the two transverse responses at the middle 

point were in a visually perfect agreement over both entire time history and frequency range. 

 The elimination of the negative eigenvalues of 
B

K by spectral decomposition led to the 

modified matrix 
B

K V  defined as 



           T
B

K WXW"V                 (65) 

where W  denotes the matrix whose 2MMnr $I  columns are the eigenvectors of 
B

K

corresponding to its positive eigenvectors. Further, X  is the diagonal matrix containing the rn

positive eigenvalues of 
B

K . Then, following Soize [5], the simulation of uncertain matrices 
B

K
"

is achieved by first generating an ensemble of nnx lower triangular matrices 
Kr

H
"

, with rnn "

and KrN"N  according to Eq. (45)-(52). Finally, the corresponding uncertain matrices 
B

K
"

 are 

obtained as 

      & ' & 'TT

KrKrB
HHK 2/12/1 XWXW"
"""

.            (66) 

 To enable a physical comparison between different cases, the various parameters N

should be selected to achieve the same physical measure of variation of the reduced order model. 

In the present investigation, the measure of variation specified related to the first natural 

frequency. More specifically, a 4% mean square variation of the first natural frequency of the 

uncertain system ( ) around its corresponding value for the mean model ( ) was enforced. 

That is, 

1) 1Y

              & '4 5 & '21
2

11 04.0 Y"Y!)E .              (67) 

The evaluation of the parameter  from this condition was achieved in a trial and error strategy: 

for a value of , an ensemble of reduced order models were generated and the corresponding 

population of the first natural frequency of the uncertain linear system were determined. An 

estimate of 

N

N

& '4 52
11 Y!)E  was then obtained and the process was repeated until Eq. (67) was 

satisfied. 

 Once the appropriate value of N  has been determined, the generation of samples of the 



mass, damping, and stiffness coefficients of the uncertain reduced order model can be achieved 

and the corresponding realizations of the response time histories q
"

 can be obtained by numerical 

integration of Eq. (39). But how many such samples should be generated? This issue was 

resolved here my monitoring, for each case separately, the convergence of the estimate of the 

mean modal signal energy  
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where & tnq i S)( '"
 denotes the vector of the it nn $  generalized coordinates of sample i at the nth

time step. 

 A first goal of the present numerical efforts was to assess the effects of geometric 

nonlinearity on the response of the uncertain beams. To this end, three different cases were 

considered with uncertainty on the stiffness terms. First, a linear computation was carried out by 

ignoring the quadratic and cubic terms in Eq. (39) and determining the response to the excitation 

of Figs 1 and 2. Second, a fully nonlinear computation was carried out with the same excitation. 

Finally, this last set of computations was repeated at a higher excitation level. 

 Shown in Figs 3 and 4 is the displacement of the mid point of the beam predicted from 

the linear mean model both in time (Fig. 3) and in frequency (Fig. 4) with 12 in-plane modes and 

10 transverse. The sharp drop in energy right at the cut-off frequency (2000 Hz) and the sharp 

resonance peaks are distinctive of the linear system. A convergence study of the mean modal 

signal energy of the uncertain linear system, see Fig. 5, demonstrated that 600 samples were 

sufficient for convergence. Then, various statistics of the response could be obtained. Of 

particular interest here was the physical deflection of the center of the beam, more specifically its 

frequency content. Shown in Fig. 6 are the mean, 5th, and 95th percentiles of the spectrum of the 

uncertain response of the middle of the beam. These curves were obtained by determining at 



each frequency the mean, 5th, and 95th percentiles of the 600 spectrum values. Also presented 

on Fig. 6 is the response of the mean model (dashed lines). Note in this figure that the 5th-95th 

percentile band increases with increasing frequency and is broader near the resonances and 

antiresonances of the mean model. Further, the response of the mean model is significantly lower 

than the 5th percentile near/at the antiresonances but very close to the 95th percentile value in the 

neighborhood of the mean model resonant frequencies. 

 A similar analysis was next repeated for the nonlinear reduced order model subjected to 

the same excitation. The transverse displacement at the center of the beam obtained from the 

mean model is again shown both as function of time and frequency in Figs 7 and 8 for 12 in-

plane modes and 10 transverse. Note the significant reduction in the peak response (by 

approximately 40%) as compared to the response of the linear system and that the peak 

displacement at the middle of the beam is of the order of twice the beam thickness. Important 

differences also occur in the frequency domain, more specifically broader and more numerous 

peaks as well as the disappearance of the sharp drop off at 2000Hz. A sample size of 600 

realizations was again found well sufficient for convergence and led to the spectrum plot of Fig. 

9. The observations drawn in connection with the linear system spectrum can be repeated here, 

i.e. the 5th-95th percentile band is largest at/near the peaks and valleys of the spectrum of the 

mean model thus forming complex shapes that may rapidly widen or narrow down. Since the 

location of the peaks of the response is a function of the response level of the system, it would be 

expected that the 5th-95th percentile band would shift to the right as the amplitude of the 

motions is increased. This expectation is confirmed on Fig. 10 which repeats the data of Fig. 9 as 

well as the 5th-95th band obtained with an excitation 2.25 times the one shown in Figs 1 and 2 

which leads to a peak transverse displacement of approximately 3.5 thicknesses at the beam 

middle for the mean model (computations carried out with 12 transverse modes and 12 in-plane). 



Note as well the distortion of the uncertainty band as it shift to higher frequencies. 

 The coefficients ijS , , and 
)(ˆ m

ijS
),(~ nm

ijS  corresponding to the stress  at the middle of 

the beam were also obtained by the STEP algorithm and enabled the analysis of the effects of 

uncertainty on this stress. Shown in Fig. 11 is the comparison of the 5th-95th percentile bands at 

the two nonlinear response levels of Fig. 10. The discussion carried out in comparison with this 

figure holds here as well, the band is distorted as it moves to the right due to higher response 

level. A comparison of the uncertainty bands of the displacement and stress (Figs 10 and 11) 

indicate that the latter one is much more complex than the former one due to the large number of 

peaks of the spectrum, which itself results from the quadratic transformation of Eq. (28). 

xO

 Uncertainty in the natural frequencies may originate from either the stiffnesses and/or the 

masses. In this light, it was desired to compare the uncertainty band associated with the 4% mean 

square variation of the natural frequencies assuming that it originates from stiffnesses alone (as 

done above) or masses alone. This comparison, shown in Fig. 12, demonstrate that the two 5th-

95th percentile bands are very close together with the one associated with mass uncertainty 

typically slightly broader than its stiffness counterpart. This observation may be justified by 

considering a uniform relative change of all stiffnesses by a value [ . Such a change may be 

reflected as a uniform change by 1/[  of all stiffnesses, linear and nonlinear. With [  an 

uncertain variable, this observation would suggest that the randomness in mass would be similar 

to a randomness in the stiffnesses in which there exists a strong positive correlation between the 

various linear and nonlinear terms, i.e. increases/decreases in the linear stiffness terms being 

matched by increases/decreases of the nonlinear terms. Such a positive correlation does imply a 

lower 5th percentile of the response and a higher 95th percentile, i.e. a broader band, as 

compared to the case in which linear and nonlinear stiffnesses do not exhibit a significant 

correlation as tends to be the case in the uncertain stiffness computations. Similar observations 



can be drawn from the uncertainty bands in the stress spectrum (not shown here for brevity). 

 The above discussions have all been relevant to a broad band excitation, i.e. similar to 

Figs 1 and 2 and it was wondered whether similar results would also be seen for a narrowband 

excitation, i.e. in the range [1000, 1500] Hz see Figs 13 and 14. Given the previous observations, 

only the effects of uncertainty on the stiffness tensors 
)1(K ,

)2(K , and 
)3(K  were considered. 

The computations were carried out with 16 transverse modes and 12 in plane modes at a time 

step of = 2.5 s and the computations were carried out for =30000 time steps. Shown 

in Figs 15 and 16 is the transverse displacement of the mid point of the beam in both time and 

frequency domains. Clearly, the excitation favors the fifth linear mode (symmetric mode of 

frequency equal to 1055 Hz) and its response is significantly nonlinear leading to the broad 

response peak seen in Fig. 16. Note as well the presence of sharper peaks at smaller energy 

levels associated with the first and third modes which are out of band but are excited by the 

nonlinear interaction of the modes. The introduction of uncertainty in the linear and nonlinear 

stiffness tensors leads to the spectrum plot of Fig. 17. Surprisingly, it is found that the dominant 

peak is quite robust but that a very large uncertainty band occurs in conjunction with the first 

mode. In fact, the 95th percentile of the spectrum at this first peak is at the same energy level 

than that of the dominant peak. Thus, uncertainty on this narrowband response manifest itself 

mostly by a potentially dramatic increase in the component of response associated with the first 

linear mode. 

tS 510! totn

SUMMARY

 The focus of this investigation has been on the formulation of a general methodology for 

the consideration of both parameter and model uncertainty in the modeling of geometrically 

nonlinear dynamic systems. It was argued first that the most appropriate framework for the 



inclusion of model uncertainty is in terms of reduced order models of the system, especially 

those which are built from a deterministic basis, e.g. the linear modes of the mean model. 

 On this basis, a comprehensive analysis was undertaken to clarify the derivation of such 

reduced order models, first from the governing equations of a linearly elastic continuum. An 

important aspects of this effort was to highlight the fundamental properties of the various tensors 

involved in the reduced order model as these properties will have to be satisfied for every 

realization of the uncertain reduced order model. Symmetry properties of the mass and the three 

stiffness tensors were first stated. Next, the positive definiteness of the stiffness tensors 
)1(K  and 

)3(K  was recognized but this statement was shown to be resulting from a stronger positive 

definiteness property that involves all three stiffness tensors, i.e. of the matrix 
B

K  of Eq. (24). 

The derivation of a reduced order model of a geometrically nonlinear system from a 

computational model (e.g. finite element model) of it was also addressed and a recently devised 

approach (the STEP algorithm) was reviewed in details. It was finally noted that a complete 

reduced order model should also include the characterization of the stress field and this task was 

also achieved.   

 The stochastic modeling of uncertainty (parameter and model) within the context of the 

reduced order model was considered next. It was highlighted that such a modeling cannot be 

achieved in an ad-hoc manner but rather should be deep rooted in stochastic mechanics to 

achieve the generality and accuracy desired. To this end and following recent work in this area, a 

nonparametric approach was adopted in which the joint distribution of the coefficients of the 

reduced order model was not postulated but rather derived according to the maximum entropy 

principle under the constraints of symmetry and positive definiteness demonstrated earlier. The 

consideration of uncertainty in mass, damping, and stiffness according to this nonparametric 



approach was described in detail and was found to be computationally advantageous (owing to 

expedient algorithms for the simulation of samples of the reduced order model coefficients) and 

appealing in practical applications (because it requires only one measure of dispersion to 

characterize the uncertainty). Further, the nonparametric approach leads to reduced order models 

in which all coefficients are uncertain and are generally dependent on each other, as might be 

expected from an uncertain system. 

 A slender beam was finally considered to exemplify the methodology presented and its 

specific mean reduced order model was first derived by the STEP algorithm from a full finite 

element model. Next, uncertainty in mass and stiffness were considered one at a time to 

demonstrate the application of the nonparametric methodology and compare the effects of these 

different types of uncertainty on both displacements and stresses inside the beam. These results 

were found to be in good agreement with physical expectations. 
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