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Abstract

The reliability of a satellite structure subjected to harmonic base excitation in the low fre-

quency range is analyzed with respect to the exceedance of critical frequency response

thresholds. Both a parametric model of uncertainties and a more recently introduced non-

parametric model are used to analyze the reliability, where the latter model in the present

analysis captures the model uncertainties.

With both models, the probability of exceedance of given acceleration thresholds is es-

timated using Monte-Carlo simulation. To reduce the computational cost of the parametric

model, a suitable meta-model is used instead.

The results indicate that for low levels of uncertainty in the damping, the non-parametric

model provides significantly more pessimistic - and hence conservative - predictions about

the exceedance probabilities. For high levels of damping uncertainty the opposite is the

case.

Key words: Structural dynamics, frequency response functions, random uncertainties,

parametric probabilistic model, non-parametric probabilistic model.

1 Introduction

1.1 General remarks

In structural dynamics, numerical models are used to perform dynamic analyses of complex me-

chanical systems. These models are usually based on the FE method and are constructed on the

basis of the design of the structural system. Every manufacturing process is affected by some de-

gree of variability and therefore the manufactured system is different from the designed system.

These differences can have significant effects on the dynamics of the structure. Consequently,

a deterministic model is usually not sufficient for a robust prediction of the dynamic response

of the structure. In order to increase the robustness of the predictions, probabilistic models can

be constructed on the basis of the deterministic model. Probabilistic models account for the un-
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certainties associated with the structure under consideration, by modelling some aspects of the

structure as realizations of random variables or processes.

The random uncertainties can be split into two complementary classes. The uncertain param-

eters which are explicitly present both in the system design and in the mechanical-numerical

model are referred to as system parameter uncertainties. On the other hand, due to simplifi-

cations in the construction of the mechanical-numerical model, there are uncertainties related

to the designed system which are not explicitly present in the numerical model. This type of

uncertainties is often referred to as model uncertainties.

In the parametric probabilistic approach the uncertain parameters of the mechanical-numerical

model are treated as random quantities. The uncertain parameters include both geometrical

parameters, such as components dimensions, and material properties, such as elasticity moduli.

For each realization of the random parameters, the random finite element matrices result from a

deterministic mapping of the random parameters. In the present paper the parametric model is

used to capture the above mentioned system parameter uncertainties.

The non-parametric model of uncertainties has been introduced in [1,2]; in this approach, the

generalised matrices resulting from the modal reduction of the deterministic FE model are re-

placed by random generalised matrices. The probabilistic description of these random matri-

ces is constructed by using the maximum entropy principle under constraints defined by the

available information and yields a new class of random matrices called the ”positive definite

ensemble” [3,4]. With such a formulation, the global dispersion level of each random matrix is

controlled by a unique positive scalar which is called the dispersion parameter. In the present

paper, the non-parametric model is used to account for model uncertainties.

The uncertainties associated with a numerical model are immediately related to the concept of

risk, which combines the probability of an unfavourable event (e.g. failure of an engineered

component or system) with the consequences of this event (e.g. human loss, injury, cost of

repair, cost of claim management) [5,6,7,8]. For those that are responsible of the quality of en-

gineered products, managing the risks associated with these products is of vital importance. Ob-

viously, this importance then carries over to the availability of robust, quantitative estimates of

3
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the probability of the unfavourable events that may occur. (The evaluation of the consequences

of such an event is outside the scope of our discussion.)

Given the high safety and quality standards required for the economic operation of engineer-

ing systems, in our case of structures, one usually attempts to keep the probability of an un-

favourable event (failure) at very low levels. Consequently, failure is typically a rare event. This

has implications for the mathematically formulated goal, which in this case is no longer the

estimation of the probability distribution (or of its low-order moments) of some critical quantity

of interest, but rather the statements derived from analysis involving the tails of the distribution.

With reference to the above stated distinction of uncertainties, it is obvious that the probability

of an adverse event (and hence the associated risk) stems from both the uncertainty about the

parameters of the system and the uncertainty about the assumptions in the model itself. This

implies that the probability estimates are more complete - and hence more credible - if model

uncertainties are accounted for.

In the context of structural dynamics, extensive work has been done in the past decades on the

uncertainty analysis of engineering structures, in which the uncertainty was assumed to relate

exclusively to the parameters of the model. In the literature, numerous works both on uncer-

tainty quantification, which are aiming at the characterization of the (approximate) probability

distribution and the low-order statistics (see e.g. [9,10,11,12,13,14,15,16,17]), and on the esti-

mation of (small) failure probabilities (see e.g. [18,19,20,21,22]) may be found.

On the other hand, a much smaller number of publications deal with model uncertainties in the

structural analysis. Besides the here adopted non-parametric approach, past attempts include the

treatment of model uncertainties in a Bayesian framework (see e.g. [23,24,25]) and the specific

analysis of the impact of model uncertainties on the failure probability (see e.g. [26,27,28]). It

should be noted that for the consideration of model uncertainties with Bayesian methods, it is

required that experimental results be available. This requirement is frequently not fulfilled in the

context of real-life engineering analysis and design tasks. In such situations, the non-parametric

model still remains applicable, as it does not necessarily require the availability of experimental

results.

4
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The novel contribution of this paper is a study on the effect of including model uncertainties

in the analysis of the failure probability of complex structures under dynamic excitation. The

model uncertainties are represented here with a non-parametric model that is constructed on the

basis of the FE model of a satellite with approximately 120,000 DOF’s [29]. More specifically,

the non-parametric model is calibrated with respect to a parametric model of uncertainties, i.e. a

probabilistic model in which the parameters of the nominal finite element model of the structure

are modelled as random variables.

Given that the results presented in this paper indicate a very different sensitivity of the predicted

failure probability to the damping uncertainty, particular emphasis is given to this aspect. A full-

scale parametric study has been performed, in order to study the failure probability estimates

for various levels of uncertainty in the damping.

1.2 Notation

The following notation is adopted in the present paper:

• A real or complex deterministic scalar is denoted by a lower case letter (for instance f ).

• A real or complex-valued random variable is denoted by an upper case letter (for instance F ).

• A real or complex deterministic vector is denoted by a boldface lower case letter (for instance

f = [f1 f2 . . . fn]T )

• A real or complex-valued random vector is denoted by a boldface upper case letter (for in-

stance F = [F1 F2 . . . Fn]T )

• A real or complex deterministic matrix is denoted by an upper case letter between brackets

(for instance [A])

• A real or complex-valued random matrix is denoted by a boldface upper case letter between

brackets (for instance [A])

• All the deterministic quantities related to the mean FE model are underlined (for instance

f , f , [A]). More specifically, the term ”mean model” denotes the deterministic model

obtained when all its physical parameters are fixed at their mean value and is hence

equivalent to the term ”nominal model”.

5
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• Frequencies are denoted as ω̄ in the case of excitation frequencies, and as ω (or with an index,

e.g. ωj) in the case of eigenfrequencies.

2 Method of analysis

2.1 Frequency response analysis

In the present analysis the linear vibrations of a free structure are considered, around a static

equilibrium configuration considered as a natural state without prestresses in the low frequency

band  . For all ω̄ ∈  , the mean finite element matrix equation of the structure is,
(

− ω̄2 [M ] + i ω̄ [D] + [K]
)

u(ω̄) = f(ω̄) , (1)

in which u(ω̄) and f(ω̄) are the !m vectors of the DOF’s and of the external forces, respectively.

Since the structure has a free boundary, the mean mass matrix [M ] is a positive-definite symmet-

ric (m × m) real matrix and the mean damping and stiffness matrices are positive semidefinite

symmetric (m × m) real matrices. Furthermore, it is assumed that the kernel of mean matri-

ces [D] and [K] is identical, constituted of r rigid-body modes with 0 ≤ r ≤ 6 denoted as 
1
, . . . , 

r
.

2.2 Parametric probabilistic model

Let x = (x1, . . . , xd) be an "d vector whose components correspond to parameters of the

structure, such as geometrical parameters of the structure, coefficients of the elasticity tensor,

mass densities. Clearly, the entries of the mass, damping and stiffness matrices of the FE model

are functions of these parameters.

Assuming that the parameters collected in x are affected by uncertainty, we then introduce the"d-valued random variable X = (X1, . . . , Xd). The system of equations associated with this

6
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random finite element model has then the form,

(

− ω̄2 [Mpar] + i ω̄ [Dpar] + [Kpar]
)

Upar(ω̄) = f(ω̄) , (2)

in which Upar(ω̄) is the  m-valued random vector of the DOFs and where [Mpar] = [M(X)],

and [Dpar] = [D(X)], [Kpar] = [K(X)] are the random finite element mass, damping and

stiffness matrices with values in the set of the positive-definite symmetric (m×m) real matrices

and in the set of the positive semidefinite symmetric (m × m) real matrices. The components

{Xi , i ∈ {1, . . . , d}} of the random vectorX are random variables with a given joint cumulative

distribution function (CDF),

FX(x) = P [X1 ≤ x1 , X2 ≤ x2 , . . . , Xd ≤ xd ] , (3)

and with mean values µXi
= xi and standard deviations σXi

.

For large systems the solution of Eq. 2 can be computed efficiently with a reduced version of

the equation,
(

− ω̄2 [Mpar
red] + i ω̄ [Dpar

red] + [Kpar
red]

)

Qpar(ω̄) = F(ω̄) , (4)

in which [Mpar
red], [D

par
red] and [Kpar

red] are the diagonal random reduced mass, damping and stiffness

matrices (n × n),

[Mpar
red] = [ T ][Mpar][ ] , [Dpar

red] = [ T ][Dpar][ ] , [Kpar
red] = [ T ][Kpar][ ] . (5)

In the above equation, [ ] is an (m×n) real matrix whose columns are the n ≪ m eigenvectors α related to the n strictly positive lowest eigenfrequencies Λα = Ω2
α, corresponding to the

generalized eigenvalue problem,

[Kpar] = Λ[Mpar] . (6)

For mass-normalized eigenvectors and assuming proportional damping, the diagonal matrices

in Eq. (5) are specified as follows,

[Mpar
red] = [In] , [Dpar

red]ij = 2ΞjΩjδij , [Kpar
red]ij = Ω2

jδij , (7)

7
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where Ξj is the j-th modal damping ratio and δij is the Kronecker delta. It should be noted that in

the present paper the modal damping ratios are considered to be random variables Ξj = Ξj(X)

and are thus capitalized according to the notation described in section 1.2.

Considering that the generalized force F(ω̄) = [ ]T f(ω̄), the  n-valued random vector of the

generalised coordinates Qpar(ω̄) can be computed from Eq. (4),

Qpar
j (ω̄) =

Fj(ω̄)

−ω̄2 + i2ω̄ΩjΞj + Ω2
j

, j = 1, . . . , n . (8)

The solution vector Upar(ω̄) can then be reconstructed as follows,

Upar(ω̄) = [ ]Qpar(ω̄) , i.e. Upar
i (ω̄) =

n
∑

j=1

[ ]ijFj(ω̄)

−ω̄2 + i2ω̄ΩjΞj + Ω2
j

. (9)

Meta-model of the parametric probabilistic model Given that the reliability analysis pur-

sued in this paper requires a very large number of samples of the response quantities of interest,

it would be prohibitive to use the full finite element model of the structure to produce the sam-

ples of the parametric model of uncertainties. Consequently, a meta-model is constructed, which

is supposed to mimic the behaviour of the full model for a given sample X
(k) of the uncertain

input parameters, at a greatly reduced computational cost. Denoting by tMeta and tFull the CPU-

times required to compute one sample of the response using the meta-model and the full FE

model, respectively, the meta-model should have the following properties,

R
(k)
Meta = RMeta

(

X
(k)

)

≈ R
(k)
Full = RFull

(

X
(k)

)

∀k ∈ (1, 2, . . .N) , tMeta ≪ tFull (10)

where RMeta and RFull are the value of a generic response quantity of interest predicted by the

meta-model and the full model, respectively. With reference to Eq. (9), in the parametric prob-

abilistic model such a quantity derived from the frequency response Upar(ω̄) can be computed

with the following expression,

RFull(ω̄) =
n

∑

j=1

Cjω̄
p

−ω̄2 + i2ω̄ΩjΞj + Ω2
j

, p ∈ {0, 1, 2} , (11)

8
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where the random scalar Cj = Cj( j,Fj , [M
par], [Dpar], [Kpar]) depends on the corresponding

eigenvector j , on the generalized forceFj and possibly also on the matrices [Mpar], [Dpar], [Kpar].

The value of the exponent p depends on the response quantity, e.g. for accelerations p = 2.

Since the adopted meta-model has mainly the role of speeding up the computations per-

formed with the parametric probabilistic model, its presentation is attached in appendix

A.

2.3 Non-parametric model of uncertainties

It is recalled that the main idea of the non-parametric probabilistic model of random uncer-

tainties consists in replacing the generalised matrices of a mean reduced matrix model of the

structure by random matrices whose probability model is constructed with the maximum en-

tropy principle. In particular, the theoretical construction and the physical concepts of this re-

cent probabilistic approach are detailed in [1,2,4,3]. Below, the main steps for establishing the

random matrix equations are summarised.

2.3.1 Mean reduced matrix model

Given the focus on the elastic motion of the structure, the (m × n) real matrix [Φ] is intro-

duced, whose columns are the n ≪ m eigenvectors !
α
related to the n strictly positive lowest

eigenfrequencies λα = ω2
α. The mean reduced matrix model can then be written as,

u(ω̄) = [Φ] q(ω̄) , (12)

in which q(ω̄) is the  n vector of the generalised coordinates solution of the mean reduced

equation
(

− ω̄2 [M red] + i ω̄ [Dred] + [K red]
)

q(ω̄) = F(ω̄) . (13)

In the above Eq. F(ω̄) = [Φ]T f(ω̄) is the  n vector of the generalised forces and the mean

reduced mass, damping and stiffness matrices [M red] = [Φ]T [M ] [Φ], [Dred] = [Φ]T [D] [Φ]

and [K red] = [Φ]T [K] [Φ] are positive-definite symmetric (n × n) real matrices.

9
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2.3.2 Construction of the non-parametric model of random uncertainties

The non-parametric model of random uncertainties yields the random matrix equation

(

− ω̄2 [Mnpar
red ] + i ω̄ [Dnpar

red ] + [Knpar
red ]

)

Q(ω̄) = F(ω̄) , (14)

in which [Mnpar
red ], [Dnpar

red ] and [Knpar
red ] are positive-definite symmetric (n×n) real-valued matrices

corresponding to the random reduced mass, damping and stiffness matrices and where Q(ω̄) is

the  n-valued random vector of the random generalised coordinates. The  m-valued random

vector Unpar(ω̄) is thus reconstructed by

Unpar(ω̄) = [Φn]Q(ω̄) . (15)

2.3.3 Probability model of the random matrices

The non-parametric probabilistic approach requires the normalisation of the mean reduced ma-

trices such that [M red] = [LM ]T [LM ], [Dred] = [LD]T [LD] and [K red] = [LK ]T [LK ], in

which [LM ], [LD] and [LK ] are diagonal (n × n) real matrices. Each random matrix is written

as

[Mnpar
red ] = [LM ]T [GM ] [LM ] (16)

[Dnpar
red ] = [LD]T [GD] [LD] (17)

[Knpar
red ] = [LK ]T [GK ] [LK ] . (18)

The probability distribution of the random matrices [GM ], [GD] and [GK ] is derived from the

maximum entropy principle issued from the information theory [30] with the available infor-

mation [1]. It can be shown that random matrices [GM ], [GD] and [GK ] are independent random

variables whose dispersion level can be controlled by the positive real parameters δM , δD and

δK which are independent of the dimension n. The probability distribution of these random

matrices and the generator of independent realizations are summarized in the appendix

B.

10
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2.4 Identification of the dispersion parameters related to the non-parametric approach with

respect to the parametric approach

In this section, the identification strategy of the dispersion parameters δM , δD and δK , which

control the dispersion of each random matrix issued from the non-parametric probabilistic ap-

proach, is described. Essentially, this strategy aims at introducing the same level of uncertainty

in some aspects of the numerical model which can be expected to be affected by a small de-

gree of model uncertainty. This is for instance usually the case for the first eigenfrequency of a

numerical model, after applying a suitable updating procedure [31].

In the choice of a suitable parameter to be used in the definition of the cost function uti-

lized for the calibration, it should be noted that numerical models for structural dynamics

are typically validated with special attention that the model captures the behavior of the

physical reality very well for the first eigenmode. Consequently, the model uncertainties

may be deemed as having a minimum impact on the first eigenmode, compared to other

results of the modal analysis.

The consideration of the unavoidable uncertainties in the physical parameters of the nu-

merical model will lead to a commensurate scatter in the modal parameters. Again, in

view of the above argument, the scatter of the first eigenfrequency can in most cases be ex-

pected to be the one measure of the variability, which best represents the scatter observed

in an ensemble of realizations of the physical structure (which in most cases are not avail-

able, especially for one-of-a-kind structures such as the satellite considered in this study).

Given that - in most practical cases of interest - the confidence in the characterization of

the scatter in the first eigenfrequency is hence superior to that of other modal parame-

ters, it is reasonable to calibrate the non-parametric model such that it produces the same

scatter in the first eigenfrequency [29].

Let Λpar
α and Λnpar

α be the first non zero random eigenvalues obtained with the parametric and the

non-parametric model of random uncertainties, respectively. The probability density functions

(PDFs) of random eigenvalues Λpar
1 and Λnpar

1 , denoted as pΛ
par
1

(λ) and pΛ
npar
1

(λ), are compared

in the least square sense. The two-dimensional cost function J(δM , δK) is then introduced such

11
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that,

J(δM , δK) =
||pΛ

npar
1

(δM , δK) − pΛ
par
1
||L2

||pΛpar
1
||L2

, (19)

in which the norm ||f ||L2 is given by

||f ||L2 =
(

∫

R

|f(x)|2 dx
)1/2

. (20)

The identification is carried out such that parameters δM and δK minimise the cost function and

are hence the solution of the optimization problem,

min
δM ,δK

J(δM , δK) . (21)

The dispersion parameter δD is identified separately by using the identification method pro-

posed in [32]. Let [Dpar
red] be the random dissipation matrix issued from the random reduced

model related to the parametric probabilistic model. The dispersion parameter δD is computed

as follows,

δD =

√

√

√

√

W par
D (n + 1)

tr([Dred])2 + tr([Dred]2)
, (22)

in which W par
D is given by

W par
D = E{||[Dpar

red] − [Dred]||
2
F}, (23)

and where ||[A]||2F = tr([A] [A]T ).

2.5 Reliability analysis

2.5.1 General remarks

The assessment of the reliability of structures requires a quantitative definition of failure.

For this purpose a so-called performance function g(X) is defined, which characterizes

the state of the structure and which is therefore a function of the vector of the uncertain

parameters X,

g(X) such that



























g(X) > 0 ⇐⇒ X ∈ S

g(X) ≤ 0 ⇐⇒ X ∈ F

g(X) = 0 ⇐⇒ limit state

, (24)
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where S and F denote the safe set and the failure set, respectively. The reliability of a

structure can then be quantified by its complementary quantity, the probability of failure

pF ,

pF = P [ X ∈ F ] =
∫  F (x) fX(x) dx ,  F (X) =











0 ⇐⇒ X ∈ S

1 ⇐⇒ X ∈ F ,
(25)

Computing this integral is a complex task for complex structural systems, because the

evaluation of the indicator function is usually time consuming, since it is usually necessary

to perform a full FE analysis in order to determine whether a realization of the input

parameters leads to failure. In the present work Monte-Carlo simulation [33,20] has been

adopted, which is the most robust and generally applicable method for estimating pF .

2.5.2 Monte Carlo Simulation

The Monte Carlo estimator p̂F for the probability of failure pF = P [F ], where F denotes

the failure event, has the form,

p̂F =
1

N

N
∑

k=1

 F (X(k)) . (26)

In the above equation, N is the number of samples and X
(k) denotes the k-th realization

of the set of input variables. The variance and the coefficient of variation (C.o.V.) of this

estimator are as follows,

V ar[p̂F ] =
1 − pF

pFN
, CoVp̂F

=
√

V ar[p̂F ]/pF =
√

(1 − pF )/NpF (27)

and represent a measure of the accuracy of the estimate. It should be noted that CoVp̂F
is

independent of the dimensionality of the random vector X. Besides the estimate of CoVp̂F
,

the accuracy of the Monte Carlo estimator p̂F can be quantified by constructing the asso-

ciated confidence interval based on Chebyshev’s inequality,

P [p̂F − ǫ < pF < p̂F + ǫ] ≥ α , where α = 1 −
σ2

p̂F

ǫ2
. (28)

13
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From the above, the limits of the confidence interval can be estimated in terms of ǫ for any

specified confidence level α (e.g. α = 90%),

ǫ ≈

√

√

√

√

p̂F (1 − p̂F )

N(1 − α)
. (29)

2.5.3 Computational efficiency

Eq. (27) shows that for the accurate estimation of small pF ’s a high number (proportional to

1/pF ) of samples is needed. In this work the computational efficiency has been improved by

using i.) a meta model (section A), and ii.) parallel processing (section 3.8.2). An additional

measure for reducing the computational costs would be afforded by advanced MCS techniques

[19,20], which aim at reducing the variance of the estimator of pF .

3 Reliability analysis of a satellite structure subjected to base excitation

3.1 General remarks

The purpose of the following analysis is to study the reliability of a satellite structure sub-

jected to a base excitation, under consideration of the uncertainties associated with the numer-

ical model of the structure. The investigated structure corresponds to the INTEGRAL satellite

of the European Space Agency (ESA), used for astrophysical research missions (INTErnational

Gamma Ray Astrophysics Laboratory) [34]. In the present study the structural reliability has

been defined with respect to the exceedance of given acceleration thresholds of the FRF in the

low frequency range.

Both a parametric (section 3.3) and a non-parametric model (section 3.4) have been used to as-

sess the reliability. The obtained results show that the reliability computed with the two models

differs greatly (section 3.6). As the magnitude of this difference varies depending on the mag-

nitude of the uncertainty in the damping, a parameter study has been performed (section 3.7),

14
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in order to investigate this dependence in more detail.

3.2 Finite element model description

The finite element model underlying this analysis [35,36,37] is encoded for the commercial FE

code MSC.Nastran [38] and is shown in Fig. 1. The model has approximately 120,000 DOFs;

triangular and quadrilateral shell elements have been used to model the numerous panel-like

components. Composite material properties have been introduced wherever applicable. The in-

struments have been included in the model in reduced form, using the Craig-Bampton method

as well as the Guyan-reduction technique. Linear elastic behavior is assumed throughout the

model. A harmonic base excitation with the frequency f̄ ∈ [5Hz, 25Hz] is imposed at the sup-

Fig. 1. Finite element model of the INTEGRAL satellite (courtesy of ESA/ESTEC)

port, which consists in the circular ring at the bottom of the satellite structure, as shown in Fig. 1.

The magnitude of the imposed acceleration is 1g; the direction of the excitation is horizontal

15
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and parallel to the axis of symmetry of the satellite.

Energy dissipation is modelled at system level, by assuming proportional damping.More specif-

ically the damping ratio is assumed as ζ = 1.5% (of critical damping) for all modes with a

natural frequency below 30 Hz (i.e. for the first four modes) and as ζ = 2.5% for the modes

with a natural frequency above 30 Hz.

3.3 Parametric probabilistic model

As mentioned in section 2.2, in the parametric probabilistic model the uncertain parameters of

the nominal FE model are treated as random variables, with a given distribution (see Eq. (3)).

In this study both material and geometric properties of the FE model have been assumed to

be uncertain; this includes beam section dimensions, composite material fibre orientation, non

structural masses, elastic moduli etc.

For structures as complex as the here investigated satellite it is very difficult to make an a-priori

assessment of whether the uncertainty in a given parameter is influential and should be consid-

ered or whether it can be neglected. Therefore the parameters have been classified into various

types and for each occurrence of a certain parameter type, an independent random variable has

been defined.

The assumed distribution type and the magnitude of the variability depend on the parame-

ter type and are reported in Table 1. For most uncertain parameters a normal distribution

has been assumed, which has been truncated to avoid negative values of the parameters,

which are physically strictly positive. Since in the case of damping the associated uncer-

tainty is significantly larger (up to 50% in the present study), a log-normal distribution has

been assumed. All uncertain parameters have been assumed to be mutually independent.

The probabilistic modeling approach summarized in Table 1 leads to a total of 1319 inde-

pendent random variables with coefficients of variation between 4% and 12%. It should be

noted that the magnitude of the scatter has been selected on the basis of data available in

the literature [39,40,41,42].
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Table 1

Assumptions for the probability distribution / C.o.V. of the uncertain parameters in the parametric model

Element/Material Type Property C.o.V. (σ/µ) Probability Distribution

Isotropic Material Young’s modulus 8% truncated Gaussian
Poisson’s ratio 3%
Shear modulus 12 %
Mass density 4%

Orthotropic Shell Young’s modulus 8% truncated Gaussian
Element Material Poisson’s ratio 3%

Shear modulus 12%
Mass density 4%

Solid Element An- Mat. property matrix 12% truncated Gaussian
Isotropic Material Mass density 4%

Simple Beam Section dimension 5% truncated Gaussian
Non-structural mass 8%

Layered Composite Non-structural Mass 8% truncated Gaussian
Material Thickness of plies 12%

Orientation angle σ = 1.5◦

Spring element property Elastic prop. value 8% truncated Gaussian

Shell element Membrane Thickness 4% truncated Gaussian
Non-structural Mass 8%

Spring element Stiffness 10% truncated Gaussian

Concentrated mass Mass 3% truncated Gaussian

Damping Modal Damping various log-normal

Particular emphasis is given in this paper to the effect of the uncertainty in the damping on the

reliability of the considered structure. Hence, various levels of the uncertainty in the damping

have been investigated. In all the cases the damping ratios have been assumed to follow a log-

normal distribution and to be mutually independent.

Fig. 2 shows the approximate PDFs of the eigenfrequencies in the frequency range of in-

terest, [15Hz, 25Hz], obtained using direct MCS with 1,500 samples of the full FE model.

Clearly, the four eigenfrequencies present in this frequency band are well separated, i.e.

there is practically no modal overlapping.

3.4 Non-parametric probabilistic model

The construction of the non-parametric model of the INTEGRAL satellite has been performed

as outlined in section 2.3, by using the nominal FE model introduced in section 3.2 as the mean

model. Based on a convergence analysis performed in [29], the mean model has been reduced

using a modal basis of dimension n = 150. It should be noted that since in the present paper the
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Fig. 2. Approximate PDFs of eigenfrequencies in the frequency range [15Hz, 25Hz]

analysis is limited to a frequency range of [5Hz, 25Hz], a smaller dimension of the modal basis

would have sufficed.

The identification of the dispersion parameters has been performed according to the procedure

described in section 2.4. The dispersion parameters of the mass and the stiffness, δM and δK ,

have been identified by minimizing the difference - i.e. the cost function J(δM , δK) introduced

in Eq. (19) - between the PDF of the first eigenvalue in the parametric and the non-parametric

model, respectively. As shown by the good agreement between the two PDF’s in Fig. 3, satis-

factory convergence to a minimum of the difference in the PDF’s is reached at δM = 0.14217

and δK = 0.13487.

The calibration of the damping dispersion parameter δD is discussed in detail in section 3.7.

3.5 Uncertainty analysis of the FRF

In the uncertainty analysis of the frequency response function (FRF), the probability distribution

of the FRF has been estimated using Monte Carlo simulation. For the parametric model samples

of the uncertain parameters X are generated according to the CDF of X in Eq. (3), which in

the present case study is based on the assumptions stated in section 3.3. For each sampleX, the

18



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

15.2 15.4 15.6 15.8 16 16.2 16.4 16.6 16.8 17
0

0.5

1

1.5

2

2.5

3

3.5

parametric
nonparametric

Fig. 3. Identification of dispersion parameters δM and δK : Graph of the probability distributions

λ 7→ pΛ
par

1
(λ) for the parametric approach (thin line) and λ 7→ pΛ

npar

1
(λ) for the non-parametric ap-

proach (thick line) with dispersion parameters δM = 0.14217 and δK = 0.13487

structural matrices [Mpar], [Dpar], [Kpar] in Eq. (2) are assembled by the FE solver and Eq. (2) is

solved for the FRF Upar(ω̄).

For the non-parametric model, samples of the matrices [Mnpar
red ], [Dnpar

red ], [Knpar
red ] in Eq. (14) are

generated directly, on the basis of Equations (B.4) and (B.5) and using the identified dispersion

parameters. With Equations (14) and (15) the non-parametric FRF Unpar(ω̄) is then solved for.

From the two ensembles of FRF’s,
{

Unpar (k)(ω̄)
}Npar

k=1
and

{

Upar (k)(ω̄)
}Nnpar

k=1
, whereNpar andNnpar

are the number of samples in the parametric and the non-parametric model, respectively, the

approximate quantiles of the FRF’s can be obtained, as shown in Figures 4 and 5. The shown

FRF’s refer to the acceleration amplitude at the tip of the SAS booms located at the top of the

satellite; the specific node (no. 799921) is marked in Fig. 1.

The two figures refer to different levels of the damping uncertainty. Fig. 4 refers to the case

in which the C.o.V. of the modal damping ratios was assumed to be 20%. It is recalled that

the damping ratios are mutually independent and log-normally distributed. Using the procedure

detailed in section 2.4 (Equations (22) and (23)), this assumption leads to a damping disper-
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Fig. 4. Acceleration FRF quantiles in the frequency range [15Hz, 25Hz]; parametric model

(dashed lines, C.o.V of modal damping ratios: 20%) and non-parametric model (continuous lines,

δD = 0.20903).
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Fig. 5. Acceleration FRF quantiles in the frequency range [15Hz, 25Hz]; parametric model

(dashed lines, C.o.V of modal damping ratios: 40%) and non-parametric model (continuous lines,

δD = 0.41762).

20



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

sion parameter of δD = 0.20903. The convergence of the identification procedure for this case

(C.o.V. = 20%) is shown in one of the sub-figures in Fig. 8.

Fig. 4 shows that in this case the uncertainty in the FRF is significantly greater for the non-

parametric model. Indeed the corresponding quantiles (continuous lines) are significantly more

spread out than those of the parametric model. This may be interpreted as a consequence of

the fact that in the non-parametric model adopted here the model uncertainties are included and

this leads to an increase in the FRF uncertainty. The sensitivity of the FRF predictions of the

considered satellite structure to model uncertainties in the low frequency range up to 50

Hz have already been investigated using the present non-parametric model in an earlier

study [29].

Fig. 5 refers to the case in which the C.o.V. of the modal damping ratios {Ξj}
n
j=1 is assumed

to be 40%. In this case the damping dispersion parameter is δD = 0.41762; the convergence of

δD is shown in Fig. 9. As Fig. 5 shows, the uncertainty in the FRF is now similar for both the

parametric and the non-parametric model. In particular, while for the lower probability levels

the fractiles of the non-parametric FRF are significantly higher, at least near the peak around 20

Hz, the 99% fractile of both models is almost identical.

This indicates that in the parametric model the extreme values of the FRF are much more sen-

sitive to the uncertainty in the damping than in the non-parametric model. This phenomenon

has been observed not only for the considered satellite structure, but also for other types

of structures, such as more simple beam structures modeled with 3-D solid elements.

3.6 Reliability analysis of the FRF

While in the previous section the uncertainty of the FRF has been analyzed in general, i.e.

in terms of the corresponding probability distribution, the attention is now focussed on the

likelihood of extreme FRF levels. This issue is at the core of reliability analysis, in which the

probability of exceedance of a given response threshold is of interest. The exceedance of such a

threshold is often associated with the failure of a component and its probability therefore termed
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Fig. 6. Probability of acceleration threshold exceedance in the frequency range [5Hz, 25Hz]; parametric

model (dashed red line, C.o.V of modal damping ratios: 20%) and non-parametric model (continuous

blue line, δD = 0.20903).

as probability of failure pF .

In the present case failure is defined as the exceedance of the acceleration threshold at any

excitation frequency in the band [5Hz, 25Hz].

Fig. 6 shows the failure probability as a function of the specified threshold level of the acceler-

ation amplitude. As expected, the failure probability decreases with increasing threshold levels.

The figure refers to the case of a C.o.V. of the modal damping ratios of 20% and shows that for

a given threshold level, the failure probability pF is significantly higher for the non-parametric

model. It should be noted that the pF -estimates have been obtained using direct Monte Carlo

simulation (cf. section 2.5.2). The dashed lines indicate the 90%-confidence interval of the pF -

estimate.

The situation is clearly different if the uncertainty in the damping increases. Fig. 7 shows the

pF -estimates for a C.o.V. of {Ξj}
n
j=1 of 40%. While the pF predicted by the parametric model

decreases log-linearly with increasing acceleration threshold, the drop in the pF predicted by

the non-parametric model is clearly super-linear.
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Fig. 7. Probability of acceleration threshold exceedance in the frequency range [5Hz, 25Hz]; parametric

model (dashed red line, C.o.V of modal damping ratios: 40%) and non-parametric model (continuous

blue line, δD = 0.41762).

3.7 Parameter study - dependence of the reliability on the damping uncertainty

In view of the strong influence of the level of damping uncertainty on how the failure proba-

bility provided by the parametric and the non-parametric model, respectively, relates to each

other, a systematic parameter study has been performed, with respect to the C.o.V. of the modal

damping ratios in the parametric model. For C.o.V.’s between 5% and 50%, in steps of 5%, the

corresponding damping dispersion parameter has been identified and the non-parametric model

constructed. Both for the parametric and the non-parametric model failure probabilities down

to approximately 10−4 have been estimated with Monte Carlo simulation.

Figures 8 and 9 show the convergence after 1,500 simulations of the damping dispersion pa-

rameter for C.o.V.’s between 5% and 50%.

Figures 10 and 11 depict the pF estimates of the parametric (red dashed lines) and the non-

parametric model (blue continuous lines). Several observations can be made:

• The pF -estimates of the non-parametric model are very insensitive to the level of the damping
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Fig. 8. Convergence of the damping dispersion parameter; C.o.V.’s of the modal damping ratios in the

corresponding parametric model: 5%-25%

uncertainty. Comparing e.g. the estimates obtained for the case of a C.o.V. of the modal

damping ratios of 5% and for a C.o.V. of 50%, respectively, one concludes that the shift of

the pF -estimate to the right is hardly perceptible.

• In contrast, the shift to the right of the pF -estimates of the parametric model is steady and
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Fig. 9. Convergence of the damping dispersion parameter; C.o.V.’s of the modal damping ratios in the

corresponding parametric model: 30%-50%

very significant. This indicates that the reliability estimates of the parametric model are very

sensitive to the level of uncertainty in the damping.

• For a low uncertainty in the damping (e.g. 5%), the pF -estimates of the non-parametric model

are orders of magnitude more pessimistic (and hence conservative) than those of the paramet-
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Fig. 10. Probability of acceleration threshold exceedance in the frequency range [5Hz, 25Hz]; parametric

model (dashed red line, C.o.V of modal damping ratios: 5%-25%) and non-parametric model (continuous

blue line, δD - see corresponding subfigure in Fig. 8).

ric model.

• For a high uncertainty in the damping (e.g. 50%), the pF -estimates of the parametric model
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Fig. 11. Probability of acceleration threshold exceedance in the frequency range [5Hz, 25Hz]; parametric

model (dashed red line, C.o.V of modal damping ratios: 30%-50%) and non-parametric model (continu-

ous blue line, δD - see corresponding subfigure in Fig. 9).

are orders of magnitude more pessimistic (and hence conservative) than those of the non-

parametric model.
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Fig. 12. Acceleration threshold levels leading to pF = 10−3 (left) and pF = 10−4 (right) vs. C.o.V of the

modal damping ratios of the parametric model; parametric model (red dashed line) and non-parametric

probabilistic model (blue continuous line, δD - see corresponding sub-figure in Figures 8 and 9)

The above observations are also suggested by Fig. 12, in which the threshold level required to

reach a given pF is plotted against the C.o.V. of the damping ratios which underlies the predic-

tions of the parametric and the non-parametric model (in the latter one through the correspond-

ing δD). In particular it is apparent that for the non-parametric model the threshold associated

with a given pF is virtually constant and hence entirely insensitive to the level of the damping

uncertainty.

Fig. 13 is representative of the accuracy of the failure probability estimates in Figures 10, 11

and 12. It shows the 90%-confidence intervals of the pF -estimates for the case in which the non-

parametric model has been calibrated based on the assumption of a C.o.V. of 30% of the modal

damping ratios. The number of samples underlying the estimates of the non-parametric model

is 100,000, for all cases investigated in the parameter study. The number of samples used in

the estimates of the parametric model is 1,000,000. Hence the corresponding accuracy is higher

than that indicated in Fig. 13.
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Fig. 13. Probability of acceleration threshold exceedance in the frequency range [5Hz, 25Hz], with con-

fidence intervals based on Chebyshev’s inequality (dashed lines); non-parametric model, δD = 0.31277;

100,000 Monte Carlo samples

3.8 Computational aspects

3.8.1 Meta-model for frequency response analysis

Given the considerable computational cost for each individual frequency response analysis with

the full FE model, as described in section 3.2, a meta-model has been constructed, based on the

formulation presented in section A.

The validity of the predictions of the Meta-model is demonstrated in Figures 14 and 15. The

former compares individual samples of the frequency response (in the region of the main peak

around 20 Hz) obtained with the full model (dashed line) and with the corresponding Meta-

model (continuous line). Pairs of lines with the same color were obtained using the same sets

of input parameters. The excellent agreement between the respective line pairs shows that for

a given set of input parameters, the Meta-model predicts the frequency response with great
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Fig. 15. Verification meta-model predictions: FRF quantiles, full FE model (dashed line) and meta-model
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accuracy. It should be noted that the samples of input parameters used to produce the FRF

samples shown in Fig. 14 have not been used in the calibration of the meta-model. Hence, in

this case, the meta-model is indeed applied as a predictive tool.

Fig. 15 compares the corresponding quantiles, which match very well, too. In view of the excel-

lent agreement between the frequency response of the full FE model and the frequency response

predicted by the associated Meta-model, the latter has been considered as verified and was used
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for the reliability estimation of the parametric probabilistic model.

3.8.2 Parallel reliability analysis

The parameter study presented in this section involved a conspicuous amount of computations,

especially for the non-parametric model. More specifically, the underlying Monte Carlo simu-

lations required a total CPU time in the order of magnitude of 1500 hours (60 CPU-days) on

AMD Opteron processors with 2.2 GHz.

To reduce this impractical amount of time, the Monte Carlo simulations were performed in

parallel on an Opteron cluster. The number of nodes executing the parallel job ranged from 80

to 100, depending on the availability of cluster nodes. With this arrangement the Monte Carlo

simulations of the non-parametric model could be completed in less than one day.

4 Conclusions

The present paper investigated the reliability of a satellite structure with respect to the ex-

ceedance of a given acceleration threshold of the FRF. This investigation was performed with a

parametric probabilistic model, in which the parameters of the nominal FE model are modelled

as random variables, and with a non-parametric model, which has been calibrated with respect

to the parametric model and which includes the model uncertainties, in addition to the system

parameter uncertainties introduced with the parametric model.

The probabilities of exceedance predicted by the two approaches are in general very different;

this implies that for the considered problem the inclusion of model uncertainties in the analysis

has a great impact on the predicted reliability. As shown in a comprehensive parameter study,

the magnitude of this difference depends strongly on the level of uncertainty in the damping.

For low levels of uncertainties in the damping, the failure probability estimates are significantly

more pessimistic (and hence conservative), if model uncertainties are included in the analy-

sis with a non-parametric model. For high levels of uncertainty in the damping, the opposite

has been observed, i.e. in this case the inclusion of model uncertainties, in addition to system
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parameter uncertainties, results in more optimistic failure probability estimates.

The main reason underlying the above observations is that the sensitivity of the predictions

to the level of damping uncertainty is highly dependent on whether model uncertainties are

considered or not. Indeed, the FRF-predictions are very sensitive to the uncertainty in the modal

damping ratios only as long as the uncertainties in the parameters, but not model uncertainties,

are considered. If, however, model uncertainties are included by applying a non-parametric

model, then the predictions turned out to be very insensitive to the level of the corresponding

damping dispersion parameter.
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A Meta-model of the parametric probabilistic model

A.1 Taylor expansion of modal quantities

The key idea of the proposed meta-model rests on the observation that in the low-frequency

domain both the coefficients Cj and the eigenfrequencies Ωj exhibit only a moderate non-linear

dependence on the uncertain parameters (X1, . . . , Xd), provided that there is no modal over-

lapping, in which case the dependence experiences discontinuities. In the application stud-

ied in this manuscript, there is no modal overlapping (cf. Fig. 2) and hence the assumption
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of a moderately non-linear dependence is valid.

Hence it is proposed to approximate the quantitiesCj andΩj in Eq. (11) through a linear approx-

imation. For convenience, the entire set of Cj and Ωj is collected in a vector  of generalized

modal quantities, = [Ω1 C1 Ω2 C2 . . . Ωn Cn]T = [Υ1 . . . Υi . . . Υ2n]T . (A.1)

The approximant Υ̂i corresponding to the first-order Taylor expansion of Υi is then,

Υ̂i ≈ Υi + ′
i · (X− x) , (A.2)

where the vector ′
i is the gradient of Υi with respect to x, evaluated at x,

Υ′
ik =

∂Υi

∂xk

∣

∣

∣

∣

∣

x=x
. (A.3)

Once the gradient vector  ′
i has been computed, samples of the approximant Υ̂i can be com-

puted extremely fast, by generating samples of the input parameters X and using Eq. (A.2).

Performing this operation for i ∈ {1, . . . , 2n} in Eq. (A.1) delivers the approximant  ̂ which

corresponds to a sample of approximants {Ω̂j}
n
j=1 and {Ĉj}

n
j=1. Using these approximants in

the expansion of the response in Eq. (11) provides an approximation of the sample response,

which represents the proposed meta-model,

RMeta(ω̄) =
n

∑

j=1

Ĉjω̄
p

−ω̄2 + i2ω̄Ω̂jΞj + Ω̂2
j

. (A.4)

A.2 Gradient estimation algorithm

The evaluation of the gradient formulated in Eq. (A.3) may be viewed as the calibration step in

the actual construction of the meta-model. Computationally, this step is also the most expensive

part of the meta-model, since in general it is necessary to repeatedly evaluate the full, expensive

FE model in order to obtain  ′
i for all i ∈ {1, . . . , 2n}. Indeed, in the context of complex FE

models the partial derivative ofΥi is usually computed most expediently by a finite difference
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calculation,

∂Υi

∂xk

∣

∣

∣

∣

∣

x=x
≈

Υi

(

x + [ 0 . . . 0 ∆xk 0 . . . 0 ]T
)

− Υi (x)

∆xk

. (A.5)

Alternatively, the partial derivative may be computed analytically, utilizing results on the

analytical derivatives of eigenvalues and -vectors [43,44,45]. However, the implementation

of the analytical derivatives requires significant more implementation effort, as the deriva-

tives have to be extracted from the FE program. In contrast, in the above finite difference

formulation one may use the FE program in black-box fashion.

It is clear that the calibration of the meta-model through Eq. (A.3) is particularly expensive if

the number d of uncertain parameters (X1, . . . , Xd) is large, as it is usually the case for FE

models of complex structures. In order to speed up this step, a recently introduced statistical

gradient estimation method can be relied upon [46,47]. The method is based on Monte Carlo

simulation; for any Υi a corresponding “statistical gradient vector” s is obtained,

s = [s(X1) s(X2) . . . s(Xd)] , where s(Xk) = σXk

∂Υi

∂xk

∣

∣

∣

∣

∣

x=x
. (A.6)

Each element s(Xk) of the vector s may be interpreted as a measure of the relative importance

of the corresponding uncertain variable Xk for the quantity of interest Υi. As described in [46],

an approximation to s can in most cases be obtained with a rather moderate number of samples

N , where N ≪ d. Using this approximation, one can then obtain the partial derivatives of Υi

from Eq. (A.6),

∂Υi

∂xk

∣

∣

∣

∣

∣

x=x
= s(Xk)/σXk

. (A.7)

The key of the algorithm’s efficiency consists in the fact that only those components of s are

evaluated, which appear as the most influential, whereas the remaining ones are neglected.

The essential steps of the algorithm summarized as follows; details may be found in [46,47].

(1) First, Υi is computed at the mean value of the input parameters, Υi = Υi (x) .

(2) Next, an initial set of N0 samples is generated with direct Monte Carlo sampling, using

however a reduced standard deviation for the input parameters compared to the true stan-

dard deviations
{

σXj

}d

j=1
. This is meant to ensure thatΥi is sampled within the quasilinear
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range with respect to the input parameters.

(3) For each sample k ∈ {1, . . . , N0}, the modal quantity Υi

(

X
(k)

)

and the corresponding

deviation from Υi are evaluated, i.e. b
(k) = Υi

(

X
(k)

)

− Υi .

(4) With the available set of samples, the sample correlation between each input parameter

and Υi is evaluated. A ranking of the relative importance of all uncertain input parameters

{Xj}
d
j=1 is then established, based on the absolute value of the correlation.

(5) For the L most important variables the corresponding partial derivative is determined with

by finite differences, i.e. using Eq. (A.5). The integer value L is user-defined; for the sake

of efficiency L ≪ d, as a rule of thumb L = 10 is suggested.

(6) The actual relative importance is assessed with Eq. (A.6) and compared with the “average

importance”. If it is below that the so-called failure counter variable is incremented; indeed

the fact that a parameter which was estimated to be of major importance turns out to be in

fact below the “average importance” is considered a failure. Whenever the failure counter

exceeds a certain user-defined threshold value (e.g. 10), an additional set of MCS-samples

is generated and the algorithm proceeds from there.

(7) The influence of those parameters, whose partial derivatives have been computed based

on the importance ranking, is removed from the ensemble of deviations,
{

b(k)
}N0

k=1
. The

ensemble of the remaining deviations is denoted as
{

b̃(k)
}N0

k=1
.

(8) Next, the exit criterion is probed: (1) if the achieved accuracy exceeds the user-defined

accuracy threshold, i.e. if ǫ =

√

1 − ||b̃||
||b||

≥ ǫmin , convergence has been reached; a typical

value for ǫmin is 0.95; it should be noted that convergence is guaranteed after evaluating

at most d (i.e. all ) partial derivatives; (2) if the accuracy of the gradient estimate is not

sufficient, the relative importance of additional parameters has to be evaluated.

A.3 Retrieval of modal quantities from FE code output

Unless the analyst has access to the source code of the FE code used for the dynamic analysis,

the following practical problem arises in the calibration of the meta-model: for a given response

quantity of interest RFull(ω̄), the modal quantities {Cj}
n
j=1 in Eq. (11) cannot be obtained di-

rectly from the output of the FE code.
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However, it is possible to compute the set {Cj}
n
j=1 for a given sample, by post-processing the

available set of responses,

{RFull(ω̄m)}M
m=1 , ω̄m = ω̄1 + (m − 1)∆ω̄ . (A.8)

where ω̄1 and ω̄M are the lower and the upper bound, respectively, of the considered frequency

band  , ∆ω̄ is the frequency increment and M is the total number of frequencies at which the

FRF is computed. With reference to Eq. (11), the following set of equations can be formulated

for a given sample,

RFull(ω̄m) =
n

∑

j=1

Aj (ω̄m) Cj ∀m ∈ {1, . . . , M} , where Aj =
ω̄p

−ω̄2 + i2ω̄ΩjΞj + Ω2
j

.

(A.9)

It should be noted that for each sample the set {Aj}
n
j=1 is known, provided the FE code outputs

the eigenfrequencies {Ωj}
n
j=1; the (random) modal damping ratios {Ξj}

n
j=1 are user defined and

thus also known. The above set of equations may be written in matrix form,

[A]C = R , where [A] ∈ !M,n , C ∈ !n,1 , R ∈ !M,1 , (A.10)

and where,

[A]mj = Aj (ω̄m) , C = [C1 . . . Cj . . . Cn]T , Rm = RFull(ω̄m) . (A.11)

The above overdetermined system inCmay be solved using singular value decomposition.

It should be noted that the accuracy of the above introduced response representation in

terms of C is satisfactory only within the frequency range considered in this manuscript.

In particular, its accuracy appears to be very sensitive to modal overlapping.

B Probability distribution of the random matrices

In the following, [G] denotes any one of the matrices [GM ], [GD] and [GK ] and δ denotes the

corresponding dispersion parameter. The probability density function of randommatrix [G]with
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respect to the volume element

d̃G = 2n(n−1)/4
∏

1≤i≤j≤n

dGij , (B.1)

is given by,

p[G]([G]) =  
M

+
n (R)([G]) × CG × (det([G]))(1−δ2)(2δ2)−1(n+1) × e−(n+1)(2δ2)−1 tr[G] , (B.2)

in which  
M

+
n (R) denotes the indicatrix function indexed on the set of all the symmetric (n ×

n) real positive-definite matrices, det and tr are the determinant and the trace of the matrix,

respectively. Furthermore CG is the positive constant,

CG =
(2π)−n(n−1)/4

(

n+1
2δ2

)n(n+1)(2δ2)−1

∏n
j=1 Γ(n+1

2δ2 + 1−j
2

)
, (B.3)

in which Γ(z) is the gamma function defined for all z > 0 by Γ(z) =
∫ ∞
0 tz−1e−t dt. Eq. (B.2)

shows that the entries [G]jk of random matrix [G] are dependent random variables.

The following algebraic representation of random positive-definite symmetric real matrix [G]

allows a procedure for the Monte Carlo numerical simulation of random matrix [G] to be de-

fined. The random matrix [G] is written as,

[G] = [LG]T [LG] , (B.4)

in which [LG] is an (n × n) upper triangular random matrix resulting from the Cholesky fac-

torisation such that

(1) random variables {[LG]jj′, j ≤ j′} are independent;

(2) for j < j′, real-valued random variable [LG]jj′ can be written as [LG]jj′ = σn Ujj′ in which

σn = δ(n + 1)−1/2 and where Ujj′ is a real-valued Gaussian random variable with zero mean

and variance equal to 1;

(3) for j = j′, positive-valued random variable [LG]jj can be written as [LG]jj = σn

√

2Vj in

which σn is defined above and where Vj is a positive-valued gamma random variable whose
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probability density function pVj
(v) with respect to dv is written as

pVj
(v) =  R+(v)

1

Γ(αn,j)
vαn,j−1 e−v , αn,j =

n + 1

2δ2
+

1 − j

2
. (B.5)
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[40] M. Klein, G. Schuëller, P. Deymarie, M. Macke, P. Courrian, R. S. Capitanio, Probabilistic approach

to structural factors of safety in aerospace, in: Proceedings of the International Conference on

Spacecraft Structures and Mechanical Testing, Cépadués-Editions, Paris, France, 1994, pp. 679 –
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