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Abstract

We present a methodology to perform the identification and validation of com-
plex uncertain dynamical systems using experimental data, for which uncertainties
are taken into account by using the nonparametric probabilistic approach. Such a
probabilistic model of uncertainties allows both model uncertainties and parameter
uncertainties to be addressed by using only a small number of unknown identifica-
tion parameters. Consequently, the optimization problem which has to be solved in
order to identify the unknown identification parameters from experiments is feasi-
ble. Two formulations are proposed. The first one is the mean-square method for
which a usual differentiable objective function and an unusual non-differentiable
objective function are proposed. The second one is the maximum likelihood method
coupling with a statistical reduction which leads us to a considerable improvement
of the method. Three applications with experimental validations are presented in
the area of structural vibrations and vibroacoustics.
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1 Introduction

Uncertainty modeling and quantification in computational mechanics have
received particularly attention in recent years. Statistical and probabilistic
procedures have provided a sound framework for a rational basis for processing
uncertainties. In this context the aspects of model validation and verification
respectively are of interest.

The updating (or the identification) of a computational model and the de-
sign optimization with a computational model require to solve optimization
problems of the same nature. When uncertainties are taken into account in
such a computational model, then the corresponding optimization problems
are known as robust updating (or robust identification) and robust design
optimization. For instance, the updating (or the identification) of a compu-
tational model using experimental data is currently a challenge of interest in
structural dynamics [4,15,21,29,30,35,36,38,43,50] and the design optimization
with a computational model is a subject of importance in structural acoustics
[5,17,23,40]. Nowadays it is well understood that the effects of uncertainties
have to be taken into account to update (or to indentify) a computational
model and to optimize a design with a computational model. For instance,
robust updating (or robust identification) has recently been proposed in the
context of structural dynamics [34,41,42,45]. Similarly, robust design optimiza-
tion has been proposed in different areas [16,33,37,46,47,49,51,65,67]. It should
be noted that such robust updating (or robust identification) and robust de-
sign optimization are developed in the context of parameter uncertainties but
not in the context of both parameter uncertainties and model uncertainties.
Recently, robust design optimization has been analyzed with model uncertain-
ties [6].

The context of this paper is the validation of probability models of uncer-
tainties in the computational models used for the analysis of complex dynam-
ical systems. These computational models are constructed by developing a
mathematical-physical model of the designed dynamical system conceived by
the designers and analysts. Such a computational model exhibits an input, an
output and a vector-valued parameter. The real dynamical system is a man-
ufactured version of the system realized from the designed dynamical system.
Consequently, the real dynamical system is a man made physical system which
is never exactly known due to the variability induced by the manufacturing
process and by small differences in the configurations. The computational
model is used either to predict the response of the real dynamical system in
including its variabilities or to optimize the design. The mathematical phys-
ical modeling process of the designed dynamical system introduces two fun-
damental types of uncertainties: the parameter uncertainties and the model
uncertainties. It is important to note that the model uncertainties are not
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due to external noises or cannot be represented by equivalent external noises.
The manufacturing process induces variabilities in the real dynamical system.
In general, no experimental measurements are available for the responses of
such complex dynamical systems. Consequently, the parameter uncertainties
and the model uncertainties have to be taken into account in the computa-
tional model in order to improve the predictability and the robustness of the
predictions. We then need to model the uncertainties in the dynamical sys-
tem. It is known that several approaches can be used to take into account the
uncertainties in the computational models of complex dynamical systems for
the low and medium frequencies (method of intervals, fuzzy sets, probabilistic
approach, etc). The most efficient and the most powerful mathematical tool
adapted to model the uncertainties is the probabilistic approach as soon as the
probability theory can be used. The parametric probabilistic approach which
includes the stochastic finite element method is the most efficient method to
address the parameter uncertainties in the predictive models. Such an ap-
proach consists in modeling the vector-valued parameter by a vector-valued
random variable for which the probability distribution must be constructed
using the information theory [56] and the available information (for instance,
consisting of given algebraic properties and of a given mean value). If a lot of
experimental data are available, then the Bayesian approach can be used to
update such a probability distribution (see for instance [64] and [66]). However,
the parametric probabilistic approach cannot address the model uncertainties
as it is demonstrated, for example, in [61] and [62]. In addition, the use of
the parametric probabilistic approach of the parameter uncertainties for the
analysis of a complex dynamical system generally requires the introduction
of a very large number of random variables. This is due to the fact that the
dynamical responses can be very sensitive to many parameters relative to the
boundary conditions or to the geometry (such as the thicknesses of plates or
as the curvatures of panels), etc. Typically, several hundred thousands random
variables can be necessary to take into account parameter uncertainties in a
complex dynamical system. It should be noted that the construction of the
probabilistic model for a large number of random parameters is not so easy to
carry out. In addition, for such a complex dynamical system there are gener-
ally no available measurements. If very little measurements are available, then
the identification of a large number of probability distributions using experi-
mental data (using the Bayesian approach, the maximum likelihood method
or another approach leading an optimization problem to be solved) can be-
come unrealistic. In this context for which no measurements are available or
for which very little measurements are available, it can be concluded that very
little can be learnt from the experimental data. The idea is then to develop
an approach for which the uncertain computational model can mainly learn
from the available information (such as algebraic properties and given mean
values) but not from experimental data. The nonparametric probabilistic ap-
proach [57–63] recently proposed and based on the use of the random matrix
theory is a way to address both model uncertainties and parameter uncertain-
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ties without using experimental data. This nonparametric approach proposed
introduces a very small number of parameters (typically 7 parameters for a
structural-acoustic system) which allows the level of uncertainties to be con-
trolled. In the particular case for which very little measurements are available,
the identification of these parameters using experimental data is realistic and
can be performed by solving adapted mathematical statistical tools such as
the mean-square method or the maximum likelihood method.

The objective of this paper is to present formulations for experimental val-
idation of complex uncertain dynamical systems for which uncertainties are
taken into account by using the nonparametric probabilistic approach and for
which very little measurements are available. Consequently, the optimization
problem which has to be solved in order to identify the unknown identifi-
cation parameters from experiments is feasible for very large computational
dynamical model. It should be noted that when the parameters of this non-
parametric probabilistic model have been identified for one complex dynamical
system belonging to a large class of dynamical systems representing many dif-
ferent configurations, this probabilistic model can be reused to analyze or to
optimize another design belonging to this large class without needing exper-
imental data. This important property is due to the fact that the nonpara-
metric probabilistric approach consists in constructing a probabilistic model
of the operators of the problem using intrinsic available information relative
to the operators of the dynamical system such as the mass, damping, stiffness,
structural-acoustic coupling operators. Three formulations are proposed. The
first one is based on the usal mean-square method with a differentiable ob-
jective function. The second one introduces a new unusual non-differentiable
objective function which is particularly well adapted to the responses of dy-
namical systems formulated in the frequency domain. The last one is a new
methodology which is very efficient for dynamical systems formulated in the
frequency domain and which is based on the use of the maximum likelihood
method coupled with a statistical reduction in the frequency domain and which
leads us to a considerable improvement of the method. Three applications with
experimental validations will be presented in the area of structural vibrations
and vibroacoustics to illustrate the different methods proposed.

2 Reduced mean computational model

In this paper, we consider a linear elastodynamic problem (structural dy-
namics) or a linear elastoacoustic problem (structural acoustics of a struc-
ture coupled with a bounded internal acoustic cavity). It is assumed that the
computational model is constructed using the finite element method and is
formulated in the frequency domain ω (angular frequency). A reduced mean
computational model is constructed with the usual method of projection on
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subspaces spanned by a set of elastic modes of the structure in vacuo and/or a
set of acoustic modes of the acoustic cavity with rigid walls. This means that
the domain of validity of such a reduced mean computational model is the low-
and medium-frequency ranges and the frequency band of analysis is denoted
by B = [ωmin , ωmax] with 0 ≤ ωmin < ωmax. The reduced mean computational
model is then written as

v(r, ω) = [Φ(r0)] q(r, ω) , (1)

[a(r, ω)] q(r, ω) = [Φ(r0)]
T
f(r, ω) , (2)

w(r, ω) = h(ω, v(r, ω)) . (3)

In Eqs. (1) to (3), the parameter r belongs to an admissible set R which is
a subset of  

nr (with nr ≥ 1). Parameter r represents either an updating
parameter or a design parameter which has to be identified and which will
be called the identification parameter of the mean computational model. The
parameter r0 is a given nominal value of r. For all r fixed in R and for all ω
fixed in B:

(i) v(r, ω) is the complex vector in !
nv of the degrees of freedom (structural

displacements and/or acoustic pressures) of the mean computational model
with nv > 1.

(ii) f(r, ω) is a complex vector in !
nv which represents the loads due to forces

applied to the structure and/or the internal acoustic sources.

(iii) w(r, ω) is a real vector in  
n with n ≥ 1 and represents the real-valued

observation of the mean computational model. For instance, we will have
wj(r, ω) = 20 log10(ω

2|vkj
(r, ω)|) in which vkj

(r, ω) will be a structural dis-
placement or wℓ(r, ω) = 20 log10(|pkℓ

(r, ω)|) in which p
kℓ

(r, ω) will be an acous-

tic pressure. Such equations define the mapping v 7→ w = h(ω, v) from !
nv in

 
n.

(iv) [Φ(r0)] is a (nv × N) real matrix whose columns are made up of elastic
modes of the structure in vacuo and/or acoustic modes of the acoustic cavity
with rigid wall, computed for the nominal value r0 of the updating parameter
r. The matrix [Φ(r0)]

T is the transpose of [Φ(r0)].

(v) q(r, ω) is the complex vector in !
N of the generalized coordinates of the

reduced mean computational model.

(vi) [a(r, ω)] is the (N ×N) complex matrix representing the generalized stiff-
ness matrix.

5



It is assumed that for all r in R and for all ω in B, dimension N of the reduced
computational model is sufficiently large (but N ≪ nv) to reach a reasonable
convergence.

3 Construction of the stochastic computational model to take into

account uncertainties

It is assumed that there are uncertainties in the mean computational model.
There are two main types of uncertainties, parameter uncertainties and model
uncertainties.

Usually, parameter uncertainties are taken into account by using a paramet-
ric probabilistic approach allowing uncertain parameters of the computational
model to be modeled by random variables, random fields, etc. Such a paramet-
ric probabilistic approach is the most efficient method to address parameter
uncertainties in a computational model (see for instance, [52–54]). In particu-
lar, the stochastic finite element method is a powerful tool to analyze propaga-
tion of parameter uncertainties through the computational model associated
with a boundary value problem (see for instance, [24,25]).

The mathematical-mechanical modeling process of the designed system used
to construct the computational model introduces model uncertainties which
cannot be addressed by the parametric probabilistic approach (see [61]). In
this paper, it is assumed that parameter uncertainties and model uncertainties
exist in the computational model. Consequently, we propose to use the non-
parametric probabilistic approach of both parameter uncertainties and model
uncertainties recently introduced (see [57] to [63]), constructed by using the
maximum entropy principle [31,56], and for which experimental validations
can be found in [8–10,18,19]. The maximum entropy principle was introduced
by Shannon [56] in the construction of the information theory. This principle
consists in constructing the probability density function which maximizes the
uncertainties under the constraints defined by the available information. Ap-
plying the nonparametric probabilistic approach to Eqs. (1) to (3) yields the
following stochastic reduced model such that, for all ω in B and for all r in R,

V(r,  , ω) = [Φ(r0)]Q(r,  , ω) , (4)

[A(r,  , ω)]Q(r,  , ω) = [Φ(r0)]
T
f(r, ω) , (5)

W(r,  , ω) = h(ω,V(r,  , ω)) , (6)

in which all the random quantities are defined on a probability space (Θ, T, P).
The random matrix [A(r,  , ω)] is a (N ×N) complex random matrix for which
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the probability distribution is known and which is such that

E{[A(r,  , ω)]} = [a(r, ω)] , (7)

where E is the mathematical expectation. This random matrix depends on the
random matrix germs modeling uncertainties and for which their probability
distributions depend on a vector parameter  belonging to a subset ∆ of  nδ .
The probability model of the random matrix germs and the corresponding
generator of independent realizations can be found in references [57] to [63]
and in particular, in reference [62]. Some additional explanations are given
in Section 6 devoted to the applications. Parameter  allows the dispersion
induced by uncertainties to be controlled [62]. We will give the construction
of such a probability model in the applications presented in Section 6. The
probability model used is such that, for all r in R, for all  in ∆ and for all
ω in B, the random equation (5) has a unique second-order random solution,
i.e. E{‖Q(r,  , ω)‖2

N} < +∞ in which ‖z‖2
N = |z1|

2 + . . . + |zN |
2.

4 Definition of the identification parameters

In this paper, the identification problem which has to be solved is

(i) either the identification of parameter  ∈ ∆ ⊂  
nδ of the probability model

of uncertainties for a fixed value of parameter r ∈ R of the mean computational
model using experimental data. In this case vector-valued random observation
W(r,  , ω) is rewritten as W(s, ω) in which dependence with r is removed and
where s belongs to the subset S of  ns with s =  , S = ∆ and ns = nδ.

(ii) or the identification of parameter r ∈ R ⊂  
nr of the mean computational

model and of parameter  ∈ ∆ ⊂  
nδ of the probability model of uncertainties

using experimental data. In this case, the vector-valued random observation
W(r,  , ω) is also rewritten as W(s, ω) in which s = (r,  ) ∈ S = R × ∆ ⊂  

ns =
 

nr ×  
nδ with ns = nr + nδ.

Consequently, we will define s ∈ S ⊂  
ns as the identification parameter (the

parameter which has to be identified using experimental measurements of the
vector-valued observation).
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5 Identification method of the identification parameter using ex-

perimental observations of the system

5.1 Setting the problem

Let ω 7→ W(s, ω) be the second-order stochastic process defined on (Θ, T, P)
indexed by B, with values in  

n and depending on the identification parameter
s ∈ S ⊂  

ns. Let {ω1, . . . , ωm} ⊂ B be a sampling of frequency band B. Let
µ1, . . . , µm be the integration weights associated with {ω1, . . . , ωm} such that

∫

B

dω =
m∑

k=1

µk ,
∫

B

f(ω) dω ≃
m∑

k=1

µkf(ωk) . (8)

For all s fixed in S, let W(s, ω1), . . . ,W(s, ωm) be the finite family of the  
n-

valued random variables associated with the uncountable family {W(s, ω), ω ∈
B}. In general, random variablesW(s, ω1), . . . ,W(s, ωm) are statistically depen-
dent. Let P

W(s,ω1),...,W(s,ωm)
(dw1, . . . , dwm, s) be the joint probability distribution

on  
n × . . . ×  

n (m times) ≃  
nm of random variables W(s, ω1), . . . , W(s, ωm)

depending on parameter s in which dwk = dwk
1 . . . dwk

n is the Lebesgue measure
on  

n for all k = 1, . . . , m. For all s fixed in S, this joint probability distribution
is assumed to be written as

P
W(s,ω1),...,W(s,ωm)

(dw1, . . . , dwm, s) = p(w1, . . . ,wm, s) dw1. . . dwm (9)

in which p(w1, . . . ,wm, s) is the probability density function on  
n × . . . ×  

n

(m times) ≃  
nm with respect to dw1 . . . dwm and where wk = (wk

1 , . . . , w
k
n).

For all s fixed in S and for all vectors w1, . . . ,wm given in  
n, the estimation of

p(w1, . . . ,wm, s) is performed by using the stochastic computational model and
the Monte Carlo method as stochastic solver with ν independent realizations
{W(s, ω1; θ1), . . . , W(s, ωm; θ1)}, . . . , {W(s, ω1; θν), . . . ,W(s, ωm; θν)} of the  nm-
valued random observations {W(s, ω1), . . . ,W(s, ωm)} with θ1, . . . , θν in Θ. This
means that:

(1) any independent realization [A(s, ωk; θℓ)] of the random matrix [A(s, ωk)] is
constructed using the probability model introduced in Section 3. This prob-
ability model is completely defined and there exists an associated generator
of independent realizations (see the given references and also the applications
presented in Section 6).

(2) the corresponding realization W(s, ωk; θℓ) is calculated using the computa-
tional stochastic model defined by Eqs.(4) to (6), that is to say, is given by
W(s, ωk; θℓ) = h(ωk,V(s, ωk; θℓ)) with V(s, ωk; θℓ) = [Φ(r0)]Q(s, ωk; θℓ) in which
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the deterministic vector Q(s, ωk; θℓ) is the solution of the deterministic matrix
equation [A(s, ωk; θℓ)]Q(s, ωk; θℓ) = [Φ(r0]

T f(r, ωk).

(3) finally, the probability density function p(w1, . . . ,wm, s) or any moments
are estimated using the appropriate estimators given by the mathematical
statistics.

Concerning the experimental observations, we consider νexp manufactured sys-
tems η1, . . . , ηνexp with νexp ≥ 1. In general, νexp is small (one unit or a few units).
These νexp manufactured systems are considered as νexp independent realizations
of a random manufactured system. We then denote by {Wexp(ω), ω ∈ B} the
random observation defined on a probability space (Θexp, Texp, Pexp) of the ran-
dom manufactured system corresponding to the random observation {W(ω),
ω ∈ B} of the stochastic computational model. By construction, we then have
η1, . . . , ηνexp in Θexp. The experimental observation of the manufactured system
ηℓ corresponds to the realization {Wexp(ω, ηℓ), ω ∈ B} of the random experi-
mental observation {Wexp(ω), ω ∈ B} of the random manufactured system. In
practice, the sampling {ω1, . . . , ωm} of B is used and the experimental ob-
servation of the manufactured system ηℓ is made up of the finite family of
the  

n-valued experimental observations {Wexp(ω1; ηℓ), . . . ,W
exp(ωm; ηℓ)}. Con-

sequently, for s fixed in S, the experimental observations corresponding to the
random observation {W(s, ω1), . . . ,W(s, ωm)} of the stochastic computational
model are made up of

{Wexp(ω1; η1), . . . ,W
exp(ωm; η1)}, . . . , {W

exp(ω1; ηνexp), . . . ,W
exp(ωm; ηνexp)} (10)

which are νexp independent realizations of the random experimental observation
{Wexp(ω1), . . . ,W

exp(ωm)}. The problem to be solved is then the identification
of the optimal value sopt of the identification parameter s of the stochastic
computational model using the experimental values defined by Eq. (10). Be-
low, we propose to use two main methods: (1) the mean-square method for
differentiable and not differentiable objective functions and (2) the maximum
likelihood method.

5.2 Mean-square method

This section deals with the usual mean-square method [64], [66]. Two cases
will be considered: the case of a differentiable objective function and the case
of a non-differentiable objective function. These two cases will be used in the
applications presented in Section 6.

We begin by introducing an inner product which is adapted to the sampled
frequency random observations {W(s, ω1), . . . ,W(s, ωm)} of the stochastic com-
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putational model and to its corresponding sampled random experimental ob-
servation {Wexp(ω1), . . . , W

exp(ωm)}.

Let  = (X1, . . . ,Xm) and ! = (Y1, . . . ,Ym) be two random variables with
values in "

n × . . .× "
n (m times) ≃ "

nm in which, for all j = 1, . . . , m, Xj and
Yj are random variables with values in "

n. This algebraic structure of random
vectors  and ! is adapted to the frequency sampled random observations over
frequency band B. We then introduce the inner product ≪  , ! ≫ of  and
! such that

≪  , ! ≫= E{<  , ! >
B
} , <  , ! >

B
=

m∑

k=1

µk < X
k ,Yk >n , (11)

in which < Xk ,Yk >n= Xk
1 Y k

1 + . . . + Xk
nY k

n and where the weights µ1, . . . , µn

are defined by Eq. (8). The associated norm ||| ||| of  is then such that

||| |||2 = E{|| ||2B} , || ||2B =
m∑

k=1

µk||X
k||2n , (12)

in which ||Xk||2n = (Xk
1 )2 + . . . + (Xk

n)2. For all s fixed in S, we introduce the
random vectors #(s) and #

exp such that

#(s) = (W(s, ω1), . . . ,W(s, ωm)) , #exp = (Wexp(ω1), . . . ,W
exp(ωm)) . (13)

Then the real vector #
νexp related to the experimental observations is intro-

duced such that

#
νexp =

1

νexp

νexp∑

ℓ=1

#
exp(ηℓ) . (14)

On the other hand, the mean values $(s) and $
exp of random vectors #(s) and

#
exp are introduced such that

$(s) = E{#(s)} , $
exp = E{#exp} . (15)

Equation (14) defined an estimation of $exp and if νexp goes to infinity, then
#

νexp tends to $
exp:

lim
νexp→+∞

#
νexp = $

exp . (16)

For all s fixed in S, we introduce the following objective function s 7→ J̃νexp(s)
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from S into  
+ = [0 , +∞[, such that

J̃νexp(s) = |||!(s) − !
exp|||2 . (17)

The problem is to find s in S which minimizes J̃νexp. Often the number νexp

of experiments is not sufficiently large to be able to write "
exp ≃ !

νexp and
consequently, for such case we have

E{!exp} − !
νexp = #νexp 6= 0 . (18)

Clearly, vector #νexp → 0 when νexp → +∞. We then consider that Eq. (18)
holds, i.e., #νexp 6= 0 for a given value of νexp. Therefore Eq. (17) can be rewritten
as

J̃νexp(s) = |||!(s) − "(s) − !
exp + !

νexp + "(s) − !
νexp|||2 . (19)

Developing the right-hand side of Eq. (19), taking into account that the ran-
dom variables !(s)−"(s) and !

exp −!
νexp are independent, removing the term

|||!exp − !
νexp|||2 which is independent of s, yield

J̃νexp(s) = |||!(s) − "(s)|||2 + ||"(s) − !
νexp||2B +

≪ !
exp − !

νexp ,"(s) − !
νexp ≫ . (20)

It should be noted that the third term in the right-hand side of Eq. (20) can
be rewritten as < #νexp,"(s)−!

νexp >B. Consequently, from Eqs. (18) and (20),
it can be deduced that

lim
νexp→+∞

J̃νexp(s) = J̃(s) , (21)

in which the objective function s 7→ J̃(s) from S into  
+ is defined, for νexp

sufficiently large (equivalently to νexp → +∞) by

J̃(s) = |||!(s) − "(s)|||2 + ||"(s) − !
νexp||2B . (22)

Let us consider the identification of parameter r in R ⊂  
nr with the mean

computational model, i.e. with the stochastic computational model for  = 0.
We then have s0 = (r, 0) ∈ S and the optimization problem is written as

s
opt = arg min

s0=(r,0)∈R×∆
J̃(s0) , J̃(s0) = ||"(s0) − !

νexp||2B , (23)
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in which s
opt
0 = (ropt, 0). If J̃(sopt0 ) = 0, then  (sopt0 ) − !

νexp = 0 and in mean,
there is neither parameter uncertainties nor model uncertainties (note that
with such an identified deterministic computational model, the dispersion of
the experimental data induced by the variability of the real system is not
taken into account). In general, J̃(sopt0 ) is not equal to zero which means that
there are data and model uncertainties which have to be considered in taking
 6= 0 and therefore the stochastic computational model must be used.

Considering the construction of the objective function, it is not necessary to
use Eq. (20) or Eq. (22) and other objective functions can be derived. This is
the way which is followed below.

5.2.1 Case of a differentiable objective function and optimization problem

Even if νexp is not sufficiently large, an objective function can be derived from
Eq. (22) in replacing J̃ by the following function s 7→ JD

γ (s) from S into "
+

such that

JD
γ (s) = 2(1 − γ) |||!(s) −  (s)|||2 + 2γ || (s) − !

νexp

||2B , (24)

in which γ is fixed in ]0 , 1]. In the right-hand side of Eq. (24), the first term is
related to the variance of the stochastic computational model and the second
one is related to the bias between the mean model and the mean value of
experiments. The parameter γ allows the balance between these two terms to
be chosen and fixed. It should be noted that for all s in S, JD

1/2(s) = J̃(s). For
a fixed value of γ, the identification of parameter s in S is then the optimal
value sopt in S such that

s
opt = arg min

s∈S

JD
γ (s) . (25)

For γ = 0, we have JD
0 (s) = 2 |||!(s)− (s)|||2 and consequently, the optimiza-

tion problem defined by Eq. (25) yields sopt = (ropt,  opt) with  opt = 0 and then
JD

0 (sopt) = 0. Such a case is not coherent with the explanation given above
and therefore, cannot be considered. This is the reason why the value γ = 0
has to be removed from the admissible set ]0 , 1] of values for γ.

For γ = 1, we have JD
1 (s) = 2 || (s) − !

νexp
||2B and the optimization problem

defined by Eq. (25) yields an optimal value sopt which only minimizes the biais.
In this case, the variance can take very high values and so the robustness of
the prediction with the stochastic computational model decreases. Since the
objective is to identify a stochastic computational model which is sufficiently
robust with respect to uncertainties, then ‖ opt‖ has to be not too large and
thus, the weight 2(1− γ) of the variance term in the objective function has to
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be increased with respect to the weight 2γ of the biais term. Such a condition
is satisfied in choosing γ in ]0 , 1

2
[.

In analyzing the objective function defined by Eq. (24), it can be seen that
sopt calculated with Eq. (25) does not take into account the dispersion of the
experimental observations induced by the variabiliy of the real system but
only uses the mean value of the experimental data. So if the dispersion of
the experimental data around its mean value is important, then the objective
function defined by Eq. (24) is not the most effective objective function. In
this case, another objective function can be constructed in the context of the
mean-square method and this question is treated in the following subsection
in introducing a non-differentiable objective function.

5.2.2 Case of a non-differentiable objective function and optimization prob-

lem

As explained in the previous subsection, this case is useful when the dispersion
of the experimental observations is important. The criterion used to define the
objective function is to write that, for all s in S and for all j in {1, . . . , n},
the experimental observations {W exp

j (ω; ηℓ) , ω ∈ B} for all ℓ in {1, . . . , νexp}
belongs to the confidence region of the stochastic process {Wj(s, ω) , ω ∈ B}
associated with a probability level Pc ∈]0 , 1[. Let {w+

j (s, ω) , ω ∈ B} and
{w−

j (s, ω) , ω ∈ B} be the upper and the lower envelopes which define the
confidence region of stochastic process {Wj(s, ω) , ω ∈ B} and such that, for
all ω fixed in B, Proba{w−

j (s, ω) < Wj(s, ω) ≤ w+
j (s, ω)} = Pc. We now define

the functions {w+exp

j (ω) , ω ∈ B} and {w−exp

j (ω) , ω ∈ B} such that, for all ω in

B, we have w+exp

j (ω) = maxℓ W exp

j (ω; ηℓ) and w−exp

j (ω) = minℓ W exp

j (ω; ηℓ). The
non-differentiable objective function is then constructed in order to minimize
the area defined by the grey region shown in Fig. 1.

Using the sampling frequencies {ω1, . . . , ωm} of B, for all k in {1, . . . , m}, we
then introduce the following two vectors z+(s, ωk) = (z+

1 (s, ωk), . . . , z
+
n (s, ωk))

and z−(s, ωk) = (z−1 (s, ωk), . . . , z
−
n (s, ωk)) in  

n such that, for all j in {1, . . . , n},
we have

z+
j (s, ωk) =

(
w+

j (s, ωk) − w+exp

j (ωk)
) (

1 − Heav(w+
j (s, ωk) − w+exp

j (ωk))
)

, (26)

z−j (s, ωk) =
(
w−

j (s, ωk) − w−exp

j (ωk)
) (

1 − Heav(w−

j (s, ωk) − w−exp

j (ωk))
)

, (27)

in which x 7→ Heav(x) is the Heaviside function such that Heav(x) = 1 if x ≥ 0
and Heav(x) = 0 if x < 0. Let !+(s) and !

−(s) be the vectors in  
n × . . . ×  

n

(m times) ≃  
nm such that

!
+(s) = (z+(s, ω1), . . . , z

+(s, ωm) , !
−(s) = (z−(s, ω1), . . . , z

−(s, ωm) . (28)
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Fig. 1. For all s and for all j fixed, the grey region represents the area minimized
by the non-differentiable objective function. In the figure: {w+

j (s, ω) , ω ∈ B} and

{w−

j (s, ω) , ω ∈ B} are the upper (upper thick solid line) and the lower (lower
thick solid line) envelopes calulated with the stochastic computational model ;
{w+exp

j (ω) , ω ∈ B} and {w−exp

j (ω) , ω ∈ B} are the upper (upper thin solid line)
and the lower (lower thin solid line) envelopes for the experimental observations.

The objective function s 7→ JND(s) from S into  
+ is then defined by

JND(s) = ||!+(s)||2B + ||!−(s)||2B . (29)

The objective function defined by Eq. (29) is not differentiable with respect
to s. The following optimization problem

s
opt = arg min

s∈S

JND(s) , (30)

allows the optimal value sopt to be found in S. Concerning the calculation of
the upper and lower envelopes {w±

j (s, ωk); j = 1, . . . , n; k = 1, . . . , m}, the
sample quantiles [55] is used. For all j fixed in {1, . . . , n} and for all k fixed
in {1, . . . , m}, let FWj(s,ωk)(w) = Proba{Wj(s, ωk) ≤ w} be the cumulative
distribution function which is assumed continuous from the right. For 0 < p <
1, the pth quantile (or fractile) of FWj(s,ωk) is defined by

ζ(p) = inf{w : FWj(s,ωk)(w) ≥ p} . (31)

The lower and the upper envelopes for the symmetric interval are then defined
by

w+
j (s, ωk) = ζ((1 + Pc)/2) , w−

j (s, ωk) = ζ((1 − Pc)/2) . (32)

Let Wj(s, ωk; θ1), . . . , Wj(s, ωk; θν) be the ν independent realizations of random
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variable Wj(s, ωk). The estimation of the envelopes are written as

w+
j (s, ωk) ≃ w̃jℓ+(s, ωk) , ℓ+ = fix(ν(1 + Pc)/2) , (33)

w−

j (s, ωk) ≃ w̃jℓ−(s, ωk) , ℓ− = fix(ν(1 − Pc)/2) , (34)

in which fix(x) is the integer part of the real number x. In Eqs. (33) and
(34), w̃j1(s, ωk) < . . . < w̃jν(s, ωk) is the order statistics associated with
Wj(s, ωk; θ1), . . . , Wj(s, ωk; θν) which are calculated with the stochastic com-
putational model using the Monte Carlo method.

5.3 Maximum likelihood method

In this subsection, we present the maximum likelihood method which allows
the dispersion of the experimental data to be taken into account and which
yields a more acurate estimation. However, the standard method requires a
computational effort more important than the mean-square method. In order
to decrease the computational effort, we will propose a statistical reduction of
information.

For all s fixed in S, let (w1, . . . ,wm) 7→ p(w1, . . . ,wm, s) be the probability
density function on  

n × . . .× 
n (m times) ≃  

nm of the random observations
{W(s, ω1), . . . ,W(s, ωm)}, defined by Eq. (9). The experimental observations
are {{Wexp(ω1; ηℓ), . . . ,W

exp(ωm; ηℓ)}, ℓ = 1, . . . , νexp} defined by Eq. (10).

5.3.1 Standard method

Let s 7→ L(s) be the log-likelihood function from S into  , defined by

L(s) =
νexp∑

ℓ=1

log10 p(Wexp(ω1; ηℓ), . . . ,W
exp(ωm; ηℓ), s) . (35)

The maximum likelihood method [64,66] consists in finding sopt as the solution
of the following optimization problem,

s
opt = arg max

s∈S

L(s) . (36)

For all s fixed in S, the right-hand side of Eq. (35) is estimated by using
the stochastic computational model with the Monte Carlo method. If m (the
number of frequencies) is large, that is generally the case, the numerical cost
can be very high and completely prohibitive. In order to decrease the numerical
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cost, function L(s) defined by Eq. (35) can be replaced as proposed in [2],[3]
by

L(s) =
νexp∑

ℓ=1

m∑

k=1

log10 p
W(s,ωk)

(Wexp(ωk; ηℓ), s) , (37)

in which wk 7→ p
W(s,ωk)

(wk, s) is the probability density function on  
n with

respect to dwk of the  
n-valued random variable W(s, ωk). Such an approxi-

mation consists in replacing the joint probability density function of random
variables W(s, ω1), . . . ,W(s, ωm) by the product of the probability density func-
tion of each random variable W(s, ωk). Clearly, such an approximation is exact
if the random variables W(s, ω1), . . . ,W(s, ωm) are mutually independent. In
practice, such an assumption does not hold for dynamical systems which are
considered in this paper and then, the statistical dependence is very impor-
tant. As it can be seen in [2],[3], the use of Eq. (37) instead of Eq. (35) in the
optimization problem defined by Eq. (36) can yield an optimal value sopt for
which the dispersion parameter  is overestimated, that is to say, for which
the values of the components of  are too large (such an approximation re-
moves the statistical dependence and therefore, is too conservative). In the
next subsection, we propose another approximation which corresponds to a
good compromise between Eq. (35) and Eq. (37).

5.3.2 Statistical reduction of information

The use of Eq. (37) instead of Eq. (35) would be better if the random vectors
W(s, ω1), . . . ,W(s, ωm) were not correlated (even if these vectors stay mutually
dependent). Unfortunately, random vectors W(s, ω1), . . . ,W(s, ωm) are gener-
ally correlated. The idea is then to proceed to a statistical reduction using a
principal component analysis (see for instance [32]) and then to use the max-
imum likelihood method in the space of the uncorrelated random variables
related to the reduced statistical information.

For all s fixed in S, let !(s) be the  
nm-valued random variable defined by

Eq. (13) and let "(s) ∈  
nm be its mean value defined by Eq. (15). Let [C (s)]

be the (nm × nm) covariance matrix defined by

[C (s)] = E{(!(s) − "(s))(!(s) − "(s))T} . (38)

Note that "(s) and [C (s)] can easily be estimated by using the stochastic com-
putational model with the Monte Carlo method. We introduce the eigenvalue
problem

[C (s)] #(s) = λ(s) #(s) , (39)
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for which the positive eigenvalues are such that λ1(s) ≥ λ2(s) ≥ . . .. The
corresponding eigenvectors  

1(s),  2(s), . . . belong to !
nm and are written as

 
α(s) = (xα1(s), . . . , xαm(s)) ∈ !

n × . . . × !
n (m times) ≃ !

nm. These vectors
constitute an orthonormal family such that < 

α(s) ,  β(s)>B= δαβ (Kronecker
symbol). Let N be an integer such that 1 ≤ N < nm. We introduce the
approximation "

N (s) of "(s) defined by

"
N (s) = #(s) +

N∑

α=1

√
λα(s) Yα(s)  α(s) , (40)

in which Y1(s), . . . , YN(s) are N real-valued random variables such that

Yα(s) =
1

√
λα(s)

<!(s) − "(s) ,  α(s)>B , ∀α = 1, . . . , N . (41)

Let Y(s) = (Y1(s), . . . , YN(s)) be the #
N -valued random variable. It can easily

be proven that Y(s) is a second-order random variable such that, for all α and
β in {1, . . . , N},

E{Yα(s)} = 0 , E{Yα(s)Yβ(s)} = δαβ , (42)

which means that the centered random variables Y1(s), . . . , YN(s) are uncorre-
lated. The order N of the statistical reduction is calculated in order to get an
approximation with a given accuracy ε, independent of N and s, such that,
for all s in S,

|||!(s) − !
N (s)|||2 = ε |||!(s)|||2 . (43)

Since |||!(s) − !
N(s)|||2 = tr[C (s)] −

∑N
α=1 λα(s) in which tr is the trace of

matrix, N has to be chosen such that

max
s∈S

(
1 −

∑N
α=1 λα(s)

tr[C (s)]

)
≤ ε . (44)

In practice, for all s fixed in S, the dominant subspace of matrix [C (s)] asso-
ciated with the N first eigenvalues λ1(s) ≥ . . . ≥ λN(s) is calculated by using
an iteration algorithm such as the subspace iteration method. The statistical
reduction will be efficient if N ≪ nm.

Let (y1, . . . , yN) 7→ pY1(s),...,YN (s)(y1, . . . , yN , s) be the probability density func-
tion on #

N with respect to dy1 . . . dyN of the random variables Y1(s), . . . , YN(s).
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It should be noted that, if the random variables Y1(s), . . . , YN(s) are uncorre-
lated by construction (see Eq. (42)), in general, these random variables are mu-
tually dependent. From Eq. (41), it can be deduced that, for all α in {1, . . . , N}
and for all ℓ in {1, . . . , νexp}, the experimental realization Y exp

α (s, ηℓ) is given by

Y exp

α (s, ηℓ) =
1

√
λ(s)

< exp(ηℓ) − !(s) , "α(s)>B , ∀α = 1, . . . , N . (45)

It should be noted that the experimental generalized coordinate Y exp

α (s, ηℓ)
depends on s. Let s 7→ L

red(s) be the log-likelihood function from S into #,
defined for all s fixed in S by

L
red(s) =

νexp∑

ℓ=1

log10 pY1(s),...,YN (s)(Y
exp

1 (s, ηℓ), . . . , Y
exp

N (s, ηℓ), s) . (46)

The maximum likelihood method yields the optimal value sopt in S of s,

s
opt = arg max

s∈S

L
red(s) . (47)

If N is not too large, then Eq. (46) can be used to solve the optimization
problem defined by Eq. (47). If N is still sufficiently large such that Eq. (46)
induces a prohibitive numerical cost, a similar approximation to the one in-
troduced by Eq. (37) can be used. Therefore, the log-likelihood function L

red

can be replaced by the following one,

L
red(s) =

νexp∑

ℓ=1

N∑

α=1

log10 p
Yα(s)

(Y exp

α (s, ηℓ), s) , (48)

in which y 7→ p
Yα(s)

(y, s) is the probability density function on # with respect
to dy of the real-valued random variable Yα(s). The introduction of such an
approximation consists in writting the log-likelihood function L

red as if the
random variables Y1(s), . . . , YN(s) were mutually independent, that is not true.
Nevertheless, this approximation is better than for Eq. (37) because random
variables Y1(s), . . . , YN(s) are uncorrelated (see Eq. (42)).

The values of the density pY1(s),...,YN (s)(Y
exp

1 (s, ηℓ), . . . , Y
exp

N (s, ηℓ), s) for the exper-
imental values, or the values of the densities p

Yα(s)
(Y exp

α (s, ηℓ), s) for the experi-
mental values are performed with the stochastic computational model and the
Monte Carlo method. Note that the ν independent realizations Y1(s, θ1), . . . ,
YN(s, θN ) are calculated using Eq. (41),

Yα(s, θℓ) =
1

√
λα(s)

< (s, θℓ) − !(s) , "α(s)>B , ∀α = 1, . . . , N , (49)
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and that Eq. (45) is used to calculate the projection of the experimental ob-
servations.

5.4 Comments on the optimization algorithms

The optimization problems defined by Eqs. (25), (30), (36) or (47) have to be
solved with appropriate algorithms. Note that the objective functions defined
above are not convex functions. In addition, since these optimization prob-
lems are related to the admissible set S, this set has to be described in terms
of inequalities and linear and/or nonlinear constraint equations. Three main
cases can be considered:

(1) Except for the mean-square method with a non-differentiable objective
function, deterministic algorithms using the gradient of the objective function
can be used (see for instance [11,12,26,28,48,66,64]).

(2) For the mean-square method with a non-differentiable objective function,
the genetic algorithm (see for instance [13,14,27,64]) or the stochastic search
methods (see [64]) such as the pattern search algorithms (see for instance
[1,39]) can be used.

(3) If dimension ns of parameter s is very low (for instance ns = 1, 2 or 3),
the graph of the objective function can directly be constructed for a finite
partition of S.

6 Applications and experimental validation

In this Section, we present different applications with experimental validations
covering all the cases developed in Section 5 The first Subsection 6.1 is devoted
to structural dynamics and the second Subsection 6.2 deals with structural
acoustics.

6.1 Structural dynamics

Subsection 6.1 deals with the construction of the mean computational model
and the stochastic reduced model of structures in linear dynamics. These ele-
ments will be used in the two applications presented in Subsections 6.1.1 and
6.1.2 which are devoted to the identification of the mean model parameters
and of the stochastic model parameters using experimental data. The dynam-
ical system is made up of a damped elastic structure. The usual formulation
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in displacement (see for instance [44]) is used and the mean computational
model of the dynamical system is constructed with the finite element method.
Let u(ω) be the  

ns-vector of the ns dofs of the structure. Let { 
1
, . . . , 

Ns
}

be the Ns first elastic modes of the structure at zero frequency (and thus
not including the rigid body modes). The reduced mean model is obtained
by projection of the mean computational model on the subspace spanned by
{ 

1
, . . . , 

Ns
} (see for instance [44]). The reduced mean model can then be

written, for all ω fixed in the frequency band of analysis B = [ω0, ω1] with
0 < ω0 < ω1, as

u(ω) =
Ns∑

α=1

qs
α
(ω) 

α
. (50)

The  
Ns-vector qs(ω) = (qs

1
(ω), . . . , qs

Ns
(ω)) is the solution of the following

matrix equation

(−ω2[M s] + iω[Ds(ω)] + [Ks(ω)]) qs(ω) = f
s(ω) . (51)

In the above equations, the (Ns×Ns) real matrices [M s], [Ds(ω)] and [Ks(ω)]
are the generalized mass, damping and stiffness matrices of the structure. The
generalized damping and stiffness matrices are assumed to be dependent on the
frequency due to viscoelastic effects. The  

Ns-vector fs(ω) is the generalized
force vector of the structure.

The use of the nonparametric probabilistic approach [57] to [62] of both model
uncertainties and parameter uncertainties in the structure consists in modeling
the generalized mass [M s], damping [Ds(ω)] and stiffness [Ks(ω)] matrices of
the structure by random matrices [Ms], [Ds(ω)] and [Ks(ω)] whose dispersion
parameters are denoted by δMs

, δDs
and δKs

respectively and are independent
of dimension Ns and frequency ω. The explicit construction of the probability
distribution of these random matrices is given in [57],[58],[62]. Let [H(ω)] be
anyone of these random matrices (independent of ω for random matrix [Ms]).
The probability distribution of such a random matrix [H(ω)] depends only on
its mean value [H(ω)] = E{[H(ω)]} and on its dispersion parameter δH which is
independent of Ns and ω. An algebraic representation of random matrix [H(ω)]
has been developed and allows independent realizations to be constructed for a
stochastic solver based on the Monte Carlo numerical simulation. Since [H(ω)]
is a symmetric positive-definite real matrix, then the random matrix [H(ω)] is
written as [H(ω)] = [LH(ω)]T [G] [LH(ω)] in which [H(ω)] = [LH(ω)]T [LH(ω)]
and where the random matrix germ [G] is independent of ω. The stochastic
reduced model of the uncertain dynamical system for which the reduced mean
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model is defined by Eqs. (50) and (51) is written, for all ω fixed in B, as

U(ω) =
Ns∑

α=1

Qs
α
(ω) 

α
, (52)

in which the  
Ns-valued random variable Qs(ω) = (Qs

1(ω), . . . , Qs
Ns

(ω)) is the
solution of the following random matrix equation

(−ω2[Ms] + iω[Ds(ω)] + [Ks(ω)])Qs(ω) = f
s(ω) . (53)

6.1.1 Low- and medium-frequency vibration of a composite sandwich panel

This subsection deals with an application devoted to the identification of the
mean model parameters and of the stochastic model parameters using experi-
mental data for low- and -medium frequency vibration of a composite sandwich
panel. The designed composite sandwich panel is made up of five layers made
of four thin carbon-resin unidirectional plies and one high stiffness closed-cell
foam core. The dimensions of the panel are 0.40 m length, 0.30 m width and
0.01068 m total thickness. Eight sandwich panels (νexp = 8) have been manu-
factured from the designed sandwich panel using an identical process and the
same materials. All the sandwich panels have been baked in the same batch
for suppressing the influences of the different baking conditions concerning
time and temperature. The panel is vertical and suspended by two thin soft
rubber bands attached to the two upper corners of the panel. The frequency
band of analysis is B = [150 , 4500] Hz. The number of sampling frequen-
cies is m = 584 with a frequency resolution ∆f decreasing when frequency
is increasing. The eigenfrequency of the vertical body motion is about 2 Hz
which has to be compared to the lowest elastic eigenfrequency of the panel
which is 191 Hz. Consequently, the measurements of the frequency response
functions in the frequency band of analysis are performed for a configuration
corresponding to free-free conditions. This structure and the experiments are
completely defined in [9], [10].

The input force is a point load normal to the panel applied to a given point
such that all the symmetric and anti-symmetric elastic modes of the panel
are excited in the frequency band of analysis. The outputs are made up of
normal accelerations to the panel measured at 24 points. The observation
of the structure (see Eq. (6) and Section 4) is then the real vector W(s, ω)

in !
n with n = 24 and where Wj(s, ω) = 20 log10

(
ω2|Vkj

(s, ω)|
)

in which

ω2|Vk1(s, ω)|, . . . , ω2|Vkn
(s, ω)| are the moduli of the normal accelerations mea-

sured at the 24 points in the panel. For each experimental panel ηℓ with
ℓ = 1, . . . , νexp, the corresponding experimental observation is Wexp(ω; ηℓ) in

which W exp

j (ω; ηℓ) = 20 log10

(
ω2|V exp

kj
(ω)|

)
. Below, the optimization problems
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are solved using the 24 measured accelerations but the results are shown only
for two points in the panel in order to limit the number of figures. One of the
two points (j = 3) is located close to an edge of the panel and the other one
(j = 17) is close to the input force.

The mean computational model is a finite element model with 12, 288 struc-
tural dofs (64×64 four-nodes finite elements for laminated plate bending). This
mean computational model has been updated with respect to the mass density
of each carbon-resine ply and to the Young moduli of each carbon-resin ply
in order to update the eigenfrequecies of the first four elastic modes using the
experimental values (see [9], [10]). Below, this updated mean computational
model will simply be called the mean computational model. The reduced mean
computational model is constructed with Ns = 180 elastic modes and with a
constant mean damping rate ξ = 0.01. Figs. 2 and 3 compare the experimental
measurements ω 7→ W exp

k3
(ω; ηℓ) and ω 7→ W exp

k17
(ω; ηℓ) for ℓ = 1, . . . , 8 (the 8

experimental panels) with ω 7→ wk3
(ω) and ω 7→ wk17

(ω) calculated with the
mean computational model. These two figures show that there are significant
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Fig. 2. Comparison of the 8 experimental measurements for observation 3 (8 thin
solid lines) with the mean computational model (dotted line).

differences in the medium-frequency band [1500 , 4500] Hz which are mainly
induced by the mean damping model used in the mean computational model
and by model uncertainties. Consequently, it is necessary to proceed to an
identification of the mean damping model in presence of model uncertainties.

Firstly, we introduce an algebraic representation of the generalized damping
matrix (of the mean computational model) depending on a vector-valued pa-
rameter r which has to be identified. The generalized damping matrix of the
mean computational model is rewritten [7] as the following positive-definite
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Fig. 3. Comparison of the 8 experimental measurements for observation 17 (8 thin
solid lines) with the mean computational model (dotted line).

diagonal (Ns × Ns) real matrix[Ds(r, ω)] such that

[Ds(r, ω)]αα = 2 ξ(r, ωα) µα ωα , ξ(r, ω) = ξ0 + (ξ1 − ξ0)
ωa

ωa + 10b
, (54)

in which r = (ξ0, ξ1, a, b) ∈ ( +)4 with ξ0 ≤ ξ1 and where µα and ωα are
the generalized mass and the eigenfrequency of elastic mode α. Secondly, the
stochastic reduced computational model is introduced with dispersion param-
eters δMs

, δDs
and δKs

for the generalized mass, damping and stiffness matri-
ces. Thirdly, the vector-valued identification parameter s = (r,  ) is introduced
such that r = (ξ0, ξ1, a, b) and  = (δMs

, δDs
, δKs

). We then have nr = 4 and
nδ = 3 and ns = 7. The admissible set S ⊂  

ns is then defined by the con-
straints 0.0095 ≤ ξ0 ≤ 0.0105, 0.05 ≤ ξ1 ≤ 0.15, 5 ≤ a ≤ 20, 30 ≤ b ≤ 50,
0.05 ≤ δMs

≤ 0.5, 0.05 ≤ δDs
≤ 0.5 and 0.05 ≤ δKs

≤ 0.5.

For the experimental indentification of parameter s ∈ S, the mean-square
method (see Section 5.2) is used with two different objective functions. The
first one is the differentiable objective function defined by Eq. (24) with
γ = 0.25 and the optimization problem defined by Eq. (25) is solved by us-
ing the Sequential Quadratic Optimization Algorithm (see Section 5.4 (1))
with constraints defining the admissible set S. The second one is the non-
differentiable objective function defined by Eq. (29) and the optimization prob-
lem defined by Eq. (30) is solved by using a Genetic Algorithm (see Section
5.4 (2)) with constraints defining S. To calculate the values of the objectives
functions, the Monte Carlo simulation is performed with ν = 400 independent
realizations (corresponding to a reasonable mean-square convergence).

Figs. 4 to 7 display, for observations j = 3 and j = 17, the comparisons be-
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tween experimental measurements (f 7→ W exp

kj
(2πf, ηℓ)) and the predictions

calculated (1) with the mean computational model (f 7→ wkj
(2πf)), (2) with

the optimal mean computational model (f 7→ wkj
(ropt, 2πf) and (3) with the

optimal stochastic computational model (f 7→ Wkj
(sopt, 2πf)) for the two ob-

jective functions (differentiable and non-differentiable objective functions).

Figs. 4 and 5 are related to observation 3 and 17 for differentiable objective
function and correspond to sopt = (ropt,  opt) with ropt = (0.01, 0.085, 10.7, 46.1)
and  = (0.31, 0.20, 0.14). Figs. 6 and 7 are related to observation 3 and 17 for
non-differentiable objective function and correspond to sopt = (ropt,  opt) with
ropt = (0.01, 0.081, 10.9, 47) and  = (0.23, 0.07, 0.24). These figures have been
constructed with ν = 1000 independent realizations. The confidence regions
are constructed with a probability level Pc = 0.95. It can be seen that (1) the
identification performed with both objective functions considerably increases
the quality of the predictions in the medium-frequency range with respect
to the initial mean computational model, (2) the non-differentiable objective
function is more effective than the differentiable function but the numerical
cost is greater for the non-differentiable objective function due to the use of
the genetic algorithm.
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Fig. 4. Differentiable objective function, observation 3. Comparison of the 8 exper-
imental measurements (8 thin solid lines) with (1) the mean computational model
(dotted line), (2) the optimal mean computational model (thick solid line), (3) the
confidence region of the optimal stochastic computational model (grey region).
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Fig. 5. Differentiable objective function, observation 17. Comparison of the 8 exper-
imental measurements (8 thin solid lines) with (1) the mean computational model
(dotted line), (2) the optimal mean computational model (thick solid line), (3) the
confidence region of the optimal stochastic computational model (grey region).
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Fig. 6. Non-differentiable objective function, observation 3. Comparison of the 8
experimental measurements (8 thin solid lines) with (1) the mean computational
model (dotted line), (2) the optimal mean computational model (thick solid line), (3)
the confidence region of the optimal stochastic computational model (grey region).

6.1.2 Low-frequency vibration of a thin plate connected to a framework

This subsection deals with an application devoted to the identification (us-
ing experimental data) of the dispersion parameters of the nonparametric
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Fig. 7. Non-differentiable objective function, observation 17. Comparison of the 8
experimental measurements (8 thin solid lines) with (1) the mean computational
model (dotted line), (2) the optimal mean computational model (thick solid line), (3)
the confidence region of the optimal stochastic computational model (grey region).

probabilistic approach of model uncertainties for low-frequency vibration of
a structure in linear dynamics. The structure is made up of a homogeneous,
isotropic and slightly damped thin plate (steel plate with a constant thick-
ness) connected to an elastic framework on its edges. This dynamical system
is hung by four springs and then there are no rigid body modes. The high-
est eigenfrequency of suspension is 9 Hz while the lowest eigenfrequency of
the elastic modes is 43 Hz. The excitation is a point force applied to the
framework and exciting the dynamical system mainly in bending mode in the
frequency band of analysis which is B =]0 , 250] Hz. The number of sampling
frequencies is m = 250. The frequency resolution is ∆f = 1 Hz. Only one
experiment (νexp = 1) has been performed for this structure. The frequency
response functions have been measured on band B for 60 normal accelerations
in the plate. A complete description of the experimental test can be found in
[22]. The observation (see Eq. (6) and Section 4) is the real quantity W (s, ω) =

10 log10

(∑60
i=1(ω

2|Vki
(s, ω)|)2

)
in which ω2|Vk1(s, ω)|, . . . , ω2|Vk60(s, ω)| are the

moduli of the normal accelerations measured at the 60 points in the plate (we
then have n = 1). The corresponding experimental observation is W exp(ω) =

10 log10

(∑60
i=1(ω

2|V exp

ki
(ω)|)2

)
.

The mean computational model is a finite element model having 16, 104 struc-
tural dofs. The reduced mean computational model is constructed with Ns =
139 structural modes. The mean computational model has been updated with
respect to the Young modulus and the mass density of the plate and of the
framework using the experimental values of the two first elastic modes and the
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ninth elastic mode (first elastic torsion mode of the structure). The updated
mean computational model will simply be called below the mean computa-
tional model. Fig. 8 compares the experimental measurements ω 7→ W exp(ω)
with the result ω 7→ w(ω) given by the mean computational model. It can be
seen that the mean computational model yields a good prediction in the fre-
quency band ]0 , 80] Hz while model uncertainties are present for the frequency
band [80 , 250] Hz. Consequently, the nonparametric probabilistic approach
of data and model uncertainties is used to improve the prediction and the
dispersion parameters are identified with the experiments. We introduce the
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Fig. 8. Comparison of the experimental measurement (solid line) with the result
given by the mean computational model (dotted line).

real-valued identification parameter s = δ related to the dispersion parameter
which is such that δ = δMs

= δKs
. the dispersion parameter δDs

related to
the generalized damping matrix of the structure is taken as δDs

= 0.3. The
Monte Carlo simulation is performed with ν = 10, 000 independent realizations
(mean-square convergence is reached for 1000 realizations). The mean-square
convergence of the solution of the stochastic reduced model is reached for
Ns = 80 for all the values of δ.

The maximum likelihood with the statistical reduction of information (see
Section 5.3.2) is used. As we have explained in Section 5.3, the use of the
standard method would lead us to an overestimate of the dispersion parame-
ters and therefore is not adapted (note that the standard method would yield a
value which would be about three times the value estimated with the statistical
reduction; this factor has effectively been calculated with the standard method
for the present application). Consequently, we have to solve the optimization
problem defined by Eq. (47) for which the objective function is defined by
Eq. (48) with νexp = 1 and N defined hereinafter. Fig. 9 displays the graphs of
the function N 7→ (1−

∑N
α=1 λα(s)/tr[C (s)])1/2 related to Eq. (44) for 12 val-
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ues of the parameter s = δ = 0.05, 0.10, 0.15, 0.18, 0.20, 0.25, 0.30, 0.35, 0.40,
0.45, 0.50, 0.65). This figure shows that the nominal value of N is 90 corre-
sponding to a relative error ε = 0.047. Fig. 10 displays the graph of the func-
tion δ 7→ L

red(δ) for δ belonging to the interval [0.05 , 0.65]. This figure shows
that the optimal value δopt which is the solution of the optimization problem
defined by Eq. (47) is such that δopt = 0.25. Fig. 11 shows the comparai-
son of the experimental measurements f 7→ W exp(2πf) with the prediction of
the confidence region calculated with the optimal stochastic reduced model
(f 7→ W (δopt, 2πf) for a probability level of 0.95.
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Fig. 9. Graphs of the error as a function of statistical reduction dimension N for 12
values of s = δ.
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Fig. 10. Graph of function δ 7→ L
red(δ).

6.2 Structural acoustics

In this section, we present an application devoted to the identification of the
dispersion parameters of the nonparametric probabilistic approach of model
uncertainties for vibroacoustic analysis of a car using experimental data [19,20].
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Fig. 11. Comparison of the experimental measurements (thin solid line) with (1)
the updated computational model (dotted line), (2) with the mean value of optimal
stochastic reduced model (thick solid line), (3) with the confidence region calculated
with the optimal stochastic reduced model (grey region).

The structural acoustic system is made up of a damped structure coupled with
an internal acoustic cavity filled with a dissipating acoustic fluid. The usual
formulation in ”structural displacement” - ”acoustic pressure” (see Ref. [44])
is used and the mean computational model of the structural acoustic system
is constructed with the finite element method. Let u(ω) be the  

ns-vector of
the ns dofs of the structure and let p(ω) be the  

nf -vector corresponding to
the nf dofs of the acoustic cavity. Let { 

1
, . . . , 

Ns
} be the Ns first structural

modes of the structure in vacuo and calculated at zero frequency (not includ-
ing rigid body modes if there exist). Let {!

1
, . . . ,!

Nf
} be the Nf first acoustic

modes of the acoustic cavity with rigid fluid-structure coupling interface (in-
cluding the constant pressure mode, the acoustic cavity being assumed to be
closed). The reduced mean model is obtained by projection of the mean finite
element model on the subspaces spanned by { 

1
, . . . , 

Ns
} and {!

1
, . . . ,!

Nf
}.

The reduced mean model can then be written as

u(ω) =
Ns∑

α=1

qs
α
(ω) 

α
, p(ω) =

Nf∑

β=1

qf
β
(ω)!

β
. (55)

The  Ns-vector qs(ω) = (qs
1
(ω), . . . , qs

Ns
(ω)) and the  Nf -vector qf(ω) = (qf

1
(ω),

. . . , qf
Nf

(ω)) are the solution of the following matrix equation

[
[as(ω)] [C]
ω2[C]T [af (ω)]

] [
qs(ω)
qf (ω)

]
=
[
fs(ω)
ff(ω)

]
, (56)
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in which [as(ω)] = −ω2[M s] + iω[Ds] + [Ks] and where [af(ω)] = −ω2[M f ] +
iω[Df ] + [Kf ]. In the above equations, the (Ns × Ns) real matrices [M s],
[Ds] and [Ks] are the generalized mass, damping and stiffness matrices of the
structure, the (Nf ×Nf ) real matrices [M f , [Df ] and [Kf ] are the generalized
mass, damping and stiffness matrices of the acoustic and where the rectangular
(Ns × Nf) real matrix [C] is the generalized vibroacoustic coupling matrix.
In Eq. (56) the  Ns-vector fs(ω) and the  Nf -vector ff(ω) are the generalized
force vector of the structure and the generalized acoustic source vector of the
acoustic cavity respectively.

The use of the nonparametric probabilistic approach [57] to [62] of both model
uncertainties and parameter uncertainties for the structure, the acoustic cavity
and the vibroacoustic coupling consists (1) in modeling the generalized mass
[M s], damping [Ds] and stiffness [Ks] matrices of the structure by random
matrices [Ms], [Ds] and [Ks] whose dispersion parameters are δMs

, δDs
and δKs

respectively; (2) in modeling the generalized mass [M f ], damping [Df ] and
stiffness [Kf ] matrices of the acoustic cavity by random matrices [Mf ], [Df ]
and [Kf ] whose dispersion parameters are δMf

, δDf
and δKf

respectively; (3)
in modeling the generalized vibroacoustic coupling matrix [C] by a random
matrix [C] whose dispersion parameter is δC . The explicit construction of the
probability distribution of these random matrices is given in [57],[58],[62] for
random matrices [Ms], [Ds], [Ks], [Mf ], [Df ] and [Kf ], and is given in [62] for
random matrix [C]. Let [H] be anyone of these random matrices. The prob-
ability distribution of such a random matrix [H] depends only on its mean
value [H ] = E{[H]} and on its dispersion parameter δH which must be taken
independent of the matrix dimension. An algebraic representation of random
matrix [H] has been developed and allows independent realizations to be con-
structed for a stochastic solver based on the Monte Carlo numerical simulation.
For random matrices [Ms], [Ds], [Ks], [Mf ], [Df ] and [Kf ], random matrix [H] is
then a symmetric positive-definite (or positive) real-valued random matrix and
[H] is written as [H] = [LH ]T [GH ] [LH ] in which [H ] = [LH ]T [LH ] and where
[GH ] is the random matrix germ. When [H] is the rectangular matrix [C] (see
[62]), using the following polar decomposition [C] = [U ][T ] with [U ]T [U ] = [ I ]
and where [T ] is a positive-definite matrix which can then be factorized as
[T ] = [LC ]T [LC ], random matrix [C] is written as [C] = [U ][LC ]T [GC] [LC ] in
which [GC ] is another random matrix germ. The stochastic reduced model of
the uncertain structural acoustic system for which the reduced mean model is
defined by Eqs. (55) and (56) is written, for all ω fixed in the frequency band
of analysis B = [ω0, ω1] with 0 < ω0 < ω1, as

U(ω) =
Ns∑

α=1

Qs
α
(ω) 

α
, P(ω) =

Nf∑

β=1

Qf
β
(ω)!

β
, (57)
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in which the  Ns-valued random variable Qs(ω) = (Qs
1(ω), . . . , Qs

Ns
(ω)) and the

 
Nf -valued random variable Qf(ω) = (Qf

1(ω), . . . , Qf
Nf

(ω)) are the solution of
the following random matrix equation

[
[As(ω)] [C]
ω2[C]T [Af (ω)]

] [
Qs(ω)
Qf(ω)

]
=
[
fs(ω)
ff(ω)

]
, (58)

in which the random complex matrices [As(ω)] and [Af (ω)] are defined by
[As(ω)] = −ω2[Ms]+ iω[Ds]+[Ks] and where [Af (ω)] = −ω2[Mf ]+ iω[Df ]+[Kf ].

The mean computational vibroacoustic model of the car is a finite element
model with 978, 733 structural dofs and 8, 139 acoustic pressure dofs in the
internal acoustic cavity. The finite element mesh of the structure is shown
in Fig. 12 and the finite element mesh of the acoustic cavity is shown in
Fig. 13. There are n = 6 observed accelerations located in the points O1 to
O6 of the structure and are shown in Fig. 14. The external applied forces are
point forces applied to the engine supports. The reduced mean computational
model in constructed using Ns = 1, 723 elastic modes of the structure in vacuo
and Nf = 57 acoustic modes of the internal acoustic cavity with rigid walls.
Such dimensions of the reduced model yield convergence of the stochastic so-
lution. The experimental database has been constructed using νexp = 20 cars
of the same type with different optional extra. The experimental structural
observations are the accelerations measured at the 6 observed points O1 to
O6 shown in Fig. 14. The mean-square method with differentiable objective

Fig. 12. Finite element mesh of the structure: 978, 733 structural dofs.

function is used. Consequently, we have to solve the optimization problem
defined by Eq. (25) for which the objective function is defined by Eq. (24)
with γ = 0.5. In this objective function, frequency band of analysis is defined
by B = [100, 180] Hz with a frequency resolution equal to 0.5Hz. Parameter
r is fixed to the nominal value used in the mean computational model. The
dispersion parameter δDs

related to the generalized damping matrix of the
structure in the mean computational model and the dispersion parameter δC

related to the vibroacoustic coupling interface have been fixed to given value
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Fig. 13. Finite element mesh of the acoustic cavity: 8, 139 acoustic pressure dofs.

O1

O2

O3 O4

O5
O6

Fig. 14. Definition of the observations O1 to O6 of the structure.

denoted as δopt
Ds

and δopt
C . In a first step, the dispersion parameters δMf

, δDf

and δKf
related to the acoustic cavity have been identified using acoustic ex-

periments and the maximum likelihood method (see [19]). The optimal values
obtained are denoted by δopt

Mf
, δopt

Df
and δopt

Kf
. In a second step, the parameter

s =  = (δMs
, δKs

) is identified. In Eq. (24), the random observation vector
 (s) with values in !n is made up of the observed degrees of freedom which
are normal accelerations to the structure in logarithmic scale (see Section 2,
point (3)). For each evaluation of the objective function, the stochastic re-
duced computational model is solved using the Monte Carlo method with a
number of independent realizations equal to ν = 1000 and corresponding to a
mean-square convergence of the second-order stochastic solution. Since each
evaluation of the objective function requires about 500 hours of CPU time
(the computations have been realized with 20 CPU yielding an elapsed time
of 25 hours for each evaluation of the objective function), we have limited the
computational effort to solve the optimization problem in directly construct-
ing the graph of function δ 7→ j(δ) for 10 values of δ (see Fig. 15) in which

j(δ) = JD
1/2(s) with δ =

√
δ2
Ms

+ δ2
Ks

. Fig. 15 displays the graph of function

δ 7→ j(δ) and shows that there is a minimum in the admissible set of values
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corresponding to the optimal value δopt of δ. In the trial method used, this opti-
mal value δopt of δ yields a corresponding optimal value (δopt

Ms
, δopt

Ks
) of (δMs

, δKs
)

for which δopt
Ms

6= δopt
Ks

. A complete calculation has been performed with the

optimal stochastic reduced computational model for the values δopt
Ms

, δopt
Ds

, δopt
Ks

,

δopt
Mf

, δopt
Df

, δopt
Kf

and δopt
C . Fig. 16 compares the experimental measurements with
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Fig. 16. For observation O6, comparisons of the experimental measurements (20
thin solid lines) with (1) the mean computational model (thick solid line), (2) the
mean value of the optimal stochastic reduced computational model and (3) the
confidence region of the optimal stochastic reduced computational model (upper
and lower envelopes are the upper and lower thick solid lines

the computational results for observation O6 (see Fig. 14). In Fig. 16, the
20 thin solid lines represent the experimental measurements, the upper and
lower thick solid lines represent the upper and lower envelopes of the confi-
dence region calculated for a probability level of 0.96, the mid thin solid line
represents the mean value of the random response of the stochastic reduced
computational model, the mid thick grey solid line represents the response
of the reduced mean computational model. Taking into account the complex-
ity of the vibroacoustic model, the obtained results validate the stochastic
computational model and demonstrate its capability to predict experimental
measurements knowing that the dispersion parameters of model uncertainties
have been identified using experimental measurements.
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7 Conclusions

In this paper we have presented methods to perform the identification and the
validation of complex uncertain dynamical systems using experimental data in
the area of structural vibrations and vibroacoustics, for which data and model
uncertainties are taken into account by the nonparametric probabilistic ap-
proach. Such a probabilistic model of uncertainties allows model uncertainties
and parameter uncertainties to be addressed by using only a small number of
unknown identification parameters. Consequently, the optimization problem
which has to be solved in order to identify the unknown identification param-
eters from experiments is feasible. Two formulations have been proposed. The
first one is the mean-square method for which two cases of objective function
has been proposed: a usual differentiable objective function and an unusual
non-differentiable objective function which is more effective. The second one
is the maximum likelihood method coupling with a statistical reduction which
leads us to a considerable improvement of the method. Three applications
have been presented in the area of structural vibrations and vibroacoustics
for which experiments were available yielding experimental validations of the
theory proposed.
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