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Abstract

The motivation of this paper is to propose a methodology for analyzing the robust design

optimization problem of complex dynamical systems excited by deterministic loads but tak-

ing into account model uncertainties and data uncertainties with an adapted nonparametric

probabilistic approach, whereas only data uncertainties are generally considered in the lit-

erature by using a parametric probabilistic approach. The possible designs are represented

by a numerical finite element model whose design parameters are deterministic and belong

to an admissible set. The optimization problem is formulated for the stochastic system as

the minimization of a cost function associated to the random response of the stochastic sys-

tem including the variability of the stochastic system induced by uncertainties and the bias

corresponding to the distance of the mean random response to a given target. The gradient

and the Hessian of the cost function with respect to the design parameters are explicitly

calculated. The complete theory and a numerical application are presented.

Key words: Robust design, Model uncertainties, Structural dynamics.

1 Introduction

It is known that the accuracy of the dynamical responses predictions in computational mechan-

ics is mainly related to the level of model and data uncertainties. For this reason, probabilistic

models of random uncertainties are implemented in the numerical simulation models in order to

improve the predictions in computational dynamics. In this probabilistic context, it is necessary

to distinguish the mean dynamical system corresponding to a nominal mechanical model from

the stochastic dynamical system corresponding to a more realistic model of the real dynami-

cal system manufactured from the design. These last decades, design optimization has become

a major challenge in the industrial technologies such as aerospace, aeronautics, automotive,

nuclear industries. In the early works, the design optimization problem was studied from a de-

terministic point of view, neglecting the presence of uncertainties in the numerical model used

for the optimization problem. In this case, the deterministic design optimization problem yields

an optimal design whose responses satisfy for the best a given target (performance objective),
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see for instance [1]. This optimal design can then be used in order to construct the stochas-

tic dynamical system for analyzing a posteriori the effects of uncertainties on the dynamical

response.

It should be noted that data uncertainties can clearly be taken into account by the parametric

probabilistic approach whose stochastic finite element methods (see for instance [2–5]) and

other theoretical and numerical methods (see for instance [6,7]) constitute very efficient tools

in computational mechanics. Nevertheless, such a parametric probabilistic approach does not

allow model uncertainties to be taken into account [8]. More recently, a nonparametric proba-

bilistic approach [9–11] has been proposed to take into account model uncertainties.

These last decades, various researches have been carried out in order to include the effects of

uncertainties in the design optimization problem [12] called the robust design. In the context of

mechanical engineering, the robust design leads to solve a nonlinear constrained optimization

problem with numerical models which are little sensitive to uncertainties in the vicinity of the

design point (see for instance [13,14] for the early works and [15–20] for the most recent ad-

vances concerning this research area). The main difficulty of such robust design optimization

problems concerns the probabilistic model of uncertainties. It should be noted that the relevance

of the probabilistic model used is an important factor for the robust design optimization prob-

lem. The use of an erroneous probabilistic model yields an erroneous optimal design. However

there is no reason for that the responses of the real dynamical system which is manufactured

from this erroneous optimal design correspond to the performance objective. Until now, most

of the published papers concerning robust design have been carried out in the context of static

performances using parametric probabilistic models for modeling data uncertainties in the me-

chanical system. The robust design in the dynamic field is relatively recent [18,19]. It should be

noted that the dynamical systems can be very sensitive to model uncertainties and not only sen-

sitive to data uncertainties. Moreover, this sensitivity generally increases with the complexity

of the dynamical system. In any case, all the works published until now concern robust design

with respect to data uncertainties and not with respect to model uncertainties.

The motivation of this paper is to propose a methodology for analyzing the robust design op-

timization problem of complex dynamical systems excited by deterministic loads but taking
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into account model uncertainties and data uncertainties with the nonparametric probabilistic

approach introduced above, whereas only data uncertainties are generally considered in the lit-

erature by using a parametric probabilistic approach. Several experimental validations [21–24]

and numerical validations [11,25–27] have proved the capability of the nonparametric proba-

bilistic approach to take into account model uncertainties and data uncertainties. A complete

theory concerning the robust design optimization problem of complex dynamical systems ex-

cited by deterministic loads is presented in this paper. The nonparametric probabilistic model

is used for modeling nonhomogeneous model and data uncertainties. The mean reduced matrix

model of the design is constructed by using substructuring techniques (see for instance [28–34]).

The design parameters are deterministic and belong to an admissible set. The cost function used

to formulate the robust design optimization problem is then defined as a function of the design

parameter. Concerning the formulation of the cost function, the performance objective includes

not only the target but also the robustness with respect to model uncertainties and data uncer-

tainties. More precisely, the cost function is defined as a linear combination of the normalized

variance of the stochastic system related to the variability of the system induced by uncertain-

ties and of the bias corresponding to the distance between the mean random response of the

stochastic system and a given target. The norm and the distance used are related to the square

integrable norm over a given frequency band of analysis. The gradient and the Hessian of the

cost function with respect to the design parameter are algebraically calculated that is useful for

improving the performance of the optimization algorithm.

In section 2, the set of mean reduced matrix models related to the set of all the feasible de-

signs is constructed by using the Benfield and Hruda substructuring technique [30]. In section

3, the design optimization problem is formulated assuming no uncertainties in the model of the

dynamical system. Section 4 is devoted to the implementation of the nonparametric probabilis-

tic approach for model and data uncertainties. Section 5 concerns the construction of the cost

function describing the target and the sensitivity of the dynamical system to uncertainties (per-

formance objectives) in order to formulate the robust design optimization problem with respect

to model and data uncertainties. Finally, a numerical application is presented in section 6.
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2 Mean dynamical system

The dynamical system is made up of a given master system (a structure) coupled with a subsys-

tem (a substructure) which has to be designed. The dynamical system is assumed to be linear

and slightly damped. The equations are discretized by the finite element method and are written

in the frequency domain. The frequency band of analysis is denoted by
 

. It is assumed that

the master system has no rigid body displacements and that the subsystem is free with r rigid

body modes. Let p = (p1, . . . , ps) be the ✁ s-vector of the design parameters (geometry, elas-

ticity properties, boundary conditions, etc.). The vector of the design parameters belongs to an

admissible set P defined by the set of constraints prescribed by the design. For p fixed in P and

for ω fixed in
 

, the equation of the mean dynamical system is written as


 [A1(ω)] + [A2(p, ω)]


 u(p, ω) = f(p, ω) , (1)

in which u(p, ω) is the ✁ n-vector of the n DOF and f(p, ω) is the ✁ n-vector induced by the

external forces. In Eq. (1), the symmetric n×n complex matrices [A1(ω)] and [A2(p, ω)] are the

dynamical stiffness matrices of the master system and of the subsystem. It is assumed that vector

f(p, ω) and matrix [A2(p, ω)] are affine mappings of the design parameter p = (p1, . . . , ps) and

are written as

f(p, ω) = f0(ω) +
s∑

i=1

pi fi(ω) , (2)

[A2(p, ω)] = [A2,0(ω)] +
s∑

i=1

pi [A
2,i(ω)] . (3)

Note that such an assumption allows a large class of design problems to be studied. For in-

stance, let us consider an Euler beam with rectangular section S = bh and bending inertia

I = bh3/12 = Sh2/12. It is assumed that S has a fixed value and that the optimization vari-

ables are the mass density per unit length ρ and the section height h. Then the design parameter

can be chosen as p = (p1, p2) with p1 = ρ and p2 = h2 which satisfies the linear assumption.

Such a linear assumption is useful for optimization algorithm because the gradient of vector

f(p, ω) and the gradient of matrix [A2(p, ω)] are calculated once and do not depend on p. In

addition, the Hessian of f(p, ω) and [A2(p, ω)] are zero. It should be noted that the theory pre-
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sented in this paper is also valuable when this linear assumption is removed, but then requires

the numerical calculation of the gradient and the Hessian of f(p, ω) and [A2(p, ω)] for each p

in P. Let n1 and n2 be the number of the internal DOF of the master system and the subsystem.

Let nΣ be the number of coupling interface DOF. We then have n = n1 + nΣ + n2. The bloc

decomposition of u(p, ω), f(p, ω), [A1(ω)] and [A2(p, ω)] with respect to n1, nΣ and n2 is given

by

u(p, ω) =




u1(p, ω)

uΣ(p, ω)

u2(p, ω)




, f(p, ω) =




f1(p, ω)

fΣ(p, ω)

f2(p, ω)




, (4)

[A1(ω)] =




[A1
ii(ω)] [A1

iΣ(ω)] [ ✂ ]

[A1
iΣ(ω)]T [A1

ΣΣ(ω)] [ ✂ ]

[ ✂ ] [ ✂ ] [ ✂ ]




, [A2(p, ω)] =




[ ✂ ] [ ✂ ] [ ✂ ]

[ ✂ ] [A2
ΣΣ(p, ω)] [A2

iΣ(p, ω)]T

[ ✂ ] [A2
iΣ(p, ω)] [A2

ii(p, ω)]




.

(5)

In this paper, the Benfield and Hruda dynamic substructuring method [30] is used and is briefly

summarized below (note that any other substructuring method could be used (see for instance

[28,29,31–34]). Firstly, the Craig and Bampton method [28] is applied to the master system

with N1 elastic modes (with fixed coupling interface) stored in the n1 × N1 real matrix [Φ1].

The static boundary functions related to this coupling interface are stored in the n1 × nΣ real

matrix [S1]. Secondly, the mean reduced matrices of the master system are assembled with the

mean finite element matrices of the subsystem. Thirdly, the submatrix of the coupled system

(master system with subsystem) corresponding to the DOF of the subsystem is extracted. The

eigenmodes of this submatrix corresponding to the N2 lowest eigenfrequencies are stored in the

real (nΣ + n2)×N2 matrix [Φ2(p)]. In the robust design optimization context, the probabilistic

model of uncertainties must be independent of the value of the design parameter p. This implies

that the projection basis for the subsystem must be independent of p. Consequently, a numerical

value p0 of p is chosen as an initial design value. Let VN2 be the subspace of ✄ nΣ+n2 spanned

by the N2 columns of [Φ2(p0)]. The value of N2 must be chosen such that (uΣ(p, ω) , u2(p, ω))

belongs to VN2 for all p in P for a given tolerance of this approximation. It should be noted

that N2 can not be selected a priori, but has to be defined during the computation studying the

convergence with respect to N2. Clearly, VN2 converges to ✄ nΣ+n2 when N2 goes to n2 + nΣ,

for all p in P. Nevertheless, the reduction will be efficient if N2 ≪ n2 + nΣ. It will be the case
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if the set P of the possible designs is not too ”big” and for n2 + nΣ very large. If n2 + nΣ is

small (for instance a few dozens of degrees of freedom), we will have N2 ≃ n2 + nΣ but it is

not a difficulty. If n2 +nΣ is large (for instance several thousands or ten thousands of degrees of

freedom) and if the convergence is not obtained for N2 ≪ n2+nΣ, this means that the projection

basis has to be constructed for each p in P. For such a case, all the developments presented in

this paper can be used except the explicit calculation of the gradient and the Hessian of the cost

function which then have to be numerically calculated (if used in the optimization algorithm).

Finally, the projection basis corresponding to the Benfield and Hruda dynamic substructuring

method is then written as




u1(p, ω)

uΣ(p, ω)

u2(p, ω)




= [H(p0)]




q1(p, ω)

q2(p, ω)


 , [H(p0)] =




[Φ1] [S1] [Φ2
Σ(p0)]

[ ✂ ] [Φ2
Σ(p0)]

[ ✂ ] [Φ2
i (p0)]




(6)

in which the matrices [Φ2
Σ(p0)] and [Φ2

i (p0)] correspond to the bloc decomposition of matrix

[Φ2(p0)] with respect to the nΣ coupling interface DOF and the n2 internal DOF of the subsys-

tem. Projecting Eq. (1) in using Eq. (6) yields the mean reduced matrix equation

(
[A1

red(ω)] + [A2
red(p, ω)]

)



q1(p, ω)

q2(p, ω)


 = fred(p, ω) , (7)

in which fred(p, ω) = [H(p0)]
T f(p, ω) and where [A1

red(ω)] and [A2
red(p, ω)] are the symmetric

N × N complex matrices in which N = N1 + N2 using the bloc decomposition with respect

to the N1 and N2 reduced coordinates. Note that [A1
red(ω)] is a full matrix and that [A2

red(p, ω)]

is written as

[A2
red(p, ω)] =



[ ✂ ] [ ✂ ]

[ ✂ ] [A2
s(p, ω)]


 , (8)

in which

[A2
s(p, ω)] =

[
[ ✂ ]T [Φ2(p0)]

T

]
[A2(p, ω)]




[ ✂ ]

[Φ2(p0)]


 . (9)
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3 Formulation for the design optimization problem with a numerical model with no un-

certainties

In this Section, we remind a formulation to solve the design optimization problem assuming

that there is no uncertainties. This formulation will be used to compare the solution of this de-

terministic design optimization problem with the robust design optimization solution presented

in Section 5. Let w(p, ω) be the vector in ✁ k of the observations of the mean dynamical system,

defined as a function of the displacement vector u(p, ω) such that

w(p, ω) = bω(u(p, ω)) , (10)

where bω is a given function from ✁ n into ✁ k depending on the frequency ω. The performance

objectives for the observations in the frequency band
!

1 ⊂
!

will be defined as the ”target”.

This target is then represented by the function ω 7→ g(ω) from
!

1 into ✁ k. The cost function

j(p) is formulated as a distance between the target g and the observation w(p, ·). It is a function

of design parameter p and is written as

j(p) =
||w(p, ·) − g||2☎

1

||g||2☎
1

, (11)

in which ||g||2☎
1

=
∫

☎
1

||g(ω)||2 dω with ||g(ω)|| the hermitian norm of g(ω). The design op-

timization problem is formulated as the minimization of the cost function j(p) with respect to

the design parameter p in the admissible set P : find pD in P such that j(pD) ≤ j(p) for all p in

P. Such an optimization problem can be solved numerically by using the sequential quadratic

optimization algorithm [35,36].

4 Stochastic dynamical system with model and data uncertainties

As explained in the Introduction, the robust design optimization problem is formulated with

respect to the model uncertainties and data uncertainties existing in the mean model of the dy-

namical system. In this Section, we then introduce this nonparametric probabilistic approach

of uncertainties [9–11]. It is assumed that the mean model of the master system and subsystem
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contain model uncertainties and data uncertainties. The level of uncertainties of these two sys-

tems is a priori different and will be then characterized by different values of the dispersion

parameters defined below.

Let [M 1
red], [D1

red], [K1
red] and [M 2

s(p)], [D2
s(p)], [K2

s(p)] be the mean reduced mass, damping,

stiffness matrices of the mean master system and of the mean subsystem respectively. The dy-

namic stiffness reduced matrices are such that [A1
red(ω)] = −ω2 [M 1

red] + i ω [D1
red] + [K1

red]

and [A2
s(p, ω)] = −ω2 [M 2

s(p)] + i ω [D2
s(p)] + [K2

s(p)]. The matrices [M 1
red], [D1

red], [K1
red]

are positive symmetric N × N matrices whose rank is N1 = N − n2 (which is assumed to

be positive) whereas [M 2
s(p)] is a positive-definite symmetric N2 × N2 matrix and [D2

s(p)],

[K2
s(p)] are positive symmetric N2 × N2 matrices whose rank is N2 − r. The methodology

of the nonparametric probabilistic approach consists in replacing the matrices [M 1
red], [D1

red],

[K1
red] and [M2

s(p)], [D2
s(p)], [K2

s(p)] by the random matrices [M1
red], [D1

red], [K1
red] and [M2

s(p)],

[D2
s(p)], [K2

s(p)] such that E{[M1
red]} = [M 1

red], E{[D
1
red]} = [D1

red], E{[K
1
red]} = [K1

red] and

E{[M2
s(p)]} = [M 2

s(p)], E{[D2
s(p)]} = [D2

s(p)], E{[K2
s(p)]} = [K2

s(p)] in which E is the

mathematical expectation.

The probability model for each one of these random matrices is briefly recalled below. Let

[Ei(p)] , i = {1, 2} be the positive symmetric n × n real matrix of rank m representing one

of the matrices of the set {[M 1
red], [D1

red], [K1
red]} when i = 1 or of the set {[M 2

s(p)], [D2
s(p)],

[K2
s(p)]} when i = 2. Using the nonparametric probabilistic approach, the matrix [E i(p)] is

replaced by the random matrix [Ei(p)] such that

[Ei(p)] = [Li
E(p)]T [Gi

E] [Li
E(p)] , (12)

in which [Li
E(p)] is a m× n rectangular real matrix such that [E i(p)] = [Li

E(p)]T [Li
E(p)] and

where [Gi
E ] is a random matrix with value in the set of all the positive-definite symmetric m×m

matrices. The probability model of random matrix [Gi
E ] is constructed by using the maximum

entropy principle with the available information. The dispersion of the random matrix [Gi
E ] is

controlled by one real positive parameter δi
E called the dispersion parameter. This means that

the dispersion parameters related to random matrices [G1
M ], [G1

D], [G1
K ] and [G2

M ], [G2
D], [G2

K ]

are δ1
M , δ1

D, δ1
K and δ2

M , δ2
D, δ2

K . It should be noted that as a result of this theory, these six random

9



matrices are independent random matrices. All the details concerning the construction of this

probability model can be found in [9–11]. The algebraic representation of random matrix [Gi
E ]

adapted to the Monte Carlo numerical simulation is briefly recalled. Random matrix [Gi
E ] is

written as [Gi
E] = [LGi

E
]T [LGi

E
] in which [LGi

E
] is a m×m real upper triangular random matrix

such that

(1) random variables {[LGi
E
]jj′, j ≤ j ′} are independent;

(2) for j < j ′, real-valued random variable [LGi
E
]jj′ can be written as [LGi

E
]jj′ = σmUjj′ in

which σm = δi
E (m + 1)−1/2 and where Ujj′ is a real-valued Gaussian random variable with

zero mean and variance equal to 1;

(3) for j = j ′, positive-valued random variable [LGi
E
]jj can be written as [LGi

E
]jj = σm

√
2Vj

in which σm is defined above and where Vj is a positive-valued gamma random variable whose

probability density function pVj
(v) with respect to dv is written as

pVj
(v) = ✆ R+(v)

1

Γ( m+1
2(δi

E
)2

+ 1−j
2

)
v

m+1

2(δi
E

)2
− 1+j

2
e−v. (13)

In coherence with the notation of Section 2, let U(p, ω) be the ✁ n-valued random vector of

the displacement whose bloc decomposition, (similar to Eq. (4)), is written as U(p, ω) =

(U1(p, ω) , UΣ(p, ω) , U2(p, ω)). Then the equations of the stochastic reduced system corre-

sponding to the nonparametric probabilistic model of uncertainties are




U1(p, ω)

UΣ(p, ω)

U2(p, ω)




= [H(p0)]




Q1(p, ω)

Q2(p, ω)


 , (14)

where Q(p, ω) = (Q1(p, ω) , Q2(p, ω)) is the ✁ N -valued random vector of the generalized

coordinates, solution of the random matrix equation that

(
[A1

red(ω)] + [A2
red(p, ω)]

)
Q(p, ω) = fred(p, ω) , (15)

in which the matrix [A1
red(ω)] is such that [A1

red(ω)] = −ω2 [M1
red]+ i ω [D1

red]+[K1
red] and where

10



the matrix [A2
red(p, ω)] is such that

[A2
red(p, ω)] =



[ ✂ ] [ ✂ ]

[ ✂ ] [A2
s(p, ω)]


 , (16)

with

[A2
s(p, ω)] = −ω2 [M2

s(p)] + i ω [D2
s(p)] + [K2

s(p)] . (17)

5 Formulation of the robust design optimization problem with respect to model uncer-

tainties and data uncertainties

In this Section, the robust design optimization problem is formulated with respect to model un-

certainties and data uncertainties using the nonparametric probabilistic approach described in

Section 4. The robust design optimization problem deals with the minimization of a cost func-

tion with respect to the design parameter. The cost function is constructed with an uncertain

numerical model. Contrary to the design optimization problem described in Section 3, the cost

function is not defined for the performance of the mean dynamical system but is defined with

respect to the performance of the stochastic dynamical system representing the real manufac-

tured system. For the robust problem, the performance objectives are double: (1) minimizing

the distance between the mean value of the stochastic observation and the target and (2) mini-

mizing the sensitivity of the stochastic observation with respect to model uncertainties and data

uncertainties. The solution of this robust design optimization problem yields an optimal value

of the design parameter which corresponds to an optimal dynamical system from which the real

manufactured system fulfills the performance objectives.

In coherence with the notation introduced in Section 3, let W(p, ω) be the ✁ k-valued random

variable modeling the random observation of the stochastic dynamical system. It is defined as a

function of the random displacement vector U(p, ω) such that

W(p, ω) = bω(U(p, ω)) , (18)

11



in which bω is the function introduced in Eq. (10). The cost function is then defined by

j(p, α) =
1

||g||2☎
1


α || ✝ (p, ·) − g||2☎

1
+

(
1 − α

)
σ2(p)


 , (19)

in which ✝ (p, ω) is the mean value of random vector W(p, ω) such that ✝ (p, ω) = E{W(p, ω)}

and where σ2(p) = E
{
||W(p, ·) − ✝ (p, ·)||2☎

1

}
. In Eq. (19), the scalar α belonging to ]0, 1/2]

is the weighting factor which has to be adjusted in order to favorize the robustness objective

performance (2) with respect to the target objective performance (1). It should be noted that

cost function j(p, α) can be rewritten as

j(p, α) = αj1(p) + (1 − 2 α) j2(p) , (20)

in which j1(p) = ||g||−2☎
1
E
{
||W(p, ·)−g||2☎

1

}
and where j2(p) = ||g||−2☎

1
σ2(p). Note that j1(p)

is related to a distance between the stochastic observation and the target and allows the target

performance objective (1) and the robustness performance objective (2) to be simultaneously

achieved with equal weight. The quantity j2(p) is a penalty term for favorizing the robustness

performance objective (2) when α decreases.

The robust design optimization problem is formulated as a multiobjective optimization problem

which consists to minimize the cost function p 7→ j(p, α) with respect to the admissible set P

of the design parameter p. For given dispersion parameters δ1
M , δ1

D, δ1
K and δ2

M , δ2
D, δ2

K and for a

given value of α ∈]0, 1/2], the robust design optimization problem is written as : find pRD in P

such that

j(pRD, α) ≤ j(p, α), for all p in P . (21)

The value of the weighting factor α characterizes the importance of each performance objec-

tive with respect to the other one and is adjusted in order to obtain the better solution. Since

the paper deals with robust design optimization, the case for which the target objective per-

formance (1) would be favorized with respect to the robust objective performance (2) is not

considered. For this reason, the weighting factor is chosen such that α ≤ 1/2. When α = 1/2,

the weight of the performance objectives (1) and (2) are the same. For small values of α, the

performance objective related to the robustness with respect to model and data uncertainties

becomes more important with respect to the performance objective related to the target. In the
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formulation of the cost function j(p, α) given by Eq. (19), a target has been introduced. Then

the cost function given by Eq. (19) is different from most of the formulations encountered in

the literature [15,18,19]. In addition, since the normalisation does not change the optimization

problem, it should be noted that the formulation used is coherent with the usual formulation

of the robust design optimization problem [18–20] when the target is not taken into account

(g = 0) and for the mono-dimensional case (k = 1). Note that the definition of the robust

design optimization problem is coherent with respect to the deterministic design optimization

problem given in Section 3. Since the value α = 0 is excluded, the formulation for robust de-

sign optimization is coherent with the formulation of design optimization when the stochastic

dynamical system tends to be deterministic, that is to say when lim|| ✞ ||7→0 pRD = pD in which
✟

= (δ1
M , δ1

D , δ1
K , δ2

M , δ2
D , δ2

K). Finally, the robust design optimization problem is solved

by using the sequential quadratic optimization algorithm [35,36] coupled with the Monte Carlo

numerical simulation. In addition, it should be noted that the random germs of the random ma-

trices do not depend on the design parameter p. Consequently, the gradient and the Hessian can

algebraically be constructed (see Appendix), that improves the precision of the optimization

algorithm.

6 Numerical application

The objective of this application is the robust design optimization of dynamic absorbers in

order to reduce the vibration level of a heterogeneous dynamical system in a given narrow-

frequency band and for a given deterministic excitation. The heterogeneous dynamical system

is constituted of a homogeneous plate coupled with lumped masses and oscillators. Only the

vibration level of the homogeneous plate has to be reduced. The dynamic absorbers are identical

and each one is constituted of oscillators in parallel at different eigenfrequencies. Two cases are

investigated. The first case concerns robust design optimization with respect to a single design

parameter. A more complicated case involving a multidimensional design parameter is then

considered.
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6.1 Mean finite element model of the dynamical system

The dynamical system is constituted of a master system corresponding to the heterogeneous dy-

namical system and of a subsystem made up of the dynamic absorbers. The frequency band of

interest is [350 , 750]Hz but the frequency band of analysis for optimal design is [500 , 600] Hz.

Consequently, the target will be specified in this frequency band in order to optimize the ab-

sorbers in this band.

The mean master system is the heterogeneous system made up of a plate with two attached

lumped masses, one attached spring and 51 attached single DOF linear oscillators. The plate

is a thin plate in bending mode and is located in the plane (O x, O y) of a cartesian coordinate

system (O xy z). The out-plane displacements are only considered. The plate is made of a

homogeneous, isotropic elastic material with mass density 7 800 Kg × m−3, Poisson ratio 0.29,

Young modulus 2×1011 N ×m−2. The plate has constant thickness 0.4×10−3 m, length 0.5 m

and width 0.4 m. The plate is simply supported on three edges and is free on the fourth edge

corresponding to y = 0. The mean finite element model of the plate is constituted of 2 000

bending plate elements (with 4 nodes) and is shown in Fig. 1. A damping model is added to

the plate corresponding to a hysteretic model with a mean loss factor 0.02. The two lumped

masses have mass 4 Kg and 1 Kg, located at points (0.15 , 0.15 , 0) and (0.2 , 0 , 0) respectively

(see Fig. 1). The attached spring has stiffness 2.388 × 1011 N × m−1 and is located at point

(0.06 , 0.23 , 0) (see Fig. 1). The attached oscillators are grouped by sets of 3 oscillators (see

Fig. 1). The eigenfrequencies of these oscillators are in the band [350 , 750] Hz.

The mean subsystem to be optimized is constituted of 9 identical vibration absorbers, each one

being made up of 5 single DOF linear oscillators in parallel (see Fig. 1). The eigenfrequen-

cies of the 5 oscillators are fixed, are equal to 560, 565, 570, 575, 580 Hz and have been chosen

to form an absorber around the main resonance occuring at 571 Hz in the narrow-frequency

band [500 , 600] Hz. Note that these values have been deduced from a sensitivity analysis per-

formed with the mean model in order to obtain a significant reduction of the vibration levels.

The critical damping rate is the same for the 5 oscillators and is 0.01. In a first case, it is as-

sumed that the five oscillators of a vibration absorber have the same mass m which has to be
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optimized. The total mass of the subsystem is then defined by ✠ = 45 m. The design pa-

rameter is ✠ . In a second case, it is assumed that the mass of each oscillator constituting a

vibration absorber can be different. Denoting as mi the mass of the oscillator number i of each

vibration absorber constituting the subsystem, the design parameter is the ✄ 5-vector ✠ in which

✠ = (9 m1, 9 m2, 9 m3, 9 m4, 9 m5). Since the eigenfrequency and the critical damping of the

oscillators of the vibration absorbers are fixed, the mass, damping and stiffness matrices of the

subsystem are affine functions of the design parameter ✠ . In the present case, the excitation

does not depend on ✠ .

The finite element model of the mean dynamical system (master system coupled with the five

vibration absorbers) is thus constituted of n = 6106 DOF with n1 = 6052 internal DOF of

the mean master system, n2 = 45 internal DOF for the mean subsystem and nΣ = 9 coupling

interface DOF. The mean dynamical system is submitted to a given deterministic unit transverse

load constant in frequency band [5 , 1200] Hz with amplitude 1 (see Fig. 1). The observation

chosen for the dynamic analysis is the signal energy related to the out-plane accelerations of the

plate. Consequently, the real-valued function bω introduced in Eq. (9) is such that w(p, ω) =

bω(u(p, ω)) = ω2 ||uplate(p, ω)|| in which uplate(p, ω) is the complex vector constituted of the

1960 out-plane displacements of the plate.

6.2 Reference solution for the master system

The reference observation in the master system is wmaster(ω) = ω2 ||uplate
unc (p, ω)||, in which uplate

unc

is the plate response corresponding to the mean model of the master system (uncoupled with

the absorbers of the subsystem). Figure 2 displays the graph of ω 7→ 20 log10(w
master(ω)). In

Fig. 2, it can be seen that the level of the reference solution for the mean master system is lower

than 77.5 dB in the frequency band [350 , 750] Hz except for one single peak whose resonance

occurs at 571 Hz with level 80.5 dB, i.e. 3 dB more.
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6.3 Estimation of the numerical parameters for the robust design optimization problem

Let {W master(θj , ω) , j = 1, . . . , ns} be the ns independent realisations of random variable

W master(ω). The robust optimization problem needs to solve the stochastic reduced equation

Eq. (15). The numerical parameters are then the dimension N of the reduced dynamical system

and the number ns of realizations used in the Monte Carlo numerical simulation. Therefore a

convergence analysis has to be performed with respect to N and ns for the stochastic reduced

system. The computation is performed for the dispersion parameters of the master system such

that δ1
M = δ1

D = δ1
K = 0.05. A stochastic convergence analysis with N2 = n2 + nΣ = 54 is

carried out in order to define the number N1 of modes to be kept in the modal reduction and the

number ns of realizations. The mean-square convergence is analyzed by studying the function

(ns, N1) 7→ Conv(ns, N1) defined by

Conv(ns, N1) =





1

ns

ns∑

j=1

∫

B

||W master(θj , ω))||2 dω





1/2

, (22)

in which W master(θj , ω) is calculated with a reduced model of dimension N = N1 + N2.

Fig. 3 displays the graph of ns 7→ 20 log10 (Conv(ns, N1)) for N1 = 300. It can be seen

that a reasonable convergence is reached for ns = 300. Fig. 4 displays the graph N1 7→

20 log10 (Conv(ns, N1)) for ns = 300. Convergence is reached for N1 = 225.

6.4 Target and its comparison with the reference observation.

As explained above, the robust design optimization is carried out over the frequency band
 

1 =

[500 , 600] Hz. In band
 

1, there are three main resonances. The higher resonance occurs at

571 Hz with a level of 80.5 dB (see Fig. 5). There are two secondary resonances with a smaller

level. The target is specified in order that the two secondary responses be not modified and that

to reduce strongly the higher resonance. Figure 5 shows the target ω 7→ 20 log10(g(ω)) related

to the reference observation ω 7→ 20 log10(w
master(ω)) defined in Section 6.2.
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6.5 Case 1 : robust design optimization with respect to a single design parameter.

In the present case, the masses of the oscillators of each vibration absorber constituting the sub-

system are assumed to be identical. The design parameter is the total mass ✠ of the subsystem.

The robust design optimization is carried out with δ1
M = δ1

D = δ1
K = 0.05 for the master

system and with δ2
M = δ2

D = δ2
K = 0 for the subsystem (no uncertainties in the subsystem).

Note that the subsystem is assumed to be deterministic for convenience, the generalization to

uncertain subsystems being straightforward. It has been verified that the numerical parameters

identified from the convergence analysis of the stochastic master system also yield convergent

results for the stochastic reduced system. Consequently, the robust design optimization is car-

ried out with N1 = 225, N2 = 54 and ns = 300. The admissible set for design parameter

✠ is defined such that ✠ ∈ [4.5 × 10−7 , 1.8 × 10−3] Kg. We are interested in comparing the

design optimization (no uncertainties) with the robust design optimization (with uncertainties)

for a weighting factor α which is chosen as 0.5. The design optimization yields optimal de-

sign parameters ✠ D = 2.6 × 10−4 Kg and ✠ RD = 8.12 × 10−4 Kg. A stochastic dynamical

analysis of each one of the two optimal designs is then carried out in order to analyze the sen-

sitivity of these two optimal designs with respect to model and data uncertainties. Let µD(ω),

µRD(ω) and σD(ω), σRD(ω) be the mean values and the standard deviations of the random ob-

servations W D(ω) and W RD(ω) defined by W D(ω) = W ( ✠ D, ω), W RD(ω) = W ( ✠ RD, ω).

We obtain j( ✠ D, 1
2
) = 7.9835 × 10−3 with ||σD|| ☎

1 = 6.1924 × 10−2 ||g|| ☎
1 and j( ✠ RD, 1

2
) =

7.2899 × 10−3 with ||σRD|| ☎
1 = 5.8034 × 10−2 ||g|| ☎

1 . Clearly, the robust design optimization

yields the optimal design point whether it is with respect to the target performance objective or

with respect to the robustness performance objective.

Below, the sensitivity of the robust design optimization is analyzed with respect to the weighting

factor α ∈ ]0 , 1/2]. From Fig. 6, it can be seen that the mass of the robust design decreases

with the weighting factor α. For this application, the sensitivities of the cost function and of

the normalized standard deviation
||σRD|| ☎

1

||σD|| ☎
1

are sufficiently weak with respect to the weighting

factor (lower than 1.5%) to be neglected. For this reason, all the results concerning the robust

design optimization are presented for α = 1/2.
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Similarly to the stochastic case, let wD(ω) = w( ✠ D, ω) and wRD(ω) = w( ✠ RD, ω). Figure 7

displays the comparison of the target with the response of the mean models corresponding to the

design optimization point and corresponding to the robust design optimization point. It can be

seen from this Figure that the responses of the mean model corresponding to these two design

points are different. In particular, the deterministic design point yields a response of the mean

model which is closer to the target than to the robust design point. Nevertheless, this kind of

information is not essential (see below). For all ω fixed in
!

, the confidence interval of the

random variable W RD(ω) is constructed for a probability level Pc = 0.95 using the sample

quantiles [37]. Let W̃ RD(θ1, ω) ≤ . . . ≤ W̃ RD(θns
, ω) be the order statistics.The upper interval

w+(ω) and the lower interval w−(ω) delimiting the confidence interval with probability level

Pc is then given by

w+(ω) = W̃ RD(θk+ , ω) , k+ = fix(0.5 ns (1 + Pc)) , (23)

w−(ω) = W̃ RD(θk−
, ω) , k− = fix(0.5 ns (1 − Pc)) , (24)

in which fix(x) is the integer part of real x. Fig. 8 compares the reference solution (response

of the mean master system) ω 7→ 20 log10(w
master(ω)) with the confidence region of the robust

design optimization. In particular, the resonance of the reference solution occuring at frequency

571 Hz has been reduced (about of 3 dB or 4 dB) by the robust design optimization process. It

can be seen that the response of the mean master system belongs to the confidence region of

the response of the stochastic system corresponding to the robust design optimization except in

the frequency band
!

1 for which the target is active. Figure 9 and Fig. 10 compare the refer-

ence solution ω 7→ 20 log10(w
master(ω)) with the confidence regions of the random responses

ω 7→ 20 log10(W
D(ω)) corresponding to the design optimization and ω 7→ 20 log10(W

RD(ω))

corresponding to the robust design optimization for a probability level Pc = 0.95 in the fre-

quency band
!

1. In Fig. 10, there are five resonances which occur at frequencies 508 Hz, 524 Hz,

539 Hz, 571 Hz and 583 Hz. In Fig. 10, for peaks number 1 and 4, it can be seen that the robust

design optimization yields similar results to the design optimization. For peaks number 2 and

5, the robust design optimization yields lower responses levels. Moreover, the confidence re-

gion is particularly narrow in the frequency band [550 , 600] Hz which means that the optimum

design is more robust with respect to model and data uncertainties than in the frequency band
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[500 , 550] Hz. Finally, a sensitivity analysis with respect to the level of uncertainty in the dy-

namical system is carried out. Figure 11 displays the graph of
✟
7→ ✠ RD(

✟
) for α = 0.1 (marker

◦), for α = 0.25 (marker ♦) and for α = 0.5 marker �).

6.6 Case 2 : robust design optimization with respect to a multi-dimensional design parameter.

In this subsection, no assumption is made on the mass of the oscillators of each vibration ab-

sorbers. Denoting as mi the mass of the oscillator number i, the design parameter ✠ is the

✄ 5’vector ✠ = (9 m1, 9 m2, 9 m3, 9 m4, 9 m5). The admissible set for design parameter ✠ is

such that ✠ belongs to the five dimensional hypercube defined by ✠ ∈ [9 × 10−8, 3.6 × 10−4]5.

First, the design optimization (no uncertainties) is carried out for several initial values of ✠
which are randomly chosen in order to obtain the best local optimum. The design optimiza-

tion yields an optimal design parameter ✠ D = (4995, 9, 9, 9, 3024) × 10−8. This optimal de-

sign parameter is then used as an initial value for the robust design optimization problem. The

weighting factor α is set to α = 0.5. Two subcases for which the subsystem is deterministic

are presented, (1) a low level of uncertainty in the master system (δ1
M = δ1

D = δ1
K = 0.05)

yielding ✠ RD = (6894, 9, 9, 9, 3582) × 10−8, (2) a medium level of uncertainty in the mas-

ter system (δ1
M = δ1

D = δ1
K = 0.15) yielding ✠ RD = (1422, 9, 9, 9, 1062) × 10−8. For

each case, Figure 12 and 13 compare the reference solution ω 7→ 20 log10(w
master(ω)) with

the 10, 20, 30, 40, 50, 60, 70, 80, 90th quantiles of the random responses ω 7→ 20 log10(W
D(ω))

corresponding to the design optimization and of the random responses ω 7→ 20 log10(W
RD(ω))

corresponding to the robust design optimization in the frequency band
#

1. For the low uncer-

tainty subcase, it can be seen in Fig. 12 that robust design optimization yields similar results to

design optimization except for peak number 4 for which the response level is lower that cor-

responds to the target specification. For the medium uncertainty subcase, Figure 13 shows that

robust design optimization yields similar results to design optimization except for peak number

4 for which the response level is lower and for peak 5 for which the response level is higher.

In this case, the difference between the two cost functions is very small which means that, for

the dynamical system under consideration, the robust design optimization does not improve the

design optimization for a higher level of uncertainty. Note that design optimization shiftes the
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position of peak number 4 and 5 to the left and to the right respectively. Finally, it should be

noted that both design optimization and robust design optimization have been solved by using a

sequential quadratic optimization algorithm. The calculations have been made (1) in supplying

the gradients of the cost function to the algorithm and (2) in supplying the gradient and the Hes-

sian of the cost function to the algorithm using the numerical method proposed in the Appendix.

Method (2) allows a CPU time gain about 30% to be obtained.

7 Conclusion

In this paper, we have presented an approach which allows the robust design optimization prob-

lem to be formulated and solved in presence of model uncertainties. Model uncertainties are

taken into account with a nonparametric probabilistic approach and a target is introduced in the

cost function. Thanks to an adapted algebraic development and under several assumptions, the

numerical optimization problem can be solved with accuracy and with a low numerical cost. The

proposed robust design formulation is general enough and the proposed approach can be used in

other cases for analyzing complex dynamical systems in computational mechanics. Concerning

the limitations of the proposed method, it should be noted that the gradient and the Hessian

algebraically calculated can be used if the dynamical stiffness operator and the input force are

affine mappings of the vector-valued design parameter and if the projection basis can be con-

structed independently of the vector-valued design parameter and has reasonable dimension.

Not that if these conditions are not satisfied, the theory presented can be used with an opti-

mization algorithm for which either the gradient and Hessian are not given or the gradient and

Hessian are numerically calculated. The case of random loads is not investigated in this work

but the extension is straightforward. In addition, this paper is focused on robust design with

respect to model uncertainties. With respect to potential difficulties induced by the optimiza-

tion algorithm when the dimension of the vector-valued design parameter is high, the proposed

method does not introduce new difficulties with respect to the state of the art. The method has

been validated for the five-dimensional case. As a final comment, the two numerical examples

presented in this paper show that there are differences between design optimization and robust

design optimization for the structural dynamics problem considered.
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A Numerical analysis related to the optimization

In this appendix, we summarize the algebraic development allowing the gradient and the Hes-

sian of cost function j(p, α) related to the robust design optimization problem to be computed.

Such an algebraic development allows the precision in the optimization algorithm to be in-

creased. The developments presented in this appendix are valuable under the following assump-

tions: (1) the dynamic stiffness operator and the force vector are affine functions of the design

parameter, (2) the projection basis related to the dynamical substructuring reduction method

does not depend of the design parameter.

A.1 Notation

Let [A] and [B] be m × n and p × q complex matrices. The operator ⋆ is introduced such that

[A] ⋆ [B] is the m p × nq complex matrix defined by

[A] ⋆ [B] =




[A]11 [B] . . . [A]1n [B]
...

. . .
...

[A]m1 [B] . . . [A]mn [B]




. (A-1)

Let b(p) be a vector in ✁ n and let [A(p)] be a m×n complex matrix which depends on the vector

p = (p1, . . . , ps) in ✁ s. Below, when no confusion is possible, the argument p is removed in

order to simplify the writing.

The vector ✡ b(p) is the vector in ✁ ns defined by ✡ b(p) = {∂p1b, . . . , ∂ps
b}.

The vector ☛ b(p) is the vector in ✁ ns(s+1)/2 defined by

☛ b(p) =
{
∂2

p2
1
b, . . . , ∂2

p1ps
b, ∂2

p2
2
b, . . . , ∂2

p2ps
b, . . . , ∂2

p2
s
b
}

.

The vector ☞ [A]b is the vector in ✁ ms defined by ☞ [A]b = {(∂p1 [A]) b, . . . , (∂ps
[A]) b}.

The vector ✌ [A]b(p) is the vector in ✁ ms(s+1)/2 defined by
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✌ [A]b = {(∂p1[A])∂p1b, . . . , (∂p1[A])∂ps
b, (∂p2 [A])∂p2b, . . . , (∂p2[A])∂ps

b, . . . , (∂ps
[A])∂ps

b}.

The vector ✍ [A]b(p) is the vector in ✁ ms(s+1)/2 defined by

✍ [A]b =
{
(∂2

p2
1
[A])b, . . . , (∂2

p1ps
[A])b, (∂2

p2
2
[A])b, . . . , (∂2

p2ps
[A])b, . . . , (∂2

p2
s
[A])b

}
.

A.2 Gradient and Hessian of the cost function for the stochastic dynamical system

By using Eqs. (20), the first-order and the second-order partial derivatives of the cost function

j(p, α) with respect to p are written as

∂pi
j(p, α) =

1

||g|| ☎
1

E{2Re
∫

☎
1

α
(
W(p, ω) − g(ω)

)∗
∂pi

W(p, ω)

+
(
1 − 2 α

) (
W(p, ω) − ✝ (p, ω)

)∗
∂pi

(
W(p, ω) − ✝ (p, ω)

)
dω} ,(A-2)

∂2
pipj

j(p, α) =
1

||g|| ☎
1

E{2Re
∫

☎
1

α
(
W(p, ω) − g(ω)

)∗
∂2

pipj
W(p, ω)

+ α∂pj
W(p, ω)∗∂pi

W(p, ω) (A-3)

+ (1 − 2 α)
(
W(p, ω) − g(ω)

)∗
∂2

pipj

(
W(p, ω) − ✝ (p, ω)

)

+ (1 − 2 α) ∂pj

(
W(p, ω) − g(ω)

)∗
∂pi

(
W(p, ω) − ✝ (p, ω)

)
dω} ,

with summation over indices k, in which E is the mathematical expectation, Re is the real part

of a complex number and where a starred vector is its transconjuguate. By using Eqs. (14)

and (18), it can easily be shown that the ✁ k-valued random vectors W(p, ω), ∂pi
W(p, ω) for

i ∈ {1, . . . , s}, ∂2
pipj

W(p, ω) for 1 ≤ i ≤ j ≤ s can be calculated from the ✁ N -valued random

vectors Q(p, ω), ∂pi
Q(p, ω) for i ∈ {1, . . . , s}, ∂2

pipj
Q(p, ω) for 1 ≤ i ≤ j ≤ s.
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A.3 Gradient and Hessian of the random vector of the random reduced coordinates

Let Q(p, ω) be the ✁ NS-valued random vector defined by

Q(p, ω) =




Q(p, ω)

✡ Q(p, ω)

☛ Q(p, ω)




, (A-4)

in which S = 1 + 3s/2 + 5s2/2 and N is the dimension of vector Q(p, ω). Let [Ared(p, ω)] be

the random matrix [Ared(p, ω)] with values in the set of all the symmetric NS × NS complex

matrices and let Fred(p, ω) be the ✁ NS-valued random vector such that

[Ared(p, ω)] = [IS] ⋆
(
[A1

red(ω)] + [A2
red(p, ω)]

)
, (A-5)

Fred(p, ω) =




fred(p, ω)

✡ fred
(p, ω) − ☞ [A2

red
]Q(p, ω)

−✌ [A2
red

]Q(p, ω) − ✍ [A2
red

]Q(p, ω)




, (A-6)

in which [IS] is the S × S identity matrix. From Eq. 15 and taking into account that [A1
red(ω)]

is independent of p, it can be shown that the random vector Q(p, ω) is solution of the random

matrix equation

[Ared(p, ω)] Q(p, ω) = Fred(p, ω) . (A-7)

It should be noted that the calculation of ☞ [A2
red

]Q(p, ω), ✌ [A2
red

]Q(p, ω) and ✍ [A2
red

]Q(p, ω) requires

the calculation of the partial derivatives ∂pi
[A2

red(p, ω)] for i = {1, . . . , s} and ∂2
pipj

[A2
red(p, ω)]

for 1 ≤ i ≤ j ≤ s. This calculation is carried out in the next Section.

A.4 Gradient of the random reduced dynamical stiffness matrix for the stochastic dynamical

system

The method allowing the partial derivative ∂pi
[A2

red(p, ω)] to be algebraically calculated for

i = {1, . . . , s} is presented below. From Eqs. (16) and (17), it can be seen that the calculation

of ∂pi
[A2

red(p, ω)] requires the calculation of ∂pi
[M2

s(p)], ∂pi
[D2

s(p)] and ∂pi
[K2

s(p)]. Rewritting

Eq. (12) for matrices [M2
s(p)], [D2

s(p)] and [K2
s(p)] yields
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[E2
s(p)]= [L2

E(p)]T [G2
E] [L2

E(p)] , (A-8)

in which [E2
s(p)] denotes

{
[M2

s(p)], [D2
s(p)], [K2

s(p)]
}

, [L2
E(p)] denotes

{
[L2

M(p)], [L2
D(p)], [L2

K(p)]
}

and [G2
E ] denotes

{
[G2

M ], [G2
D], [G2

K ]
}

. In Eq. (A-8), the matrix [G2
M ] is a random matrix with

values in the set of all the symmetric N2×N2 positive definite matrices and matrices [G2
D], [G2

K ]

are random matrices with values in the set of all the symmetric (N2 − r) × (N2 − r) positive

definite matrices. Matrix [L2
E(p)] is such that

[E2
s(p)] = [L2

E(p)]T [L2
E(p)] . (A-9)

in which [L2
M(p)] is a N2 ×N2 upper triangular real matrix obtained by Cholesky factorization

and where [L2
D(p)], [L2

K(p)] are N2 × (N2 − r) real matrices. In addition, according to Eq. (3),

the matrix [E2
s(p)] can be written as

[E2
s(p)] = [E2,0

s ] +
s∑

i=1

pi[E
2,i
s ] . (A-10)

Taking the partial derivative of Eq. (A-8) with respect to pi, the matrix ∂pi
[E2

s(p)] is given by

∂pi
[E2

s(p)] = (∂pi
[L2

E(p)]T ) [G2
E ] [L2

E(p)] + [L2
E(p)]T [G2

E ] (∂pi
[L2

E(p)]) . (A-11)

Using Eq. (A-9) and (A-10), the matrix ∂pi
[L2

E(p)]is computed in solving the following matrix

equation

[E2,i
s ] = (∂pi

[L2
E(p)]T ) [L2

E(p)] + [L2
E(p)]T (∂pi

[L2
E(p)]) . (A-12)

A.5 Hessian of the random reduced dynamical stiffness matrix for the stochastic dynamical

system

The method allowing the partial derivative ∂2
pipj

[A2
red(p, ω)] to be algebraically calculated for

1 ≤ i ≤ j ≤ s is presented. Taking the partial derivative of Eq. (A-11) with respect to pj , the

matrix ∂2
pipj

[E2
s(p)] is given by given by
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∂2
pipj

[E2
s(p)] = (∂2

pipj
[L2

E(p)]T ) [G2
E] [L2

E(p)] + (∂pi
[L2

E(p)]T ) [G2
E] (∂pj

[L2
E(p)]) (A-13)

+ (∂pj
[L2

E(p)]T ) [G2
E ] (∂pi

[L2
E(p)]) + [L2

E(p)]T [G2
M ] (∂2

pipj
[L2

E(p)]) .

Taking the partial derivative of Eq. (A-12), the matrix ∂2
pipj

[L2
E(p)] is computed by solving the

following matrix equation

−(∂pi
[L2

E(p)]T ) (∂pj
[L2

E(p)]) − (∂pj
[L2

E(p)]T ) (∂pi
[L2

E(p)]) = (A-14)

(∂2
pipj

[L2
E(p)]T ) [L2

E(p)] + [L2
E(p)]T (∂2

pipj
[L2

E(p)]) .
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Figure 1: Finite element mesh of the dynamical system: attached spring (�), attached lumped

mass (•), attached set of 3 single DOF linear oscillators (△), vibration absorbers (N), excitation

node (�), simply supported boundary (thick line), free boundary (thick dashed line).

Figure 2: Reference observation of the mean master system. Graph of function ν 7→ 20 log10

(
wmaster(2 π ν)

)
.

Horizontal axis is the frequency ν in Hz.

Figure 3: Convergence analysis : Graph of function ns 7→ 20 log10(Conv(ns, N1)) for the

stochastic master system with N1 = 300. Horizontal axis is ns.

Figure 4: Convergence analysis : Graph of function N1 7→ 20 log10(Conv(ns, N1)) for the

stochastic master system with ns = 300. Horizontal axis is N1.

Figure 5: Definition of the target ν 7→ 20 log10

(
g(2 π ν)

)
(thick dashed line). Comparison with

the reference observation ν 7→ 20 log10

(
wmaster(2 π ν)

)
(thin solid line) in the frequency band

 
1 = [500 , 600] Hz (horizontal axis).

Figure 6: Case 1. Sensitivity of the robust design optimization with respect to the weighting

factor α ∈ ]0 , 0.5]: Graph of α 7→
✠ RD

✠ D
(thick line), graph of α 7→ j( ✠ RD, α) (thick dashed

line), graph of α 7→
||σRD|| ☎

1

||σD|| ☎
1

(thin dashed line). Horizontal axis is α.

Figure 7: Case 1. Comparison of the target ν 7→ 20 log10

(
g(2 π ν)

)
(thick dashed line) with the

response of the mean model corresponding to the design optimization ν 7→ 20 log10

(
wD(2 π ν)

)

(thin dark gray line) and corresponding to the robust design optimization ν 7→ 20 log10

(
wRD(2 π ν)

)

(thin light gray line) for α = 1/2. Horizontal axis is the frequency ν in Hz.

Figure 8: Case 1. Comparison of the reference observation ν 7→ 20 log10

(
wmaster(2 π ν)

)
(thin

solid line) with the confidence region (light gray region) of random response for the robust
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design, over the band
 

= [5, 1200] Hz (horizontal axis) and for α = 1/2 and a probability

level Pc = 0.95. Horizontal axis is the frequency ν in Hz.

Figure 9: Case 1. Comparison of the reference solution ν 7→ 20 log10

(
wmaster(2 π ν)

)
(thin solid

line) with the confidence region (dark gray region) of the random response ν 7→ 20 log10

(
W D(2 π ν)

)

corresponding to the design optimization and with the confidence region (light gray region) of

the random response ν 7→ 20 log10

(
W RD(2 π ν)

)
corresponding to the robust design optimiza-

tion. Horizontal axis is the frequency ν in Hz.

Figure 10: Case 1. Comparison of the reference solution ν 7→ 20 log10

(
wmaster(2 π ν)

)
(thin

solid line) with the two confidence regions defined in Fig. 9.

Figure 11: Case 1. Sensitivity analysis for the robust design optimization : Graph of function
✟
7→ ✠ RD(

✟
) for α = 0.5 (thin line with �), for α = 0.25 (thin line with ♦), for α = 0.1 (thin

line with ◦). Horizontal axis is
✟
.

Figure 12: Case 2, low uncertainty level. Comparison of the reference solution

ν 7→ 20 log10

(
wmaster(2 π ν)

)
(thick solid line) with the 10, 20, 30, 40, 50, 60, 70, 80, 90th quan-

tiles of the random response ν 7→ 20 log10

(
W D(2 π ν)

)
(thin black lines) corresponding to the

design optimization and of the random response ν 7→ 20 log10

(
W RD(2 π ν)

)
(thin gray lines)

corresponding to the robust design optimization. Horizontal axis is the frequency ν in Hz.

Figure 13: Case 2, medium uncertainty level. Comparison of the reference solution

ν 7→ 20 log10

(
wmaster(2 π ν)

)
(thick solid line) with the 10, 20, 30, 40, 50, 60, 70, 80, 90th quan-

tiles of the random response ν 7→ 20 log10

(
W D(2 π ν)

)
(thin black lines) corresponding to the

design optimization and of the random response ν 7→ 20 log10

(
W RD(2 π ν)

)
(thin gray lines)

corresponding to the robust design optimization. Horizontal axis is the frequency ν in Hz.
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Fig. 1. Finite element mesh of the dynamical system: attached spring (�), attached lumped mass (•),

attached set of 3 single DOF linear oscillators (△), vibration absorbers (N), excitation node (�), simply

supported boundary (thick line), free boundary (thick dashed line)
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Fig. 2. Reference observation of the mean master system. Graph of function

ν 7→ 20 log10

(

wmaster(2π ν)
)

. Horizontal axis is the frequency ν in Hz.

34



0 100 200 300 400 500
126.3

126.35

126.4

126.45

Fig. 3. Convergence analysis : Graph of function ns 7→ 20 log10(Conv(ns,N1)) for the stochastic master

system with N1 = 300. Horizontal axis is ns.
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Fig. 4. Convergence analysis : Graph of function N1 7→ 20 log10(Conv(ns,N1)) for the stochastic

master system with ns = 300. Horizontal axis is N1.
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Fig. 5. Definition of the target ν 7→ 20 log10

(

g(2π ν)
)

(thick dashed line). Comparison with

the reference observation ν 7→ 20 log10

(

wmaster(2π ν)
)

(thin solid line) in the frequency band
 

1 = [500 , 600] Hz (horizontal axis).
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Fig. 6. Case 1. Sensitivity of the robust design optimization with respect to the weighting factor

α ∈ ]0 , 0.5]: Graph of α 7→
✠ RD

✠ D
(thick line), graph of α 7→ j( ✠ RD, α) (thick dashed line), graph

of α 7→
||σRD|| ☎

1

||σD|| ☎
1

(thin dashed line). Horizontal axis is α.

38



450 500 550 600 650
70

72

74

76

78

80

Fig. 7. Case 1. Comparison of the target ν 7→ 20 log10

(

g(2π ν)
)

(thick dashed line) with the response

of the mean model corresponding to the design optimization ν 7→ 20 log10

(

wD(2π ν)
)

(thin dark gray

line) and corresponding to the robust design optimization ν 7→ 20 log10

(

wRD(2π ν)
)

(thin light gray

line) for α = 1/2. Horizontal axis is the frequency ν in Hz.
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Fig. 8. Case 1. Comparison of the reference observation ν 7→ 20 log10

(

wmaster(2π ν)
)

(thin solid line)

with the confidence region (light gray region) of random response for the robust design, over the band
 

= [5, 1200] Hz (horizontal axis) and for α = 1/2 and a probability level Pc = 0.95. Horizontal axis

is the frequency ν in Hz.
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Fig. 9. Case 1. Comparison of the reference solution ν 7→ 20 log10

(

wmaster(2π ν)
)

(thin solid line)

with the confidence region (dark gray region) of the random response ν 7→ 20 log10

(

W D(2π ν)
)

cor-

responding to the design optimization and with the confidence region (light gray region) of the random

response ν 7→ 20 log10

(

W RD(2π ν)
)

corresponding to the robust design optimization. Horizontal axis

is the frequency ν in Hz.
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Fig. 10. Case 1. Comparison of the reference solution ν 7→ 20 log10

(

wmaster(2π ν)
)

(thin solid line)

with the two confidence regions defined in Fig. 9.
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Fig. 11. Case 1. Sensitivity analysis for the robust design optimization : Graph of function
✟
7→ ✠ RD(

✟
)

for α = 0.5 (thin line with �), for α = 0.25 (thin line with ♦), for α = 0.1 (thin line with ◦).

Horizontal axis is
✟

.
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Fig. 12. Case 2, low uncertainty level. Comparison of the reference solution

ν 7→ 20 log10

(

wmaster(2π ν)
)

(thick solid line) with the 10, 20, 30, 40, 50, 60, 70, 80, 90th quan-

tiles of the random response ν 7→ 20 log10

(

W D(2π ν)
)

(thin black lines) corresponding to the design

optimization and of the random response ν 7→ 20 log10

(

W RD(2π ν)
)

(thin gray lines) corresponding

to the robust design optimization. Horizontal axis is the frequency ν in Hz.
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Fig. 13. Case 2, medium uncertainty level. Comparison of the reference solution

ν 7→ 20 log10

(

wmaster(2π ν)
)

(thick solid line) with the 10, 20, 30, 40, 50, 60, 70, 80, 90th quan-

tiles of the random response ν 7→ 20 log10

(

W D(2π ν)
)

(thin black lines) corresponding to the design

optimization and of the random response ν 7→ 20 log10

(

W RD(2π ν)
)

(thin gray lines) corresponding

to the robust design optimization. Horizontal axis is the frequency ν in Hz.
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