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Abstract

This paper deals with the design optimization problem of a structural-acoustic system in

presence of uncertainties. The uncertain vibroacoustic numerical model is constructed by

using a recent nonparametric probabilistic model which takes into account model uncertain-

ties and data uncertainties. The formulation of the design optimization problem includes the

effect of uncertainties and consists in minimizing a cost function with respect to an admissi-

ble set of design parameters. The numerical application consists in designing an uncertain

master structure in order to minimize the acoustic pressure in a coupled internal cavity

which is assumed to be deterministic and excited by an acoustic source. The results of the

design optimization problem, solved with and without the uncertain numerical model show

significant differences.

Key words: Robust design, Model uncertainties, Structural-acoustics.

1 Introduction

The present research deals with design optimization in order to improve the acoustical aspects

in structural-acoustic systems. Such a research topic has become a challenge of interest in many

industrial areas. For instance, the automotive industry has a particular interest for taking into ac-

count the internal noise of cars in the low- and medium-frequency ranges as a performance for

its design optimization. Many solutions have been proposed for reducing the internal noise level

in structural-acoustic systems. These solutions include passive noise control strategies (see for

instance [1,2]) and active noise control strategies (see for instance [3,4]). Design optimization

strategy consisting in optimizing the structural parameters of a conceptual structural-acoustic

system has also been studied. This latter solution is investigated in this paper. This research

then deals with the design optimization of structural-acoustic systems with respect to design

parameters and using acoustical criterions. No passive or active noise control strategies are

investigated. Moreover, for the noise level range of interest and for the structural vibration am-

plitudes considered, the use of the linear three dimensional elasto-acoustic theory is assumed to

be sufficient to model the structural-acoustical system. Nonlinear structural acoustics are then

2



not investigated. We are then involved with design optimization and it is assumed that no ex-

perimental data is available. Such a situation frequently occurs in engineering (for instance in

automotive industries). The design optimization is then performed only with a computational

model with no available experiments. It is known that for complex dynamical systems such

as structural-acoustic systems, the mathematical-mechanical modeling can contain important

model uncertainties and data uncertainties. In general, a deterministic computational model is

not predictive enough and uncertainties have to be taken into account in the computational

model which is used in order to perform design optimization. It should be noted that the qual-

ity of the design optimization strongly depends on the probabilistic model of uncertainties.

Methodologies concerning the deterministic design optimization of structural-acoustic systems

can be found, for instance, in [2,5–8]. In this context, the performance function which has to

be optimized is constructed from the mean computational model and the optimal solution cor-

responds to a certain optimal design system. Nevertheless, there is a priori no reason for which

the performance for such an optimal system yields an optimal performance for the real system

manufactured from this optimal system because model and data uncertainties are not taken into

account in the computational model used. For this reason, the formulation of the design opti-

mization has to contain the effect of uncertainties. There exists two classes of methodologies

which allow the design optimization in a probabilistic context to be solved: the reliability-based

design optimization formulations (see for instance [9] in the context of aerostructural analysis

and [10,11] in the context of structural mechanics) and the robust design optimization formula-

tion (see for instance [12–14] in the context of linear or nonlinear structural mechanics). This

latter formulation allows the robustness of the design system with respect to uncertainties to

be improved. In this robust design context, the cost function used in the formulation is not de-

fined for the objective performances of the mean computational model. The cost function is

defined for the objective performances of the stochastic system. The optimal design is the so-

lution of a stochastic nonlinear constrained optimization problem solved by minimizing such

a cost function with respect to an admissible set of design parameters. Concerning the proba-

bility model of uncertainties, various methodologies adapted for the high-frequency range have

been proposed (see for instance [15], for diffuse field method in random systems at high fre-

quencies). Concerning the low and medium-frequency ranges, data uncertainties can be taken
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into account in the finite element method using the parametric probabilistic approach (see for

instance [16–20]). Nevertheless, the parametric probabilistic approach does not allow model

uncertainties to be taken into account. In structural dynamics, if several formulations for ro-

bust design optimization with respect to data uncertainties have been proposed (see for instance

[21,22]), the concept of robust design optimization with respect to model uncertainties is rela-

tively recent [23]. Such an approach is based on the use of a recent nonparametric probabilistic

approach of model uncertainties [24–27]. In particular, it should be noted that this probabilis-

tic approach has been experimentally and numerically validated for complex structural systems

[28–30] and for structural-acoustics systems [31,32]. In the present paper, a robust design opti-

mization formulation with respect to model and data uncertainties is proposed in the context of

a structural-acoustic system in the low-frequency range. The paper is voluntary limited to the

design of a master system with stiffness uncertainties coupled to a deterministic internal acous-

tic cavity which is excited by an acoustic source and whose noise level has to be reduced for

the best. Clearly, the extension to mass and damping uncertainties is straightforward. The paper

compares the design points and the performances of their corresponding real systems obtained

with the deterministic design optimization and with the robust design optimization.

2 Mean structural-acoustic system

The structural-acoustic system under consideration is made up of an internal acoustic cavity

coupled with a master structure which has to be designed (see Figure 1). Let r = (r1, . . . , rs)

be the
 s-vector of the design parameters (geometry, elasticity properties, boundary conditions,

etc.). The vector of the design parameters belongs to an admissible set R defined by the set of

constraints prescribed by the design. For a given r in R, the linear vibrations of the structural-

acoustic system are studied around a static equilibrium state taken as a natural state at rest.

The master structure is constituted of a nonhomogeneous and anisotropic viscoelastic material

without memory, occupying a three-dimensional bounded domain ΩS(r) of the physical space
✁

3 with boundary ∂ΩS(r) = ΓS,0(r) ∪ ΓS(r) ∪ Σ. The master structure is fixed on ΓS,0(r). The

internal acoustic cavity occupies a three-dimensional bounded domain ΩF of
✁

3 with boundary
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∂ΩF = ΓF ∪Σ and is filled with a dissipative acoustic fluid. It is coupled to the master structure

through boundary Σ and has rigid wall conditions on ΓF . Les nS(r) and nF be the outward unit

normals to ∂ΩS(r) and ∂ΩF . Note that nS = −nF on Σ. Let x be the generic point of
✁

3.

The equations are written in the frequency domain of analysis and the low-frequency band of

analysis is denoted as ✂ . A formulation in terms of displacements field u(x, r, ω) for the master

structure and in terms of pressure field p(x, r, ω) for the internal acoustic cavity is chosen. For

r fixed in R and for ω fixed in ✂ , the equations related to the mean structural-acoustic system

[33] are written as

−ω2 ρS u − div ✄ S = fvol in ΩS(r) , (1)

u = 0 on ΓS,0(r) , (2)

✄ S · nS = fsurf on ΓS(r) , (3)

✄ S · nS = fsurf − p nS on Σ , (4)

✄ S = ☎ S : ε(u) + i ω ✆ S : ε(u) , (5)

−
ω2

ρF c2
F

p − i ω
τ

ρF

∆p −
1

ρF

∆p = −
τ c2

F

ρF

∆ s +
i ω

ρF

s in ΩF , (6)

(1 + i ω τ)

ρF

∂p

∂nF

= τ
c2
F

ρF

∂s

∂nF

on ΓF , (7)

(1 + i ω τ)

ρF

∂p

∂nF

= τ
c2
F

ρF

∂s

∂nF

+ ω2 u · nF on Σ , (8)

in which ✄ S(x, r, ω) is the stress tensor, ε(u) is the linearized strain tensor, ☎ S(x, r) and ✆ S(x, r)

are fourth-order tensors, ρS(x, r) is the mass density of the master structure, fvol(x, r, ω) and

fsurf(x, r, ω) are the body force and the surface force fields for the master structure, ρF (x) is the

mass density of the fluid, cF is the sound velocity, τ is a coefficient due to the viscosity of the

fluid and s(x, ω) is the acoustic source density assuming that lim
ω 7→0

s(x, ω)

ω2
= lim

ω 7→0

∇ s(x, ω)

ω2
=

lim
ω 7→0

∆ s(x, ω)

ω2
= 0.

The structural-acoustic system is then discretized with the finite element method assuming that

the finite element meshes of the master structure and of the internal acoustic cavity are compat-

ible on the coupling interface Σ.

A mean reduced matrix model of the structural-acoustic system is then constructed. Let u(r, ω)

be the
% nS -vector of the nS DOF (independent of r) of the master structure and let p(r, ω) be the

% nF -vector corresponding to the finite element discretization of the pressure field of the internal
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acoustic cavity. For a given r in R, let [ΦS(r)] be the nS × NS real matrix whose columns are

the NS structural modes related to the NS first positive structural eigenfrequencies of the master

structure in vacuo. The generalized eigenvalue problem of the internal acoustic cavity with fixed

coupling interface yields one zero eigenvalue corresponding to the constant pressure mode and

nF − 1 acoustic eigenmodes [33]. Let [ΦF ] be the nF × NF real matrix whose columns are (1)

the constant pressure eigenmode and (2) the NF − 1 acoustic eigenmodes related to the NF − 1

first positive acoustic eigenfrequencies. Note that each eigenmode is normalized with respect to

its corresponding mass matrix. The projection basis allowing the mean reduced matrix model

to be constructed is given by







u(r, ω)

p(r, ω)





 =







[ΦS(r)] [ ✝ ]

[ ✝ ] [ΦF ]













q
S
(r, ω)

q
F
(r, ω)





 , (9)

in which q
S
(r, ω) and q

F
(r, ω) are the

! NS -vector and the
! NF -vector of the generalized coor-

dinates related to the master structure and to the internal acoustic cavity and are solution of the

matrix equation







[AS(r, ω)] [C(r)]

−ω2 [C(r)]T [AF (ω)]













q
S
(r, ω)

q
F
(r, ω)





 =







FS(r, ω)

FF (ω)





 , (10)

in which the symmetric NS×NS complex matrix [AS(r, ω)] and the diagonal NF ×NF complex

matrix [AF (ω)] are the generalized dynamical stiffness matrices of the master structure and of

the internal acoustic cavity respectively. The rectangular NS × NF real matrix [C(r)] is the

generalized coupling matrix. In Eq. (10) the
! NS -vector FS(r, ω) and the

! NF -vector FF (ω)

are the generalized force vectors related to the master structure and to the internal acoustic

cavity respectively.

3 Design optimization of the structural-acoustic system without uncertainties

In this Section, the design optimization problem is formulated assuming that there is no uncer-

tainties in the structural-acoustic system. This formulation will be used to compare the solution

of the deterministic design optimization problem with the solution obtained with the robust
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design optimization formulation which includes the effects of uncertainties and which will be

described in Section 5. Let w(r, ω) be the vector in
 k of the observations of the mean model

of the internal acoustic cavity, defined as a function of the acoustic pressure such that

w(r, ω) = bω(p(r, ω)) , (11)

where bω is a given function from
 nF into

 k depending on the frequency ω. Recalling that

the objective of the paper is to design the master structure for minimizing the acoustic pressure

in the internal acoustic cavity over given frequency band ✂ , the cost function j(r) is formulated

as follows

j(r) =
maxω∈ ✞ ||w(r, ω)||

maxω∈ ✞ ||w(r0, ω)||
, (12)

in which ||w(r, ω)|| is the Hermitian norm of vector w(r, ω) and where r0 ∈ R is the
 s-vector

corresponding to the initial value of the design parameter. The design optimization problem is

formulated as the minimization of the cost function j(r) with respect to the design parameter r

in the admissible set R and is written as: find rD in R such that

j(rD) ≤ j(r), for all r in R . (13)

For instance, the design parameter r can be written as r = {L, E}, in which L is a length design

parameter and where E is a Young modulus. In this case, the admissible set R of the design

parameter is of the type [a, b]×]0,∞[. The acoustic observation can represent, for instance,

the spectral acoustic energy w(r, ω) =
VF

ρF c2
F

p̃(r, ω)2 with p̃(r, ω)2 =
1

nF

nF
∑

j=1

|p
j
(r, ω)|2, in

which VF is the volume of the internal acoustic cavity, ρF is the mass density of the acoustic

fluid, cF is the sound velocity and where p
j
(r, ω) is the component number j of vector p(r, ω).

In this case, the design optimization problem consists in minimizing the spectral acoustic energy

of the internal acoustic cavity related to the mean computational model of the structural-acoustic

system with respect to length parameter L and Young modulus E.

4 Stochastic structural-acoustic system

As explained in the Introduction, the objective of this paper is to include the effects of data

uncertainties and model uncertainties in the formulation of the design optimization problem. In
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this Section, the nonparametric probabilistic approach of uncertainties [24,27] is briefly sum-

marized. It is assumed that the structural stiffness of the mean master model only contains

model uncertainties and data uncertainties. The dynamic stiffness reduced matrix of the mean

master structure is written as [AS(r, ω)] = −ω2 [I] + i ω [DS(r)] + [KS(r)] in which [I] is

the NS × NS identity matrix and where [DS(r)] and [KS(r)] are the NS × NS real symmetric

and diagonal positive-definite generalized damping and stiffness matrices of the mean model of

the master system. The methodology of the nonparametric probabilistic approach consists in re-

placing matrix [KS(r)] by a random matrix [KS(r)] such that E{[KS(r)]} = [KS(r)] in which

E is the mathematical expectation and for which the probability distribution is known. The ran-

dom matrix [KS(r)] is written as [KS(r)] = [LKS
(r)]T [GKS

] [LKS
(r)] in which [LKS

(r)] is a

NS × NS real diagonal matrix such that [KS(r)] = [LKS
(r)]T [LKS

(r)] and where [GKS
] is a

full random matrix with value in the set of all the positive-definite symmetric NS×NS matrices.

The probability model of random matrix [GKS
] is constructed by using the maximum entropy

principle with the available information. All the details concerning the construction of this prob-

ability model can be found in [24,25]. The dispersion of the random matrix [GKS
] is controlled

by one real positive parameter δKS
called the dispersion parameter. In addition, there exists an

algebraic representation of this random matrix useful to the Monte Carlo numerical simulation.

It should be noted that there is no difficulty to extend the nonparametric probabilistic approach

to (1) mass, damping, stiffness uncertainties in the structure and in the internal acoustic fluid

[24–27] and (2) to the structural-acoustic coupling interface [27,31]. In coherence with the no-

tation of Section 2, let U(r, ω) be the
 nS -valued random vector of the nS DOF and let P(r, ω)

be the
 nF -valued random vector of the acoustic pressure. The equations of the stochastic re-

duced structural-acoustic system constructed with the nonparametric approach of uncertainties

are given by







U(r, ω)

P(r, ω)






=







[ΦS(r)] [ ✝ ]

[ ✝ ] [ΦF ]













QS(r, ω)

QF (r, ω)






, (14)

where QS(r, ω) and QF (r, ω) are the
 NS -valued random vector and the

 NF -valued random

vector of the generalized coordinates related to the master structure and to the internal acoustic

8



cavity respectively, solution of the random matrix equation







[AS(r, ω)] [C(r)]

−ω2 [C(r)]T [AF (ω)]













QS(r, ω)

QF (r, ω)





 =







FS(r, ω)

FF (ω)





 , (15)

in which the matrix [AS(r, ω)] is such that [AS(r, ω)] = −ω2 [I] + i ω [DS(r)] + [KS(r)].

It should be noted that in the present context of robust design optimization, the level of un-

certainty in the structural-acoustic system is given by fixing the dispersion parameters. Two

strategies can be used. If no experimental results are available, then the dispersion parameters

have to be considered as parameters in order to carry out a sensitivity analysis of the optimal

design point as a function of the uncertainty levels. In many cases, a fixed value of such dis-

persion parameters is used. If reference solutions or experimental results are available, then

the dispersion parameters can be identified. Several identification methodologies adapted to

the nonparametric probabilistic context have been developed in order to identify these disper-

sion parameters, see for instance [26,27] for the theoretical background and [28–32] for the

experimental validations. It should also be noted that any probabilistic model of uncertainties

introducing a second-order moment parameter such as the dispersion parameter require to use

one of the two above strategies.

5 Design optimization of the structural-acoustic system with uncertain stiffness in the

master structure numerical model

In this Section, the model uncertainties and the data uncertainties are taken into account for the

stiffness operator of the master structure in the formulation of the design problem, using the

nonparametric probabilistic approach described in Section 4. This design optimization problem

consists in minimizing a cost function with respect to the admissible set R of the design pa-

rameter. Contrary to the design optimization problem described in Section 3, the cost function

is not defined for the performance of the mean model of the structural-acoustic system but is

defined with respect to the performance of the stochastic model of the structural-acoustic sys-

tem representing the real structural-acoustic system. The cost function is thus constructed with

the uncertain numerical model introduced in Section 4. For r fixed in R, the
 k-valued ran-
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dom vector W(r, ω) of the acoustic observation is introduced in coherence with the notation of

Section 3. For r fixed in R and for ω fixed in ✂ , let w+(r, ω) be the 99 % quantile of random

variable ||W(r, ω)||, such that P(||W(r, ω)|| ≤ w+(r, ω)) = 0.99 [34], in which P denotes the

probability. The cost function is then written as

j(r) =
maxω∈ ✞ w+(r, ω)

maxω∈ ✞ ||w(r0, ω)||
. (16)

For given dispersion parameter δKS
, such a design optimization problem is formulated as: find

rRD in R such that

j(rRD) ≤ j(r), for all r in R . (17)

For instance, in coherence with the example given in Section 3, the random acoustic observation

can represent the random spectral acoustic energy W (r, ω) =
VF

ρF c2
F

P̃ (r, ω)2 with P̃ (r, ω)2 =

1

nF

nF
∑

j=1

|Pj(r, ω)|2, in which Pj(r, ω) is the component number j of random vector P(r, ω).

In this case, the design optimization problem consists in minimizing the 99th quantile of the

random spectral acoustic energy with respect to r. It should be noted that the formulation of such

a robust design optimization is coherent with respect to the deterministic design optimization

problem given in Section 3, i.e. limδKS
7→0 rRD = rD.

6 Application

The objective is the numerical application is the robust design optimization of a master structure

with uncertainties coupled to a deterministic internal acoustical cavity in order to reduce the

internal acoustic noise for a given deterministic excitation induced by an acoustic source. The

case of the robust design optimization in a narrow and large low-frequency band of analysis

are investigated. It should be noted that the mean computational model used for modeling the

structural-acoustic system is chosen complex enough in order to illustrate the full potential of

the formulation proposed. The extensions to the cases of (1) a large finite element structural-

acoustic systems, (2) a multi-dimensional design parameter, (3) the medium-frequency range,

(4) uncertainties occuring in the whole structural-acoustic system are straightforward.
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6.1 Mean finite element model of the structural-acoustic system

The mean model of the structural-acoustic system is a heterogeneous system made up of a

master structure coupled with an internal acoustic cavity. The master structure is located in the

plane (OX, OY ) of a cartesian coordinate system (O X Y Z). The master structure is made up

of a rectangular frame with four plates as shown in figure 2. The frame has length L1 = 1 m,

width L2 = 0.9 m, is fixed at each of its corner and is constituted of tubes with square sec-

tion 0.08 m × 0.08 m and thickness 1 × 10−4 m. The plates have length 0.5 m, width 0.45 m

and constant thickness 0.0035 m except for the plate coupled with the internal acoustic cavity

whose constant thickness is the design parameter r. Each substructure is constituted of a ho-

mogeneous, isotropic elastic material with mass density 7800 Kg.m−3, Poisson ratio 0.29 and

Young modulus 2 × 1011 N.m−2. The damping part of the constitutive equation is modeled

by a hysteretic model with a mean loss factor 0.02. The internal acoustic cavity is a six-sided

box with no parallel sides whose corners are located at points (0, 0, 0), (0.5, 0, 0), (0, 0.45, 0),

(0.5, 0.45, 0), (0.1, 0.45, 0.12), (0.4, 0.45, 0.12), (0.48, 0, 0.15) and (0, 0, 0.15). All the walls are

rigid except the wall made up of the elastic plate with constant thickness r. The bounded inter-

nal acoustic cavity is filled with an acoustic fluid with mass density ρF = 1.16 Kg.m−3, with

sound velocity cF = 343 m.s−1. Parameter τ in Eq. (6) is such that τ(ω) =
0.001

ω
.

The mean finite element model of the master structure is constituted of 228 Euler beams ele-

ments with two nodes (the tubes), 1440 bending thin plate elements with four nodes and has

nS = 10927 DOF. The mean finite element model of the internal acoustic cavity is consti-

tuted of 2160 acoustic finite elements and has nF = 2793 DOF. The finite element mesh

of the structural-acoustic system is shown in Fig. 2. The internal acoustic cavity is excited

by a localized deterministic acoustic source density, which is constant in the frequency band

✂ = [1060 , 1300] Hz. Let J be the set of indices corresponding to the nodes of the finite el-

ement mesh of the internal cavity located at points (0.423, 0.450, 0.040), (0.424, 0.425, 0.041),

(0.445, 0.450, 0.040), (0.446, 0.425, 0.041), (0.41, 0.45, 0.06), (0.412, 0.425, 0.061), (0.43, 0.45, 0.06),

(0.432, 0.425, 0.061). The spatial distribution of the acoustic source is such that the vector of the

generalized acoustic forces is written as FF (ω) = ✟ ✞ (ω)
∑

j∈J [ΦF ]T ej in which e1, . . . , enF

are the canonical basis vectors of
✁ nF and where ✟ ✞ (ω) = 1 if ω ∈ ✂ and ✟ ✞ (ω) = 0 if
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ω /∈ ✂ . The chosen observation is the spectral acoustic energy w(r, ω) =
VF

ρF c2
F

p̃(r, ω)2 with

p̃(r, ω)2 =
1

nF

nF
∑

j=1

|p
j
(r, ω)|2, in which VF is the volume of the internal acoustic cavity and

where p
j
(r, ω) is the component number j of vector p(r, ω).

6.2 Estimation of the numerical parameters for the robust design optimization

In the present analysis, the initial structural-acoustic system corresponds to the value of the

design parameter r0 = 0.005 m. The frequency band of analysis for which the acoustic level

has to be reduced is ✂ = [1060 , 1300] Hz.

The Monte Carlo numerical simulation is chosen for solving the design optimization problem.

The numerical parameters related to the stochastic reduced equation Eq. (15) have to be fixed

first. These numerical parameters are the number NS of structural modes, the number NF − 1

of acoustic modes, which have to be kept in the modal reduction and the number nr of real-

izations used in the Monte Carlo numerical simulation. Consequently, a convergence analysis

has to be carried out with respect to nr, NF and NS . The computation is performed for the

initial structural-acoustic system with dispersion parameter δKS
= 0.25. Let W 0(ω) be the

initial random observation defined by W 0(ω) = W (r0, ω) and corresponding to the random

spectral acoustic energy of the initial structural-acoustic system. The mean square convergence

is analyzed by studying the function (nr, NF , NS) 7→ Conv(nr, NF , NS) defined by

Conv2(nr, NF , NS) =
1

nr

nr
∑

i=1

(

W 0✞ ,∞(θi)
)2

, (18)

in which W 0✞ ,∞(θi) is the realization number i of the random variable W 0✞ ,∞ defined by W 0✞ ,∞ =

maxω∈ ✞ W 0(ω). Note that random variable W 0✞ ,∞ is computed with a reduced model of dimen-

sion NS + NF .

Figure 3 displays the graph nr 7→ Conv(nr, 51, 100). It can be seen that a reasonable conver-

gence is reached for nr = 500. Figure 4 displays the graph NS 7→ Conv(500, NF , NS) for

several values of NF . Convergence is reached for NF = 41 and NS = 90.
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6.3 Specification of the design optimization

Below, the robust design optimization is carried out with δKS
= 0.25, NF = 41, NS = 90

and nr = 500. The admissible set R for the design parameter r is defined such that r ∈

[0.005 , 0.007] m. Note that the convergence of the results has been verified over admissible

set R with these numerical parameters. Similarly to the stochastic case, let w0(ω) = w(r0, ω)

be the observation corresponding to the spectral acoustic energy of the mean initial structural-

acoustic system. Figure 5 shows the observation ω 7→ 10 log10(w
0(ω)) and the confidence

region of random observation W 0(ω) obtained with a probability level Pc = 0.98. It can be

seen that the confidence region is narrow over frequency band ✂ except for the frequency band

[1130 , 1160] Hz. Consequently the structural-acoustic system is robust with respect to model

uncertainties and to data uncertainties in frequency band ✂ \ [1130 , 1160] Hz.

The design optimization problem consists in finding the design of the structural-acoustic system

which allows the spectral acoustic energy over frequency band ✂ to be reduced for the best. It is

assumed that the precision of design parameter r is 50 µm. The robust optimization problem is

then solved by computing the cost function with repect to admissible set R and by using Monte

Carlo numerical simulation. For r in R, let g ✞ (r) and greal✞ (r) be the acoustic gains defined with

respect to the acoustic level corresponding to the upper envelope of the confidence region of the

initial structural-acoustic system and defined by

g ✞ (r) = 10 log10

(

w ✞ ,∞(r)

w+✞ ,∞(r0)

)

, greal✞ (r) = 10 log10

(

w+✞ ,∞(r)

w+✞ ,∞(r0)

)

, (19)

in which w ✞ ,∞(r) = maxω∈ ✞ w(r, ω) and w+✞ ,∞(r) = maxω∈ ✞ w+(r, ω). For a given r in R,

the scalar g ✞ (r) represents the acoustic gain predicted with the mean model of the designed

system and the scalar greal✞ (r) represents the acoustic gain predicted with the stochastic model

constructed from this mean model. We are interested in comparing the acoustic gain obtained

from the designed system solution of the design optimization presented in Section 3 and from

the designed system solution of the robust design optimization presented in Section 5.
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6.4 Robust design optimization over a narrow frequency band of analysis

The design analysis is limited to the narrow frequency band ✂ 1 = [1190 , 1260] Hz for which

the initial structural-acoustic system is robust with respect to model uncertainties and to data un-

certainties. Figure 6 displays the graphs r 7→ 10 log10(w
+✞ 1,∞(r)) and r 7→ 10 log10(w ✞ 1,∞(r)).

It can be seen that the deterministic design optimization and the robust design optimization

yield optimal design parameters rD = 5.9 × 10−3 m and rRD = 5.95 × 10−3 m. Let W D(ω)

and W RD(ω) be the random observations defined by W D(ω) = W (rD, ω) and W RD(ω) =

W (rRD, ω). Similarly to the stochastic case, let wD(ω) = w(rD, ω) and wRD(ω) = w(rRD, ω).

Figure 7 shows the spectral acoustic energy ω 7→ 10 log10(w
D(ω)) and the confidence region

of random observation W D(ω) corresponding to the design optimization. It can be seen that

the resonance peaking of the spectral acoustic energy wD(ω) has been considerably reduced.

Indeed, the value rD of the design parameter yields a mean master structure for which there

exists a structural mode which couples with the acoustic mode of the internal acoustic cavity.

The resonance peaking corresponds to an elasto-acoustic mode for this mean structural-acoustic

system. At this resonance, the transfer of energy from the internal acoustic cavity to the master

structure is optimal. From Fig. 6, it should be noted that this energy pumping phenomenon is

very sensitive to the design parameter.

Figure 7 displays a broad confidence region for random observation W D(ω). By comparing

Fig. 5 and 7, it can be seen that the robustness of the structural-acoustic system (corresponding

to the design optimization point rD) with respect to model and data uncertainties has drastically

decreased in comparison to the robustness of the initial structural-acoustic system. This lack

of robustness is due to the amount of uncertainty in the master structure. Indeed, the structural

mode (related to the uncertain master structure with fixed coupling interface), which is likely

to couple with the acoustic mode of the internal cavity in vacuo is uncertain. The width of

the support corresponding to the probability distribution of its corresponding structural eigen-

value is an increasing function of dispersion parameter δKS
. In the present case, the value of

the dispersion parameter is relatively important (δKS
= 0.25), yielding realizations of the cor-

responding structural eigenmode which couple weakly with the acoustic mode of the internal
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acoustic cavity. Consequently, such realizations do not yield optimal elasto-acoustic coupling.

The gain greal✞ 1
(rD) predicted with the stochastic model of the structural-acoustic system is lower

than the gain g ✞ 1
(rD) predicted with the mean model of the structural-acoustic system. We have

greal✞ 1
(rD) = 4.5 dB ≤ g ✞ 1

(rD) = 15.7 dB. In addition, it should be noted that the deterministic

design optimization yields a secondary optimum rD ′

for which greal✞ 1
(rD

′

) = −0.2 dB < 0.

Figure 8 shows the spectral acoustic energy ω 7→ 10 log10(w
RD(ω)) and the confidence re-

gion of random observation W RD(ω) corresponding to the robust design optimization. Fig-

ure 6 shows that the design optimization and the robust design optimization yields close design

points. It can be seen that g ✞ 1
(rRD) < g ✞ 1

(rD) which means that the performance of the de-

signed system solution of the robust design optimization is not as good as the performance of

the designed system solution of the deterministic design optimization. Nevertheless, we have

greal✞ 1
(rRD) = 5.7 dB > greal✞ 1

(rD) = 4.5 dB. Clearly, the real structural-acoustic system manu-

factured from the optimal designed system solution of the robust design optimization yields the

most optimal performance.

6.5 Robust design optimization over a broad frequency band of analysis

The robust design analysis is carried out over the broad frequency band ✂ = [1060 , 1300] Hz.

Figure 9 displays the graphs r 7→ 10 log10(w
+✞ ,∞(r)) and r 7→ 10 log10(w ✞ ,∞(r)). It can be

seen that rD = 5.40 × 10−3 m and rRD = 5.80 × 10−3 m. Figure 10 shows the spectral

acoustic energy ω 7→ 10 log10(w
D(ω)) and the confidence region of random observation W D(ω)

corresponding to the design optimization. Figure 11 shows the spectral acoustic energy ω 7→

10 log10(w
RD(ω)) and the confidence region of random observation W RD(ω) corresponding to

the robust design optimization.

From figure 9, it can be seen that the design optimization yields g real✞ (rD) = −2.1 dB. The

comparison between the confidence region of figure 5 and figure 10 shows that the resonance

peaking number 2 is drastically softened at the expense of the resonance peaking number 1.

In the present case, since greal✞ (rD) < 0, the deterministic optimization yields an erroneous

optimal structural-acoustic system. The structural-acoustic system which is manufactured with
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this erroneous optimal design yields an acoustic pressure level which is contradictory to the

prescribed objective. By comparing figure 5 and figure 11, it can be seen that the robust design

optimization yields greal✞ (rRD) = 1.45 dB. These results show that the model uncertainties and

the data uncertainties have to be taken into account in the formulation of design optimization

problems.

7 Conclusion

An approach which allows the robust design optimization problem to be formulated and solved

in presence of model uncertainties has been presented in the context of structural-acoustics.

Model uncertainties are taken into account with a nonparametric probabilistic approach. The

numerical application shows that the usual design optimization can produce a non optimal result

with respect to the robust design optimization. The approach can be easily extended to any

complex uncertain structural-acoustic systems.
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Figure Captions

Figure 1 : Structural-acoustic system.

Figure 2 : Mean model of the master structure : plates (filled domain), frame (thick black line)

(left) - mean finite element model of the structural-acoustic system (right).

Figure 3 : Convergence analysis : graph of function nr 7→ Conv(nr, 51, 100) for the structural-

acoustic system with r0 = 0.005 m and δKS
= 0.25.

Figure 4 : Convergence analysis : graph of function NS 7→ Conv(500, NF , NS) for the structural-

acoustic system with r0 = 0.005 m and δKS
= 0.25 and for NF = 11 (black line), NF = 41

(dark gray line) and NF = 51 (light gray line).

Figure 5 : Observation of the initial structural-acoustic system. Graph of function ν 7→ 10 log10(w
0(2πν))

(thin black line). Confidence region (gray region) of random observation W 0(2πν) obtained

with a probability level Pc = 0.98. Horizontal axis is the frequency ν in Hz.

Figure 6 : Comparison between the design optimization and the robust design optimization.

Graph of functions r 7→ 10 log10(w
+✞ 1,∞(r)) (black line) and r 7→ 10 log10(w ✞ 1,∞(r)) (gray

line). Horizontal axis is design parameter r.

Figure 7 : Graphs of function ν 7→ 10 log10(w
D(2πν)) (thin black line) and of the confidence

region (gray region) of random observation 10 log10(W
D(2πν)) corresponding to the design

optimization. Horizontal axis is the frequency ν in Hz.

Figure 8 : Graphs of function ν 7→ 10 log10(w
RD(2πν)) (thin black line) and of the confidence

region (gray region) of random observation 10 log10(W
RD(2πν)) corresponding to the robust

design optimization. Horizontal axis is the frequency ν in Hz.
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Figure 9 : Comparison between the design optimization and the robust design optimization.

Graph of functions r 7→ 10 log10(w
+✞ ,∞(r)) (black line) and r 7→ 10 log10(w ✞ ,∞(r)) (gray line).

Horizontal axis is design parameter r.

Figure 10 : Graphs of function ν 7→ 10 log10(w
D(2πν)) (thin black line) and of the confidence

region (gray region) of random observation 10 log10(W
D(2πν)) corresponding to the design

optimization. Horizontal axis is the frequency ν in Hz.

Figure 11 : Graphs of function ν 7→ 10 log10(w
RD(2πν)) (thin black line) and of the confidence

region (gray region) of random observation 10 log10(W
RD(2πν)) corresponding to the robust

design optimization. Horizontal axis is the frequency ν in Hz.
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Fig 2. Mean model of the master structure : plates (filled domain), frame (thick black line) (left) - mean

finite element model of the structural-acoustic system (right).
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Fig 3. Convergence analysis : graph of function nr 7→ Conv(nr, 51, 100) for the structural-acoustic

system with r0 = 0.005m and δKS
= 0.25.
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Fig 4. Convergence analysis : graph of function NS 7→ Conv(500,NF ,NS) for the structural-acoustic

system with r0 = 0.005m and δKS
= 0.25 and for NF = 11 (black line), NF = 41 (dark gray line)

and NF = 51 (light gray line).
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Fig 5. Observation of the initial structural-acoustic system. Graph of function ν 7→ 10 log10(w
0(2πν))

(thin black line). Confidence region (gray region) of random observation W 0(2πν) obtained with a

probability level Pc = 0.98. Horizontal axis is the frequency ν in Hz.
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Fig 6. Comparison between the design optimization and the robust design optimization. Graph of func-

tions r 7→ 10 log10(w
+✞ 1,∞(r)) (black line) and r 7→ 10 log10(w ✞ 1,∞(r)) (gray line). Horizontal axis is

design parameter r.
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Fig 7. Graphs of function ν 7→ 10 log10(w
D(2πν)) (thin black line) and of the confidence region (gray

region) of random observation 10 log10(W
D(2πν)) corresponding to the design optimization. Horizontal

axis is the frequency ν in Hz.
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Fig 8. Graphs of function ν 7→ 10 log10(w
RD(2πν)) (thin black line) and of the confidence region (gray

region) of random observation 10 log10(W
RD(2πν)) corresponding to the robust design optimization.

Horizontal axis is the frequency ν in Hz.
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Fig 9. Comparison between the design optimization and the robust design optimization. Graph of func-

tions r 7→ 10 log10(w
+✞ ,∞(r)) (black line) and r 7→ 10 log10(w ✞ ,∞(r)) (gray line). Horizontal axis is

design parameter r.
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Fig 10. Graphs of function ν 7→ 10 log10(w
D(2πν)) (thin black line) and of the confidence region (gray

region) of random observation 10 log10(W
D(2πν)) corresponding to the design optimization. Horizontal

axis is the frequency ν in Hz.
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Fig 11. Graphs of function ν 7→ 10 log10(w
RD(2πν)) (thin black line) and of the confidence region (gray

region) of random observation 10 log10(W
RD(2πν)) corresponding to the robust design optimization.

Horizontal axis is the frequency ν in Hz.
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