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Abstract

In this work, we address the stochastic modeling of apparent elasticity ten-
sors, for which both material symmetry and stochastic boundedness con-
straints have to be taken into account, in addition to the classical constraint
of invertibility. We first introduce a stochastic measure of anisotropy, which
is defined using metrics in the set of elasticity tensors and used for quantita-
tively characterizing the fulfillment of material symmetry constraints. After
having define a numerical approximation for the stochastic boundedness
constraint, we then propose a methodology allowing one to unify maximum
entropy based models that have been previously derived by considering some
of these constraints and which consists in constructing a probabilistic model
for an auxiliary random variable. The latter can be interpreted as a stochas-
tic compliance tensor, for which the available information to be used in the
maximum entropy formulation can be readily deduced from the one consid-
ered for the elasticity tensor. A numerical illustration of the approach to an
elastic microstructure is finally provided.
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1. Introduction

Stochastic multiscale modeling has become a very fast growing discipline
within the past decade and as such, it gave rise to an extensive literature
in both mechanics and applied mathematics, ranging from the macroscale
modeling of heterogeneous materials to very first attempts of stochastic
atomistic-to-continuum simulations. As a matter of fact, most of the ap-
proaches have been derived within the general scopes of uncertainty prop-
agation and hierarchical upscaling techniques (that is, characterizing the
probabilistic behavior of a complex microstructure at some relevant scale,
given some description of the underlying randomness occurring at finest
scales), in conjunction with the tremendous amount of past and on-going
works on functional (polynomial chaos) representations for random vector-
valued quantities (see [50] [15] [45] [49]). On the other hand, it is now widely
recognized that the issue of stochastic representation is also very important,
in the sense that the probabilistic model associated with any random vari-
able of interest must ensure, not only some desired properties on the solution
of the stochastic boundary value problem (such as the finiteness of some of
its statistical moments, for instance; see [2] and [44] for discussions in the
scalar and tensor-valued cases), but also the physical consistency of the
modeling procedure. Clearly, the latter issue turns out to be fundamental
in any multiscale approach where information exchange across the scales is
arguably crucial.

The present work deals with the probabilistic modeling of the apparent
elasticity tensor for heterogeneous microstructures, defined at a so-called
mesoscale (i.e. for domains whose characteristic length is smaller or of the
same order as the size of the representative volume element that is usually
considered in stochastic homogenization theories). From a theoretical me-
chanics standpoint, properties exhibited by such tensors, together with their
relationship to effective ones, have been studied in the nineties by Huet and
his coworkers [21] [20] (see the general review [38]). Specifically, the pro-
posed methodology is derived within the general framework of information
theory and having recourse to the Maximum Entropy (MaxEnt) principle.
Such an approach, relying on random matrix theory, has been pioneered
in [44] (making use of earlier derivations by the same author, obtained in
the context of elastodynamics; see [42] [43]) and later followed by numerous
authors (see the non-exhaustive list below). In relation with some “philo-
sophical” issues regarding which information should reasonably be taken
into account, the formal derivations thus obtained differ by the use of ad-
ditional constraints (combined to the classical constraints of normalization



and invertibility; see section 3), integrating information related to either
boundedness (see [11] and [16] for applications in the random matrix and
random field cases, respectively) or material symmetry (see [46] [17]) prop-
erties for the random elasticity tensor. The aim of this study is therefore
to unify these treatments and to propose a methodology allowing one to
take into account all these constraints at the same time and within a non-
parametric framework. For this purpose, we will have recourse to a change
of variable which relaxes the boundedness constraint, thus introducing an
auxiliary random variable which can be viewed as a stochastic compliance
tensor and for which the probabilistic model will be finally constructed by a
“translation” of the information available on the random elasticity matrix.

This paper is organized as follows. We first introduce and discuss, in
section 2, the definition of a stochastic measure of anisotropy which can be
used for quantitatively characterizing, in some probabilistic sense (to be de-
fined), the fulfillment of material symmetry constraints. Section 3 is devoted
to the definition of the methodology and construction of the probabilistic
model associated with the auxiliary random variable. In particular, we re-
call the MaxEnt principle and discuss a strategy regarding the definition of
available information for this new variable. We finally provide, in section 4,
a numerical illustration of the approach.

2. Stochastic measure of anisotropy

2.1. Definition

The oldest and most widely used deterministic measure of anisotropy is
based on the consideration of a scalar parameter, the definition of which
depends on some given components of the elasticity tensor. Among others,
the so-called Zener index, defined for crystals with cubic symmetry [51], is for
instance written as z = [C44/([C]11 —[C]12), where Kelvin’s notation for the
elasticity tensor is assumed. While such indexes benefit from their simplicity,
they suffer from a lack of universality and can hardly be extended to other
situations (e.g. when the crystal exhibits weaker material symmetries or
when one is interested in measuring the distance to another class than the
isotropic one); see the discussions in [8] [31] [39].

Indeed, the usual anisotropy measurement can be seen as the charac-
terization of the residual distance between a given elasticity tensor with
arbitrary symmetry and its projection onto the set of isotropic elasticity
tensors. Based on this observation, it follows that a more general definition
of anisotropy, the latter being now understood as the distance to any mate-
rial symmetry class (and not only the isotropic one), can be readily obtained



by first defining a metric in the set Ela of elasticity tensors and then, by
defining a projection operator onto a given subset of Ela. A first natural
distance is the Euclidean one, denoted as dg and given for any elasticity
matrices [C]; and [C]2 by:

de([C]1, [Cl2) = [[[CTh = [Cla]lF, (1)

wherein || - ||r denotes the Frobenius norm. Alternative metrics have been
derived in the literature, among which the Log-Fuclidean and Riemannian
ones (see [1] and [35]), denoted respectively by dzr and dg and defined as:

dre([Clh, [Cl2) = [[1og [Clr — 1og [Cla]|r, (2)

dr([C]1,[Cl2) = | log([C]: "% [C2[C)1 %) Ip- (3)

Let C%¥™ C Ela be the set of elasticity tensors with sym material symmetries
(e.g. C1%° —resp. CTmans Iso_ is the set of fourth-order isotropic -resp. trans-
versely isotropic- elasticity tensors) and let P5¥" be the projection operator
onto C*¥™. We then denote by [C]*¥"™ = P¥™([C]) € C*¥™ the associated
projection of any elasticity tensor [C], defined as:

[C]¥"™ = arg min d([C] - [X]), (4)
[X]ecsym

in which d is any of the metric defined above. Upon introducing a tenso-
rial basis of C*¥™ (or equivalently, a parametric representation of the ma-
trix form for an elasticity tensor in C*¥™), optimization problem (4) can be
solved in a straightforward manner, yielding either closed-form expressions
for the projected tensor (for the Euclidean distance) or equivalent optimiza-
tion problems (formulated with respect to a finite set of parameters) when
the Log-Euclidean or the Riemannian metric is used; see [36] and [5] for
results expressed in matrix and vector forms, respectively. For instance,
the closest isotropic approximation, in the Euclidean sense, of an arbitrary
elasticity tensor [C] written in Kelvin’s notation is given by [14] (see also
[36]):

[ k+4v/3 kK—2v/3 k—2v/3 0 0 O
k+4v/3 k—2v/3 0 0 O

Iso k+4v/3 0 0 O
Sym. 2v 0




in which

K =

([Cli1 + [Cl22 + [Clss + 2([Cliz + [Clis + [Cl23)) 4 (6)

O =

and

v =

% (2([CT11 + [Cla2 + [Clsz — [Cliz — [Cl2s — [C]31) (7)
+3([Clas + [Cls5 + [Cles)) -

Note that this result coincides with the one derived by Fedorov, having
recourse to an apparently different and more physically-sounded approach
[12], and that the two different treatments were later shown to be equivalent
in [37]. It is worth while to note that within a deterministic framework and
for material symmetry classes involving the definition of a reference frame
(e.g. for transverse isotropy, orthotropy, etc.), the computation of the closest
approximation exhibiting the required symmetries (which is often referred to
as the effective approximation in the literature of elasticity) necessitates an
additional minimization problem, defined over all orthogonal transformation
of the reference frame, to be solved; see the discussions in [6] [28] [29] [30], as
well as the references therein. However, such a consideration is not relevant
to this study, since the anisotropic statistical fluctuations induced by the
probabilistic model can be seen as representing the randomness on both the
mechanical properties and the reference frame.

Let us now consider the stochastic case, and let [C] be the MF (R)-valued
random variable corresponding to the modeling of a random elasticity matrix
with arbitrary symmetry. Following the previous discussions, we denote as
[Csv™] = P¥"{[C]} the M (R)-valued random variable corresponding to
the projection of [C] onto C*¥™, associated with projection operator P5¥™
(defined with respect to any suitable metric). Consequently, a stochastic
measure of anisotropy can be defined making use of the R*-valued random
variable p®¥™ defined as:

sym

pm = d([Cl, [Cm). (8)

The statistical properties of p*¥™ (and especially, its mean value) are worth
characterizing and will be used in the sequel for discussing the relevance of
stochastic representations for the random elasticity tensor.

2.2. FEigensystem-based characterization of symmetries

Having introduced the stochastic measure of anisotropy, a fundamental
issue concerns the information that one may take into account in order



some moments (e.g. the mean) of p*¥™ to be specified. More specifically,
one may answer the following question: how to characterize a given set
C*V™ of elasticity with sym material symmetries, so that the properties
thus identified can be used in the construction of the probabilistic model?
In fact, several approaches for elastic material symmetry classification and
characterization have been proposed by numerous authors, among which
[13] [7] [22] [47] and [10] [3] [33] to name a few.

Among the developed methodologies, the eigensystem-based characteri-
zation derived by Béna and his coworkers [4] (see also [40] for similar consid-
erations for transversely isotropic materials) states necessary and sufficient
conditions for an elasticity tensor to belong to a given material symme-
try class, in terms of properties for both the eigenvalues and the related
eigenspaces. In particular, a necessary condition on the algebraic multiplic-
ities of the eigenvalues has been derived, according to which an elasticity
tensor exhibiting isotropy (resp. transverse isotropy) has one eigenvalue of
multiplicity five (resp. two eigenvalues of multiplicity two) and one eigen-
value of multiplicity one (resp. two eigenvalues of multiplicity one) for in-
stance. In order to take advantage of this property, eigenvalues are assumed
to be sorted in increasing order throughout the paper (using order statistics
in the stochastic case) and we define S*¥" as the set of indexes gathering
the order of the eigenvalue(s) corresponding to eigenvalue(s) whose multi-
plicity is (are) higher than one. Let us consider, for instance, the isotropic
case and assume that the eigenvalues of elasticity tensor [C] are such that
A =...= )5 < Ag. We therefore set S7° = {1,...,5} and regardless of the
numerical values considered, one has card(S7*°) = 5, card(ST7ens- 150) = 4
and card(S*Y™) < n — 1 in general.

3. Overall methodology for probabilistic modeling

8.1. MazEnt procedure

Let M?(R) and M (R) be the sets of all the (n x n) real symmetric ma-
trices and the (n x n) real symmetric positive-definite matrices (M, (R) C
M (R)), respectively. Let [C] — pic)([C]) be the probability density func-
tion (p.d.f.), from M (R) into R, defining the probability distribution
P = pio([C)d[C] (with d[C] = gnin—1)/4 H1§z‘§j§n d[Clij; see [42]) of
random matrix representation [C] of the elasticity tensor. The construction
of the p.d.f. pc] can be achieved by having recourse to the MaxEnt princi-
ple, which is a very efficient approach allowing for the explicit derivation of
p|c) taking into account some constraints defining available information on



[C] [41] [23] [24] [27] [9]. Besides the usual normalization condition for the
p.d.f.,

| maende -1 )
M7 (R)

it is assumed that [C] satisfies n. additional constraints, each of which can
be written as:

E{g'(IC)} =1, (10)

wherein [C] — g'([C]) is a given measurable mapping from M} (R) into an
Euclidean space H; (whose inner product is denoted by < -,- >p,) and fiis
given in the image of g’. Denoting by Cuq be the set of all the probability
density functions from M (R) into RT such that all the constraints are
fulfilled, the MaxEnt principle then reads:

pic) = argmax S(p), (11)
pecad

in which the so-called Shannon’s measure of entropy S(p) of p is defined as:
S(p) = —/ p([C]) In(p([C1]))d[C], (12)
M3 (R)

wherein In is the Neperian logarithm. Consequently, the probability density
function, estimated by using the MaxEnt principle, is the function which
maximizes the uncertainties over the admissible space C,q. Upon introducing
a set of (n.+ 1) Lagrange multipliers {£;}7<T" (in which £; belongs to an
admissible set V; which is a subset of H;) associated with the (n. + 1)
constraints and making use of the Euler-Lagrange equation applied to the
optimization problem (11), it can be shown that the p.d.f. estimated by the

MaxEnt principle writes:

pio)([C]) = coexp <—Z < Li,g'([C)) >Hi) 7 (13)
=1

in which ¢y = exp(—Lp) and Ly € R is the Lagrange multiplier associated
with the normalization condition of the p.d.f. In practice, the Lagrange
multipliers may be either numerically computed, enforcing the given con-
straints to hold, or used as model parameters while solving an stochastic
inverse identification problem, for instance.



3.2. Definition of the available information

Let us first denote by [C] the nominal (expected) value of the elasticity
matrix, which could correspond to the effective (homogenized) one, for in-
stance. Note that although such a choice could generate some modeling bias,
since mesoscopic realizations do not exhibit the same level of anisotropy as
the macroscopic properties, numerical analysis have shown that the level of
material symmetry of the mean elasticity matrix at mesoscale tends the one
of the homogenized tensor [25], so that the effective matrix may be reason-
ably considered as a good prior model (on which a refinement can still be
performed using any optimization procedure) when no database is available
at the relevant scale. In terms of stochastic modeling, it is then desirable to
impose the mean value of [C] to be equal to [C], that is to say:

E{[C]} = [C]. (14)
Furthermore, we assume the two following properties:

(i) Let Z = {i1,...,im} C [1,n] be an indexing set of positive integers, in
which 1 < i < nforall kin [1,m]. The variances of m selected random
eigenvalues of [C] are prescribed through the following equality [34]:

B{ (e 0)g") = . (15

in which {(};,, ")}/, are the eigenpairs of the mean model [C] cor-
responding to the eigenvalues with prescribed variance and {s;, }7*, is
a set of parameters, each of which belongs to some admissible space
cg;i C R which can not be explicitly described (and basically depends
on the other constraints that are considered in the MaxEnt approach).
From section 2.2, it follows that some statistical properties of ;*¥™ may
be calibrated by setting Z = S*¥™ and s;, = inf(C?i), since a given
material symmetry class can be partly identified from the closeness of
some eigenvalues. Such a choice will be illustrated later in section 4.
(ii) Random matrix [C] is almost surely (a.s.) bounded from above and
below by two M (R)-valued random variables, denoted by [C,] and
[Cy] respectively:
[C/] < [C] < [C,] a.s. (16)

The existence of the two stochastic bounds in Eq. (16) can be demon-
strated, in elastostatics, having recourse to minimum complementary
and potential energy principles; see the pioneering work from Huet
and his coworkers [21] [20] (see also [38] and the references therein).



Indeed, it is clear from a physical point of view that the random variables
[C(], [C] and [C,] are jointly distributed, the statistical dependence stem-
ming from underlying randomness occurring at finest (mesoscopic) scales.
While an associated probabilistic model could certainly be constructed, its
identification would required a huge amount of data that is seldom available
in the context of experimental analysis. Therefore, we propose to proceed
alternately using a deterministic boundedness constraint deduced from the
stochastic one. To this aim, let [Cy] and [C,] be the two deterministic
Mt (R)-valued matrices defined as:

[Cy] = arg min E{|[[X] — [C/]|]*}, (17)
[X]ecgd

[C.] = arg min E{||[X] — [C.]||*}, (18)
[X]ecgd

with the admissible spaces ng and C2? being respectively given by:

i = {[X] € My (R), [X] < [C{] as.}, (19)

i = {[X] € M} (R), [Cu] < [X] as.}. (20)
When experimental realizations of the bounds are available (or can be com-
puted from digitalized microstructures, for instance), the optimization prob-
lems (17) and (18) can be solved by considering usual statistical estimates
for the objective function and using semidefinite algorithms that are tailored
to perform on M (R) [48] (such as the YALMIP toolbox for Matlab users
[32]); see [16] for an application. Since [Cy] and [C,] respectively belong to
Cyd and C2%, it follows that [Cy] < [C/] and [C,] < [C,] a.s. From Eq. (16),
it can be deduced that:

[Cy] < [C] < [C.] aus. (21)

The constraint stated by Eq. (21) can easily be accounted for within the
MaxEnt procedure by introducing the two following constraints (which are
modified versions of the one considered in [42] [43]) [11]:

E {m (det ([C] . [@]))} = By, |Be] < +00, (22)
E {m (det ([@] - [C]))} = Bu, |Bul < +o0. (23)

The constraints to be taken into account in the MaxEnt-based derivation
are given by Egs. (14), (15), (22) and (23) (together with normalization
condition). Note that the deterministic boundedness constraint implies an
uniform ellipticity condition on the random bilinear form arising in the weak
formulation of the elasticity stochastic boundary value problem.



3.8. Probability distributions

Following sections 3.1 and 3.2, let [A] € M5(R), {r, € R}, (1 - L)) €
R and (1 —£L,) € R be the Lagrange multipliers associated with constraints
(14), (15), (22) and (23). From Eq. (13), it can be deduced that p.d.f.
[C] = pi([C]) of random matrix [C] can be written as:

Lo— ~ Ly—1
PO([C]) = gy ([C]) ko det ([o] (@ ]) det (6] - 1)
x exp{—tr(| ZT ( lk) H
k=1
(24)

in which ko is a normalizing constant and [C] — T+ (R)([C]) is the indicator
function of M (R). Clearly, p.d.f. (24) is non standard and its practical
use gives rise to two main difficulties. The first critical issue is the construc-
tion of an associated random generator (for given values of the Lagrange
multipliers), which may be a tricky task taking into account the form of the
p.d.f. Indeed, algorithms based on the Markov Chain Monte Carlo (MCMC)
method (such as Metropolis-Hastings algorithm [19]) may be used, making
the robustness and easy-to-use aspect of the formulation somewhat ques-
tionable. The second difficulty, which is basically connected to the first one
(since the mathematical expectations may be computed having recourse to
usual statistical estimators), deals with the computation of the Lagrange
multipliers, so that all the constraints (14), (15), (22) and (23) hold (up
to a given precision). Beyond the fact that the generator may not be sta-
ble for all possible trial values of the multipliers, the resulting optimization
problem must be solved on a space of very high dimension (that is, on
R H+1D/24m+2) which may required a tremendous computational effort.

Subsequently, we propose to take into account constraint (21) through
the following change of variable:

[D] = ([C] - [C) " = [AaC] Y, (25)

in which [AC] = [C,] — [C], [D] is a M} (R)-valued random variable, for
which the probabilistic model has now to be derived. It is worth while
to note that the almost sure positive-definiteness of random matrix [D]
readily ensures that Eq. (21) is satisfied almost surely. From a mechanical
standpoint, [D] can be interpreted as a random compliance tensor, for which
symmetry constraints on [C] can be readily reported, provided that both
[Cy¢] and [Cy] belong to C*¥™. It follows that the computation of the bounds
has to be performed on new admissible spaces, denoted as é\gd and Egd

10



respectively, and defined as:
Cit = {[X] e c¥™, [X] < [Cf as.}, (26)

Col = {[X] € ¢, [C,] < [X] a.s.}. (27)

Note that such a choice reduces, in most practical situations, the size of
the optimization problem to be solved, since C*¥" is usually spanned by a
number of parameters smaller than n(n + 1)/2 (unless the anisotropic class
is considered, but in this case, the ensemble SET defined in [42] [43] may
be used instead).

Let [D] — pp)([D]) be the p.d.f. of random variable [D], from M} (R)
into R*, and let us introduce, for latter convenience, the order statistics
p1 < ... < py of the random eigenvalues of [D]. In order to infer about
the form of pyp) making use of the MaxEnt principle, let us consider the
following constraints:

(i) The mean model of [D] is prescribed:

E{[D]} = [D], (28)

in which the deterministic matrix [D] mainly depends on nominal value
[C] (and more slightly on the other model parameters) and is such that:

IE{(D] + [AC] ) + [Cel} = [ClIr < el [C]lr, (29)

wherein ¢ is an arbitrary small parameter (say, 1079).
(ii) Random matrix [D] is such that:

E {In (det ([D]))} = 8, [8] < +oc, (30)

(iii) Let J = {j1,...,im} be aset of positive integers such that j, = n+1—ij
for k all in {1,...,m}. The variances of some random eigenvalues of
[D], selected from constraint (15), are prescribed:

E{(WT D] W)Q} =22, (31)

wherein {(Bjk,gjk)}?zl are the eigenpairs of [D] associated with the
constrained random eigenvalues.

11



The p.d.f. pp) then reads:

po)([D) = Ty ) ([D]) k5 det ([D))
X exp {—tr([K][D]) — Z?—k (g}'kT D] ¢1k>2}7 (32)

k=1

in which (1 — £) € R, [A] € M5(R) and {7 € R}, are the Lagrange
multipliers associated with constraints (30), (28) and (31) respectively, and
kg is the positive constant of normalization. It follows that [D] belongs to the
ensemble SETT of positive-definite symmetric random matrices introduced
in [34]. For the sake of brevity, the interested reader is referred to [34]
regarding algebraic results and algorithms for simulating realizations of [D].
Moreover, it can be shown that [18]:

e Parameter £ € Rt controls the overall level of statistical fluctuations
of random matrix [D].

e The normalized parameter %k = Tkp, 2 € Rt has a negligible effect on

the level of statistical fluctuations of [D]. More importantly, it allows
for a reduction of the variance of the associated random eigenvalue pj, ,
as 7 — +oo.

e The components of [A] (which can be shown to be a diagonal matrix)
can be expressed, through an integral equation, in terms of parameters
L and 7, and therefore, do not appear as model parameters.

In the next section, we will illustrate that following the proposed method-
ology (and in particular, the definition of the bounds and indexing set [J),
parameter £ also controls the level of fluctuations of random elasticity ten-
sor [C], and that parameters {7}}" ,, while associated with probabilistic
model on [D], still allows for the mean distance of [C] to a given material
symmetry class to be specified.

4. Application to a two-phase elastic microstructure

4.1. Material description

For illustration purposes, we consider in this final section an application
of the proposed methodology to the material that has been considered in
[26] (see also [25] for details). The elastic microstructure, taken from food
industry, is made up of a polycrystalline phase and a polymer phase, the

12



elastic mechanical properties of which have been experimentally character-
ized (from bending tests) and are given below:

E(™) =25 GPa, v'™ = 0.3, E®¥ = 0.0025 GPa, v = 0.49, (33)

in which superscript (m) (resp. (7)) refers to the polycrystalline (resp. poly-
mer) phase. For the considered (i.e. tested) sample size, the industrial ma-
terial processing generates fluctuations of the volume fraction f(™) of phase
(m) (where f(™ typically ranges over [0.65,0.75]), and both phases are basi-
cally connected (i.e. the microstructure does not exhibit a matrix-inclusion
morphology). From a macroscopic point of view, the material exhibits an
isotropic elastic behavior, while numerical simulations performed on meso-
scopic samples show that the latter are slightly anisotropic (this property
depending on the size of the mesoscopic domain).

The nominal model [C] is assumed to be the mean value of the apparent
tensors (defined with respect to kinematic uniform boundary conditions)
determined in [26] (see material A, Table 2, page 3970 in [26]), namely:

[ 0.9100 0.2560 0.2490 0 0  0.0099
0.8680 0.2850  0.0057 0.0042  0.0014
1.0150 —-0.0028 0.0071  0.0170

€] = 0.6240 0.0040  0.0020 (34)
Sym. 0.6900 —0.0020
0.7100

Such a value (which is here expressed in GPa and following Kelvin’s no-
tation) ensures the consistency with the mesoscale modeling framework, as
well as with the definition of material symmetry constraints, since meso-
scopic realizations are still quite close from the class of isotropic elasticity
tensors. In accordance with the eigensystem-based characterization of ma-
terial symmetry, it is seen that [C] has five eigenvalues that are close to
one another (and would basically coincide if [C] was perfectly isotropic) and
one other eigenvalue of larger magnitude, so that we set Z = {1,2,3,4,5}.
Therefore, one has J = {2,3,4,5,6} and the variance of the first eigenvalue
of [D] is not constrained.

For the sake of simplicity, we assume that the elastic properties of the
constitutive phases are deterministic, so that the lower and upper determin-
istic bounds can be readily obtained as:

-1

(Cel = (fmnCT] ™ + (1 = fa) CO)7) (35)

13



[6u] - fmax[c(m)] + (1 - fmax)[C(i)]a (36)

in which fuin = 0.65 and fiax = 0.75, [C(™)] and [C)] being the elasticity
matrices of phases (m) and (i) respectively. Note that for a more general
application (e.g. for composites made up of more than two phases or when
the mechanical behavior of each phase is locally random), a numerical pro-
cedure for solving Eqgs. (17)-(18) should have been used. From Eq. (33), it
can be deduced that:

C0.1180 0.1132 0.1132 0 0 0
0.1180 0.1132 0 0 0
~ 0.1180 0 0 0
(€] = 0.0048 0 0 ' (37)
Sym. 0.0048 0
i 0.0048 |
and
[ 2.5347 1.0920 1.0920 0 0 0
2.5347 1.0920 0 0 0
~ 25347 0 0 0
[Cu] = 1.4427 0 0 o (38)
Sym. 1.4427 0
I 1.4427 |

in GPa. It is seen that the bounds are quite far apart from each other
because of the high contrast in the mechanical properties of phases (m) and
(i) (note that E(™ /E®) = 103).

4.2. Results

The first step of the methodology involves, for given values of parame-
ters £ and {7 };_,, the computation of mean value [D] making use of Eq.
(29). This identification can be performed solving the following optimization
problem:

(D] = arg min F([X]), (39)
[X]eM} (R)
wherein the objective function [X] +— F([X]), defined on M/ (R) and with
values in R™, is given by:

F(X]) = |E(D(X]: £, AT +HACT ) T + G} = [Cllle/N[Clr, (40)
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in which the notation [D([X]; £, {?k}zﬂ:l] means that the probabilistic model
for random matrix [D] is parametrized by mean model [X] and given multi-
pliers £ and {%k}’l;”zl Here, the nonlinear constrained optimization problem
(39) is solved using a line-search algorithm performing in the neighborhood
of an initial guess [X°] taken as:

(X = ([C] ~ [C) ™! — (A0, (41)

the mathematical expectation being computed from the usual statistical
estimator (with 50 000 independent realizations of [D]). For £ = 60 and
setting 7, = 7 = 500 for all k € {1,...,5}, the solution is found to be:

[ 0.8170 —0.0631 —0.0033  0.0015  0.0024 —0.0150
0.9213 —-0.0886 —0.0142 —-0.0069  0.0060
0.6672  0.0084 —0.0117 —0.0272

D] = 0.9497 —0.0101 —0.0051
Sym. 0.7910 —0.0035
I 0.7493 |

(42)

The mean value of [C], estimated using Eq. (25) and realizations of random
compliance matrix [D] (generated with the parameters given above and the
mean value (42)), is given by:

[0.9099 0.2559 0.2489  0.0002 0.0002  0.0097
0.8677 0.2849  0.0056 0.0043  0.0013
1.0149 —-0.0030 0.0072  0.0168

sim] __
&™) = 0.6247 0.0040 0.0020 (43)
Sym. 0.6898 —0.0014
0.7097

A comparison between the computed mean value (43) and the target value
(34) shows the efficiency of the approach.

Let us now briefly investigate the influence of model parameters through
a parametric study. For this purpose, let §jc) = (E{l[C] = [CIE}/I1C] ||%)1/2
be the real parameter measuring the level of statistical fluctuations of ran-
dom matrix [C]. Setting all parameters 7y to the same value 7, the plot of
mapping (£, 7) = djc) is shown in Fig. 1 (note that for each selected value
of (£,7), a new mean matrix [D] must be computed). It is readily seen that:

(i) For a given value of £, parameter 7 does not really affect the overall
level of fluctuations of [C].
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Figure 1: Plot of mapping (£, 7) + J|¢y.

(ii) For a given value of 7, decreasing the value of £ € R} yields higher
fluctuations, while the deterministic situation (i.e. djcg) — 0) is recov-
ered when £ — +o00.

Consequently, the value of multiplier £ must be selected for calibrating the
overall level of fluctuations of the elasticity random matrix [C].

In order to quantify the influence of the parametrization regarding the
material symmetry constraint, let us now consider the stochastic measure
of anisotropy pg defined, without loss of generality, with respect to the Eu-
clidean distance and C’*°. The plot of mapping (£, 7) — E{ug}, represent-
ing the evolution of the mean distance to the isotropy symmetry class as a
function of model parameters, is shown in Fig. 2 (note that for 7 = 0, there is
no constrained random eigenvalues and the initial theory derived in [42] [43]
is recovered). It is seen that for a fixed value of 7, decreasing parameter £
yields a larger mean distance to the symmetry class, which is consistent with
the previous conclusion regarding the induced variation of dispersion param-
eter djc) (since most of the realizations are likely to be “less isotropic”). On
the other hand, for a given value of £ (or equivalently, of di¢y), it is readily
observed that increasing 7 allows for a substantial reduction of the mean
distance (note that further numerical experiments show that higher statis-
tical moment cannot be prescribed using the proposed formulation). This
fact is consistent with the eigensystem-based characterization of material
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Figure 2: Plot of mapping (£,7) — E{ug}.

symmetries, since decreasing the variances of the eigenvalues whose orders
belong to Z tends to enforce, in some sense, their relative closeness. These
conclusions are also illustrated on Fig. 3, in which the plot of the p.d.f. of
random variable pg for £ = 60, 7 = 0 (for which the result coincide with
the one that would be obtained in SE™) and 7 = 600. Obviously, such a
freedom in prescribing the mean value of stochastic anisotropy measure is
intrinsically limited by the repulsion phenomena of the random eigenvalues,
as well as by the choice of the symmetry class. Such results are in accor-
dance with previous numerical results obtained for the class of transversely
isotropic materials and derived without taking into account the boundedness
property [18].

5. Conclusion

We have proposed a methodology which allows for the nonparametric
probabilistic modeling of the apparent elasticity tensor associated with an
elastic heterogeneous material, taking into account the classical constraints
of normalization and invertibility, as well as constraints related to both
boundedness and material symmetry properties. Specifically, the MaxEnt
based approach unifies previous results by introducing an auxiliary positive-
definite symmetric random matrix, which is “homogeneous” to a random
compliance tensor from a mechanical standpoint and for which a probabilis-
tic model can be readily deduced by properly translating the information
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Figure 3: Plot of the p.d.f. of ug for £ = 60, 7 = 0 (blue dash-dot line), 7 = 600 (red
solid line).

available on the random elasticity tensor. An application to an two-phase
elastic microstructure is finally provided and shows the relevance of the ap-
proach.
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