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In comparison to previous existence proofs for static and spherically symmetric perfect fluid stars in general relativity the new proof applies to a more general class of equations of state: In the star's interior we allow for piecewise Lipschitz continuous functions, in this way including the physically important case of phase transitions. Near the star's surface we allow for even more general functions, thereby including a large class of polytropic equations of state. Furthermore, the proof technique proceeds along standard techniques of functional analysis (Banach's fixed point theorem), and therefore applies in a similar manner to static stars in Newtonian gravity, and perhaps to rotating Newtonian and Einsteinian stars. In detail, the Einstein field equations for static perfect fluid stars are transformed to a system of coupled nonlinear integral equations being valid equally in the matter region and in the vacuum exterior. These integral equations are interpreted as a mapping in a Banach space. With the standard iteration technique, beginning with appropriate start functions, it is proven that the mapping has a unique fixed point, and that the solutions have appropriate regularity properties determined by the properties of the equation of state. The Introduction gives an overview of earlier work on such systems, on the question of sphericity of static fluid stars, and on possible extensions of the above methods to rotating Newtonian and Einsteinian stars. An Outlook addresses the question whether our proof method may be extensible to piecewise Hölder continuous equations of state.

Introduction

This paper provides on one hand, as the title promises, a new and quite general existence proof for static and spherically symmetric ideal fluid stars in general relativity. Although the existence of such stars seems to be evident on physical grounds, a concrete attack on this mathematical question was started only quite late, and it turned out to be more intricate than one would expect on the first sight. As far as we know, there exist in the present literature essentially two different procedures to settle this question: Rendall and Schmidt [1] consider equations of state ǫ(p) which are of class C ∞ for p > 0. (They argue that their proof technique also works for the class C k but this is not elaborated, and it is not clear for which numbers k this may be possible.) Their proof is divided into two parts: Near the center of the star where there is a (coordinate-) singularity, they prove a new theorem about singular ordinary differential equations. Standard existence and uniqueness theorems for ordinary differential equations imply then that the solution near the center can be extended outwards in a unique way. Lindblom and Masood-ul-Alam [2] consider equations of state of class C 1 . They use the surface value V S of the quasi-Newtonian potential V as "anchor parameter". They then prove existence by quite intricate and lengthy applications of the maximum principle for differential equations. Very recently, Masood-ul-Alam [3] has extended this proof method to equations of state with discontinuities, resulting, e.g., from phase transitions.

In contrast to these mostly differential techniques we proceed in the following way: We use the isotropic metric form which has many advantages (described in detail in section 2) in comparison to the usual Schwarzschild-like metric for our problem. We explicitly eliminate the (coordinate-) singularity at the center of the star, transform the differential equations for the two metric potentials to (nonlinear and coupled) integral equations with the center values (instead of the surface values which may not uniquely determine the center values!) as initial values or "anchor parameters". These integral equations cover in one scheme both the interior matter part and the exterior vacuum part of the star. Then we apply standard methods of functional analysis: The integral equations are interpreted as mappings in an appropriate Banach space, and existence, uniqueness, and regularity are proven by iterating this mapping, and by applying Banach's fixed point theorem, and this for quite general equations of state, namely for functions ǫ(p) which are piecewise Lipschitz continuous inside the star, and cover a large class of polytropic equations near the surface.

On the other hand, this paper should be seen as an intermediate step within a more extended program: In [4] Schaudt has given an existence proof for static and spherically symmetric stars with very general equation of state in Newtonian gravity, using the above mentioned functional analysis methods; and the present paper is an extension of this proof method from Newtonian to Einsteinian gravity. In the future we hope to extend this method further to stationary and axially symmetric rotating ideal fluid stars in Newtonian and Einsteinian gravity. (For the general strategy of such an attempt see [5].) Since we use parameters at the center of the star as "initial values" or "anchor parameters", and since the effects of rotation are small near the center, we can expect that our proof method has a safe starting point also for rotating stars. Of course, for the global star problem we have to expect severe modifications of the methods and results of the non-rotating case: Besides the technical difficulty that we have to handle partial differ-ential equations instead of the ordinary differential equations for spherical stars, there is the new physical effect that we cannot expect uniqueness of the solutions. Both in Newtonian theory [START_REF] Chandrasekhar | Ellipsoidal Figures of Equilibrium[END_REF] as in general relativity [START_REF] Meinel | Relativistic Figures of Equilibrium[END_REF] it is known that there exist different types of equilibrium figures for rotating ideal fluid bodies. Therefore, beyond the "first bifurcation point" we have either to choose the special symmetry class of the solutions sought for by choosing an appropriate Banach space, or we have to apply Schauder theory which is not limited to unique fixed points. An argument of hope that our proof method is, in principle, transferable to rotating stars comes from the earlier work [START_REF] Schaudt | [END_REF]9] where it was possible to prove existence of separate exterior and interior solutions for given boundary data at the surface of a hypothetical rotating star. By the way, this mathematical proof for the solvability of the Dirichlet problem for the stationary and axisymmetric Einstein equations incorporated also the existence of the exterior solutions for a large class of realistic stars, including all known white dwarfs. Hereby it also represents the only one, although very partial proof of the "only if part" of Kip Thorne's hoop conjecture [START_REF] Thorne | Magic without Magic[END_REF]: "black holes with horizons form if and only if a mass M gets compacted into a region whose circumference in every direction is smaller than 4πM". Concerning existence proofs for rotating stars in general relativity, it should be remarked that here the only result hitherto is the work of Heilig [START_REF] Heilig | [END_REF]. Since this work is, however, based on the implicit function theorem, it is hard to judge how relativistic or compact, and how fastly rotating these stars can be. The hope is that our Banach space methods supply more concrete results, as exemplified in [START_REF] Schaudt | [END_REF]9].

One can criticize all of the work quoted above that it addresses only ideal fluid stars instead of astrophysically more realistic matter models. As a first generalization one might wish to substitute the barotropic equation of state ǫ(p) by an equation ǫ(p, s), with a variable entropy density s. However, to our knowledge existence results for such more general stars are hitherto available not even in Newtonian gravity. And concerning the neutron stars as particularly interesting relativistic objects, we have the lucky circumstance that "temperature zero" seems to be a quite good approximation for these stars. Also the quite high magnetic fields of some of these objects seem to have little influence on "energetic properties" like mass and angular momentum of neutron stars. It should also be remarked that in recent times there started successful attempts to provide existence theorems for relativistic matter models quite different from ideal fluids: Rein and Rendall [12] prove this for spherically symmetric Vlasov-Einstein systems which may have applications for galaxies and galaxy clusters. Park [13] has given a first existence proof for static and spherical elastic bodies in general relativity. More recently, these works on Vlasov-Einstein systems and elastic bodies have been extended to non-spherical and rotating systems [14,15]. However, since all this work is based on the implicit function theorem, the deviations from sphericity and staticity are of unknown smallness, and therefore it is unclear how far the results apply to realistic astrophysical objects. (Compare the above remarks about the work of Heilig.) After all, existence proofs for relativistic ideal fluid stars should be seen as a first but important and indispensable step on the way to possibly more general existence theorems in the future. And already this first step allows the conclusion that general relativity is a mathematically sound and consistent theory for these important and ubiquitous material objects in our universe. (In this connection it is interesting that the question of existence vs. non-existence of static and spherically symmetric stars has recently been extensively studied within the nowadays popular f (R) and scalar-tensor theories of gravity. Although initial claims [16] for non-existence of strong gravity neutron stars in these theories seem not to be convincing anymore, it has been realized that such theories must satisfy stringent conditions in order to avoid (tachyonic) instabilities near the center of such stars. For the present status see [17] and literature quoted there.)

As a last topic in this Introduction we should like to justify that we confine ourselves to spherically symmetric fluid stars. In Newtonian theory it was relatively early and easily proven by Carleman [18] and Lichtenstein [19] that static ideal fluid bodies are necessarily spherical. In general relativity the first paper addressing this question is, to our knowledge, due to Avez [20], and he mentions that this sphericity conjecture was first formulated by A. Lichnerowicz. However, it turned out that a proof for spherical symmetry of static ideal fluid bodies is mathematically much more intricate and difficult in general relativity than in Newtonian gravity. The first results by Avez [20], Künzle [21], and Künzle, Savage [22] applied only to very restrictive and partially unphysical equations of state. Lindblom [23] then partly succeeeded to transfer the methods which Israel [24] and Robinson [25] had used in their uniqueness proof for static black holes, to static fluid bodies. Masood-ul-Alam [26] began to apply the even "heavier mathematical machinery" of the positive energy theorem [27] to the sphericity question of static ideal fluid stars. But all of the (partial) results until 1991/1992 (see also [28]- [31]) proved only uniqueness of static ideal fluid solutions, i.e., they depended on an existence proof for a "reference spherical star" which was given not earlier than in 1991 [1] and 1994 [2]. The most recent and most general sphericity proof by Masood-ul-Alam [3] uses even "spinor norm weighted scalar curvature integrals", appearing first in Witten's proof [32] of the positive energy theorem. Still this proof covers "only" piecewise C 1 equations of state. However, Masood-ul-Alam says: "It seems that an analysis involving appropriate Sobolev spaces rather than piecewise differentiable class could be possible at the expense of messier approximation and measure theoretic arguments". If this materializes, the sphericity proof would completely cover the piecewise Lipschitz continuous equations of state to which our existence proof applies. In any case, we find it quite remarkable that, whereas the existence proof for spherical fluid stars is of comparable difficulty in Newtonian and Einsteinian gravity (compare paper [4] with the present paper), the sphericity proof for static fluid bodies is quite simple in Newtonian gravity, but obviously does not succeed without applying some of the deepest mathematical properties and structures (like the positive energy theorem) in general relativity.

The paper is organized as follows: In section 2 we provide the mathematical setup for the problem of static and spherical ideal fluid stars in general relativity, and its transformation to a mapping in a Banach space. We also give the conditions for the equations of state which we allow for in our paper. Section 3 contains a series of "a priori properties" of the two metric potentials which are essential for the final proof (in section 4) of existence, uniqueness and regularity of the relevant star solutions. This proof is then relatively short, and it proceeds along standard techniques of functional analysis. An Outlook in section 5 addresses the question whether our proof method can possibly be extended to piecewise Hölder continuous equations of state.

Mathematical Formulation of the Problem

According to a quite general theorem by B. Schmidt [33], Riemannian spaces with an isometry group often admit an orthogonal decomposition of these spaces. As a special application of this theorem, the metric for a static and spherically symmetric perfect fluid star can be written in the form

ds 2 = -e 2Φ(r ′ ) dt 2 + e 2Λ(r ′ ) dr ′2 + r ′2 (dϑ 2 + sin 2 ϑdϕ 2 ), (1) 
as is elaborated in detail, e.g., in Appendix B of the textbook [START_REF] Hawking | The large scale structure of space-time[END_REF], and in Box 23.3 of the textbook [START_REF] Misner | Freeman[END_REF]. (Staticity of the star is understood as material as well as metrical staticity which are, however, according to a theorem by Lichnerowicz [START_REF] Lichnerowicz | Théories relativistes de la gravitation et de l'électromagnétisme[END_REF] equivalent for singularity free and asymptotically flat spacetimes.) For the following we like, however, to transform the area-or Schwarzschild-coordinate r ′ by e Λ(r ′ ) dr ′ /r ′ = dr/r to a new coordinate r in which the metric attains the isotropic form

ds 2 = -e 2U (r) dt 2 + e 2(B(r)-U (r)) (dr 2 + r 2 dϑ 2 + r 2 sin 2 ϑdϕ 2 ), (2) 
with U(r) = Φ(r ′ ), and B(r) -U(r) = log(r ′ /r), what leads to better continuity conditions for the potentials at the star's surface, as can be seen, e.g., in the example of the exterior and interior Schwarzschild space-time, and will be generally proven later on. In the metric form (1) it is in principle possible that a horizon appears at r ′ = 2m(r ′ ) = 8π r ′ 0 dr ′′ r ′′2 ǫ(r ′′ ) (a value also appearing in the Tolman-Oppenheimer-Volkoff equation), and the authors of [1,2] had explicitly to show that this can never happen in the region p > 0. In contrast, in the metric form (2) such a horizon could appear only at r = 0, where we explicitly start and control our potentials U(r), B(r). Furthermore, topics like the Buchdahl inequality [START_REF] Buchdahl | [END_REF] simplify in isotropic coordinates: R ≥ M, for radius R and mass M of any stable fluid star. (If one demands stability of such stars with respect to radial oscillations, the ratio R/M has to exceed the value 1 considerably [38].)

For most astrophysically interesting objects sufficiently close to equilibrium the matter can be approximated by a perfect fluid governed by a barotropic equation of state (EOS) of the form (see, e.g., [START_REF] Shapiro | Black Holes, White Dwarfs, and Neutron Stars. The Physics of Compact Objects[END_REF], Chap.6) ǫ = ǫ(p).

(3) For the relation ǫ(p) between energy density ǫ and pressure p on the interval [0, p max ] we assume the following properties: 1) ǫ(p) > 0 for all p > 0, and ǫ(0) = 0. But lim p→0 ǫ(p) may stay positive, i.e., stars with "hard edge" are included. Since we confine ourselves to p ≥ 0, we have ǫ(p) ≥ 0, and therefore fulfil most of the usual energy conditions (see [START_REF] Hawking | The large scale structure of space-time[END_REF], § 4.3). However, since we allow for p > ǫ (e.g., near the center of the star), our proof covers also cases where the dominant energy condition is violated.

2) ǫ(p) is non-decreasing, a condition sometimes called the Schwarzschild stability criterion.

3) ǫ(p) is piecewise Lipschitz continuous inside the star, and there is at most a finite number of values p i (i = 1, 2, ...K) where ǫ(p) may be discontinuous, e.g. due to phase transitions. At the center of the star ǫ(p) shall be regular. Between p = 0 and p = p max we have then K+1 intervals where ǫ(p) is Lipschitz continuous:

|ǫ(p a )-ǫ(p b )| ≤ l j |p a -p b |, if p a ,
p b are interior points of the j th interval. Since we allow only for a finite number K of discontinuities ǫ(p i ), we can also formulate a "global" Lipschitz condition:

|ǫ(p a ) -ǫ(p b )| ≤ l ǫ |p a -p b |, (4) 
with l ǫ := max{l j }, where, however, p a and p b have again to lie in the same interval. In the sequel we transform the relevant Einstein field equations to integral equations, where the (finite!) steps of the function ǫ(p) at the values p i do not contribute to the integrals. If we would demand Lipschitz continuity also near the star's surface (defined by p = 0), we would exclude the physically important class of polytropic equations of state, for which ǫ(p) behaves at p → 0 like p κ with κ < 1. However, our proof (in section 4) applies to this surface behavior as long as κ ≥ 1/2. In section 5 we comment on the case 0 < κ < 1/2. In the case κ = 0 ("hard edge" of the star) the function ǫ(p) is anyway Lipschitz continuous near the surface.

4) The integral of the inverse enthalpy density

F (p) = p 0 dp/(ǫ(p) + p) (5) 
exists for all p ∈ [0, p max ], what is a (weak) condition on the behaviour of ǫ(p) for p → 0; e.g., if ǫ(p) behaves there like p κ , one has to have κ < 1, i.e., the polytropic index has to be finite at the star's surface.

For the metric (2) with the energy-momentum tensor of an ideal fluid a complete set of Einstein's field equations reads (with the r-derivative denoted by ′ , and in units with G = c = 1):

U ′′ + 2 r U ′ + B ′ U ′ = 4πe 2(B-U ) (ǫ + 3p), (6) 
B ′′ + 3 r B ′ + B ′2 = 16πe 2(B-U ) p, (7) 
p ′ = -(ǫ + p)U ′ , (8) 
where the last equation is the relativistic Euler equation. (In other approaches, based on the metric form (1), Eq. ( 7) is usually substituted by an equation with only first derivatives. But for reasons of symmetry with Eq. ( 6), and other reasons, it is here preferable to work with the second order equation ( 7).) We assume in addition that p(r) is continuous. Then we are sure that the Euler equation can be integrated:

F (p(r)) = p(r) 0 dp/(ǫ(p) + p) = - r R dU(r) = U(R) -U(r), (9) 
where R denotes the star radius (in isotropic coordinates) which has to fulfil R ≥ M (stability limit against collapse) but may be infinite. Since dF/dp = 1/(ǫ(p) + p) is positive inside the star, Eq. ( 9) can be inverted there. If we define

u c := F (p(r = 0) =: p c ), introduce the function u(r) := u c + U(0) -U(r) = U(R) -U(r)
, which is positive inside the star, and define u(r) + := sup(u(r), 0), we can express the pressure and the energy density through the potential u(r):

p(r) = F -1 (u(r) + ); ǫ(r) = ǫ(F -1 (u(r) + )), (10) 
In this way both the interior matter part and the exterior vacuum part of the star are expressible in one common mathematical scheme. Eqs. ( 6) and ( 7) obviously contain (coordinate-) singularities at the star's center r = 0, which enforced in [1] a tedious separate analysis. In contrast, we like to eliminate these singularities explicitly by introducing the functions g(r) := r 2 e b(r) , and h(r) := r 3 e b(r) , where the factors r 2 and r 3 take care of the singular terms 2/r and 3/r, and the factors e b(r) , with b(r) := B(r) -B(0), take care of the nonlinear terms in Eqs. ( 6) and ( 7). If we furthermore scale the r-coordinate by r new = γr old , with γ = √ 4πe B(0)-U (0) , the problem of a static, spherically symmetric ideal fluid star in general relativity is mathematically equivalent to the "initial value problem"

- 1 g (gu ′ ) ′ = e 2(b+u-uc) [ǫ(u + ) + 3p(u + )] =: σ u ≥ 0, ( 11 
) 1 h (hb ′ ) ′ = e 2(b+u-uc) [4p(u + )] =: σ b ≥ 0, (12) 
with the "initial values"

u(0) = u c , b(0) = 0, u ′ (0) = b ′ (0) = 0, (13) 
where the last two values are enforced by the regularity of the system at the origin, and where ′ now represents the derivative with respect to r new . In order to combine the differential equations ( 11) and (12) with the initial values (13), it is advantageous to transform this system to a system of nonlinear integral equations of Volterra type:

u(r) = u c - r 0 ds s 2 e b(s) σ u (s) r s dx x 2 e b(x) = u c - r 0 ds r s dx s 2 x 2 e b(s)-b(x) σ u (s) =: T 1 (u, b), (14) b 
(r) = r 0 ds s 3 e b(s) σ b (s) r s dx x 3 e b(x) = r 0 ds r s dx s 3 x 3 e b(s)-b(x) σ b (s) =: T 2 (u, b). (15) 
In shorthand, we have the fixed point problem

v := (u, b) = (T 1 (u, b), T 2 (u, b)) =: T (v). ( 16 
)
This system is obviously equivalent to the original system ( 11)-( 13), and it has the advantage that it allows to deal with discontinuous EOS's ǫ(p), and it describes the problem of a static, spherically symmetric, and relativistic fluid star globally, i.e. at the same time for the origin, in the star's interior, and in its exterior. The idea for an existence and uniqueness proof for such stars is now, in analogy to the method of Picard and Lindelöf for first order ordinary differential equations, to show that for very general EOS's, all parameters u c > 0, and, e.g., for the trivial start function v 0 = (u c , 0), the iteration v n+1 = T (v n ) converges to a unique fixed point (in an appropriate normed function space). The start function v 0 = (u c , 0) surely is the mathematically most simple one, and, more importantly, any other start function would entail the danger to bring in physically unjustified details about the star models.

In comparison to the Newtonian problem (Eq. ( 16) in [4]), the system ( 14)-( 15) contains besides the "Newtonian potential" u(r) also the metric potential b(r), what produces no severe complications. More delicate are the additional source p(u+) for these potentials (in particular if p dominates over ǫ near the center of very relativistic stars), and the appearance of the non-linear factors e 2(b+u-uc) in σ u and σ b , and the factors e b(s)-b(x) in the integrals ( 14)-(15).

A priori properties of the potentials u(r) and b(r), and of their iteration functions

In order to show (in section 4) that the iteration v n+1 = T (v n ) converges and is a contraction in an appropriate subspace of a Banach space, it is necessary first to prove a series of "a priori properties" of the potentials u(r) and b(r) and of their iteration functions u n (r) and b n (r). Some of the following a priori properties are not essential for the mathematical convergence proof, but elucidate important physical properties of the considered star systems.

1) u(r) and b(r) are continuously differentiable, u(r) is non-increasing, and b(r) is nondecreasing.

From Eqs. ( 14) and ( 15) one immediately gets

u ′ (r) = - r 0 ds σ u (s) g(s) g(r) ≤ 0, ( 17 
) b ′ (r) = r 0 ds σ b (s) h(s) h(r) ≥ 0. ( 18 
)
Therefore, u(r) and b(r) are continuously differentiable, also across the star's surface, as was already mentioned earlier. These monotonicity properties are of course valid also for all iteration functions (u n , b n ), and this independently of the chosen start function.

Due to u ′ (r) ≤ 0 we have u max = u c . Due to Eqs. ( 8) and ( 17) p(r) is a non-increasing function, with the consequence p max = p c . This enforces p c to be strictly positive, because otherwise p(r) had to be identically zero. However, a static star of dust cannot exist in general relativity (see [START_REF] Pfister | [END_REF], and literature quoted there). Equally, the constant ǫ c := ǫ(p c ) has to be strictly positive, because otherwise the non-increasing function ǫ(p(r)) had to be identically zero: no real star.

Remark: According to a recent theorem by Shiromizu and Yoshino [41] (derived on the basis of the positive energy theorem) one can even give a definite lower limit for the ratio p c /ǫ c : They prove that at least at one point in a static star the inequality 6p(r)/ǫ(r) ≥ e u(r)-U (γR) -1 > 0 has to hold. Due to lim p→0 p/ǫ = 0 (see the remark after Eq. ( 5)) this inequality is violated at the star's surface, and therefore has to hold at an interior point. At least for reasonably simple cases (ǫ(p) differentiable, and |dp|/p > |dǫ|/ǫ) the validity of the inequality then extends until the center: 6p c /ǫ c ≥ e -U (0) -1. Due to U(0) < U(γR) = -log 2R+M 2R-M (from the exterior Schwarzschild solution), we have at least 6p c /ǫ c ≥ 2M 2R-M , or M/R ≤ 2/(1 + ǫ c /3p c ). (In order to guarantee the Buchdahl inequality M/R ≤ 1 from section 2, we have then to have ǫ c ≥ 3p c .)

2) u(r) and b(r) are bounded. If R < ∞ (finite star of mass M > 0), the exterior vacuum solution is given by the Schwarzschild solution (in isotropic coordinates):

u(r ≥ γR) = c 1 -log r -c 2 r + c 2 , ( 19 
) b(r ≥ γR) = c 3 + log(1 -(c 2 /r) 2 ), (20) 
with constants c 1 = log 2R-M 2R+M < 0, c 2 = γM/2 > 0, and c 3 = -B(0) > 0. Therefrom follows that all possible solutions of the fixed point problem (16) are bounded, and are therefore solutions of the original problem of Eqs. ( 6)-( 8): u(r) is monotonically decreasing from the finite value u(0) = u c > 0. If u(r) > 0 everywhere (infinite "star"), then u(r) is trivially bounded. Otherwise, the exterior solution ( 19) is bounded by c 1 which is finite (for R > M/2). If we set η := sup p∈[0,pmax] 4p ǫ(p)+3p ≤ 4 3 , we have everywhere σ b ≤ ησ u . Together with h(s)/h(x) ≤ g(s)/g(x) for all x ≥ s we derive for all r 19) and ( 20) we have u ′′ (r > γR) > 0, and b ′′ (r > γR) < 0. The qualitative behavior of the potentials u(r) and b(r) for a finite star is shown in Fig. 1. 3) u(r) and b(r) are regular. Solutions of the fixed point problem ( 16) are regular, also at the origin r = 0 (regularity here means that the functions v(r) lie in C 2,α loc (R + 0 ), i.e., their second derivatives are Hölder continuous of order α (0 < α ≤ 1) for all non-negative arguments): One can arrange Eqs. ( 6)-( 7) such that the left hand sides are the radial parts of the flat Laplacians (of U in 3 dimensions, and of B in 4 dimensions), and then the regularity of (u, b) follows from the regularity properties of the Poisson integrals (see, e.g., [START_REF] Lieb | Analysis[END_REF], Theorems 10.2 and 10.3). At the discontinuity points p i the regularity of v(r) is of course reduced. 4) Subsolutions for b(r), and supersolutions for u(r). Let (u, b) be a solution of the fixed point problem (16), respectively of the differential equations ( 11) and ( 12). If we then join to b(r) in a continuously differentiable manner a vacuum solution b(r > r 0 ) = c3 + log(1 -( c2 /r) 2 ) at a point r 0 (0 < c2 < r 0 < γR), we get a subsolution b(r) because in Eq. ( 15) the non-negative integrand is integrated only over the reduced interval [0, r 0 ]. The constants c2 , c3 can of course be expressed by b(r 0 ) and b ′ (r 0 ) (see below under item 5)). The mass parameter M b , defined by the asymptotic behaviour of b(r), fulfils

0 ≤ b(r) ≤ η(u c -u(r)) ≤ 4 3 (u c -u(r)). (21 
M b ≤ M because M b (r 0 ) increases continuously from M b (0) = 0 to M b (γR) = M.
If we define in a similar manner a vacuum solution ũ(r > r 0 ), we have to generalize Eq. ( 19) to ũ(r > r 0 ) = c1 -c4 log r-c2 r+ c2 , with a new positive constant c4 , in order to allow for a continuously differentiable connection to u(r) at r = r 0 , and ũ(r) is then a supersolution for u(r).

5) Criterion for the finiteness of the star.

Obviously, the star described by the fixed point problem ( 16) has a finite radius γR < ∞ if and only if u(r) vanishes at this finite value of r. But this happens if and only if for some r 0 (near to γ R) the corresponding supersolution ũ(r) = c1 -c4 log r-c2 r+ c2 vanishes at some finite r what enforces c1 to be negative for this r 0 . Now we have c2 = r 3 0 b ′ (r 0 )/(2 + r 0 b ′ (r 0 )), c4 = √ r 0 |u ′ (r 0 )|/ b ′ (r 0 )(2 + r 0 b ′ (r 0 )), and c1 = u(r 0 ) + c4 log((r 0 -c2 )/(r 0 + c2 )). The condition c1 < 0 leads then (with r 0 b ′ (r 0 ) =: β 0 (r 0 )) to the following strict finiteness criterion for the star:

u(r 0 ) r 0 |u ′ (r 0 )| < 1 β 0 (2 + β 0 ) log(1 + β 0 + β 0 (2 + β 0 )) =: f (β 0 ) ≤ 1, (22) 
for some r 0 < ∞, where f (β 0 ) "starts" at the value 1 for β 0 (r 0 = 0) = 0, and decreases then monotonically, with asymptotic behaviour 1 β 0 log 2β 0 . The maximal value of β 0 satisfies β 0,max = 1 + r 2 0 σ b (r 0 ) -1. In the only weakly relativistic case, and presumably more generally, we have r 2 0 σ b (r 0 ) ≪ 1; therefore β 0 is always very small, and then f (β 0 ) is very near to the value 1. In the Newtonian case we have β 0 ≡ 0, and therefore f (β 0 ) ≡ 1.

(Compare [4], Lemma 13.) In this case it is then easily seen that for polytropic EOS's the star is finite only if the polytropic index ν fulfils ν < 5 ([4], Remark 14). The left hand side u(r 0 )/r 0 |u ′ (r 0 )| of inequality (22) diverges for r 0 → 0 like 3u c /(ǫ c + 3p c )r 2 0 so that inequality (22) can never be fulfilled for r 0 → 0 ("ministar") for a given positive initial value u c . Or formulated differently: For a very small star (r 0 → 0) the initial value u c has to be smaller than (ǫ c /3 + p c )r 2 0 . In analogy to the Newtonian case ( [4], Lemma 11) we can prove that for lim p→0 ǫ(p) =: ǫ 0 > 0 ("hard edge" of the star) the star has necessarily finite extent: R < ∞. Assume in contrary that R → ∞, i.e., that u(r) > 0 for all r ≥ 0. Then we have, according to Eq. ( 14), for the fixed point solution u(r):

u(r) = T 1 (u, b)(r) = u c - r 0 ds r s dx s 2
x 2 e 3b(s)-b(x)+2u(s)-2uc (ǫ(u + (s) + 3p(u + (s))).

Since ǫ(u + (s)) is a non-increasing function of s, and p(u + (s)) ≥ 0, we have ǫ(u + (s)) + 3p(u + (s)) ≥ ǫ 0 . In the exponential we have b(s) ≥ 0, and u(s) > 0 by assumption. By Eq. ( 22) we have -b(x) ≥ Due to ǫ 0 > 0, and due to the finiteness of u c , u(r) gets negative for large r-values, in contradiction to the above assumption. (An alternative proof of the finiteness of stars with "hard edge" was given in [1].) 6) ru ′ (r) and rb ′ (r) are everywhere bounded. Due to b ′ (r) ≤ 4 3 |u ′ (r)| it suffices to prove this for u ′ (r). For a finite star this is trivial because the integral (17) extends only up to r = γ R. In this case the exterior Schwarzschild solution (19) tells also that |u ′ (r)| falls off asymptotically even like r -2 . For an infinitely extended "star" we have, on one hand u(r) ∈ [0, u c ], on the other hand, due to the strict finiteness criterion (22):

r 0 |u ′ (r 0 )| ≤ u(r 0 )
f (β 0 ) for all r 0 ≥ 0. Herefrom follows that r 0 |u ′ (r 0 )| has to be bounded, e.g., by the following contradiction argument: Would r 0 |u ′ (r 0 )| be unbounded, then there would exist a sequence

{r k } with r k |u ′ (r k )| ≥ k. With β k := r k b ′ (r k ) ≤ 4 3 r k |u ′ (r k )| =: ξ k ,
and with f ′ ≤ 0, we get the following series of inequalities:

∞ > u c ≥ u(r k ) ≥ f (β k )r k |u ′ (r k )| ≥ f (ξ k )r k |u ′ (r k )| = 3 4 f (ξ k ) ξ k = O(log 2ξ k ) → ∞ for k → ∞,
and therefore a contradiction. Hence there exists a constant Γ 0 with r 0 |u ′ (r 0 )| ≤ Γ 0 . But, as the functions u 1 (r) and b 1 (r) from item 2) show, this boundedness of ru ′ (r) and rb ′ (r) is not valid for all iteration functions. Remark: It is worth to mention that, due to this boundedness of ru ′ (r), our analysis includes infinitely extended "stars" with infinite total mass M: Eq. ( 17) together with 0 < e -bmax ≤ e b(s)-b(r) ≤ 1 tells us that the integral r 0 ds s 2 r σ u (s) is bounded. This is true for all functions σ u (s) which fall off asymptotically at least like s τ with τ < -2. But for all such functions with -3 ≤ τ < -2 the integral ∞ 0 ds s 2 σ u (s) diverges. Since in σ u (s) = e 2(b+u-uc) [ǫ(u + ) + 3p(u + )] the exponential factor is non-zero, and, according to the remarks after Eq. ( 5), ǫ(s) asymptotically dominates over p(s), also the integral ∞ 0 ds s 2 ǫ(s) diverges. Since the (new) isotropic coordinate s and the Schwarzschild coordinate r ′ are related in such a way that s = 0 belongs to r ′ = 0, and s = ∞ belongs to r ′ = ∞, also the mass integral M = 4π ∞ 0 dr ′ r ′2 ǫ(r ′ ) diverges for -3 ≤ τ < -2. 7) The potentials d(r) and d n (r) are non-negative. The most important a priori property for the proof of the contraction theorem (in section 4) concerns the sign of the potential

d(r) := u c -u(r) -b(r) = U(r) -B(r) -(U(0) -B(0)), (23) 
which appears in the expressions σ u and σ b in Eqs. ( 11) and ( 12), and also in the metric form (2). Instead of considering directly the functions d n (r) = u c -u n (r)-b n (r) according to Eqs. ( 14)-( 15), we consider their derivatives d ′ n (r) according to the simpler equations ( 17)-( 18), containing only one integration. Since all functions d n (r) start from the same initial value d n (0) = 0, the proof of d ′ n (r) ≥ 0 for all n and r, and for all physically allowed EOS's ǫ(p) (according to section 2) implies d n (r) ≥ 0 for all r.

d ′ n+1 (r) = e -bn(r) r 2 r 0 ds e bn(s)-2dn(s) s 2 [ǫ n (s) + (3 -4s/r)p n (s)]. ( 24 
)
As a first result we see that for an EOS with p(s) ≤ ǫ(s) in the whole star the integrand is everywhere non-negative, and therefore d ′ n+1 (r) ≥ 0. This covers already many astrophysically interesting object classes. However, for very compact and relativistic neutron stars we expect that we have p(r) > ǫ(r) near the center. Indeed, also for such stars a (somewhat more involved) proof for d ′ n+1 (r) ≥ 0 is possible: As a first step we see that with d 0 (r) ≡ 0 and d 1 (r) = ǫ c r 2 /6 (from item 2)) the beginning of the iteration process fulfills this property. In Eq. ( 24) the term with ǫ n (s) contributes in any case positively to d ′ n+1 (r). For the term with p n (s) we perform an integration by parts (integration of s 2 (3 -4s/r) to s 3 -s 4 /r = s 3 (1 -s/r) ≥ 0, and differentiation of the other terms):

d ′ n+1 (r) = e -bn(r) r 2 r 0 ds s 2 e bn(s)-2dn(s) ǫ n (s) + + r 0 ds s 3 (1 -s/r)e bn(s)-2dn(s) [-p ′ n (s) -p n (s)(b ′ n (s) -2d ′ n (s))] . (25) 
Due to p ′ n (s) = (ǫ n (s) + p n (s))u ′ n (s) from eq. ( 8), and due to the iteration assumption d ′ n (s) ≥ 0, the parenthesis [ .... ] in Eq. ( 25) gives

ǫ n (s)(-u ′ n (s)) + 3p n (s) d ′ n (s) ≥ 0.
Herewith we have proven that d ′ n (r) ≥ 0 for all n and r, and for all allowed EOS's, and therefore d n (r) ≥ 0, and d(r) ≥ 0, if the iteration converges (section 4). We find it quite remarkable, how here all the mathematical details play constructively together to reach this physically important result. Under the reasonable assumption (see property 3) for ǫ(p) in section 2) that there is no discontinuity of ǫ(r), i.e. no phase transition at the star's center r = 0, we can easily evaluate the second derivatives u ′′ (0) and b ′′ (0) from Eqs. ( 17)-( 18) (or from Eqs. ( 11)-( 12)), with the results u ′′ n (0) = -ǫ c /3 -p c , b ′′ n (0) = p c , for all n ≥ 1. Therefore we get d ′′ n (0) = ǫ c /3 > 0, so that all d n (r) are really positive for n ≥ 1 and r > 0. Remark: It is worth mentioning that the property d(r) ≥ 0 (which is of course valid also outside the star, i.e. for r > γ R) leads to a stronger inequality (compared to item 2)) for the constant c 3 in the exterior Schwarzschild solution:

c 3 < u c -log(1 -(M/2R) 2 ) < u c -c 1 . (26) 
Application of the same type of integration by parts to Eqs. ( 14)-( 15) leads, due to

u ′ n (s) ≤ 0 and d ′ n (s) ≥ 0 to the inequalities b n+1 (r) ≥ r 0
ds s e -2dn(s) p n (s);

u n+1 (r) -u c ≤ - r 0 ds s e -2dn(s) ( ǫ n (s) 3 + p n (s)); (27) 
d n+1 (r) ≥ 1 3 r 0 ds s e -2dn(s) ǫ n (s), (28) 
and for the limiting function d(r) to

e 2d(r) ≥ 1 + 2 3 r 0 ds s ǫ(s). (30) 
Similarly, integration by parts of Eqs. ( 17)-( 18) leads, due to dǫ/dp ≥ 0 and b ′ n (r) ≤ 

-u ′ n+1 (r) ≥ r e -2dn(r) ( ǫ n (r) 3 + p n (r)). (31) 
4. Existence and uniqueness of solutions (u, b) for piecewise Lipschitz continuous ǫ(p) inside the star Due to p(r) = F -1 (u(r) + ) from Eq.( 10), and due to dF/dp = 1/(ǫ(p) + p), the function p(u + ) has a finite derivative, and is therefore Lipschitz continuous. Since ǫ(p) is piecewise Lipschitz continuous inside the star, also ǫ(u + ) = ǫ(p(u + )) is Lipschitz continuous there in each interval not containing a point p i . Near the surface we allow, according to section 2, property 3), for functions ǫ(p) ∼ p κ with 1 > κ ≥ 1/2. Then u = F (p) behaves there like p 1-κ , according to Eq.( 5). From this follows p ∼ u 1/(1-κ) +

, and ǫ(u

+ ) ∼ u κ/(1-κ) +
, and this function is Lipschitz continuous for κ ≥ 1/2:

|ǫ(u 1+ ) -ǫ(u 2+ )| ≤ l ǫ |u 1+ -u 2+ | ≤ l ǫ |u 1 -u 2 |, (33) 
|p(u 1+ ) -p(u 2+ )| ≤ l p |u 1+ -u 2+ | ≤ l p |u 1 -u 2 |, (34) 
where the second inequalities follow, e.g., from Lemma 2 in [4]. With σ = e -2d(r) (ǫ(u + ) + 3p(u + )) and σ b = e -2d(r) 4p(u + ), and due to d(r) ≥ 0 in each iteration step (from section 3, item 7)), also σ u (r) and σ b (r) are piecewise Lipschitz continuous in each iteration step:

|σ u (u 1+ ) -σ u (u 2+ )| ≤ l u |u 1 -u 2 |; |σ b (u 1+ ) -σ b (u 2+ )| ≤ l b |u 1 -u 2 |. (35) 
We choose an interval [0, R 1 ], with 0 < R 1 < ∞, where R 1 can lie inside or outside the matter part of the star, and the star may have finite or infinite extent. As Banach space 14)-( 15) are non-negative, are bounded for r ≤ R 1 < ∞, and lead to C 0 -functions of r. Together with item 7) of section 3 we see that the operation T is a mapping of onto itself.

Theorem 1 (Contraction)

Assume that: 1. The functions ǫ(u + ), p(u + ) are piecewise Lipschitz continuous in the interval [0, u c ]. 2. The subspace ⊂ R 1 is chosen as described above. Then for all v, w ∈ and all n we have for some finite constant C (independent of n):

|T n (v) -T n (w)|(r) ≤ (Cr 2 ) n (2n)! v -w . (36) 
Therefore there exists an n 0 with (CR 2 1 ) n 0 /(2n 0 )! < 1, and therefore the mapping T n 0 is a contraction on .

Proof: We prove this theorem by induction, and first for Lipschitz continuous functions ǫ(p) without discontinuities. (Compare the proof of Theorem 5.4-2 in [START_REF] Kreyszig | Introductory functional analysis with applications[END_REF].) For n = 0 inequality (36) is trivially valid. Assume its validity for some arbitrary n. Then for the mapping T 1 from Eq. ( 14) we have (the proof for mapping T 2 from Eq. ( 15) works equivalently), with v n := T n 1 (v), and w n := T n 1 (w): 

|T n+1 1 (v) -T n+1 1 (w)|(r) = |T 1 (v n ) -T 1 (w n )|(r) = (37) 
(Cs 2 ) n (2n)! v -w = l u C n (2n)! r 2(n+1) (2n + 2)(2n + 3) v -w ≤ l u C n (2(n + 1))! r 2(n+1) v -w .
With C = l u we have

|T n+1 1 (v) -T n+1 1 (w)|(r) ≤ (Cr 2 ) n+1 (2(n + 1))! v -w , (38) 
i.e. inequality [START_REF] Lichnerowicz | Théories relativistes de la gravitation et de l'électromagnétisme[END_REF] is also valid for the iteration index (n + 1). Due to inequality (38) the convergence of the iteration is even faster than exponential. This property was confirmed in a numerical analysis of relativistic, rotating stars [START_REF] Bonazzola | [END_REF], which is based on a mathematical scheme quite similar to ours, and to the setup in [START_REF] Schaudt | [END_REF]9]. This fact gives additional hope that our existence proof can be extended to rotating stars. (For the mapping T 2 we can choose C = l b .) For only piecewise Lipschitz continuous equations of state the proof has to be divided into the K+1 intervals between the discontinuities p i , and the x-and s-integrals have to be divided into the corresponding sub-integrals. 2

Theorem 2 (Existence, uniqueness, and regularity).

If the function ǫ(p) is piecewise Lipschitz continuous inside the star, and behaves near the surface not worse than p κ with 1 > κ ≥ 1/2, the fixed point problem ( 16) has a unique solution v = (u, b) ∈ C 2,α . Proof: By Theorem 1 we can now, in analogy to Theorem 5.1-2 and Lemma 5.4-3 in [START_REF] Kreyszig | Introductory functional analysis with applications[END_REF], argue in the following way: The mapping A = T n 0 is a contraction on . By Banach's fixed point theorem A has a unique fixed point v : A(v) = v, and we have also A m (v) = v. Banach's theorem also implies lim m→∞ A m (v) = v, for every v ∈ , i.e., v is an attractor for all v ∈ . For the particular function v = T (v) we obtain, due to

A m = T mn 0 : v = lim m→∞ A m (T (v)) = lim m→∞ T (A m (v)) = T (v).
Therefore v is a fixed point of T , and since every fixed point of T is also a fixed point of A, we see that T cannot have more than one fixed point. The property v ∈ C 2,α (with 0 < α ≤ 1) follows, in analogy to the discussion of the a priori property 3) in section 3, from the regularity properties of the Poisson integral in the case that p(u) and ǫ(u) are Lipschitz continuous, i.e. (p(u), ǫ(u)) ∈ C 0,α . As mentioned earlier, at the discontinuity points p i the regularity of v(r) is reduced. 2 Since the proofs of Theorems 1 and 2 are performed for a definite interval [0, R 1 ] (although with arbitrary R 1 < ∞), the question may come up whether the solution v 2 (r) for the interval [0, R 2 > R 1 ] coincides in [0, R 1 ] with v 1 (r), constructed for this interval. Although in Theorem 1 the power n 0 beyond which T n 0 (v 1 ) is a contraction, depended on 1 , we have proven in Theorem 2 that already T itself (which is independent of R 1 ) has the unique fixed point v(r). If now the solution v 2 (r) would differ from v 1 (r) (both being of class C 0 , respectively C 2,α !) at some point r ∈ [0, R 1 ], this uniqueness would be violated. (A different type of proof for this uniqueness was given in [4], p. 954 for the Newtonian case.)

Outlook: Remarks on (piecewise) Hölder continuous equations of state

A natural question is whether the property of piecewise Lipschitz continuity of the EOS ǫ(p) inside the star is the most general case for which existence, uniqueness and regularity of static and spherically symmetric perfect fluid stars in general relativity can be proven. In particular, one may wish to extend the class of EOS's to (piecewise) Hölder continuous functions ǫ(p) because the polytropic EOS's ǫ(p) ∼ p κ + c p (which belong to the most simple ones mathematically, and are also good approximations to real matter systems in Newtonian and Einsteinian gravity) are not Lipschitz continuous near p = 0 if κ < 1, and are not covered by our proof for 0 < κ < 1/2. (Compare section 2, properties 3) and 4).) Also near the discontinuity points p i the function ǫ(p) may approach these points in a way which is not Lipschitz continuous, e.g., due to critical exponents in phase transitions of second order.

In the Newtonian case it was possible (ref. [4]) to give such a proof for a class of "admissible functions" ǫ(p) which has similarities with the Hölder class but is more complicated (Eq. ( 33) in [4]). Also the proof for existence, uniqueness and regularity was much more involved than in the Lipschitz case, and it depended crucially on the linearity of the iteration map what is not the case for the map (Eqs. ( 14)-( 15)) in the Einsteinian case. Although we have not been able hitherto to give a proof for existence, uniqueness and regularity for (piecewise) Hölder continuous EOS's in the Einsteinian case, we like to present here some comments about this case.

At first it may be useful to obtain some orientation by the consideration of one "simple" differential equation dy/dx = f (x, y). A standard result for such equations is the Peano theorem (see, e.g., [START_REF] Piccinini | Ordinary Differential Equations in R n[END_REF], Chap. III.1.2) by which for a continuous function f (x, y) the existence of at least one solution y(x) for any initial condition y(x 0 ) = y 0 is guaranteed. However, the equation dy/dx = y α /(1 -α), with 0 < α < 1, and with initial condition y(0) = 0 is an example (with Hölder continuous f (x, y)) where the uniqueness of the solution is lost: both y 1 (x) ≡ 0 and y 2 (x) = x 1/(1-α) are solutions. For similarly simple functions f (x, y) even a continuum of solutions may exist. On the other hand it is known ( [START_REF] Piccinini | Ordinary Differential Equations in R n[END_REF], Chap. III.3.3) that the manifold of functions f (x, y) for which the solutions of the above differential equation are non-unique is of measure zero in comparison with the uniqueness case. Therefrom comes some hope that also for our system (11)-( 12) of coupled differential equations unique solutions exist, as is also expected on physical grounds, even for Hölder continuous EOS's.

The second comment addresses, in analogy to the Newtonian case (see [4], Eq. ( 34)) the question whether, respectively for which EOS's the iteration series' {u n (r)} and {b n (r)} show the property of "alternating terms" in the sense that for all r we have

-u 0 (r) ≤ -u 2 (r) ≤ ...... ≤ -u 3 (r) ≤ -u 1 (r); ( 39 
) b 0 (r) ≤ b 2 (r) ≤ ...... ≤ b 3 (r) ≤ b 1 (r). ( 40 
)
If this is the case, the series' {-u 2n (r)} and {b 2n (r)} are increasing with a finite upper limit function, and therefore have limits (In this connection it is worth mentioning that for the above example of the differential equation dy/dx = y α /(1 -α) which does not have a unique solution with y(0) = 0, the iteration solutions y n (x), starting with y 0 (x) = x, do not show this alternation property.)

The attempt to prove the properties (39)-( 40) starts of course with the zeroth step of the iteration. As "initial values" we have chosen u 0 (r) ≡ u c ; p 0 (r) ≡ p c ; ǫ 0 (r) ≡ ǫ c ; b 0 (r) ≡ 0; d 0 (r) ≡ 0.

(41)

Also the first iteration step was already provided in the earlier sections:

u 1 (r) = u c -(ǫ c + 3p c ) r 2 6 ≤ u 0 (r). ( 42 
)
Due to the non-decreasing functions F -1 (r) and ǫ(p) we have also p 1 (r) ≤ p 0 (r); ǫ 1 (r) ≤ ǫ 0 (r). ( 43)

Furthermore, for the potential b(r) and for the "auxiliary function" d(r), appearing, e.g., in the quantities σ u (r) and σ b (r), we have 

So, up to the first order of iteration the above inequalities ( 39)-( 40) are trivially fulfilled.

Also the second iteration step can be worked out relatively easily. Since all functions u n (r) start from the same initial value u n (0) = u c , and equally b n (0) = d n (0) = 0, it is, as in the procedure in item 7) of section 3, sufficient to consider the first derivatives u ′ n (r), b ′ n (r), d ′ n (r) according to the simpler Eqs. ( 17)-( 18). If we can show that u ′ n (r) ≥ u ′ m (r) for some indices n, m, and for all r, we have also u n (r) ≥ u m (r) for all r. Corresponding rules apply to the functions b n (r) and d n (r). Furthermore, due to b ′ n (r) ≥ 0 for all n and r, we get for the terms b n (r) -b n (s ≤ r), appearing in the exponentials of the integrals ( 17)-( 18): b n (r) -b n (s ≤ r) = r s dx b ′ n (x) ≥ 0. Eq. ( 17), applied to u 2 (r), reads: 39)- [START_REF] Pfister | [END_REF] to the third iteration step would proceed in a similarly simple way as for the first two steps. However, hitherto we have not been able to prove the relation d 2 (r) ≤ d 1 (r), the main obstacle being the partly negative factor (3 -4s/r) in front of the function p 1 (s) in Eq. (50). A partial integration of Eq. (50) , which was so successful in the proof of the non-negativity of all d n (r) in item 7) of section 3, seems not to lead to a simplification of the relation between d 2 (r) and d 1 (r).

u ′ 2 (r) = -
Therefore we have presently to leave unsettled the question whether Eqs. ( 39)-( 40) are valid in the general case, and herewith the more general question of existence, uniqueness and regularity of static and spherical star solutions for piecewise Hölder continuous EOS's.
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  Since u c -u(r) is bounded, also b(r) is bounded. (As side results we note the inequalities b ′ (r) ≤ 4 3 |u ′ (r)| for all r, and 0 < c 3 ≤ 4 3 (u c -c 1 ) -log(1 -M 2 /4R 2 ). Later, under item 7), we will derive the more stringent inequality b(r) ≤ u c -u(r), and also a more stringent inequality for the constant c 3 .) However, usually not all iteration functions (u n , b n ) are bounded. For instance, for the start functions u 0 ≡ u c and b 0 ≡ 0, we get u 1 (r) = u c -(ǫ c + 3p c )r 2 /6, b 1 (r) = p c r 2 /2. The turning points of both functions (where u ′′ = 0, respectively b ′′ = 0) lie inside the star, because for the exterior solutions (

Figure 1 :

 1 Figure 1: The qualitative behavior of the potentials u(r) and b(r) for a finite star (without phase transitions)

4 3 (x 2 =

 32 u(x) -u c ) > -4 3 u c . This gives in total u(r) ≤ u c -ǫ 0 e -u c -ǫ 0 e -10 3 uc r 2 6 .

4 3

 3 |u ′ n (r)| to the inequalities b ′ n+1 (r) ≥ r e -2dn(r) p n (r);

R 1

 1 we choose C 0 -functions u(r) and b(r) on this interval, with supremum norm. As a (closed) subspace ⊂ R 1 we choose C 0 -functions u(r) and b(r) with u(r) ≤ u c , b(r) ≥ 0, b(r 2 ≥ r 1 ) ≥ b(r 1 ), and d(r) = u c -u(r) -b(r) ≥ 0. The integrals in Eqs. (

x 2 ex 2 x 2

 222 bn(s)-bn(x) |σ u (v n (s)) -σ u (w n (s))| |σ u (v n (s)) -σ u (w n (s))| |v n (s) -w n (s)|

  -u(r) and b(r). Equally the series' {-u 2n+1 (r)} and {b 2n+1 (r)} have lower limits -u(r) and b(r), and we have -u = -T u ≤ -u, -u = -T u ≥ -u, and b = T b ≤ b, b = T b ≥ b. Therefore v = (u, b) and v = (u, b) are fixed points of T 2 , and "the only question remaining" is whether these two fixed points coincide.

b 1 (r) = p c r 2 2 ≥ 6 ≥

 126 b 0 (r); d 1 (r) = ǫ c r 2 d 0 (r).

r 2 e 2 (r 2 -s 2 )+ ǫc 3 s 2 )r 2 2 (r 3 eds s 3 r 3 2 ( 2 (r 2 -s 2 )+ ǫc 3 s 2 ) [ǫ 1 (

 2222223322221 -(b 1 (r)-b 1 (s)+2d 1 (s)) (ǫ 1 (s) + 3p 1 (s)(ǫ 1 (s) + 3p 1 (s)) (ǫ c + 3p c ) = u ′ 1 (r).(45)Therefore we haveu 1 (r) ≤ u 2 (r) ≤ u 0 (r). (46)Herewith we also getp 1 (r) ≤ p 2 (r) ≤ p 0 (r) and ǫ 1 (r) ≤ ǫ 2 (r) ≤ ǫ 0 (r).(47)Eq. (18), applied to b 2 (r), readsb ′ -( pc 2 (r 2 -s 2 )+ ǫc 3 s 2 ) 4p 1 (s) ≤ r 0 4p c = b ′ 1 (r),(48)and therefore b0 (r) ≤ b 2 (r) ≤ b 1 (r). (49)More delicate is, however, the third iteration step, because for the functions u ′ 3 (r) and b ′ 3 (r) according to Eqs. (17)-(18) we need, besides p 2 (s), ǫ 2 (s) and b 2 (s), also the "auxiliary function" d 2 (s), and its relation to d 1 (s). We haved ′ 2 (r) = -u ′ 2 (r) -b ′ 7) of section 3 we have d ′ 2 (r) ≥ d ′ 0 (r) = 0. If we could also prove the relation d ′ 2 (r) ≤ d ′ 1 (r), and therefore d 2 (r) ≤ d 1 (r) for all r, the extension of the inequalities (

Acknowledgements. I thank Urs Schaudt who some years ago provided essential ideas for the formulation of the problem treated here. In the final stage of this work Bernd Schmidt and an anonymous referee contributed important corrections, and comments for improving the presentation. I am grateful to the Albert Einstein Institute in Golm for its hospitality during a short stay there.