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We show that supersymmetric flux vacua with constant intermediate SU(2) structure are closely related to some special classes of half-flat structures. More concretely, solutions of the SUSY equations IIA possess a symplectic half-flat structure, whereas solutions of the SUSY equations IIB admit a half-flat structure which is in certain sense near to the balanced condition. Using this result we show that compact simply connected manifolds do not admit type IIB solutions. New solutions of the SUSY equations IIA and IIB are constructed from hyperkähler 4-manifolds, special hypo 5-manifolds and 6-dimensional solvmanifolds.

Introduction

In [START_REF] Andriot | New supersymmetric flux vacua with intermediate SU(2)-structure[END_REF] new supersymmetric four-dimensional Minkowski flux vacua of type II string theory with at least N = 1 supersymmetry (SUSY) on nilmanifolds and solvmanifolds have been found, by extending previous results by [START_REF] Graña | A scan for new N = 1 vacua on twisted tori[END_REF].

In [START_REF] Graña | Supersymmetric backgrounds from generalized Calabi-Yau manifolds[END_REF][START_REF] Graña | Generalized structures of N = 1 vacua[END_REF] it was shown that these supersymmetric conditions can be written in terms of the so-called generalized complex geometry [START_REF] Gualtieri | Generalized Complex Geometry[END_REF][START_REF] Hitchin | Generalized Calabi-Yau manifolds[END_REF] and it was proved that the internal manifold has to be a (twisted) generalized Calabi-Yau manifold. An N = 1 supergravity vacuum implies the existence of a pair of spinors on the internal manifold. In dimension six the pair of spinors defines an SU (3) structure, a static SU (2) structure or an intermediate SU (2) structure [START_REF] Andriot | New supersymmetric flux vacua with intermediate SU(2)-structure[END_REF], which correspond respectively to the condition that the two spinors are parallel, orthogonal or between the two. These different cases are encoded in the context of the generalized geometry into an SU (3) × SU (3) structure on the bundle T M ⊕ T * M . The SU (3) × SU (3) structure can be encoded in a pair of compatible pure spinors, which are objects defined in generalized complex geometry on the generalized tangent bundle T M ⊕ T * M . When one of the two pure spinors is closed, the manifold is called generalized Calabi-Yau.

An interesting question is then to look for new explicit examples and a natural class is the one of the nilmanifolds, since by [START_REF] Cavalcanti | Generalized complex structures on nilmanifolds[END_REF] they admit generalized Calabi-Yau structures. In [START_REF] Graña | A scan for new N = 1 vacua on twisted tori[END_REF] the authors only look for SU (3) and static SU (2) structures, since only these ones seemed to be compatible with the orientifold projections. But in [START_REF] Koerber | Supersymmetric sources, integrability and generalized-structure compactifications[END_REF] it was shown that intermediate SU [START_REF] Andriot | Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory[END_REF] structures are also possible if one allows a mixing of the usual SU (2) structure forms under the projection conditions.

In [START_REF] Andriot | New supersymmetric flux vacua with intermediate SU(2)-structure[END_REF] Andriot rewrote the projection conditions imposed by the orientifold for intermediate SU [START_REF] Andriot | Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory[END_REF] structures by introducing the "projection (eigen)basis", i.e. the set of structure forms which are eigenvectors for the projection. These forms define a new SU (2) structure, obtained by a rotation from the usual one and the new SU (2) structure coincides (modulo a rescaling) with the one appearing with dielectric pure spinors, introduced in [START_REF] Halmagyi | Generalized Kähler potentials from supergravity[END_REF][START_REF] Minasian | Gravity duals to deformed SYM theories and generalized complex geometry[END_REF] in the ADS/CFT context. Since the pure spinors become simpler to study if they are written in terms of the projection basis variables, the supersymmetry (SUSY) conditions become simple and in this way Andriot found for constant intermediate SU [START_REF] Andriot | Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory[END_REF] structures new four dimensional (Minkowski) flux vacua of type II string theory with at least N = 1.

Inside the class of SU (3) structures there is a special one which is strictly related to the construction of metrics with holonomy G 2 . An SU (3) structure defines a non-degenerate 2-form F , an almost-complex structure J, and a complex volume form Ψ; the SU (3) structure is called half-flat if F ∧ F and the real part of Ψ are closed [START_REF] Chiossi | The intrinsic torsion of SU(3) and G 2 structures[END_REF]. Hypersurfaces in 7-dimensional manifolds with holonomy G 2 have a natural half-flat structure, given by the restriction of the holonomy group representation. In [START_REF] Hitchin | Stable forms and special metrics[END_REF] Hitchin showed that, starting with a half-flat manifold (M, F, Ψ), if certain evolution equations have a solution coinciding with (F, Ψ) at time zero then (M, F, Ψ) can be embedded isometrically as a hypersurface in a manifold with holonomy contained in G 2 .

If in addition F is closed the half-flat structure is called symplectic, and a half-flat structure with closed complex volume form Ψ is known as Hermitian balanced. Nilmanifolds of dimension 6 admitting invariant symplectic, resp. Hermitian balanced, half-flat structures have been classified in [START_REF] Conti | Special symplectic six-manifolds[END_REF], resp. [START_REF] Ugarte | Hermitian structures on six dimensional nilmanifolds[END_REF]. Recently 6-dimensional nilmanifolds carrying an invariant half-flat structure have been classified by Conti in [START_REF] Conti | Half-flat nilmanifolds[END_REF], extending previous partial results [START_REF] Chiossi | G 2 -structures with torsion from half-integrable nilmanifolds[END_REF][START_REF] Conti | Special symplectic six-manifolds[END_REF][START_REF] Ugarte | Hermitian structures on six dimensional nilmanifolds[END_REF][START_REF] Chiossi | Conformally parallel G 2 structures on a class of solvmanifolds[END_REF].

In this paper we show that supersymmetric flux vacua with constant intermediate SU (2) structure are closely related to some special classes of half-flat structures. More concretely, in Section 3 we show that solutions of the SUSY equations IIA have a symplectic half-flat structure, whereas solutions of the SUSY equations IIB admit a half-flat structure which is in certain sense near to the Hermitian balanced condition. In particular, we prove that compact simply connected manifolds do not admit type IIB solutions. Solutions of the SUSY equations IIA and IIB are constructed from hyperkähler 4-manifolds and, more generally, from special hypo 5-manifolds, where by hypo we mean the natural SU (2) structure induced on hypersurfaces in 6-dimensional manifolds with holonomy SU [START_REF] Besse | Einstein Manifolds[END_REF] given by the restriction of the holonomy group representation [START_REF] Conti | Generalized Killing spinors in dimension 5[END_REF]. In the last section we consider 6-dimensional solvmanifolds having both symplectic and Hermitian balanced half-flat structures, and using them we find new solutions of the SUSY equations IIA and IIB. The nilmanifolds considered in this paper have appeared previously in [START_REF] Graña | A scan for new N = 1 vacua on twisted tori[END_REF], where solutions with SU (3) or static SU (2) structure were found. On the other hand, on the solvmanifold of Example 4.2.1 SU (3) structure solutions were given in [START_REF] Cámara | Fluxes, moduli fixing and MSSM-like vacua in a simple IIA orientifold[END_REF][START_REF] Graña | A scan for new N = 1 vacua on twisted tori[END_REF] (see also [START_REF] Andriot | Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory[END_REF]), however to our knowledge the solvmanifold of Example 4.2.2 has not appeared previously in relation to the SUSY equations and provides a new class of solutions. In Section 4 it is also proved that in general the solutions of equations IIA or IIB are not stable by small deformations inside the class of half-flat structures (see Proposition 4.1).

Intermediate SU (2) structures

In this section we follow the conventions of [START_REF] Andriot | New supersymmetric flux vacua with intermediate SU(2)-structure[END_REF], and recall the four-dimensional Minkowski flux vacua conditions of type II string theory with at least N = 1 supersymmetry as well as their relation to the structure group of the internal manifold.

As in [START_REF] Andriot | New supersymmetric flux vacua with intermediate SU(2)-structure[END_REF] we consider type II supergravity (SUGRA) backgrounds, which are warped products of the Minkowski space R 3,1 and of a 6-dimensional compact manifold M 6 . These warped products have a metric of the form (1) ds 2 (10) = e 2A(y) η µν dx µ dx ν + g µν (y)dy µ dy ν , where η is the diagonal Minkowski metric with signature [START_REF] Besse | Einstein Manifolds[END_REF][START_REF] Andriot | New supersymmetric flux vacua with intermediate SU(2)-structure[END_REF]. The solutions will also have non zero background values for some of the RR and NS fluxes. Let vol (4) denote the warped 4-dimensional volume form. Poincaré invariance in dimension 4 requires the fluxes living on Minkowski space to be proportional to vol [START_REF] Cámara | Fluxes, moduli fixing and MSSM-like vacua in a simple IIA orientifold[END_REF] , so we will focus on non trivial fluxes living on the internal manifold M 6 .

As in [START_REF] Graña | A scan for new N = 1 vacua on twisted tori[END_REF] the total internal RR field F is given by

IIA : F = F 0 + F 2 + F 4 + F 6 , IIB : F = F 1 + F 3 + F 5 ,
where F k is the internal k-form RR field, and it is related to the total 10-dimensional RR field-strength F (10) by

F (10) = F + vol (4) ∧ λ( * F ).
Here * denotes the Hodge star operator on (M 6 , g) and λ is given by

λ(A p ) = (-1) p(p-1) 2 A p ,
for every p-form A p . In order to find such solutions one has to solve the equations of motion and the Bianchi identities for the fluxes, however, for the class of supergravity backgrounds we are interested in, the equations of motion for the metric and the dilaton φ are implied by the Bianchi identities and the 10-dimensional supersymmetry conditions [START_REF] Koerber | Supersymmetric sources, integrability and generalized-structure compactifications[END_REF], so one can solve the latter. These conditions are the annihilation of the supersymmetry variations of the gravitino ψ µ and the dilatino λ given by (see [START_REF] Graña | Supersymmetric backgrounds from generalized Calabi-Yau manifolds[END_REF]) with H µ = 1 2 H µνρ γ νρ , H being the NSNS flux. For IIA, P = γ 11 and P n = γ n 11 σ 1 for n = 0, . . . , 5, while for IIB, P = -σ 3 , P n = σ 1 for n = 3 2 , 7 2 and P n = iσ 2 for n = 1 2 , 5 2 , 9 2 . The 10-dimensional supersymmetry parameter can be written as a pair ( 1 , 2 ) of two Majorana-Weyl supersymmetry parameters and, because of the product structure of the solution (1), there should exist independent globally defined and non-vanishing spinors η j on M 6 such that each j is given as

δψ µ = D µ +
j = ζ j ⊗ a f j a η j a + c.c., j = 1, 2,
where ζ 1 and ζ 2 are the 4-dimensional supersymmetry parameters. In order to get (at least) N = 1 supersymmetry, it is required the existence of (at least) a pair (η 1 , η 2 ) of globally defined and non-vanishing spinors on the internal manifold M 6 satisfying the SUSY conditions. The existence of this pair of internal spinors generically implies that the structure group of the tangent bundle over the internal manifold M 6 is reduced to a subgroup G ⊂ SO [START_REF] Chiossi | Conformally parallel G 2 structures on a class of solvmanifolds[END_REF]. This is due to the fact that the spinors which are globally defined must not transform under G and therefore are singlets under the SO(6) → G decomposition. The pair (η 1 , η 2 ) can be parametrized and different types of G-structures are defined on the internal manifold depending on the values of the parameters. SU (3) and intermediate SU (2) structures on 6-manifolds arise naturally in this context as we recall next.

The existence of a globally defined non-vanishing spinor η + on a 6-dimensional manifold M 6 defines a reduction of the structure group of the tangent bundle over M 6 to SU (3). Therefore, on the internal manifold we have an almost Hermitian structure (J, g) and a (3, 0)-form Ψ such that

F ∧ Ψ = 0, 4 3 
F 3 = iΨ ∧ Ψ = 0,
where F is the fundamental 2-form associated to (J, g). The spinor η + is a Weyl spinor and it is supposed to have positive chirality and unit norm. Complex conjugation acts sending η + in η -. The forms (F, Ψ) can be obtained as bilinears of the globally defined spinor. Indeed:

F µν = -iη † + γ µν η + , Ψ µνρ = -iη † -γ µνρ η + .
An SU (2) structure on a 6-dimensional manifold M 6 is defined by two orthogonal globally defined spinors η + and χ + , which we can suppose of unit norm, or equivalently by an almost Hermitian structure (J, g), a (1, 0)-form α, a real 2-form ω and a (2, 0)-form Ω satisfying the following conditions

ω 2 = 1 2 Ω ∧ Ω = 0, ω ∧ Ω = 0, Ω ∧ Ω = 0, i α Ω = 0, i α ω = 0,
where by i α we denote the contraction by the vector field dual to α and we take α such that α 2 = i α α = α a g ab α b = 2.

The forms (α, ω, Ω) are related to the globally defined spinors (η + , χ + ) by the relations

α µ = η † -γ µ χ + , ω µν = -iη † + γ µν η + + iχ † + γ µν χ + , Ω µν = η † -γ µν χ -.
The spinor χ + can be rewritten in terms of η -as χ + = 1 2 αη -. The SU (2) structure is naturally embedded in the SU (3) structure defined by η + by:

(2)

F = ω + i 2 α ∧ α, Ψ = α ∧ Ω.
Conversely, if one has an SU (3) structure (F, Ψ) on M 6 and a (1, 0)-form α of norm √ 2, then it has been proved in [1, Appendix A2] that ω and Ω defined by these formulas

ω = F - i 2 α ∧ α, Ω = 1 2 i α Ψ
provide an SU (2) structure. Given a pair (η 1 + , η 2 + ) of globally defined non-vanishing internal spinors corresponding to the internal components of the supersymmetry parameters, one can parametrize them as

(3) η 1 + = aη + , η 2 + = b(k || η + + k ⊥ 1 2 αη -), with 0 ≤ k || ≤ 1, k ⊥ = 1 -k 2
|| and a, b non-zero complex numbers such that a = η 1 + and b = η 2 + . As in [START_REF] Andriot | New supersymmetric flux vacua with intermediate SU(2)-structure[END_REF], we consider b = ā so that the relative phases of the spinors are fixed by |a| and θ, the latter given by e iθ = ā/a. Now depending on the values of k || and k ⊥ one can define starting from the spinors different type of G structures. Indeed, if k ⊥ = 0, or equivalently if η 1 + and η 2 + are parallel, then one has an SU (3) structure. If k ⊥ = 0 one has an SU (2) structure and in the particular case when k ⊥ = 1 and k || = 0 one gets the so called static SU (2) structure. But one can consider as in [START_REF] Andriot | New supersymmetric flux vacua with intermediate SU(2)-structure[END_REF] the intermediate case k ⊥ = 0 and k || = 0. The two orthogonal spinors η + and χ + = 1 2 αη -define an SU (2) structure (J, g, α, ω, Ω) on the internal manifold M 6 as above and, relating the numbers k || and k ⊥ to the angle φ ∈ [0, π 2 ] between the spinors by k || = cos(φ), k ⊥ = sin(φ), one obtains (see [START_REF] Dall'agata | On supersymmetric solutions of type IIB supergravity with general fluxes[END_REF]) the family of SU (3) structures on M 6 given by

Fφ = cos(2φ)ω + i 2 α ∧ α + sin(2φ)Re(Ω), Ψφ = α ∧ (-sin(2φ)ω + cos(2φ)Re(Ω) + iIm(Ω)),
or equivalently the family of SU (2) structures

(4) ωφ = cos(2φ) ω + sin(2φ)Re(Ω), Ωφ = -sin(2φ) ω + cos(2φ)Re(Ω) + iIm(Ω).
Definition 2.1. [START_REF] Andriot | New supersymmetric flux vacua with intermediate SU(2)-structure[END_REF] The SU (2) structure on (M 6 , J, g, α, ω, Ω) defined by ( 4) is

called intermediate if k || and k ⊥ are both different from zero. It is called static (or orthogonal) if k ⊥ = 1 and k || = 0.
We recall that an SU From now on by a symplectic half-flat, resp. Hermitian balanced, SU (2) structure (J, g, α, ω, Ω) we mean that the associated SU (3) structure given by ( 2) is symplectic half-flat, resp. Hermitian balanced.

SUSY equations

In this section we show that supersymmetric flux vacua with intermediate SU (2) structure are closely related to the existence of special classes of half-flat structures on the internal manifold. We begin by recalling the SUSY conditions derived by Andriot in [START_REF] Andriot | New supersymmetric flux vacua with intermediate SU(2)-structure[END_REF].

To solve the SUSY conditions, rather than using Killing spinors methods or Gstructures tools, in [START_REF] Andriot | New supersymmetric flux vacua with intermediate SU(2)-structure[END_REF] it was used the formalism of generalized complex geometry [START_REF] Gualtieri | Generalized Complex Geometry[END_REF][START_REF] Hitchin | Generalized Calabi-Yau manifolds[END_REF][START_REF] Graña | A scan for new N = 1 vacua on twisted tori[END_REF]. In generalized complex geometry for a d-dimensional manifold M , one considers the bundle T M ⊕ T * M , whose sections are generalized vectors (sums of a vector and a 1-form). The spinors on T M ⊕ T * M are Majorana-Weyl Cliff(d, d) spinors, and locally they can be seen as polyforms, i.e. sums of even/odd differential forms, which correspond to positive/negative chirality spinors. A Cliff(d, d) spinor is pure if it is annihilated by half of the Cliff(d, d) gamma matrices. Such pure spinors can be obtained also as tensor products of Cliff(d) spinors.

In the supergravity context, the Cliff(6, 6) pure spinors are defined as a biproduct Φ ± = η 1 + ⊗η 2 † ± of the internal supersymmetry parameters and, via the Fierz identity, they can be seen as polyforms

Φ ± = η 1 + ⊗ η 2 † ± = 1 8 6 k=0 1 k! (η 2 † ± γ µ k ...µ1 η 1 + )γ µ1...µ k .
The explicit expressions of the two pure spinors in terms of the forms (α, ω, Ω) are then

Φ + = |a| 2 8 e -iθ e 1 2 α∧α (k || e -iω -ik ⊥ Ω), Φ -= -|a| 2 8 α ∧ (k ⊥ e -iω + ik || Ω).
In general, by [START_REF] Gualtieri | Generalized Complex Geometry[END_REF] a pure spinor Φ can be written as

Φ = Ω k ∧ e B+iK ,
where Ω k is a holomorphic k-form, and B and K are real 2-forms. The rank k of the form Ω k is the type of the spinor. For the intermediate SU (2) structure where both k || and k ⊥ are different from zero, by [START_REF] Andriot | New supersymmetric flux vacua with intermediate SU(2)-structure[END_REF], the two pure spinors Φ + and Φ - can be rewritten as

Φ + = |a| 2 8 e -iθ k || e 1 2 α∧α-iω-i k ⊥ k || Ω , Φ -= - |a| 2 8 k ⊥ α ∧ e -iω+i k || k ⊥ Ω
and thus Φ + and Φ -have respectively type 0 and 1. In the case of the SU (3) structure (limit k ⊥ = 0),

Φ + = |a| 2 8 e -iθ e -iF , Φ -= -i |a| 2 8 Ψ
and the two pure spinors are of type 0 and 3, respectively. In the case of a static SU (2) structure (the other limit k || = 0) one has

Φ + = -i |a| 2 8 e -iθ Ω ∧ e 1 2 α∧α , Φ -= - |a| 2 8 α ∧ e -iω
and the two pure spinors are of type 2 and 1, respectively. Two pure spinors are said to be compatible if they have three common annihilators. A pair of compatible pure spinors defines an SU (3) × SU (3) structure on T M ⊕ T * M . Depending on the relation between the spinors η 1,2 + , this translates on T M into the SU (3), static SU (2) or intermediate SU (2) structures discussed above. So the formalism of generalized complex geometry allows to give a unified characterization of the topological properties a N = 1 vacuum has to satisfy: it must admit an SU (3) × SU (3) structure on T M ⊕ T * M . And so to satisfy this condition, one may verify that our vacua admit a pair of compatible pure spinors.

An N = 1 vacuum should satisfy the SUSY conditions, the equations of motion and the Bianchi identities for the fluxes. By [START_REF] Graña | Supersymmetric backgrounds from generalized Calabi-Yau manifolds[END_REF][START_REF] Graña | Generalized structures of N = 1 vacua[END_REF] the SUSY equations can be then written in terms of pure spinors by

(d -H∧)(e 2A-φ Φ 1 ) = 0, (d -H∧)(e A-φ Re(Φ 2 )) = 0, (d -H∧)(e 3A-φ Im(Φ 2 )) = e 4A 8 * λ(F ),
with Φ 1 = Φ ± , Φ 2 = Φ ∓ for IIA/IIB (upper/lower), following the conventions of [START_REF] Graña | A scan for new N = 1 vacua on twisted tori[END_REF]. The first of these equations implies that one of the two pure spinors (the one with the same parity as the RR fields) must be twisted (because of the -H∧) conformally closed. A manifold admitting a twisted closed pure spinor is a twisted Generalized Calabi-Yau (see [START_REF] Hitchin | Stable forms and special metrics[END_REF][START_REF] Graña | A scan for new N = 1 vacua on twisted tori[END_REF]) and one looks for vacua on such manifolds. The equations of motion of the fluxes are

(d + H∧)(e 4A * F ) = 0, d(e 4A-2φ * H) = ∓e 4A p F p ∧ * F p+2 ,
with the upper/lower sign for IIA/IIB. The Bianchi identities (we assume no NS source) are

(d -H∧)F = δ(source), dH = 0,
where δ(source) is the charge density of the allowed sources: space-filling D-branes or orientifold planes (O-planes). In compactification to 4-dimensional Minkowski, the trace of the energy momentum tensor must be zero. Then O-planes are needed since they are the only known sources with a negative charge, that can thus cancel the flux contribution to this trace. As in [START_REF] Andriot | New supersymmetric flux vacua with intermediate SU(2)-structure[END_REF] the RR Bianchi identities are then assumed to be (d

-H∧)F = i Q i V i ,
where Q i is the source charge and V i is (up to a sign) its internal co-volume (the covolume of the cycle wrapped by the source). The sign of the Q i indicates whether the source is a D-brane

(Q i > 0) or an O-plane (Q i < 0).
For intermediate SU (2) structures (for which k ⊥ k || is constant) in the large volume limit from the SUSY conditions one gets that the H Bianchi identities is automatically satisfied. Furthermore, for this class of compactifications, it was shown in [START_REF] Graña | A scan for new N = 1 vacua on twisted tori[END_REF] that the equations of motion for the RR fluxes are implied by the SUSY conditions. And it was shown in [START_REF] Koerber | Supersymmetric sources, integrability and generalized-structure compactifications[END_REF] that the equation of motion of H is implied by the SUSY conditions and the Bianchi identities. Then, in order to find a solution, having a pair of compatible pure spinors on an twisted generalized Calabi-Yau manifold with at least one O-plane, as in [START_REF] Andriot | New supersymmetric flux vacua with intermediate SU(2)-structure[END_REF] one has to verify that the SUSY conditions and the RR Bianchi identities are satisfied.

The presence of O-planes implies that the solution has to be invariant under the action of the orientifold. As shown in [START_REF] Koerber | Supersymmetric sources, integrability and generalized-structure compactifications[END_REF] the first step to derive the orientifold projection on the pure spinors is to compute those for the internal SUSY parameters. This can be done starting from the projection on the 10-dimensional SUSY spinorial parameters i and then reducing to the internal spinors η i ± . In our conventions, we have

O5 : σ(η 1 ± ) = η 2 ± , σ(η 2 ± ) = η 1 ± , O6 : σ(η 1 ± ) = η 2 ∓ , σ(η 2 ± ) = η 1
∓ , where σ is the target space reflection in the directions transverse to the O-plane. Using the expressions (3) for the internal spinors, one gets as in [START_REF] Andriot | New supersymmetric flux vacua with intermediate SU(2)-structure[END_REF] the following projection conditions at the orientifold plane:

O5 : e iθ = ±1, α ⊥ O5, O6 : e iθ free, Re(α) O6, Im(α) ⊥ 06.
The previous conditions can be expressed on α as

O5 : σ(α) = -α, O6 : σ(α) = ᾱ.
By [START_REF] Koerber | Supersymmetric sources, integrability and generalized-structure compactifications[END_REF] if the G-structures are constant (as the one which are considering), and if we work on nil/solvmanifolds (which will be our case), these conditions are valid everywhere (not only at the orientifold plane). Starting from the projections on the η i ± , as in [START_REF] Koerber | Supersymmetric sources, integrability and generalized-structure compactifications[END_REF][START_REF] Andriot | New supersymmetric flux vacua with intermediate SU(2)-structure[END_REF] one may derive the projections of the pure spinors Φ ± and from them those for the SU (2) structure forms. In particular one has

O5 : σ(ω) = (k 2 || -k 2 ⊥ )ω + 2k || k ⊥ Re(Ω), σ(Ω) = -k 2 || Ω + k 2 ⊥ Ω + 2k || k ⊥ ω, O6 : σ(ω) = (k 2 ⊥ -k 2 || )ω -2k || k ⊥ Re(Ω), σ(Ω) = -k 2 ⊥ Ω + k 2 || Ω -2k || k ⊥ ω.
By introducing as in [START_REF] Koerber | Supersymmetric sources, integrability and generalized-structure compactifications[END_REF] O5 :

k || = cos(φ), k ⊥ = sin(φ), 0 ≤ φ ≤ π 2 , O6 : k || = cos(φ + π 2 ) = -sin(φ), k ⊥ = sin(φ + π 2 ) = cos(φ), -π 2 ≤
φ ≤ 0, one gets in both cases the following formulas:

σ(ω) = cos(2φ)ω + sin(2φ)Re(Ω), σ(Re(Ω)) = sin(2φ)ω -cos(2φ)Re(Ω), σ(Im(Ω)) = -Im(Ω).
Since the previous projection conditions are not very tractable, in [START_REF] Andriot | New supersymmetric flux vacua with intermediate SU(2)-structure[END_REF] he worked in the projection (eigen)basis ( 5)

ω = 1 2 (ω + σ(ω)), ω ⊥ = 1 2 (ω -σ(ω)), Re(Ω) || = 1 2 (Re(Ω) + σ(Re(Ω))), Re(Ω) ⊥ = 1 2 (Re(Ω) -σ(Re(Ω))
), which can then be expressed in terms of the original SU (2)-structure as

ω = 1 2 ((1 + cos(2φ))ω + sin(2φ)Re(Ω)), ω ⊥ = 1 2 ((1 -cos(2φ)ω -sin(2φ)Re(Ω)), Re(Ω) = 1 2 ((1 -cos(2φ))Re(Ω) + sin(2φ)ω), Re(Ω) ⊥ = 1
2 ((1 + cos(2φ))Re(Ω)sin(2φ)ω). As in [START_REF] Andriot | New supersymmetric flux vacua with intermediate SU(2)-structure[END_REF] one takes e A = |a| 2 = 1 and go to the large volume limit, i.e. A = 0 and e φ = g s constant. This is indeed the regime in which one will look for solutions. The only remaining freedom is θ that we do not really need to fix. Moreover, we choose to look only for intermediate SU (2) structure, i.e. with k || = 0 and k ⊥ = 0 constant. Taking the coefficients constant is important because it simplifies drastically the search for solutions and the SUSY conditions are much simpler. In fact, by using the projection (eigen)basis ( 5) and the results in [START_REF] Graña | Supersymmetric backgrounds from generalized Calabi-Yau manifolds[END_REF][START_REF] Graña | Generalized structures of N = 1 vacua[END_REF], together with further simplications as explained in [START_REF] Andriot | New supersymmetric flux vacua with intermediate SU(2)-structure[END_REF], one can rewrite the SUSY equations in the following form:

• SUSY equations IIA:

(6)              d(Re(α)) = 0, k || H = k ⊥ d(Im(Ω)), d(Re(Ω) ⊥ ) = k || k ⊥ Re(α) ∧ d(Im(α)), H ∧ Re(α) = -k ⊥ k || d(Im(α) ∧ Re(Ω) || ),
together with F 0 , F 2 and F 4 given by

g s * F 0 = 1 2 k ⊥ d(Im(α)) ∧ (Im(Ω)) 2 + 1 k || H ∧ Re(α) ∧ Re(Ω) || , g s * F 2 = -k || d(Im(α)) ∧ Im(Ω) + 1 k || d(Re(Ω) || ) ∧ Re(α), g s * F 4 = -k ⊥ d(Im(α)).
• SUSY equations IIB:

(7)                          d(Re(α)) = 0, d(Im(α)) = 0, k || H = k ⊥ d(Im(Ω)), Re(α) ∧ H = -k ⊥ k || Im(α) ∧ d(Re(Ω) ⊥ ), Im(α) ∧ H = k ⊥ k || Re(α) ∧ d(Re(Ω) ⊥ ), Re(α) ∧ Im(α) ∧ d(Re(Ω) || ) = -H ∧ Im(Ω),
together with F 1 and F 3 given by

k ⊥ e iθ g s * F 1 = H ∧ Re(Ω) || , k ⊥ e iθ g s * F 3 = d(Re(Ω) || ).
Note that

1 cos φ Re(Ω) ⊥ , 1 sin φ Re(Ω) || , Im(Ω), α define a new SU (2) structure (α, ω , Ω ) on M with ω = 1 sin φ Re(Ω) || , Ω = 1 cos φ Re(Ω) ⊥ + i Im(Ω),
and then a new SU (3) structure (F , Ψ ). Moreover, since we will consider only O6 planes in IIA and O5 planes in IIB, by using a local adapted basis for this SU (2)-structure (see [START_REF] Conti | Generalized Killing spinors in dimension 5[END_REF]), one has that (α, ω, Ω) given by α = Re(α)

+ i k || Im(α), ω = 1 k ⊥ Re(Ω) ⊥ , Ω = Im(Ω) -i 1 k || Re(Ω) || ,
is also an SU (2) structure on M in the IIA case, and

α1 = k || Re(α) + i Im(α), ω = 1 k ⊥ Re(Ω) || , Ω = 1 k || Re(Ω) ⊥ + i Im(Ω), α2 = k || Im(α) -i Re(α), ω = 1 k ⊥ Re(Ω) || , Ω = 1 k || Re(Ω) ⊥ + i Im(Ω),
are SU (2) structures on M in the IIB case. We will use these structures in the next theorems, and the corresponding SU (3) structures will be denoted by ( F , Ψ). Notice that the almost complex structure Ĵ and the metric ĝ change with respect to those given by (α, ω , Ω ). 

1 k ⊥ Re(Ω) ⊥ = ω, Im(Ω) -i 1 k || Re(Ω) || = Ω, Re(α) + ik || Im(α) = α
are a solution of the equations [START_REF] Chiossi | Conformally parallel G 2 structures on a class of solvmanifolds[END_REF].

Proof. For type IIA the 2-forms

1 k ⊥ Re(Ω) ⊥ , 1 k || Re(Ω) || , Im(Ω) together with the complex 1-form Re(α) + ik || Im(α) define a new SU (2) structure with ω = 1 k ⊥ Re(Ω) ⊥ , Ω = Im(Ω) -i 1 k || Re(Ω) || , α = Re(α) + ik || Im(α)
and then a new SU (3) structure ( Ĵ, F , Ψ), with

F = ω + k || Re(α) ∧ Im(α), Ψ = α ∧ Ω.
By the second equation of ( 6) we have

H = k ⊥ k || d(Im(Ω)).
Then by the last equation of ( 6) we obtain

d(Im(Ω)) ∧ Re(α) = -d(Im(α) ∧ Re(Ω) || ),
i.e. that the real part of the form Ψ = α ∧ Ω is closed. Moreover, by

d(Re(Ω) ⊥ ) = k || k ⊥ Re(α) ∧ d(Im(α)), it follows that d(Re(Ω) ⊥ + k || k ⊥ Re(α) ∧ Im(α)) = k ⊥ d( F ) = 0,
and so we have a symplectic half-flat SU (2) structure on M 6 . Conversely, if M 6 has a symplectic half-flat SU (2) structure ( Ĵ, ĝ, α, ω, Ω) such that d(Re(α)) = 0, we have that the fundamental form

F = ω + Re(α) ∧ Im(α) = 1 k ⊥ Re(Ω ⊥ ) + k || Re(α) ∧ Im(α)
is closed and thus the equation

d(Re(Ω) ⊥ ) = k || k ⊥ Re(α) ∧ d(Im(α))
in ( 6) holds. By the closedness of the real part of the (3, 0)-form Ψ = α ∧ Ω we have that also the last equation in ( 6) is satisfied for

H = k ⊥ k || d(Im(Ω)).
Theorem 3.2. Let (M 6 , J, g, α, ω, Ω) be a 6-dimensional manifold endowed with an SU (2) structure such that the 2-forms Re(Ω) || , Re(Ω) ⊥ , Im(Ω) satisfy the equations [START_REF] Chiossi | The intrinsic torsion of SU(3) and G 2 structures[END_REF], then M 6 admits two half-flat SU (2) structures ( Ĵ1 , ĝ1 , α1 , ω, Ω) and ( Ĵ2 , ĝ2 , α2 , ω, Ω) such that d(α 1 ) = 0 and α2 = k || Im(α 1 ) -i Re( α1) k || . Conversely, let M 6 be a 6-dimensional manifold endowed with a half-flat

SU (2) structure ( Ĵ1 , ĝ1 , α1 , ω, Ω) satisfying d(α 1 ) = 0; if k || ∈ (0, 1) is such that the SU (2) structure ( Ĵ2 , ĝ2 , α2 = k || Im(α 1 ) -i Re( α1)
k || , ω, Ω) is half-flat, then the forms (Re(Ω) || , Re(Ω) ⊥ , Im(Ω), α) defined by

1 k ⊥ Re(Ω) || = ω, 1 k || Re(Ω) ⊥ + iIm(Ω) = Ω, k || Re(α) + iIm(α) = α1 ,
where k ⊥ = 1 -k 2 || , are a solution of the equations [START_REF] Chiossi | The intrinsic torsion of SU(3) and G 2 structures[END_REF].

Proof. As we already remarked previously for type IIB the 2-forms

1 k || Re(Ω) ⊥ , 1 k ⊥ Re(Ω) || , Im(Ω), α define a new SU (2) structure with ω = 1 k ⊥ Re(Ω) || , Ω = 1 k || Re(Ω) ⊥ + iIm(Ω), α1 = k || Re(α) + iIm(α)
and then a new SU (3) structure ( Ĵ1 , F , Ψ1 ), with

F = ω + k || Re(α) ∧ Im(α), Ψ1 = α1 ∧ Ω.
Suppose that the 2-forms Re(Ω) || , Re(Ω) ⊥ , Im(Ω) satisfy the equations ( 7), then by the first five equations we have

d(α ∧ (Re(Ω) ⊥ + iIm(Ω)) = 0. Then, d(Re(α 1 ∧ Ω)) = 0. Since (α 1 , ω, Ω) is an SU(2) structure, the condition Im(Ω) 2 = 1 k 2 ⊥ Re(Ω) 2

||

is satisfied [START_REF] Conti | Generalized Killing spinors in dimension 5[END_REF] and by the last equation of ( 7) we get and define Ψ2 = α2 ∧ Ω. We have two SU(3) structures ( F , Ψ1 ) and ( F , Ψ2 ). Indeed,

Re(α) ∧ Im(α) ∧ d(Re(Ω) || ) = -k ⊥ k || d(Im(Ω)) ∧ Im(Ω) = -1 k ⊥ k || d(Re(Ω) || ) ∧ Re(Ω) || . Therefore d((k ⊥ k || Re(α) ∧ Im(α) + Re(Ω) || ) 2 ) =
Re(α 1 ) ∧ Im(α 1 ) = Re(α 2 ) ∧ Im(α 2 ) = k || Re(α) ∧ Im(α),
so F is the same in both cases. Now, equation

Im(α) ∧ H = k ⊥ k || Re(α) ∧ d(Re(Ω) ⊥ )
implies that d(Re Ψ1 ) = 0, whereas equation

Re(α) ∧ H = - k ⊥ k || Im(α) ∧ d(Re(Ω) ⊥ )
implies that d(Re Ψ2 ) = 0. In conclusion we have that ( F , Ψ1 ) and ( F , Ψ2 ) are half-flat.

To prove the converse, we first notice that the fundamental form F1 is given by F1

= ω + Re(α 1 ) ∧ Im(α 1 ) = 1 k ⊥ Re(Ω) || + k || Re(α) ∧ Im(α)
, and therefore the closedness of the 4-form F1 ∧ F1 implies the last equation of ( 7) for

H = k ⊥ k || d(Im(Ω)).
Let us consider the complex 3-form Ψj = αj ∧ Ω, j = 1, 2. Since Re( Ψj ) = Re(α j ) ∧ Re( Ω) -Im(α j ) ∧ Im( Ω), we get that

d(Re( Ψj )) = k || k ⊥ Im(α j ) ∧ H - 1 k || Re(α j ) ∧ d(Re(Ω) ⊥ ).
For j = 1 we get the equation

Im(α) ∧ H = k ⊥ k || Re(α) ∧ d(Re(Ω) ⊥ )
, and for j = 2 we get Re(α) 

∧ H = -k ⊥ k || Im(α) ∧ d(Re(Ω) ⊥ ),
-k || ) k || sin 2 t + cos 2 t k || -sin 2 t k || -k || cos 2 t -sin t cos t( 1 k || -k || )
Next, using the characterization given in Theorem 3.2, we show that if there is solution of the SUSY equations IIB for any k || ∈ (0, 1), then the manifold must be Hermitian balanced. Proposition 3.4. Let (J, g, α, ω, Ω) be a half-flat SU (2) structure on a 6-manifold M 6 such that d(α) = 0 and for each λ ∈ (0, 1) the SU (2) structure (J λ , g λ , β λ = λ Im(α) -i Re(α) λ , ω, Ω) is half-flat. Then, (J, g, α, ω, Ω) is Hermitian balanced.

Proof. Let us consider the SU(3) structure (F, Ψ) given by F = ω + i 2 α ∧ α and Ψ = α ∧ Ω. According to Definition 2.2 we have to prove that Im(Ψ) is a closed form. Let (F, Φ λ ) be the SU (3) structure associated to (J λ , g λ , β λ , ω, Ω). Then, the real and imaginary parts of the forms Ψ and Φ λ are given by

Re(Ψ) = Re(α) ∧ Re(Ω) -Im(α) ∧ Im(Ω), Im(Ψ) = Re(α) ∧ Im(Ω) + Im(α) ∧ Re(Ω), Re(Φ λ ) = Re(α) λ ∧ Im(Ω) + λ Im(α) ∧ Re(Ω), Im(Φ λ ) = -Re(α) λ ∧ Re(Ω) + λ Im(α) ∧ Im(Ω).
The limit of the 3-form Φ λ exists when λ → 1 and equals -iΨ. Since Re(Φ λ ) is closed for any λ ∈ (0, 1), we conclude that Im(Ψ) is closed. Therefore, the SU (2) structure (J, g, α, ω, Ω) is Hermitian balanced.

Given a Hermitian balanced SU (2) structure (J, g, α, ω, Ω) such that d(α) = 0 and Re(α) ∧ d(Re(Ω)) = 0 one can construct a solution of the SUSY equations IIB for any k || ∈ (0, 1). Proposition 3.5. Let (J, g, α, ω, Ω) be a Hermitian balanced SU (2) structure on a 6-manifold M 6 such that d(α) = 0 and Re(α) ∧ d(Re(Ω)) = 0, then for each λ ∈ (0, 1) the SU (2) structure (J λ , g λ , β λ = λ Im(α) -i Re(α) λ , ω, iΩ) is half-flat.

Proof. We have

Ψ λ = (λ Im(α) -i Re(α) λ ) ∧ (iRe(Ω) -Im(Ω)) and thus Re(Ψ λ ) = -λ Im(α) ∧ Im(Ω) + Re(α) λ ∧ Re(Ω), Im(Ψ λ ) = λ Im(α) ∧ Re(Ω) + Re(α) λ ∧ Im(Ω).
By the assumptions on the SU (2) structure (J, g, α, ω, Ω) we get in particular that

Re(α) ∧ d(Re(Ω)) = Im(α) ∧ d(Im(Ω)) = 0
and therefore that d(Re(Ψ λ )) = 0.

Example 3.6. Let us consider a nilmanifold corresponding to the nilpotent Lie algebra h 4 = (0, 0, 0, 0, 12, 14 + 23), that is, there is a basis {e 1 , . . . , e 6 } satisfying de 1 = de 2 = de 3 = de 4 = 0, de 5 = e 12 de 6 = e 14 + e 23 .

We consider the structure (F, Ψ) given by the 2-form F = e 13 + e 24 -e 56 and the (3,0)-form Ψ = (e 1 + i e 3 )(e 2 + i e 4 )(e 6 + i e 5 ). Although h 4 admits Hermitian balanced structures, the previous structure is only half-flat. In fact, F 2 and Re(Ψ) are closed, but d(Im(Ψ)) = -e 1234 .

For the complex 3-form Φ λ = (λe 3 -i 

λ = -1 √ 2 , that is, Φ -1 √ 2 = (- e 3 √ 2 + i √ 2 e 1
)(e 2 + i e 4 )(e 6 + i e 5 ), and consider the complex 3-form Θ µ given by

Θ µ = ( √ 2µ e 1 + i e 3 √ 2µ
)(e 2 + i e 4 )(e 6 + i e 5 ).

It is easy to check that Re(Θ µ ) is closed for any value of µ. Notice that in particular Θ 1 √ 2 = Ψ, i.e. one member in the family is precisely the half-flat structure (F, Ψ)

given at the beginning. Again, by Theorem 3.2 we have the following solution (α, Re(Ω) || , Re(Ω) ⊥ , Im(Ω)) of the SUSY equations IIB for any k || = µ ∈ (0, 1): where k ⊥ = 1 -k 2 || . The fluxes are:

Re(α) = - 1 √ 2 k || e 3 , Im(α) = √ 2 e 1 , Re ( 
H = - k ⊥ k || e 234 , e iθ g s * F 3 = -e 126 + e 145 + e 235 , e iθ g s * F 1 = k ⊥ k || e 23456 .
From Theorem 3.1 it follows that a compact 6-manifold M 6 admitting a solution to equations ( 6) satisfies those topological restrictions imposed by the existence of a symplectic form, in particular the Betti numbers b 2 (M 6 ) and b 4 (M 6 ) do not vanish. Next we prove that b 1 (M 6 ) ≥ 2 for any compact manifold M 6 admitting solution to [START_REF] Chiossi | The intrinsic torsion of SU(3) and G 2 structures[END_REF]. In Examples 4.2.1 and 4.2.2 we show that this lower bound can be attained. Proposition 3.7. Let (M 6 , J, g, α, ω, Ω) be a 6-dimensional compact manifold endowed with an SU (2) structure such that the 2-forms Re(Ω) || , Re(Ω) ⊥ , Im(Ω) satisfy the equations [START_REF] Chiossi | The intrinsic torsion of SU(3) and G 2 structures[END_REF], then M 6 has first Betti number ≥ 2. In particular, there is no solution on compact simply connected 6-dimensional manifolds.

Proof. From equations [START_REF] Chiossi | The intrinsic torsion of SU(3) and G 2 structures[END_REF] we can prove that the closed 1-forms Re(α) and Im(α) are harmonic with respect to g. In fact, the 5-form * Re(α) is closed because it is a (constant) multiple of Im(α) ∧ (Im(Ω)) 2 , which is closed by the last equation of ( 7), taking into account the value of H. Similarly, the 5-form * Im(α) is also closed.

Let us remind that a Riemannian manifold (N, g) is called hyperkähler if there are three complex structures, I, J, K on N satisfying the quaternion relations

I 2 = J 2 = K 2 = -1, IJ = K = -JI,
and such that I, J, K are parallel. In particular, we have three Kähler forms ω I , ω J and ω K on N . Proposition 3.8. Let (N 4 , I, J, K) be a compact 4-dimensional hyperkähler manifold. Then, on the 6-dimensional manifold M 6 = N 4 × T 2 there exist solutions to the SUSY equations IIA and IIB. More precisely, if β 1 , β 2 is a basis of 1-forms on the torus T 2 , then (α, Re(Ω) || , Re(Ω) ⊥ , Im(Ω)) given by

Re(α) = β 1 , Im(α) = 1 k || β 2 , Re(Ω) || = -k || ω J , Re(Ω) ⊥ = k ⊥ ω K , Im(Ω) = ω I ,
solves equations [START_REF] Chiossi | Conformally parallel G 2 structures on a class of solvmanifolds[END_REF], and (α, Re(Ω) || , Re(Ω) ⊥ , Im(Ω)) given by

Re(α) = 1 k || β 1 , Im(α) = β 2 , Re(Ω) || = k ⊥ ω K , Re(Ω) ⊥ = k || ω I , Im(Ω) = ω J ,
are solutions to equations [START_REF] Chiossi | The intrinsic torsion of SU(3) and G 2 structures[END_REF].

Proof. Let us consider α1 = β 1 + i β 2 , ω = ω K and Ω = ω I + i ω J . Since the SU(3) structure ( F = β 12 + ω K , Ψ = α1 ∧ Ω) is integrable, the SU(2) structure ( Ĵ1 , ĝ1 , α1 , ω, Ω
) is obviously symplectic half-flat. Moreover, for any k || ∈ (0, 1) the

SU (2) structure ( Ĵ2 , ĝ2 , α2 = k || β 2 -i β 1 k || , ω, Ω
) is also half-flat and then the result follows from Theorems 3.1 and 3.2.

Notice that any compact hyperkähler surface is either a complex torus with a flat metric or a K3-surface with Calabi-Yau metric [START_REF] Besse | Einstein Manifolds[END_REF]. Also observe that for the solutions given in this proposition all the fluxes vanish.

Next we generalize the previous proposition by means of hypo structures on 5manifolds. We recall that an SU (2) structure on a 5-manifold P 5 is an SU (2)reduction of the principal bundle of linear frames on P , equivalently a triple (η, ω 1 , Φ), where η is a 1-form, ω 1 is a 2-form and Φ = ω 2 + i ω 3 is a complex 2-form on P such that

η ∧ ω 1 ∧ ω 1 = 0 , Φ 2 = 0 , ω 1 ∧ Φ = 0 , Φ ∧ Φ = 2 ω 1 ∧ ω 1 ,
and Φ is of type (2, 0) with respect to ω 1 . Following [START_REF] Conti | Generalized Killing spinors in dimension 5[END_REF], a SU(2) structure on a 5-manifold P 5 is said to be hypo if

dω 1 = d(ω 2 ∧ η) = d(ω 3 ∧ η) = 0.
Proposition 3.9. Let (P 5 , η, ω 1 , ω 2 , ω 3 ) be a compact 5-dimensional manifold endowed with a hypo SU [START_REF] Andriot | Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory[END_REF] structure such that dη = 0 = dω 2 . Then, on the 6dimensional manifold M 6 = P 5 × S 1 there exist solutions to the SUSY equations IIA and IIB. More precisely, if β is a global nonvanishing 1-form on S 1 then (α, Re(Ω) || , Re(Ω) ⊥ , Im(Ω)) given by

Re(α) = β, Im(α) = 1 k || η, Re(Ω) || = -k || ω 3 , Re(Ω) ⊥ = k ⊥ ω 1 , Im(Ω) = ω 2 ,
solves equations [START_REF] Chiossi | Conformally parallel G 2 structures on a class of solvmanifolds[END_REF], and (α, Re(Ω) || , Re(Ω) ⊥ , Im(Ω)) given by

Re(α) = 1 k || β, Im(α) = η, Re(Ω) || = k ⊥ ω 3 , Re(Ω) ⊥ = k || ω 1 , Im(Ω) = ω 2 ,
are solutions to equations [START_REF] Chiossi | The intrinsic torsion of SU(3) and G 2 structures[END_REF].

Proof. It is clear that the SU(2) structure ( Ĵ, ĝ, α = β + i η, ω = ω 1 , Ω = ω 2 + i ω 3 ) on M is symplectic half-flat. On the other hand, the SU(2) structure ( Ĵ1 , ĝ1 , α1 = β + i η, ω = ω 3 , Ω = ω 1 + i ω 2 ) on M is half-flat and, for any k || ∈ (0, 1), the SU (2) structure ( Ĵ2 , ĝ2 , α2 = k || η -i β k || , ω, Ω) is also half-flat. Therefore, the result follows from Theorems 3.1 and 3.2.

It is obvious that given a compact hyperkähler 4-manifold N 4 we can consider P 5 = N 4 × S 1 , but there are other manifolds to which this result can be applied. For example, a nilmanifold corresponding to the Lie algebra (0, 0, 0, 12, 13) with the hypo structure η = e 1 , ω 1 = e 24 -e 35 , ω 2 = e 25 + e 34 and ω 3 = e 23 + e 45 . We will treat this example in more detail in Section 4.1.

New explicit solutions of the SUSY equations IIA and IIB

In this section we show compact solvmanifolds admitting structures solving the SUSY equations IIA and IIB. From Theorem 3.1 and Proposition 3.5 we consider compact 6-solvmanifolds admitting both symplectic half-flat and Hermitian balanced SU (3) structures. 4.1. Nilmanifolds. Conti and Tomassini classified [START_REF] Conti | Generalized Killing spinors in dimension 5[END_REF] the nilmanifolds admitting invariant symplectic half-flat structures. It turns out that the underlying nilpotent Lie algebra must be isomorphic to the abelian Lie algebra, h 6 = (0, 0, 0, 0, 12, 13) or (0, 0, 0, [START_REF] Conti | Generalized Killing spinors in dimension 5[END_REF][START_REF] Dall'agata | On supersymmetric solutions of type IIB supergravity with general fluxes[END_REF][START_REF] Hattori | Spectral sequence in the de Rham cohomology of fibre bundles[END_REF]. Apart from the abelian Lie algebra, only h 6 admits Hermitian balanced structure [START_REF] Ugarte | Hermitian structures on six dimensional nilmanifolds[END_REF]. In fact, up to equivalence, there is a 1-parametric family of Hermitian balanced structures, which are described as follows (see [START_REF] Fernández | Non-Kähler heterotic string compactifications with non-zero fluxes and constant dilaton[END_REF] for details). The complex equations dω 1 = dω 2 = 0, dω 3 = ω 12 -ω 2 1, define a complex structure J on the Lie algebra h 6 and any complex structure on h 6 is equivalent to J. With respect to J, any Hermitian balanced structure is equivalent to one and only one of the form

F t = i 2 (ω 1 1 + ω 2 2 + t 2 ω 3 3),
for some t = 0. Let us consider the basis of 1-forms {β 1 , . . . , β 6 } given by

β 1 + i β 4 = ω 1 , β 2 + i β 3 = ω 2 , β 5 + i β 6 = 1 2 ω 3 .
In terms of this basis, we have the structure equations ( 8)

dβ 1 = dβ 2 = dβ 3 = dβ 4 = 0, dβ 5 = β 12 , dβ 6 = β 13 ,
and the complex structure J and the fundamental form F t are given by ( 9)

Jβ 1 = -β 4 , Jβ 2 = -β 3 , Jβ 5 = -β 6 , F t = β 14 + β 23 + 4t 2 β 56 .
Notice that the associated metric is

g t = β 1 ⊗ β 1 + • • • + β 4 ⊗ β 4 + 4t 2 β 5 ⊗ β 5 + 4t 2 β 6 ⊗ β 6
. From now on we consider the Hermitian balanced SU (3) structure (F t , Ψ t ) on h 6 given by ( 9) and (10) Ψ t = 2t (β 1 + i β 4 ) ∧ (β 2 + i β 3 ) ∧ (β 5 + i β 6 ).

• Solutions to equations IIB arising from Hermitian balanced structures on h 6 : For each t = 0, the structure (F t , Ψ t ) provides solutions to the SUSY equations IIB. According to Theorem 3.2, let us consider the half-flat SU(2) structure ( Ĵ1 , ĝ1 , α1 , ω, Ω) given by α1 = β 1 + i β 4 , ω = β 23 + 4t 2 β 56 , Ω = 2t (β 25 -β 36 ) + 2t i(β 26 + β 35 ).

By [START_REF] Chiossi | G 2 -structures with torsion from half-integrable nilmanifolds[END_REF] the forms β 25 -β 36 and β 26 + β 35 are closed, therefore for any k || ∈ (0, 1) we conclude that the SU (2) structure ( Ĵ2 , ĝ2 , α2 = k || Im(α 1 ) -i Re( α1) k || , ω, Ω) is half-flat. Therefore, in terms of the basis {β 1 , . . . , β 6 } we get the following explicit solutions (α, Re(Ω) || , Re(Ω) ⊥ , Im(Ω)) of the SUSY equations [START_REF] Chiossi | The intrinsic torsion of SU(3) and G 2 structures[END_REF]:

Re(α) = 1 k || β 1 , Im(α) = β 4 , Re(Ω) || = k ⊥ (β 23 + 4t 2 β 56 ), Re(Ω) ⊥ = 2t k || (β 25 -β 36 ), Im(Ω) = 2t(β 26 + β 35 ),
where k ⊥ = 1 -k 2 || . Notice that the fluxes are H = 0 = F 1 , and e iθ g s * F 3 = 4t 2 (β 126 -β 135 ).

• Solutions of the SUSY equations IIA on h 6 : For each t = 0, we consider the SU(2) structure ( Ĵ, ĝ, α, ω, Ω) given by [START_REF] Conti | Special symplectic six-manifolds[END_REF] 

α = β 1 + i β 4 , ω = 2t β 25 -2t β 36 , Ω = (β 2 + 2ti β 5 ) ∧ (-β 3 + 2ti β 6 ).
Since the forms β 14 and β 25 -β 36 are closed, and

d(Re(α ∧ Ω)) = β 1 ∧ d(β 23 + 4t 2 β 56 ) + 2tβ 4 ∧ d(β 26 + β 35 ) = 0,
we have that the SU(2) structure is symplectic half-flat for any t = 0. According to Theorem 3.1, since d(Re(α)) = dβ 1 = 0, the forms (α, Re(Ω) || , Re(Ω) ⊥ , Im(Ω)) given by

Re(α) = β 1 , Im(α) = 1 k || β 4 , Re(Ω) || = -2tk || (β 26 + β 35 ), Re(Ω) ⊥ = 2t k ⊥ (β 25 -β 36 ), Im(Ω) = -β 23 -4t 2 β 56
, provide solutions to the SUSY equations [START_REF] Chiossi | Conformally parallel G 2 structures on a class of solvmanifolds[END_REF]. Notice that the fluxes are

H = -4t 2 k ⊥ k || (β 126 -β 135 ), F 0 = 0, g s * F 2 = -4 t 2 k 2 || (β 1246 -β 1345 ) and F 4 = 0.
Next we show that solutions to equations IIA (resp. IIB) in general are not stable by small deformations inside the class of half-flat structures. For that, we first show explicitly that any Hermitian balanced structure (F t , Ψ t ) on h 6 given by ( 9)-( 10) can be deformed into a symplectic half-flat structure [START_REF] Conti | Special symplectic six-manifolds[END_REF] along a curve of half-flat structures. For each ϑ ∈ R, let us consider the SU(3) structure (F ϑ t , Ψ ϑ t ) given by F ϑ t = β 14 + cos ϑ β 23 + 2t sin ϑ β 25 -2t sin ϑ β 36 + 4t 2 cos ϑ β 56 , and Ψ ϑ t = (β 1 + i β 4 ) ∧ (β 2 + i cos ϑ β 3 + 2ti sin ϑ β 5 ) ∧ (-sin ϑ β 3 + 2t cos ϑ β 5 + 2tiβ 6 ). A direct calculation shows that Re(Ψ ϑ t ) is closed and dF ϑ t = 4t 2 cos ϑ(β 126 -β 135 ), which implies that F ϑ t ∧ dF ϑ t = 0. Therefore, the structure is half-flat for any ϑ, and (F 0 t , Ψ 0 t ) is the Hermitian balanced structure given by ( 9)- [START_REF] Conti | Half-flat nilmanifolds[END_REF], and (F

π 2 t , Ψ π 2 
t ) is the symplectic structure [START_REF] Conti | Special symplectic six-manifolds[END_REF].

Since F ϑ t is symplectic if and only if cos ϑ = 0, by Theorem 3.1 we have that the half-flat structure (F ϑ t , Ψ ϑ t ) does not solve equations (6) for ϑ ∈ (0, π 2 ). On the other hand, let us fix ϑ and consider the half-flat structure (F ϑ t , Ψ ϑ t ). For any λ ∈ (0, 1), a direct calculation shows that the structure (F = F ϑ t , Φ λ ) given by

Φ λ = (λβ 4 -i β 1 λ ) ∧ (β 2 + i cos ϑ β 3 + 2ti sin ϑ β 5 ) ∧ (-sin ϑ β 3 + 2t cos ϑ β 5 + 2tiβ 6 ).
is half-flat if and only if sin ϑ = 0. From Theorem 3.2 we conclude that the half-flat structure (F ϑ t , Ψ ϑ t ) does not provide a solution to equations [START_REF] Chiossi | The intrinsic torsion of SU(3) and G 2 structures[END_REF] for ϑ ∈ (0, π 2 ). Therefore, we have proved the following result: Proposition 4.1. The half-flat structure (F ϑ t , Ψ ϑ t ) does not solve neither (6) nor [START_REF] Chiossi | The intrinsic torsion of SU(3) and G 2 structures[END_REF] for any ϑ ∈ (0, π 2 ). Therefore, solutions to the SUSY equations IIA or IIB in general are not stable by small deformations inside the class of half-flat structures.

Compact solvmanifolds.

In this section we describe in detail two compact solvmanifolds solving the SUSY equations IIA and IIB. The corresponding simply-connected Lie group S 1 is isomorphic to R × (R φ R 4 ), where

φ(t) =     e t 0 0 0 0 e -t 0 0 0 0 e t 0 0 0 0 e -t     , t ∈ R.
Since φ(1) = exp SL(4,R) (φ (0)) ∈ SL(4, Z), by [START_REF] Gorbatsevich | Symplectic structures and cohomologies on some solv-manifolds[END_REF]Theorem 4] we have that Γ = Z φ Z 4 is a lattice in R φ R 4 and therefore Z × Γ = Γ 1 is a lattice of S 1 . By Hattori 's Theorem [START_REF] Hattori | Spectral sequence in the de Rham cohomology of fibre bundles[END_REF] we have that the de Rham cohomology of the compact quotient S 1 /Γ 1 is isomorphic to the Chevalley-Eilenberg cohomology H * (s 1 ) of s 1 and thus in particular b

1 (S 1 /Γ 1 ) = 2, b 2 (S 1 /Γ 1 ) = 5 and b 3 (S 1 /Γ 1 ) = 8.
Let us consider the almost complex structure

Jβ 1 = -β 2 , Jβ 3 = -β 5 , Jβ 4 = β 6 .
The basis of (1,0)-forms

ω 1 = β 1 + i β 2 , ω 2 = β 3 + i β 5 and ω 3 = -β 4 + i β 6 satisfies dω 1 = 0, dω 2 = 1 2 ω 12 + 1 2 ω 12 , dω 3 = - 1 2 ω 13 - 1 2 ω 13 .
Therefore, the almost complex structure J is integrable. Since the 2-form F = β 12 + β 35 -β 46 satisfies that F 2 = 2(β 1235 -β 1246 -β 3546 ) is closed, we get a Hermitian balanced SU(2) structure.

• Solutions of equations IIB arising from the Hermitian balanced structure on s 1 :

The previous structure provides solutions to the SUSY equations IIB. Let ( Ĵ1 , ĝ1 , α1 , ω, Ω) be the half-flat SU(2) structure given by α1 = β 1 + i β 2 , ω = β 35 -β 46 , Ω = -β 34 -β 56 + i(β 36 + β 45 ).

It follows from ( 12) that the 2-forms β 34 , β 56 and β 36 + β 45 are closed, which implies that for any k || ∈ (0, 1) the SU (2) structure ( Ĵ2 , ĝ2 , α2 = k || Im(α 1 )i Re( α1) k || , ω, Ω) is half-flat. By Theorem 3.2 we get the following solutions (α, Re(Ω) || , Re(Ω) ⊥ , Im(Ω)) of the SUSY equations [START_REF] Chiossi | The intrinsic torsion of SU(3) and G 2 structures[END_REF]: As in the previous example, the particular solutions on s 1 to equations IIA and IIB given above are not stable by small deformations inside the class of half-flat structures. For each ϑ ∈ R, the SU(2) structure (F ϑ , Ψ ϑ ) given by F ϑ = β 12 + cos ϑ(β 34 + β 56 ) + sin ϑ(β 35 -β 46 ) and Ψ ϑ = (β 1 + i β 2 ) ∧ (β 3 + i cos ϑ β 4 + i sin ϑ β 5 ) ∧ (-sin ϑ β 4 + cos ϑ β 5 + iβ 6 ) is half-flat, and for ϑ = 0 (resp. ϑ = π

Re(α) = 1 k || β 1 , Im(α) = β 2 , Re ( 
2 ) we get the symplectic (resp. Hermitian balanced) half-flat structure given above. A direct calculation shows that the halfflat structure (F ϑ , Ψ ϑ ) does not solve neither ( 6) nor [START_REF] Chiossi | The intrinsic torsion of SU(3) and G 2 structures[END_REF] for any ϑ ∈ (0, π 2 ). 4.2.2. Example. Let us consider the solvable Lie algebra s 2 = (0, 0, -13 -24, -14 + 23, 15 + 26, 16 -25), that is, there is a basis of 1-forms {β 1 , . . . , β 6 } satisfying The existence of a lattice Γ 2 of S 2 of the associated simply connected solvable Lie group S 2 was proved in [START_REF] Yamada | A pseudo-Kähler structure on a nontoral compact complex parallelizable solvmanifold[END_REF] (see also [START_REF] De Bartolomeis | On solvable generalized Calabi-Yau manifolds[END_REF]). The de Rham cohomology of the compact quotient S 2 /Γ 2 (also known as Nakamura manifold) is not isomorphic to H * (s 2 ) (see [START_REF] De Bartolomeis | On solvable generalized Calabi-Yau manifolds[END_REF][START_REF] Yamada | A pseudo-Kähler structure on a nontoral compact complex parallelizable solvmanifold[END_REF] and more recently [START_REF] Guan | Modification and the cohomology groups of compact solvmanifolds[END_REF][START_REF] Console | On the de Rham cohomology of solvmanifolds[END_REF] for the cohomology of solvmanifolds). The basis of (1,0)-forms ω 1 = β 1 + i β 2 , ω 2 = β 3 + i β 4 and ω 3 = β 5 + i β 6 satisfies

dω 1 = 0, dω 2 = ω 2 1, dω 3 = -ω 3 1,
that is, J is integrable. For each t ∈ R -{0}, the SU(3) structure (F t , Ψ t ) given by F t = t 2 β 12 + β 34 + β 56 , Ψ t = t (β 1 + i β 2 ) ∧ (β 3 + i β 4 ) ∧ (β 5 + i β 6 ), defines a 1-parametric family of (non-equivalent) Hermitian balanced SU (3) structures on s 2 and thus a 1-parametric family of (non-equivalent) Hermitian balanced SU (2) structures. Notice that the associated metric is

g t = t 2 β 1 ⊗ β 1 + t 2 β 2 ⊗ β 2 + β 3 ⊗ β 3 + • • • + β 6 ⊗ β 6 .

( 3 )Definition 2 . 2 .

 322 structure (F, Ψ) is said to be half-flat if d(F ∧ F ) = 0 and d(Re(Ψ)) = 0. If in addition dF = 0, then the SU (3) structure is said to be symplectic half-flat. An SU (3) structure (F, Ψ) on M 6 is called Hermitian balanced if d(F ∧ F ) = 0 and dΨ = 0.

Theorem 3 . 1 .

 31 Let (M 6 , J, g, α, ω, Ω) be a 6-dimensional manifold endowed with an SU (2) structure such that the 2-forms Re(Ω) || , Re(Ω) ⊥ , Im(Ω) satisfy the equations[START_REF] Chiossi | Conformally parallel G 2 structures on a class of solvmanifolds[END_REF], then M 6 admits a symplectic half-flat SU (2) structure ( Ĵ, ĝ, α, ω, Ω) with d(Re(α)) = 0. Conversely, if M 6 has a symplectic half-flat SU (2) structure ( Ĵ, ĝ, α, ω, Ω) such that d(Re(α)) = 0, then the forms (Re(Ω) || , Re(Ω) ⊥ , Im(Ω), α) defined by

  0, i.e. d( F ∧ F ) = 0. Then we have a half-flat SU (2) structure. Consider α2 = k || Im(α) -iRe(α)

e 1 λ 1 √ 2 . 1 √ 2 ) 1 √ 2 ) 1 √ 2 : 2 (e 24 - 2 (e 26 -

 112121212224226 )(e 2 + i e 4 )(e 6 + i e 5 ), a direct calculation shows that d(Re(Φ λ )) = 1 λ d(e 125 + e 146 ) + λ d(e 326 -e 345 ) = 2λ 2 -1 λ e 1234 , which implies that Re(Φ λ ) is closed only for λ = ± Notice that Im(Φ λ ) is closed for any λ, so (F, Φ ± are Hermitian balanced and (F, Φ provides a solution to equations (7). In fact, by Theorem 3.2 we have the following explicit solution (α, Re(Ω) || , Re(Ω) ⊥ , Im(Ω)) of the SUSY equations IIB for k || = k ⊥ = Re(α) = √ 2 e 1 , Im(α) = e 3 , Re(Ω) || = 1 √ e 56 ), Re(Ω) ⊥ = 1 √ e 45 ), Im(Ω) = e 25 + e 46 . Notice that the fluxes are: H = -e 234 , e iθ g s * F 3 = -e 126 + e 145 + e 235 , e iθ g s * F 1 = e 23456 . Now, let us start from the (Hermitian balanced) structure Φ λ for

  Ω) || = k ⊥ (e 24 -e 56 ), Re(Ω) ⊥ = k || (e 26 -e 45 ), Im(Ω) = e 25 + e 46 ,

4. 2 . 1 .

 21 Example. Let us consider the 6-dimensional 2-step completely solvable Lie algebra s 1 = (0, 0, 13, -14, 15, -16) with structure equations (12) dβ 1 = dβ 2 = 0, dβ 3 = β 13 , dβ 4 = -β 14 , dβ 5 = β 15 , dβ 6 = -β16 .

2 ||

 2 Ω) || = k ⊥ (β 35 -β 46 ), Re(Ω) ⊥ = -k || (β 34 + β 56 ), Im(Ω) = β 36 + β 45 ,wherek ⊥ = 1 -k 2 || .Notice that the fluxes are H = 0 = F 1 , and e iθ g s * F 3 = 2β 1 ∧ (β 35 + β 46 ).• Solutions of the SUSY equations IIA on s 1 : Let us consider the SU(2) structure ( Ĵ, ĝ, α, ω, Ω) given byα = β 1 + i β 2 , ω = β 34 + β 56 , Ω = (β 3 + iβ 4 ) ∧ (β 5 + iβ 6 ).Since the forms β 12 , β 34 and β 56 are closed, andd(Re(α ∧ Ω)) = β 1 ∧ d(β 35 -β 46 ) -β 2 ∧ d(β 36 + β 45 ) = 0,we have that the SU(2) structure is symplectic half-flat. By Theorem 3.1, since d(Re(α)) = dβ 1 = 0, the forms (α, Re(Ω) || , Re(Ω) ⊥ , Im(Ω)) given byRe(α) = β 1 , Im(α) = 1 k || β 2 , Re(Ω) || = -k || (β 36 + β 45 ), Re(Ω) ⊥ = k ⊥ (β 34 + β 56 ), Im(Ω) = β 35 -β 46 , provide solutions to the SUSY equations (6). The fluxes are H = 2 k ⊥ k || (β 135 + β 146 ), F 0 = 0, g s * F 2 = -2 k (β 1235 + β 1246 ) and F 4 = 0.

dβ 1 =

 1 dβ 2 = 0, dβ 3 = -β 13 -β 24 , dβ 4 = -β 14 + β 23 , dβ 5 = β 15 + β 26 , dβ 6 = β 16 -β 25 .

  In particular b 1 (S 2 /Γ 2 ) = 2, b 2 (S 2 /Γ 2 ) = 5 and b 3 (S 2 /Γ 2 ) = 8. Let us consider the almost complex structure Jβ 1 = -β 2 , Jβ 3 = -β 4 , Jβ 5 = -β 6 .

  so the equations (7) are satisfied.

	Remark 3.3. Notice that in the conditions of Theorem 3.2 we can define a 1-
	parametric family of half-flat SU (2) structures connecting the two given structures.
	In fact, by considering the usual rotation
	αt = k

|| sin t Re(α) + k || cos t Im(α) + i sin t Im(α) -i cos t Re(α), we have that ( F , αt ∧ Ω) is half-flat for any value of t. Notice that the fundamental 2-form F does not depend on t because Re(α t ) ∧ Im(α t ) = k || Re(α) ∧ Im(α). The almost complex structure Ĵt is given with respect to the basis {Re(α), Im(α)} by Ĵt = sin t cos t( 1 k ||
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• Solutions to equations IIB arising from Hermitian balanced structures on s 2 : For each t = 0, the structure (F t , Ψ t ) provides solutions to the SUSY equations IIB. According to Theorem 3.2, we consider the half-flat SU(2) structure ( Ĵ1 , ĝ1 , α1 , ω, Ω) given by

By [START_REF] Dall'agata | On supersymmetric solutions of type IIB supergravity with general fluxes[END_REF] the forms β 35 -β 46 and β 36 + β 45 are closed, therefore for any k || ∈ (0, 1) we conclude that the

Therefore, in terms of the basis {β 1 , . . . , β 6 } we get the following explicit solutions (α, Re(Ω) || , Re(Ω) ⊥ , Im(Ω)) of the SUSY equations [START_REF] Chiossi | The intrinsic torsion of SU(3) and G 2 structures[END_REF]:

where

Notice that the fluxes are H = 0 = F 1 , and e iθ g s * F 3 = -2β 1 ∧ (β 34 -β 56 ).

• Solutions of the SUSY equations IIA on s 2 : For each t = 0, we consider the SU(2) structure ( Ĵ, ĝ, α, ω, Ω) given by

Since the forms β 12 and β 36 + β 45 are closed, and

we have that the SU(2) structure is symplectic half-flat for any t = 0. According to Theorem 3.1, since d(Re(α)) = t dβ 1 = 0, the forms (α, Re(Ω) || , Re(Ω) ⊥ , Im(Ω))

given by

provide solutions to the SUSY equations [START_REF] Chiossi | Conformally parallel G 2 structures on a class of solvmanifolds[END_REF]. Notice that the fluxes are H = 2 k ⊥ k || (β 134 -β 156 ), F 0 = 0, g s * F 2 = -2 t k 2

||

(β 1234 -β 1256 ) and F 4 = 0.