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Abstract 

The impact and consequences of damage generation into genomic DNA, especially in the 

form of DNA double-strand breaks (DSB), and of the DNA damage response (DDR) 

pathways that are promptly activated have been elucidated in great detail 1-2. Most of this 

research, however, has been performed on proliferating, often cancerous, cell lines. In a 

mammalian body, the majority of cells is terminally differentiated (TD), and derives from 

a small pool of self-renewing somatic stem cells.  

Here, we comparatively studied DDR signaling and radiosensitivity in neural stem cells 

(NSC) and their TD-descendants, astrocytes – the predominant cells in the mammalian 

brain. Astrocytes play important roles in brain physiology, development and plasticity 3. 

We discovered that NSC activate canonical DDR upon exposure to ionizing radiation. 

Strikingly, astrocytes proved radioresistant, lacked functional DDR signaling, with key 

DDR genes such as ATM being repressed at the transcriptional level. Nevertheless, 

astrocytes retain the expression of non-homologous end joining (NHEJ) genes and indeed 

they are DNA repair proficient. Unlike in NSC, in astrocytes DNA-PK seems to be the 

PI3K-like protein kinase responsible for γH2AX signal generation upon DNA damage. 

We also demonstrate the lack of functional DDR signaling activation in vivo in astrocytes 

of irradiated adult mouse brains, while adjacent neurons activate the DDR. 
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Introduction 

Damage to genomic DNA elicits swift activation of DNA damage response (DDR), a 

molecular signaling cascade, which coordinates DNA repair, cell cycle arrest, and 

ultimately apoptosis or cellular senescence. Presently, most of DDR research is 

performed on proliferating and often transformed cells or, occasionally, transiently-

arrested quiescent cells. Yet the overwhelming majority of cells in multicellular 

organisms is terminally differentiated (TD) and does not proliferate. Non-dividing TD 

cells of the soma derive from proliferating or proliferation-proficient somatic stem and 

progenitor cells. However, it is unclear whether, and to which extent, somatic stem cells 

and their TD descendants respond to DNA damage by engaging the canonical DDR 

pathways observed in most commonly experimentally used cell systems. Likewise, the 

radiosensitivity of these two distinct cell types is poorly characterized. 

The canonical DDR pathways are now well elucidated 1-2. DNA double strand breaks 

(DSB) generation triggers the autophosphorylation and consequent activation of the 

apical PI3K-like protein kinase ATM at Serine 1981 (S1981), which is detectable in the 

form of nuclear foci assembling at DSB sites 4. Upon activation, ATM labels chromatin 

break sites over large distances of the chromosome through Serine139 (S139) 

phosphorylation of the histone H2A variant H2AX (γH2AX) 5. The serine/threonine 

kinase ATM targets a large number of downstream effectors with various enzymatic and 

transcriptional regulation capacities by phosphorylating their evolutionarily conserved 

serine/threonine-glutamine (S/TQ) target motif 1. Some of these effectors, such as 53BP1 

are focally recruited by ATM to DSB 6-7. Protein kinases like CHK2 and transcription 
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factors like p53 further relay DDR signaling throughout the nucleus ultimately regulating 

cell cycle progression and survival 1-2.    

DSB can be repaired by two major mechanisms. Homologous recombination (HR) 

operates mainly in S-G2 phases 8, therefore it is not active in G0-arrested and terminally 

differentiated cells. In these cells, DSB repair relies mainly on non-homologous end-

joining (NHEJ) 8. This pathway depends on the activity of a PI3K-like DNA-dependent 

protein kinase (DNA-PK), which consists of DNA-PK catalytic subunit (DNA-PKcs), 

KU70 and KU80 subunits of the KU heterodimer, and on the activity of DNA ligase IV 

and its associated cofactor XRCC4 9. Similarly to ATM, DNA-PK preferentially 

recognizes and phosphorylates a S/TQ motif 9.  

In this study we addressed DDR signaling and radioresistance of TD  astrocytes, which 

are the predominant cell type in the mammalian brain and play key roles in brain 

physiology, development and plasticity 3. Glial cells like astrocytes, but also neurons, 

derive from neural stem cells (NSC) residing in specific brain areas 10. It is known from 

previous studies that ionizing radiation received prenatally from atom bomb explosions in 

Japan have debilitating effects on human brain development 11 and the risk of mental 

retardation is a crucial safety issue for radiation therapy during pregnancy 12. We see it 

necessary to combine today’s knowledge of stem cells, differentiation and molecular 

DDR signaling to better understand the impact of DNA damage generation in the brain. 

In our study, we interrogate murine NSC and their TD descendants astrocytes by 

comparatively testing the functionality of their DDR pathways at the molecular level in 

vitro and in vivo.  
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Results 

 In order to comparatively assess DDR signaling in somatic stem cells and their TD 

descendants, we employed murine ES-cell derived NSC, which are fully tri-potent in 

their ability to differentiate into neurons, oligodendrocytes and astrocytes 13. We 

employed the established method of rapid and efficient differentiation of NSC into 

astrocytes by supplementing growth medium with fetal calf serum (FCS) 13. FCS induces 

a proliferative arrest associated with morphological changes typical of astrocytic 

differentiation in all cultured cells within 24-48 hours (Fig. S1 and data not shown); in 

order to assure a complete terminal differentiation, all experiments were performed 7 

days following FCS treatment. 

First, we aimed to determine whether NSC and NSC-derived astrocytes exposed to X-

rays are capable of responding to genotoxic insults by the activation of a robust canonical 

DDR.  For this purpose, we studied the formation of nuclear foci of the activated key 

components of the DDR signaling cascade by means of immunofluorescence analysis and 

confocal microscopy. In order to ascertain the differential cell types studied, we took 

advantage of the fact that NSC are virtually negative for the intermediate filament glial 

fibrillary acidic protein (GFAP), while TD-astrocytes express high levels of GFAP (13  

and Fig.  1). As readout for DDR activation, we stained NSC and astrocytes for the auto-

phosphorylated and thus activated form of ATM (ATM-pS1981), for phosphorylated 

S/TQ epitope (pS/TQ), 53BP1 and γH2AX foci one hour after exposure of cells to X-rays 

(10Gy). We observed that NSC show bright nuclear foci for all the four markers 

analyzed, while not irradiated cells showed virtually no nuclear foci assembly (Fig.  1A 
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and Fig. S2). Astrocytes however, when processed in parallel, show a comparably 

strongly reduced phospho-ATM foci formation and no detectable pS/TQ or 53BP1 

nuclear foci one hour after irradiation. Even a large dose of 50Gy fails to elicit 53BP1 

foci formation in astrocytes (Fig. S3). Remarkably though, γH2AX is still clearly 

detectable in astrocytes, indicating the presence of irradiation-induced S/TQ kinase 

activity (Fig.  1B and Fig. S2). In order to ascertain the co-localisation of γH2AX foci 

with other DDR markers, such as 53BP1, we irradiated NSC and astrocytes with 1Gy 

only (Fig. S3). Due to fewer DSB generated, discrete and separate γH2AX foci can be 

clearly detected in NSC and astrocytes and, in the former, γH2AX and 53BP1foci neatly 

co-localize.  

Next we investigated whether the suppressed DDR signaling in astrocytes might be the 

consequence of altered expression pattern of DDR gene associated with astrocytic 

differentiation. We comparatively quantified the mRNA expression levels of DDR 

factors ATM, MRE11, MDC1, CHK2 and p53 by quantitative RT-PCR (qRT-PCR) in 

TD-astrocytes versus NSC. We found all these genes to be transcriptionally strongly 

downregulated in astrocytes when considering their individual expression levels in NSC 

as reference (Fig.  2A). While DDR signaling was suppressed, our qRT-PCR analysis 

however revealed that the non-homologous end-joining (NHEJ) pathway of DNA repair 

was not significantly downregulated (Fig.  2A), as shown for DNA-PKcs, KU70, KU80, 

Ligase 4 (LIG4), XRCC4, and 53BP1 gene expression levels – the latter was recently 

reported to be involved also in DNA repair 14.  

We then comparatively studied the ATM-dependent DDR signaling in irradiated NSC 

and astrocytes by the means of western blot analyses. In NSC, irradiation lead to ATM 
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autophosphorylation and a mobility shift of CHK2, suggesting its DNA damage-induced 

phosphorylation, while in astrocytes phospho-ATM was not detectable at 1h or 24h after 

irradiation and CHK2 protein was completely absent (Fig.  2B), in agreement with their 

gene expression profiles (Fig.  2A). Reflecting the insufficient ATM signaling in 

astrocytes, 53BP1 was not recruited or retained at the DNA damage sites (Fig.  1B), 

despite being expressed in astrocytes at levels comparable to NSC (Fig.  2A,B).  

We also determined that DNA damage-induced phosphorylation of p53 at Serine-15 

(S15, a residue targeted by ATM) and accumulation of p53 protein 15, were fully 

functional in NSC, while less pronounced in irradiated astrocytes (Fig.  2B, left panel). 

Still, we could detect some transcriptional upregulation of the p53 transcriptional gene 

target p21CIP (Fig.  2C). Since we failed to detect the p21CIP protein by western blotting in 

irradiated astrocytes, as opposed to irradiated NSC (Fig. S4A), this upregulation of p21CIP 

mRNA is likely insufficient to achieve a significant physiological impact. Another cell 

cycle controlling p53-target, GADD45α, was found unchanged, and the pro-apoptotic 

p53-target genes BAX and PUMA16 were induced only very weakly (Fig.  2C). In 

irradiated NSC however, we detected a robust upregulation of PUMA transcript (Fig. 

S4B).We also tested whether DDR genes transcriptional suppression in astrocytes can be 

reversed by a challenge with DNA damage and performed a qRT-PCR analysis for the 

same DDR factors studied in Fig.  2A on irradiated astrocytes (24h after 10Gy exposure) 

vs unchallenged astrocytes. Remarkably, we saw no change in the DDR gene expression 

(Fig.  2C).  

In order to test whether these findings are also applicable to adult NSC and their astrocyte 

descendants, we employed NSC derived from adult murine forebrain 13. We derived 
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astrocytes from these cells and performed comparative analyses of DDR in adult NSC 

and astrocytes (Fig. S5). Indeed, we could observe that, upon irradiation, GFAP-

expressing astrocytes have strongly attenuated phosphorylation and reduced protein 

levels of ATM, CHK2 and p53 when compared to parental adult NSC (Fig. S5A). Also in 

this setup, we found these and other DDR factors to be transcriptionally downregulated 

upon astrocytic differentiation (Fig. S5B). 

Although we did not detect any functional activation of key DDR proteins in astrocytes, 

even after 50Gy of irradiation, when we performed a detailed kinetics analysis of ATM 

phosphorylation in irradiated astrocytes, we could detect its delayed and transient 

appearance by western blotting (Fig.  3A), implying a potential function for the observed 

residual activated ATM. 

Interestingly, already 3 hours after irradiation the intensity of γH2AX signal started to 

diminish, 24h after irradiation γH2AX was barely detectable in astrocytes (Fig.  3A). 

γH2AX signal is generally considered a reliable marker of DSB presence 17. To test 

whether its downregulation is the outcome of DNA damage repair or attenuation of 

H2AX phosphorylation in these cells, we re-irradiated astrocytes 24h after the first round 

of irradiation. Here, the already extinguished initial γH2AX signal could be fully detected 

again one hour after the second round of irradiation (Fig.  3C,D) that loss of γH2AX 

signal in astrocytes 24h after irradiation is not caused by an irradiation-induced decline in 

H2AX phosphorylation proficiency. 

Noteworthy, even combined irradiation of 20Gy was unable to induce a significant 

increase in apoptosis as compared to not irradiated astrocytes (Fig.  3B). In NSC, already 

a single irradiation of 10Gy lead to distinct apoptosis when measured 72h later (Fig.  3B), 
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demonstrating, consistently with their lack of robust DDR signaling, that astrocytes are 

radioresistant as compared to parental NSC.  

ATM is the main kinase involved in γH2AX generation upon DSB formation 4-5.  Yet, 

also the other two DNA-dependent PI3K-like protein kinases, ATR and DNA-PK, are 

capable of phosphorylating H2AX 17. Our data however provide little evidence that ATR 

may play any functional role in astrocytes, since we could not detect ATR protein by 

western blotting, consistently with ATR’s nature as S-phase specific PI3K-like protein 

kinase 17.  Differently, DNA-PKcs was expressed in astrocytes at levels comparable to 

NSC (Fig.  2). Based on these observations, we set on to elucidate the roles of ATM and 

DNA-PK in the DNA-damage induced H2AX phosphorylation in NSC and astrocytes 

using following small molecule inhibitors: a DNA-PK inhibitor18 (DPKi, NU7441) and 

an ATM inhibitor 19 (ATMi, KU55933) or both inhibitors in combination. Under these 

conditions, we analyzed the intensity of γH2AX signal by two different methods: western 

blotting of total cell extracts (Fig.  4A) and flow cytometrical immunofluorescence 

analysis at the single cell level (Fig.  4B and Fig. S7). In NSC, inhibition of ATM had a 

profound impact on DNA damage induced phosphorylation of not only ATM-S1981, but 

also γH2AX as well as on the overall S/TQ phosphorylation pattern, while the inhibition 

of DNA-PK in NSC had no appreciable effect on any of these parameters (Fig.  4A and 

Fig. S6).  Vice versa, in astrocytes, DNA-PK inhibitor showed a strong inhibitory impact 

on H2AX phosphorylation, while ATM inhibitor did not have such an effect (Fig.  4A). 

These findings were reproduced by flow cytometrical (Fig.  4B and Fig. S7) and 

immunofluorescence analyses (Fig.  4C and Fig. S8), where DNA-PK, but not ATM 
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inhibition in astrocytes one hour after irradiation notably reduced the population of highly 

γH2AX-positive cells resp. the intensity of the γH2AX signal. 

We have shown ATM in astrocytes to be strongly reduced, but not to undetectable levels 

(Fig.  3A). Next we set on to elucidate, why its pharmacological inhibition did not lead to 

any reduction of γH2AX levels. We performed a COMET assay 20 under neutral 

conditions, which allows to directly and quantitatively detect DNA DSB in individual 

cells (Fig.  4D). In the COMET assay, gel electrophoresis revealed “tails” generated by 

broken DNA in irradiated astrocytes, and for each individual cell a so-called Olive tail 

moment was calculated. As above, we treated cells prior to irradiation with DPKi, ATMi 

or both inhibitors in combination. One hour after irradiation, the median Olive tail 

moment of KU55933-treated cells was significantly higher than that of DMSO or DPKi 

alone treated cells, indicating higher number of DSB. 24h later, cells were able to repair 

DNA under all conditions (as indicated by the reduction of the Olive tail moment), but 

significantly less efficiently when treated with both inhibitors together. These findings 

indicate that, despite its low expression levels, ATM plays a role in DNA repair in 

astrocytes and it acts in conjunction with DNA-PK. In combination with ATM inhibition, 

DPKi treatment lead to a significant retention of unrepaired DSB breaks in astrocytes 

even 24h after irradiation (Fig.  4D), indicating that ATM and DNA-PK are both 

involved in the DSB-repair in astrocytes. 

Noteworthy, we again did not observe an apoptotic response in astrocytes three days after 

exposure to 10Gy irradiation, with or without additional treatments with ATMi and 

DNA-PKi. However, as a control, non-genotoxic cell poisons puromycin and hygromycin 

B were able to elicit strong apoptotic response in NSC-derived astrocytes (Fig.  4E).  



 11

NSC are also responsible for the generation of neurons. Hence, we decided to analyze the 

functionality of DDR signaling in NSC-derived neurons, as generated by the use of an 

established in vitro differentiation protocol 21. Neurons derived in this manner stop 

proliferating, express markers specific for TD- neurons (such as the cytoskeletal filament 

protein Tuj1, also known as β-tubulin-III) and can therefore be regarded as terminally 

differentiated (Fig. S8A; 13). We irradiated these neuron cultures with 10Gy in parallel 

with parental NSC and analyzed them under the same conditions. Tuj1 was used as a 

specific marker in order to detect terminally differentiated neurons by 

immunofluorescence and confocal microscopy (Fig.  5A). In both cell types, no nuclear 

pS/TQ signal was detectable in not irradiated cells (Fig. S8B). One hour after irradiation 

we detected formation of prominent pS/TQ foci in NSC, which stained negative for Tuj1 

(Fig.  5A, upper panel). In Tuj1-positive neurons, pS/TQ foci also formed upon 

irradiation, their intensity being comparable to that in NSC (Fig.  5A, lower panel and 

Fig. S8B). We conclude that, differently from astrocytes, and consistently with previous 

reports 22-23, neurons do activate canonical DDR upon DNA damage, thus highlighting 

the unique peculiarity of astrocytes.  

Finally, we extended and verified our conclusions in vivo. We irradiated adult mice sub-

lethally with 8Gy and sacrificed them after one hour in order to study DDR activation by 

immunofluorescence in vivo in their brains (Fig.  5B). Analyses of the brain sections by 

confocal microscopy revealed that neurons, labeled with an antibody against the neuron-

specific transcription factor NeuN, showed a diffuse nuclear 53BP1 signal, unlike 

adjacent GFAP-positive astrocytes (Fig.  5B, upper panel). Correspondingly, brain 

neurons displayed strong 53BP1 foci formation upon irradiation, while adjacent 
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astrocytes showed no detectable 53BP1 foci (Fig.  5B, lower panel), indicating a striking 

difference of DDR signaling between adjacent neurons and astrocytes in vivo.  

 

Discussion 

We describe here a comparative study of DDR activation and radioresistance in somatic 

stem cells and their terminally differentiated descendants. In our system of NSC and 

NSC-derived astrocytes, we have discovered that NSC show robust activation of 

canonical DDR signaling upon X-ray irradiation, as measured by nuclear foci assembly 

of activated ATM, its phosphorylation substrates pS/TQ, 53BP1 and γH2AX, and 

consistent DDR activation as detected by immunoblotting. This proves that NSC can 

mount a robust DDR activation upon genotoxic stress and highlights the different 

regulation of DDR in these somatic stem cells and the embryonic stem cells (from which 

our NSC derive), which have been reported to show reduced checkpoints and 

dysfunctional DDR protein localization and functions 24.  

Surprisingly however, we observed, both in vitro and in vivo, that the activation of ATM 

and its downstream DDR factors were strongly inhibited in astrocytes. We show that the 

mechanism of DDR inhibition involves a stable transcriptional repression of key DDR 

genes. The astrocytes used in our study are non-proliferating terminally differentiated 

cells, thus reproducing the state of the overwhelming majority of adult brain astrocytes 25. 

Deficits in this key feature are the likely reason for a certain degree of DDR activation 

observed in proliferating astrocytic lines 26-27 and differentiated astrocytes displaying 

residual proliferation 28. Importantly, downregulation of DDR is peculiar of astrocytes 

and is not necessarily associated with terminal differentiation. Indeed, as a relevant 
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comparison, we show that neurons display a detectable DDR both in vitro and in vivo. 

Similar conclusions in regard to ATM activation in neurons have been reported 22.  

At the current stage, one can speculate if the evolutionary reason for astrocytes to 

downregulate DDR signaling is to avoid apoptosis upon genotoxic stress. We show that 

TD astrocytes are, unlike the parental NSC, radioresistant and do not undergo apoptosis 

upon irradiation. Similar observations were made in TD muscle cells, where the DDR 

cascade was suppressed at the p53 level 29. Irradiation-induced tissue failures may hence 

derive from the demise of respective stem and progenitor cells, and not TD cells. As we 

show here, the apoptosis-controlling ATM-CHK2-p5320 axis in astrocytes is strongly 

attenuated by the transcriptional downregulation of these genes. Indeed, the pro-apoptotic 

p53 target gene PUMA is hardly induced in irradiated astrocytes, consistent with the 

observed lack of apoptosis. In NSC, we detected a clear apoptotic response and PUMA 

was found strongly upregulated, confirming the role of this p53-target in stem cell 

apoptosis 30. In neurons, p53-dependent cell death upon genotoxic stress was also 

reported, and sometimes associated with their re-entry into cell cycle 31-32, while in vivo 

astrocytes are only known to re-enter cell cycle under pathological condition of reactive 

gliosis 25. In this respect in would be interesting to check whether DDR and apoptosis 

proficiency of brain astrocytes increases when they undergo injury-induced reactive 

gliosis.  It is therefore possible that different TD cell types are differently radiosensitive, 

depending on their specific role and physiological context.   

Despite suppressed DDR signaling pathways, DNA damaged-induced phosphorylation of 

H2AX at S139 is still clearly detectable in astrocytes. γH2AX formation upon DNA 

damage is commonly associated with ATM function, yet ATM is downregulated and its 
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residual activation is very much delayed compared with the rapid and efficient γH2AX 

foci assembly in these cells. ATR expression is inhibited too; this is expected given its 

specialized role in DNA replication 17. The third family member of the DNA dependent 

PI3K-like kinases, DNA-PK, is a key enzyme in DSB repair. The DNA-PK-dependent 

NHEJ repair pathway is the main DSB repair pathway used in non-proliferating cells. We 

found DNA-PK and other key NHEJ genes to be expressed in differentiated astrocytes. 

Moreover, we revealed that in TD-astrocytes, DNA-PK is actually responsible for DNA 

damage induced H2AX phosphorylation, unlike in NSC, where ATM appears to be the 

main responsible kinase. Such substituting role of DNA-PK in cells lacking robust ATM 

activity is consistent with observations in ATM-deficient cells 33-35 and mouse models 36-

37, in which DNA-PK can take over the role of ATM in phosphorylating H2AX. It is 

worth considering that ATM cannot be directly recruited to DSB, rather requiring the 

DNA-binding role of proteins of the MRE11/RAD50/NBS1 complex 1, which we found 

strongly downregulated in astrocytes. Yet DNA-PKcs is recruited to broken DNA ends 

through its KU70/80 subunits 38. This binding to DSB would enable the DNA-PK 

complex to exert its kinase activity on proximal H2AX despite the transcriptionally 

suppressed apical DDR signaling cascade in astrocytes.  

The disappearance of γH2AX foci in astrocytes can be interpreted as successful DNA 

repair and indeed, DSB repair is functional in these cells, as demonstrated by COMET 

assays. However we observed that in astrocytes inhibition of DNA-PK alone is not 

sufficient to significantly impair DNA repair in irradiated astrocytes, unless combined 

with inhibition of ATM. We could indeed detect some amount of delayed ATM activity 

in irradiated astrocytes. Apparently, these marginal levels of ATM in astrocytes are 
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responsible for DNA repair. This may be a valuable observation when considering 

Ataxia-telangiectasia patients carrying reduced but not completely absent ATM activity 

or mouse models with hypomorphic ATM alleles.  

It remains to be elucidated which mechanisms might be responsible for downregulation 

of DDR in astrocytes and maybe other TD cells, and for the qualitative differences in 

DDR proficiency among various types of TD cells. DSB repair kinetics are not equal 

among cell types 39 and we have preliminary evidence that in NSC it is faster than in TD 

astrocytes (data not shown). But also among similar tissues, the efficiency of  γH2AX 

foci formation and DNA repair vary in age-related manner in TD cells 40.  Further 

research also is needed to uncover the physiological and evolutionary reasons on the 

diversity of DDR, DNA-repair pathways and radioresistance in somatic stem cells and 

various kinds of terminally differentiated cells in developing and adult organisms.  

 



 16

Materials and Methods 

 

Cell culture and treatments 

Murine ES-derived neural stem cells (NSC, 13) were grown in Euromed-N cell culture 

medium (Euroclone), supplemented with 2mM L-glutamine, 100U/ml penicillin and 

100μg/ml streptomycin, 1x N2 supplement  (Invitrogen), 20ng/ml murine EGF and FGF2 

(ProSpec, Israel) at 5% CO2 and 37° C. Astrocyte differentiation and culture medium 

was DMEM/F12 with 2mM L-glutamine, 100U/ml penicillin, 100μg/ml streptomycin 

and 10% FCS. Neuron differentiation was performed as described in 21. NU744118 and 

KU5593319 (Tocris) were dissolved in DMSO and used at 1µM final concentration 

overnight prior to irradiation. X-ray irradiation of cells was performed in a Faxitron RX-

650 device for 5 min at 2Gy/min (total of 10Gy).  

Immunoblotting 

Cells were lysed in NP40 lysis buffer (1% NP40, 50mM Tris-Cl pH 8, 150mM NaCl, 

2mM EDTA, 1mM DTT, 1mM NaF, 100µM Na2VO4 and protease inhibitor cocktail 

(Roche) or in Lämmli lysis buffer (for γH2AX analysis) and 20-50µg of whole cell lysate 

in Lämmli loading buffer were resolved by SDS-PAGE, transferred to nitrocellulose 

membranes (Protran) using Biorad electrophoresis systems and probed with primary and 

secondary antibodies in 5% bovine serum albumin (BSA) and  skimmed milk, 

respectively. 

Antibodies 

Mouse monoclonal antibodies against: Nestin, CHK2, γH2AX (Millipore); ATM, 

vinculin, α-tubulin (Sigma Aldrich); ATM pS1981* (Rockland); Nestin (BD 

Biosciences); Tuj1 (Covance); NeuN (Abcam). Rabbit poly- and monoclonal antibodies 
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against: GFAP (Dako); pS/TQ, p53 pS15 (Cell Signaling Technology); p53 (FL393) 

(Santa Cruz Biotechnologies); 53BP1 (Novus); Chicken polyclonal antibody against 

GFAP (Abcam). *S1981 of human ATM, against which the antibody was generated, 

corresponds to Ser1987 of the murine ATM (Pellegrini et al, Nature, 2006). 

Immunofluorescence microscopy 

Cells cultured on glass cover slips were fixed in methanol/acetone (1:1, 3 minutes at 

room temperature), blocked with 0.5% BSA and 0.2% gelatin in PBS, thenprobed with 

appropriate primary antibodies and Alexa-fluor 488-, 568- and 647-labeled secondary 

antibodies (Invitrogen). DNA was counterstained with DAPI (Sigma Aldrich). Confocal 

images were obtained with a Leica TCS SP2 AOBS confocal laser microscope by 

sequential scanning.  

Gene expression analysis 

Total RNA was extracted from live cells with Trizol reagent (Invitrogen), precipitated 

with isopropanol and ethanol and dissolved in DEPC-treated water (Invitrogen). 1 µg of 

total RNA (as quantified with NanoVue device, General Electric (GE)) was used for 

retrotranscription using VILO reverse transcription kit (Invitrogen) according to 

manufacturer’s instructions and without RNAse treatment. RT- reactions (without reverse 

transcriptase enzyme) were prepared. Estimated 20ng of cDNA in 25µl reaction volume 

were analyzed in triplicate by quantitative RT-PCR amplification on a Light Cycler 480 

system (Roche) using SYBR Green assay (QuantiFast SYBR Green PCR Kit, Qiagen) 

according to manufacturer’s instructions and for 40 cycles. CT-values were obtained by 

calculation of the second derivative using Light Cycler 480 software (Roche) and 

normalized among samples against the housekeeping gene (B2M). RT- preparations on 
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the housekeeping gene proved to be negative. Forward and reverse primers (FP and RP) 

were designed with Roche UniversalProbe Library software against Mus musculus:  

B2M:  FP: CTGCAGAGTTAAGCATGCCAGTA; RP: TCACATGTCTCGATCCCAGTAGA 

ATM: FP: TGCAGATTTATATCCATCATCCAC; RP: TTTCATGGATTCATAAGCACCTT  

53BP1: FP: AAAGTCTGCCACCGTGAAAC; RP: TCTCCAGTCTCACAGGGACTC 

MRE11: FP: CTTTTTCAGGCACAGGGAAC; RP: TGTGATGAGCATCCCAAAGT  

MDC1: FP: AGGGCAGCTACGTCTCTTCA; RP:  CCAAGGTAGAGGGGGAAATC 

CHK2: FP: TTATTCCTGAAGTCTGGACAGATG; RP: CTAACAGTTTCTTGACAAGGTCCA 

p53: FP: ACGCTTCTCCGAAGACTGG; RP: AGGGAGCTCGAGGCTGATA 

DNA-PKcs: FP: TGCAGAGAAATGTGATTGCAC; RP: CCACGGTGGAAGATCTTTTG 

KU70: FP: CAGAACATTCAGGTGACTCCAG; RP: GCACCTTCCGCTTGTCAT 

KU80: FP: GAAGATCACATCAGCATCTCCA; RP:  CAGGATTCACACTTCCAACCT 

XRCC4: FP: TGCATAAATTGCTAAATGAAGTCC; RP:  TTGTCAGAACACGGATTTTCC 

LIG4: 5’: GAAGAAATCGTGTCCTGATGC; RP: CAAATCCTCCGGTTTGAACT 

Flow cytometry:  

For γH2AX assay, cells were fixed in 75% ethanol (1h, 4°C),) washed with 1%  BSA in 

PBS and stained with mouse-anti-ɣH2AX antibody (Millipore), followed by Alexa-fluor-

488 labeled secondary antibody (Invitrogen). For TUNEL assay, cells were fixed in 2% 

paraformaldehyde (PFA, 20 minutes at 4°C) permeabilized in 75% ethanol, washed with 

1% BSA in PBS and treated with “In Situ Cell Death Detection Kit, Fluorescein” 

(Roche), followed by staining with propidium iodide (Sigma Aldrich). FACS acquisition 

and analysis were performed on BD FACScalibur using CellQuest software.  

COMET assay 

Assay was performed with CometSlide kit (Trevigen) according to manufacturer’s 

instructions for neutral electrophoresis. Between 100 and 200 cells we scored for each 



 19

experimental condition. COMET tails were analyzed with CometScore 1.5 software, 

statistical significance of Olive tail moment medians was calculated using Dunn's Method 

for multiple comparisons versus control group.  

In vivo DNA damage assays 

Adult mice of C57BL6 strain of 10-12 weeks of age were irradiated with 8 Gy (using a 

GammaCell 220 device (Nordion) with 60Cobalt as radiation source at about 0.25 Gy/s) 

and sacrificed 6h after irradiation. Brains were cryopreserved in optimal cutting 

temperature (O.C.T.) compound (Tissue-Tek). Longitudinal 10 micron thick sections 

were fixed in 3.7% formaldehyde, permeabilized with 0.5% Triton X100, blocked with 

5% goat serum and incubated overnight at 4°C with primary antibodies, followed by 

incubation at room temperature with AlexaFluor 488, 568 or 647labeled secondary 

antibodies. Cell nuclei were counterstained with DAPI (Sigma Aldrich). Confocal 

microscopy was performed as above.  
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Figure Legends 

 

Fig.  1. NSC show efficient DDR activation while this is strongly impaired in NSC-

derived astrocytes  

A One hour after irradiation with 10Gy, NSC (here, negative for intermediate 

filament GFAP) uniformly display ATM kinase activity as demonstrated by the 

detection of foci of autophosphorylated ATM (S1981), ATM/ATR/DNA-PK 

specific phospho-epitopes (pS/TQ), 53BP1 and of the phosphorylated histone 

H2AX (γH2AX), as analysed by confocal microscopy of immunofluorescence 

stainings. Bar: 15µm.  

B  In contrast, astrocytes (positive for intermediate filament GFAP) when irradiated 

and treated in parallel with NSC, show only marginal phospho-ATM foci 

appearance and nearly no nuclear signal of 53BP1 or pS/TQ foci. However, 

astrocytes still display irradiation-induced nuclear γH2AX signal. Bar: 15µm 

Fig.  2. DDR response factors are transcriptionally suppressed in astrocytes, while 

NSC show canonical DDR upon irradiation.  

A Quantitative RT-PCR analysis reveals a transcriptional downregulation of DDR 

genes, but retained expression of DNA repair factors, in astrocytes. Expression 

profiles were normalized against parental NSC prior to serum-induced 

differentiation. β2-microglobulin was used as housekeeping gene.  

B  Western blot analysis of NSC and astrocytes, irradiated and processed in parallel. 

Membranes were probed with phospho-specific and total antibodies as shown and 

normalized for vinculin. 



 25

 

C Quantitative RT-PCR analysis showing that even 24h following irradiation, key 

DDR factors remain downregulated in astrocytes. Four target genes of p53 were 

also analysed: transcripts of GADD45a, BAX and PUMA remained largely 

unchanged. The mRNA of the cell cycle control gene p21CIP was found 

upregulated. Expression profiles were normalized against not irradiated 

astrocytes. β2-microglobulin was used as housekeeping gene.  

Fig.  3. Residual ATM activity can be detected in irradiated astrocytes and parallels 

the downregulation of the γH2AX signal.  

A Western blot analysis of DDR kinetics in astrocytes, irradiated with 10Gy. Weak 

and transient phospho-ATM signal can be detected and coincides with reduction 

of γH2AX and increase in p53 signal. Note that even 50Gy fail to induce any 

strong DDR in astrocytes. Irradiated NSC were used as positive control.  

Membranes were probed with phospho-specific and total antibodies and 

normalized for vinculin. 

B TUNEL assay for apoptosis-induced DSB in astrocytes 72h after irradiation with 

10Gy. Note that also re-irradiation with further 10Gy 24h after the first exposure 

to X-rays fails to induce apoptosis. NSC 72h after 10Gy irradiation show a 

profound induction of apoptosis compared to not irradiated NSC.  

C Immunofluorescence analysis showing the DNA-damage induced appearance of 

γH2AX signal in irradiated astrocytes. 24h later, the foci are strongly 

downregulated, indicating repair. Another round of irradiation leads to a de novo 
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formation of the γH2AX signal, indicating a still functional H2AX 

phosphorylation machinery. Bar: ∼22µm. 

D Similar observations can also be made by western blot analysis. Membrane was 

probed with phospho-specific and total antibody against H2AX and normalized 

for α-tubulin. 

 

Fig.  4. Astrocytes display functional ATM-biased DNA repair and DNA-PK biased 

H2AX phosphorylation, but no apoptotic response upon irradiation.  

A Western blot analysis of NSC and astrocytes, treated with solvent (DMSO) or 

DNA-PK inhibitor NU7441 and ATM inhibitor KU55933, separately or in 

combination (NU+KU) at concentrations of 1 µM each (lower than IC50 values 

of the inhibitor’s second most sensitive PI3K-like protein kinase target), 

irradiated and processed in parallel. The membrane was probed for 

phosphorylated and total form of H2AX and normalized with vinculin. 

B Flow cytometrical analysis of astrocytes, treated with inhibitors as above, 

irradiated and stained with antibody against γH2AX.  Alexa488 secondary 

antibody signal was measured on log10 scale. Gates were set to discriminate 

γH2AX-negative cells, while γH2AX positive cells were arbitrarily subdivided 

into high and low positive. Same gateset was used for all measurements of each 

experiment done in quadruplicate. Error bars show SD.  

C Confocal immunofluorescence analysis of astrocytes irradiated with 1Gy to better 

discriminate γH2AX foci. Note the reduction of the γH2AX signal intensity in 

irradiated astrocytes, treated with DNA-PK inhibitor NU7441. Bar: 10µm. 
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D DSB detection by neutral COMET assay in astrocytes 1h and 24h after 

irradiation, treated with inhibitors as above. Olive tail moments are presented as 

box plot diagram, with vertical bars indicating median values. Error bars show 

standard deviation (SD). Significance of the median values was calculated with 

Dunn’s method with DMSO treated cells as control group. ‡ same significance 

ratio applies when not irradiated cells are used as reference.  

E TUNEL assay for apoptosis-induced DSB in astrocytes 24h and 72h after 

irradiation, treated with inhibitors as above. As positive control for apoptotic 

proficiency of astrocytes, cells were treated for 2 days with puromycin (5µg/ml) 

or hygromycin (800µg/ml). 

 

Fig.  5. NSC- derived neurons are DDR-proficient. Also in vivo neurons show robust 

DDR upon irradiation, as opposed to brain astrocytes.  

A Terminally differentiated neurons were derived from NSC according to an 

established differentiation protocol 21. One hour after irradiation with 10Gy both 

NSC (here, negative for neuronal marker Tuj1) and NSC-derived neurons (Tuj1 

positive) show robust ATM kinase activity through appearance of foci of 

phospho-epitope (pS/TQ) as analysed by confocal immunofluorescence. Bar: 

10µm.  

B Wild-type mice were untreated or irradiated with a sub-lethal dose of 8Gy and 

sacrificed for brain analysis after 6 hours. Neurons were detected using nuclear 

neuron marker NeuN and astrocytes using intermediate filament GFAP. 

Activation of DDR was assessed through formation of 53BP1 foci upon 
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irradiation. Neurons show 53BP1 foci assembly 6h after 8Gy delivery, while 

astrocytes do not. Note that astrocytes also lack the diffuse nuclear 53BP1 signal 

present in neurons. Bar: 10µm. Note: GFAP protein in brain astrocytes is known 

to localize only in their cellular protrusions, hence different signal appearance 

from GFAP of in vitro astrocytes.    
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