
HAL Id: hal-00686074
https://hal.science/hal-00686074

Submitted on 7 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

JEL: unified resource tracking for parallel and
distributed applications

Niels Drost

To cite this version:
Niels Drost. JEL: unified resource tracking for parallel and distributed applications. Concurrency and
Computation: Practice and Experience, 2010, 23 (1), pp.17. �10.1002/cpe.1592�. �hal-00686074�

https://hal.science/hal-00686074
https://hal.archives-ouvertes.fr


CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1–0 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

JEL: Unified Resource

Tracking for Parallel and

Distributed Applications

Niels Drost∗,†, Rob V. van Nieuwpoort, Jason Maassen,
Frank Seinstra and Henri E. Bal

Dept of Computer Science, VU University, Amsterdam, The Netherlands

SUMMARY

When parallel applications are run in large scale distributed environments such as
grids, peer-to-peer systems, and clouds, the set of resources used can change dynamically
as machines crash, reservations end, and new resources become available. It is vital for
applications to respond to these changes. Therefore, it is necessary to keep track of the
available resources — a problem which is known to be notoriously difficult.

In this paper we argue that resource tracking must be provided as standard
functionality in lower parts of the software stack. We propose a general solution to
resource tracking: the Join-Elect-Leave (JEL) model. JEL provides unified resource
tracking for parallel and distributed applications across environments. JEL is a simple yet
powerful model based on notifying when resources have Joined or Left the computation.

We demonstrate that JEL is suitable for resource tracking in a wide variety of
programming models, ranging from the fixed resource sets traditionally used in MPI-1 to
flexible grid-oriented programming models. We compare several JEL implementations,
and show these to perform and scale well in several real-world scenarios involving grids,
clouds and peer-to-peer systems applied concurrently, and wide-area systems with failing
resources. Using JEL, we have won first prize in a number of international distributed
computing competitions.

key words: Resource Tracking, Programming Models, Parallel Applications

∗Correspondence to: Niels Drost, Dept. of Computer Science, VU University, De Boelelaan 1081A, 1081 HV
Amsterdam, The Netherlands.
†E-mail: niels@cs.vu.nl
Contract/grant sponsor: Netherlands Organization for Scientific Research (NWO); contract/grant number:
612.060.214

Copyright c© 0000 John Wiley & Sons, Ltd.



2 NIELS DROST ET AL.

1. Introduction

Traditionally, supercomputers and clusters are the main computing environments† for running
high performance parallel applications. When a job is scheduled and started, it is assigned a
number of machines, which it uses until the computation is finished. Thus, the set of resources
used for an application in these environments is generally fixed.

In recent years, parallel applications are also run on large-scale grid systems [11], where
a single parallel application may use resources across multiple grid sites simultaneously.
Recently, peer-to-peer (P2P) systems [7], desktop grids [27], and clouds [8] are also used
for running parallel and distributed applications. In all such environments, resources may
become unavailable at any time, for instance when machines fail or reservations end. Also,
new resources may become available after the application has started. As a result, it is no
longer possible to assume that resource allocation is static.

To run successfully in these increasingly dynamic environments, applications must be
able to handle the inherent problems of these environments. Specifically, applications must
incorporate both malleability [23], the capability to handle changes in the resources used
during a computation, and fault tolerance, the capability to continue a computation despite
failures. Without mechanisms for malleability and fault-tolerance, the reliable execution of
applications on dynamic systems is hard, if not impossible.

A first step in creating a malleable and fault-tolerant system is to obtain an accurate and
up-to-date view of the resources participating in a computation, and what roles they have.
We therefore require some form of signaling whenever changes to the resource set occur. This
information can then be used by the application itself, or by the runtime system (RTS) of the
application’s programming model, to react to these changes. In this paper we refer to such
functionality as resource tracking.

An important question is at what level in the software hierarchy resource tracking should
be implemented. One option is to implement it in the application itself. However, this requires
each application to implement resource tracking separately. Another option is to implement
resource tracking in the RTS of the programming model of the application. Unfortunately, this
still requires implementing resource tracking for each programming model separately. Also, an
implementation of resource tracking designed for use on a grid will be very different from
one designed for a P2P environment. Therefore, the resource tracking functionality of each
programming model will have to be implemented for each target environment as well. This
situation is clearly not ideal.

Based on the observations above, we argue that resource tracking must be an integral part
of a system designed for dynamic environments, in addition to the low level communication
primitives already present in such systems [21, 22, 24]. Figure 1 shows the position of resource
tracking in a software hierarchy. There, a programming models’ RTS uses low-level resource
tracking functionality to implement the higher level fault-tolerance and malleability required.

†We will use the term environment for collections of compute resources such as supercomputers, clusters, grids,
desktop grids, clouds, peer-to-peer systems, etcetera, throughout this paper.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



JEL: UNIFIED RESOURCE TRACKING 3

Figure 1. Abstract system hierarchy with resource tracking and communication primitives being
the central low-level primitives for developing fault-tolerant and malleable programming models and

applications.

This way, resource tracking (indirectly) allows applications to run reliably and efficiently on
dynamic systems such as grids and clouds.

In this paper we propose a general solution for resource tracking: the Join-Elect-Leave
(JEL) model. JEL acts as an intermediate layer between programming models and the
environment they run on. Since different environments have different characteristics, using
a single implementation is impractical, if not impossible. Instead, several implementations of
the JEL API are required, each optimized for a particular environment.

We have implemented JEL efficiently on clusters, grids, P2P systems, and clouds. These
different JEL implementations can be used transparently by a range of programming models,
in effect providing unified resource tracking for parallel and distributed applications across
environments.

The contributions of this paper are as follows.

• We show the need for unified resource tracking models in dynamic environments such as
grids, P2P systems, and clouds, and explore the requirements of these models.

• We define JEL: a unified model for tracking resources in dynamic environments. JEL
is explicitly designed to be simple yet powerful, scalable, and flexible. The flexibility of
JEL allows it to support parallel as well as distributed programming models.

• We show how JEL suits the resource tracking requirements of several programming
models. We have implemented 7 different programming models using JEL, ranging from
traditional models such as MPI-1 (in the form of MPJ [4]), to Satin [23], a high level
divide-and-conquer grid programming model that transparently supports malleability
and fault-tolerance.

• We show that JEL is able to function on a range of environments by discussing
multiple implementations of JEL. These include a centralized solution for relatively
stable environments such as clusters and grids, and a fault-tolerant P2P implementation.
In part, these implementations are based on well-known techniques of information

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



4 NIELS DROST ET AL.

dissemination in distributed systems. Notably, JEL can be implemented efficiently in
different environments, due to the presence of multiple consistency models.

Our research is performed in the context of the Ibis [22] Java based grid computing project.
In previous work we presented the Ibis Portability Layer (IPL) [22], a communication library
specifically targeted at dynamic systems such as grids. We augmented the IPL with our JEL
resource tracking model, leading to a software system which can efficiently run applications
on clusters, grids, P2P systems, and clouds. Using the software‡ developed in this project,
including our implementations of JEL, we have been first prize winner in a number of
international competitions [2]. Notably, our winning submission to the Fault-Tolerant Category
of the DACH 2008 Challenge§ at Cluster/Grid 2008 in Tsukuba, Japan made extensive use of
the JEL model for detecting and reporting node failures.

This paper is structured as follows. Section 2 discusses the requirements of a general resource
tracking model. Section 3 shows one possible model fulfilling these requirements: our Join-
Elect-Leave (JEL) model. Section 4 explains how JEL is used in several programming models.
In Section 5 we discuss a (partially) centralized and a fully distributed implementation of JEL.
Section 6 compares the performance of our implementations, and shows the applicability of
JEL in real-world scenarios. As a worst case, we show that JEL is able to support even short-
lived applications on large numbers of machines. Section 7 discusses related work. Finally,
Section 8 describes future work and concludes.

2. Requirements of Resource Tracking models

In this section we explore the requirements of resource tracking in a dynamic system. As said,
resource tracking functionality can best be provided at a level between programming models
and the computational environment (see Figure 1). A programming models’ RTS uses this
functionality to implement fault-tolerance and malleability. This naturally leads to two sets of
requirements for resource tracking: requirements imposed by the programming model above,
and requirements resulting from the environment below. We will discuss each in turn.

2.1. Programming Model Requirements

For any resource tracking model to be generally applicable, it needs to support multiple
programming models, including both parallel and distributed models. Below is a list of
requirements covering the needs of most, if not all, parallel and distributed programming
models.

List of participants: The most obvious requirement of a resource tracking model is the
capability to build up a list of all computational resources participating in a computation.

‡Implementations of programming models and other software referred to in this paper can be freely downloaded
from http://www.cs.vu.nl/ibis
§http://www.cluster2008.org/challenge/

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



JEL: UNIFIED RESOURCE TRACKING 5

When communicating and cooperating with other participants of a computation, one
must know who these other participants are.

Reporting of changes: Simply building a list of participants at start-up is not sufficient.
Since resources may be added or removed during the runtime of a computation, a method
for updating the current list of participants is also required. This can be done for instance
by signaling the programming models’ RTS whenever a change occurs.

Fault detection: Not all resources are removed gracefully. Machines may crash, and processes
may be terminated unannounced by a scheduling system. For this reason, the resource
tracking model also needs to include a failure detection and reporting mechanism.

Role Selection: It is often necessary to select a leader from a set of resources for a specific
task. For instance, a primary object may have to be selected in primary-copy replication,
or a master may have to be selected in a master-worker application. Therefore, next to
keeping track of which resources are present in a computation, a method for determining
the roles of these resources is also required.

2.2. Environment Requirements

Next to supporting multiple programming models, a generally applicable resource tracking
model must also support multiple environments, including clusters, grids, clouds, and P2P
systems. We now determine the requirements resulting from the environment in which a
resource tracking model is used.

Small, Simple Interface: Different environments may have wildly different characteristics.
On cluster systems, the set of resources is usually constant. On grids and clouds resource
changes occur, albeit at a low rate. P2P systems, however, are known for their high rate
of change. Therefore, different (implementations of) algorithms are needed for efficient
resource tracking on different environments. To facilitate the efficient re-targeting of a
resource tracking model, its interface must be as small and simple as possible.

Flexible Quality of Service: Even with a small and simple interface, it may not be possible
to implement all features of a resource tracking model efficiently on all environments
with the same quality of service. For instance, reliably tracking each and every change
to the set of resources in a small-scale cluster system is almost trivial, while in a large-
scale P2P environment this is hard to implement efficiently, if possible at all. However,
not all programming models require the full functionality of a resource tracking model.
Therefore, a resource tracking model should include quality of service features. If the
resource tracking model allows for a programming model to specify the required features
and their quality of service, a suitable implementation could be selected at runtime. This
flexibility would greatly increase the applicability of a resource tracking model.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



6 NIELS DROST ET AL.

interface JEL {
void init(Consistency electionConsistency ,

Consistency joinLeaveConsistency );
void join(String poolName , Identifier identifier );
void leave ();
void maybeDead(Identifier identifier );
Identifier elect(String electionName );
Identifier getElectionResult (String electionName );

}
// interface for notifications , called by JEL
interface JELNotifications {

void joined(Identifier identifier );
void left(Identifier identifier );
void died(Identifier identifier );

}

Figure 2. JEL API (pseudocode, simplified)

3. The Join-Elect-Leave Model

We will now describe our resource tracking model: Join-Elect-Leave (JEL). JEL fulfills all
stated requirements of a resource tracking model. As shown in Figure 1, JEL is located at
the same layer of the software hierarchy as low-level communication primitives. Applications
use a programming model, ideally with support for fault-tolerance and malleability. The
programming model’s RTS uses JEL for resource tracking, as well as a communication library.
In this section we refer to programming models as users of JEL.

Figure 2 shows the JEL API. Next to an initialization function, the API consists of two
parts, Joins and Leaves, and Elections. Together, these fulfill the requirements of parallel and
distributed programming models as stated in the previous section.

In general, each machine used in a computation initializes JEL once, and is tracked as a
single entity. However, modern machines usually contain multiple processors and/or multiple
compute cores per processor. In some cases, it is therefore useful to start multiple processes
per machine for a single computation, which then need to be individually tracked. In this
paper, we therefore use the abstract term node to refer to a computational resource. Each
node represents a single instance in a computation, be it an entire machine, or one processor
of that machine.

JEL has been designed to work together with any communication library. The
communication library is expected to create a unique identifier containing a contact address
for each node in the system. JEL uses this address to identify nodes in the system, allowing a
user to contact a node whenever JEL refers to it.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



JEL: UNIFIED RESOURCE TRACKING 7

3.1. Joins and Leaves

In JEL, the concept of a pool is used to denote the collection of resources used in a
computation. To keep track of exactly which nodes are participating in a pool, JEL supports
join notifications. Users are being notified whenever a new node joins a pool. When a node joins
a pool, it also is notified of all nodes already present in the pool via the same notifications,
given using the JELNotifications interface. This is typically done using callbacks, although
a polling mechanism can be used instead if callbacks are not supported by a programming
language.

JEL also supports nodes leaving a computation, both gracefully and due to failures. If a
node notifies JEL that it is leaving the computation, users of the remaining nodes in the
pool receive a leave notification for this node. If a node does not leave gracefully, but crashes
or is killed, the notification will consist of a died message instead. Implementations of JEL
try to detect failing nodes, but the user can also report suspected failures to JEL using the
maybeDead function.

3.2. Elections

It is often necessary to select a leader node from a set of resources for a specific task. To
select a single resource from a pool, JEL supports Elections. Each election has a unique name.
Nodes can nominate themselves by calling the elect function with the name of the election as a
parameter. The identifier of the winner will be returned. Using the getElectionResult function,
nodes can retrieve the result without being a candidate.

Elections are not democratic. It is up to the JEL implementation to select a winner from
the candidates. For instance, an implementation may simply select the first candidate as the
winner. At the user level, all that is known is that some candidate will be chosen. When
a winner of an election leaves or dies, JEL will automatically select a new winner from the
remaining living candidates. This ensures that the election mechanism will function correctly
in a malleable pool.

3.3. Consistency models

Together, join/leaves and elections fulfill all resource tracking requirements of fault-tolerant
and malleable programming models as stated in Section 2.1. However, we also require our
model to be applicable to a wide range of environments, from clusters to P2P systems. To
this end, JEL supports several consistency models for the join/leave notifications and the
elections. These can be selected independently when JEL is initialized using the init function.
Joins/leaves or elections can also be turned off completely, if either part is not used. For
examples of situations of when some parts of JEL remain unused, see Section 4.

Relaxing the consistency model allows JEL to be used on more dynamic systems such as
P2P environments, where implementing strict consistency models cannot be done efficiently,
if at all. For example, Section 5.2 describes a fully distributed implementation that is robust
against failures, under a relaxed consistency model.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



8 NIELS DROST ET AL.

Figure 3. Position of JEL in the Ibis grid programming software stack

JEL offers two consistency models for joins and leaves. The reliable consistency model
ensures that all notifications arrive in the same order on all nodes. Using reliable joins and
leaves, a user can build up a list of all nodes in the pool. As an alternative, JEL also supports
unreliable joins and leaves, where notifications are delivered on a best effort basis, and may
arrive out of order, or not at all.

Similarly, JEL supports multiple consistency models for elections. If uniform elections are
used, a single winner is guaranteed for each election, known at all nodes. Using the non-
uniform model, an election is only guaranteed to converge to a single winner in unbounded
time. The implementation of JEL will try to reach consensus on the winner of an election as
soon as possible, but in a large system this may be time-consuming. Before a consensus is
reached, different nodes may perceive different winners for a single election. Intuitively, this
non-uniform election has a very weak consistency. However, it is still useful in a number of
situations (Section 4.2 shows an example).

4. Applicability of JEL

JEL has been specifically designed to cover the required functionality of a range of
programming models found in distributed systems. We have implemented JEL in the Ibis
Portability Layer (IPL) [22], the communication library of the Ibis project. Figure 3 shows the
position of JEL in the software stack of the Ibis project. All programming models implemented
in the Ibis project use JEL to track resources, notably:

• Satin [23], a divide-and-conquer model
• Java RMI, an object oriented RPC model [28]
• GMI [19], a group method invocation model
• MPJ [4], a Java binding for MPI-1
• RepMI [19], a replicated object model
• Maestro [2], a fault-tolerant and self optimizing dataflow model
• Jorus [2], a user-transparent parallel model for multimedia computing

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



JEL: UNIFIED RESOURCE TRACKING 9

Model Joins and Leave Elections
Master-Worker - Uniform
Divide-and-Conquer (elected master) Unreliable Uniform
Divide-and-Conquer (selected master) Unreliable Non-Uniform
Message Passing Reliable -

Table I. Parts and consistency models of JEL used in the example
programming models

As JEL is a generic model, it also supports other programming models. In addition to the
models listed, we have implemented a number of prototype programming models, including
data parallel, master-worker and Bulk Synchronous Parallel (BSP) models. Although our
current JEL implementations are implemented using Java, the JEL model itself is not limited
to this language. The foremost problem when porting JEL to other programming languages is
the possible absence of a callback mechanism. This problem can be solved by using downcalls
instead. In addition, parts of current JEL implementations could be reused, for instance
by combining the server of the centralized implementation with a client written in another
language.

We will now illustrate the expressiveness of JEL by discussing several models in more detail.
These programming models use different parts and consistency models of JEL, see Table I for
an overview.

4.1. Master-Worker

The first programming model we discuss is the master-worker [12] model, which requires a
single node to be assigned as the master. Since the master controls the application, its identity
must be made available to all other (worker) nodes. Depending on the application, the number
of suitable candidates for the role of master may range from a single node to all participating
nodes. For this selection, the master-worker model uses uniform elections.

Since workers do not communicate, the only information a worker needs in a master-worker
model is the identity of the master node. So, in this model, joins and leaves are not needed,
and can simply be switched off.

4.2. Divide-and-Conquer

The second programming model we discuss is divide-and-conquer. As an example of such a
system we use Satin [23]. Satin is malleable, can handle failures, and hides many intricacies of
the grid from the application programmer. It also completely hides which resources are used.
Distribution and load balancing are performed automatically by using random work stealing
between nodes. Satin is cluster-aware: it exploits the hierarchical nature of grids to optimize
load balancing and data transfer. For instance, nodes prefer to steal work from nodes inside
their local cluster, as opposed to from remote sites. The Satin programming model requires

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



10 NIELS DROST ET AL.

support from the resource tracking model for adding new nodes, as well as removing running
nodes (either gracefully or due to a crash). Satin applies this information to re-execute subtasks
if a processor crashes. Also, it dynamically schedules subtasks on new machines that become
available during the computation, and it migrates subtasks if machines leave the computation.

Although Satin requires notifications whenever nodes join or leave the computation, these
notifications do not need to be completely reliable, nor do they need to be ordered in any
way. Satin uses the joins and leaves to build up a list of nodes in the pool. This list is then
used to randomly select nodes to steal work from. As long as each node has a reasonably
up-to-date view of who is participating in the application, Satin will continue to work. When
the information is out of date or incomplete, the random sampling will be skewed slightly, but
in practice the negative impact on performance is small (see Section 6.4). Satin therefore uses
the unreliable consistency of the join and leave notifications.

An election is used to select a special coordinator per cluster. These coordinators are used to
optimize the distribution of fault tolerance related data in wide area systems. When multiple
coordinators are present, more data will be transferred, which may lead to lower performance.
Satin will still function correctly, however. Therefore, the election mechanism used to select
the cluster coordinators does not necessarily have to return a unique result, meaning that the
non-uniform elections of JEL can be used.

When an application is starting, Satin needs to select a master node that starts the main
function of the application. This node can be explicitly specified by the user or application, or
it can be automatically selected by Satin. The latter requires the uniform election mechanism
of JEL. If the master node is specified in advance by the user, no election is needed for this
functionality.

From the discussion above, we can conclude that the requirements of Satin differ depending
on the circumstances. If the user has specified a master node, Satin requires unreliable join
and leave notifications for the list of nodes, as well as non-uniform elections for electing cluster
coordinators. If, on the other hand, a master node must be selected by Satin itself, uniform
elections are an additional requirement.

4.3. Message Passing (MPI-1)

The last programming model we discuss is the Message Passing model, in this case represented
by the commonly used MPI [21] system. MPI is widely used on clusters and even for multi-site
runs on grid systems. We implemented a Java version of MPI-1, MPJ [4]. The MPI model
assigns ranks to all nodes. Ranks are integers uniquely identifying a node, assigned from 0 up
to the number of nodes in the pool. In addition, users can retrieve the total number of nodes
in the system.

Joins and leaves with reliable consistency are guaranteed to arrive in the same order on all
nodes. This allows MPI to build up a totally ordered list of nodes, by assigning rank 0 to the
first node that joins the pool, rank 1 to the second, etcetera. Like the master-worker model,
MPI does not require all functionality of JEL, as elections are not used.

MPI-1 has very limited support for changes of resources and failures. Applications using
this model cannot handle changes to the resources such as nodes leaving or crashing. Using an
MPI implemented on top of JEL will not fix this problem. However, some extensions to MPI

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



JEL: UNIFIED RESOURCE TRACKING 11

are possible. For instance, MPI-2 supports new nodes joining the computation, Phoenix [26]
adds supports for nodes leaving gracefully, and FT-MPI [10] allows the user to handle faults,
by specifying the action to be taken when a node dies. All these extensions to MPI can be
implemented using JEL for the required resource tracking capabilities.

5. JEL Implementations

It is impractical, if not impossible, to use the same implementation of JEL on clusters, grids,
clouds, as well as P2P systems. As these different environments have different characteristics,
there are different trade-offs in implementation design. We have explored several alternative
designs, and discuss these in this section.

On cluster systems, resources used in a computation are mostly fixed, and do not change
much over time. Therefore, our JEL implementation targeted at single cluster environments
uses a relatively simple algorithm for tracking resources, based on a central coordinator. This
ensures high performance and scalability, and the simple design leads to a more robust, less
error prone implementation. This central implementation provides reliable joins and leaves and
uniform elections. As this implementation uses a central coordinator for tracking resources,
these stronger consistency models can be implemented without much effort.

On more dynamic systems such as grids, clouds and desktop grids, the simple implementation
design used on clusters is not sufficient. As the number of machines in the system increases,
so does the number of failures. Moreover, any change to the set of resources needs to be
disseminated to a larger set of machines, possibly with high network latencies. Thus, these
environments require a more scalable implementation of JEL. We used a number of techniques
to decrease the effort required and amount of data transferred by the central coordinator, at
the cost of an increased complexity of the implementation. As the resource tracking still uses
a central coordinator, the stronger consistency models for joins, leaves and elections of JEL
are still available.

Lastly, we implemented JEL on P2P environments. By definition, it is not possible to use
centralized components in P2P systems. Therefore, our P2P implementation of JEL is fully
distributed. Using Lamport clocks [17] and a distributed election algorithm [13] it is possible to
implement strong consistency models in a fully distributed manner. However, these algorithms
are prohibitively difficult to implement. Therefore, our P2P implementation only provides
unreliable joins and leaves and non-uniform elections, making it extremely simple, robust and
scalable. We leave implementing a P2P version of JEL with strong consistency models as future
work.

As said, we have augmented our Ibis Portability Layer (IPL) [22] with JEL. The IPL is a low
level message-based communication library implemented in Java, with support for streaming
and efficient serialization of objects. All functionality of JEL is exported in the IPL’s Registry.
JEL is implemented in the IPL as a separate thread of the Java process. Notifications are
passed to the programming models’ RTS or application using a callback mechanism.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



12 NIELS DROST ET AL.

Figure 4. Example of an event stream

5.1. Centralized JEL Implementation

Our centralized JEL implementation uses a single server to keep track of the state of the
pool. Using a centralized server makes it possible to implement stronger consistency models.
However, it also introduces a single point of failure, and a potential performance bottleneck.

The server has three functions. First, it handles requests of nodes participating in the
computation. For example, a node may signal that it has joined the computation, is leaving,
or is running for an election. By design, these requests require very little communication or
computation.

Second, the server tracks the current resources in the pool. It keeps a list of all nodes
and elections, and detects failed nodes. Our current implementation is based on a leasing
mechanism, where nodes are required to periodically contact the server. If a node has had no
contact with the server for a certain number of seconds, it sends a so-called heartbeat to the
server. If it fails to do so, the server will try to connect to the node, to see if the node is still
functional. If the server cannot reach the node, this node is declared dead, and removed from
the pool.

Third, the server disseminates all changes of the state of the pool to the nodes. The nodes
use these updates to generate join, leave, died, and election notifications for the application. If
there are many nodes, the dissemination may require a significant amount of communication
and lead to performance problems. To alleviate these problems we use a simple yet effective
technique. Any changes to the state of the pool are mapped to events. These events have a
unique sequence number, and are totally ordered. An event represents a node joining, a node
leaving, a node dying, or an election result.

A series of state changes to a sequence of events can now be perceived as a stream of events.
Dissemination of this stream can be optimized using well-known techniques such as broadcast
trees or gossiping. Figure 4 shows an example of a stream of events. In this case, two nodes
join, one leaves, one is elected master, and then dies. This stream of events thus results in an
empty pool.

We have experimented with four different methods of disseminating the event stream: a
simple serial send, serial send with peer bootstrap, a broadcast tree, and gossiping. The
different mechanisms and their implementations are described below.

5.1.1. Serial Send

In our first dissemination technique, the central server forwards all events occurring in the
pool to each node individually. Such a serial send approach is straightforward to implement,
and is very robust. It may lead to performance problems though, as a large amount of data

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



JEL: UNIFIED RESOURCE TRACKING 13

may have to be sent by the server. To optimize network usage, the server sends to multiple
nodes concurrently.

In this implementation, a large part of the communication performed by the server consists
of sending a list of all nodes to a new, joining node (the so-called bootstrap data). If many
nodes join a computation at the same time, this may cause the server to become overloaded.

5.1.2. Peer Bootstrap

As an optimization of the serial send technique, we implemented peer bootstrapping, where
joining nodes use other nodes (their peers) to obtain the necessary bootstrap data. When a
node joins, the server sends it a small list of randomly chosen nodes in the pool. The joining
node then tries to obtain the bootstrap data from the nodes in this list. If, for some reason,
none of the nodes in the list can be reached, the joining node uses the server as a backup
source of bootstrap data. This approach guarantees that the bootstrap process will succeed
eventually.

5.1.3. Broadcast tree

A more efficient way of disseminating the stream of events from the server to all nodes is a
broadcast tree. Broadcast trees limit the load on the server by using the nodes themselves to
forward data. Broadcast trees also have disadvantages, as the tree itself is a distributed data
structure that needs to be managed. This requires significant effort, and makes broadcast trees
less robust than serial send.

Our broadcast implementation uses a binomial tree structure with the server as the root of
the tree, which is also commonly used in MPI implementations [16]. To minimize the overhead
of managing the tree, we use the data stream being broadcast to manage the tree. Since this
stream includes totally ordered notifications of all joining and leaving nodes, we can use it to
construct the broadcast tree at each node.

To increase the robustness of our broadcast implementation, we implemented fallback
information dissemination. Periodically, the server directly connects to each node in the
pool, and sends it any events it did not receive yet. This fallback mechanism guarantees
the functioning of the system, regardless of the number, and type, of failures occurring. Also,
it causes very little overhead if there are no failures.

5.1.4. Gossiping

A fourth alternative for disseminating the events of a pool to all its nodes is the use of gossiping
techniques. Gossiping works on the basis of periodic information exchanges (gossips) between
peers (nodes). Gossiping is robust, easy to implement and has low resource requirements.

In the gossiping dissemination, all nodes record the event stream. Periodically, a node
contacts one of its peers. The event stream of those two nodes are then merged by sending any
missing events from one peer to the other. To reduce memory usage old events are eventually
purged from the system.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



14 NIELS DROST ET AL.

Although the nodes exchange events amongst themselves, the pool is still managed by the
central server. The server still acts as a contact point for nodes that want to join, leave, or run
for an election. Also the server creates all events, determines the ordering of events, detects
failing nodes, etc.

To seed the pool of nodes with data, the server periodically contacts a random node, and
sends it any new events. The nodes will then distribute these new events amongst themselves
using gossiping. When the nodes gossip at a fixed interval, the events travel through the system
at an exponential rate. The dissemination process thus requires a time that is logarithmically
proportional to the pool size.

To speed up the dissemination of the events to all nodes, we implemented an adaptive
gossiping interval at the server. Instead of waiting a fixed time between sending events to
nodes, we calculate the interval based on the size of the pool by dividing the standard interval
by the base 2 logarithm of the pool size. Thus, events are seeded at a speed proportionally
to the pool size. The dissemination speed of events becomes approximately constant, at the
expense of an increase in communication load on the server.

Since gossip targets are selected randomly, there is no guarantee that all nodes will receive
all events. To ensure reliability, we use the same fallback dissemination technique we used in
the broadcast tree implementation. Periodically, the server contacts all nodes and sends them
any events they do not have.

5.2. Distributed JEL Implementation

Although the performance problems of the centralized implementation are largely solved by
using broadcast trees and gossiping techniques, the server component is still a central point
of failure, and not suitable for usage in P2P systems. As an alternative, we created a fully
distributed implementation of JEL using P2P techniques. It has no central components, so
failures of individual nodes do not lead to a failure of the entire system.

Our implementation is based on our ARRG [6] gossiping algorithm. ARRG is resilient against
failures, and can handle network connectivity problems such as firewalls and NATs. Each node
in the system has a unique identifier in the form of a UUID [18], which is generated locally
at startup. ARRG needs the address of an existing node at startup to bootstrap, so this must
be provided. This address is used as an initial contact point in the pool. ARRG provides a
so-called peer sampling service [15], guaranteeing a random sampling of the entire pool even
if failures and network problems occur.

On top of ARRG, we use another gossiping algorithm to exchange data on nodes and
elections. Periodically, a node connects to a random node (provided by ARRG) and exchanges
information on other nodes and elections. It sends a random subset of the nodes and elections
it knows and includes information on itself. It then receives a number of members and elections
from the peer node, and merges these with its own state. Over time, nodes build up a list of
nodes and elections in the pool.

If a node wants to leave the computation, it sends out this information to a number of nodes
in the system. Eventually, this information will reach all nodes. Since a crashed node cannot
send a notification to the other nodes indicating it has died, a distributed failure detection
mechanism is needed.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



JEL: UNIFIED RESOURCE TRACKING 15

The failure detection mechanism uses a witness system. A timeout is kept in every entry
on a node, indicating the last time this node has successfully been contacted. Whenever the
timeout expires, a node is suspected of having died. Nodes with expired entries in their node
list try to contact these suspects. If this fails, they add themselves as a witness to this node’s
demise. The witness list is part of the gossiped information. If a sufficient number of nodes
declare that a node has died, it is pronounced dead.

Besides joins and leaves, the distributed implementation also supports elections. Because of
the difficulties of implementing distributed election algorithms [13], and the lack of guarantees
even when using the more advanced algorithms, we only support the non-uniform election
consistency model. In this model, an election converges to a single winner. Before that time,
nodes may not agree on the winner of that election.

Election results are gossiped. When a node needs the result of a unknown election, it simply
declares itself as the winner. If a conflict arises when merging two different election results, one
of the two winners is selected deterministically (the node with the numerically lowest UUID
wins). Over time, only a single winner remains in the system.

As a consequence of the aforementioned design, the distributed implementation of JEL is
fault tolerant in many aspects. First, the extensive use of gossiping techniques inherently leads
to fault tolerance. The ARRG protocol adds further tolerance against failures, for example
by using a fallback cache containing previously successful contacts [6]. Most importantly,
the distributed implementation lacks any centralized components, providing fully distributed
implementations of all required functionality instead.

6. Evaluation

To evaluate the performance and scalability of our JEL implementations, we performed several
experiments. These include low-level and application-level tests on multiple environments.
In particular, we want to assess how much performance is sacrificed to gain the robustness
of a fully distributed implementation, as we expect this implementation to have the
lowest performance. Exact quantification of performance differences between implementations,
however, is hard — if not impossible. As shown below, performance results are highly
dependent on the characteristics of the underlying hardware. Furthermore, the impact on
application performance, in turn, is dependent on the programming model used. For example,
MPI can not proceed until all nodes have joined, while Satin starts as soon as a resource is
available. All experiments were performed multiple times. Numbers shown are taken from a
single representative experiment.

6.1. Low level benchmark: Join test

The first experiment is a low-level stress test using a large number of nodes. We ran
the experiment on two different clusters. The purpose of the experiment is to determine
the performance of our JEL implementations under different network conditions. In the
experiment, all nodes join a single pool and, after a predetermined time, leave again. As a
performance metric, we use the average perceived pool size. To determine this metric, we keep

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



16 NIELS DROST ET AL.

Time (seconds)

0 20 40 60 80 100

A
ve

ra
ge

 p
er

ce
iv

ed
 p

oo
l s

iz
e

0

200

400

600

800

1000
Central, Serial Send
Central, Peer Bootstrap
Central, Broadcast Tree
Central, Gossip
Central, Adaptive Gossip
Distributed

Figure 5. 1000 nodes Join test (DAS-2)

track of the pool size at all nodes. Ideally, this number is equal to the actual pool size. However,
if a node has not received all notifications, the perceived pool size will be smaller. We then
calculate the average perceived pool size over all nodes in the system. The average is expected
to increase over time, eventually becoming equal to the actual pool size. This indicates that
all nodes have received all notifications. The shorter the stabilization time, the better.

This experiment was done on our DAS-2 and DAS-3 clusters. The DAS-2 cluster consists
of 72 dual processor Pentium III machines, with 2Gb Myrinet interconnect. The DAS-
3 cluster consists of 85 dual-CPU dual-core Opteron machines, with 10Gb Myrinet. See
http://www.cs.vu.nl/das2 and http://www.cs.vu.nl/das3 for more information.

Since neither the DAS-2 nor DAS-3 have a sufficiently large number of machines to
stress test our implementation, we started multiple nodes per machine. As neither our JEL
implementations or the benchmark are CPU bound, the sharing of CPU resources does not
influence our measurements. The nodes do share the network bandwidth though. However, all
implementations of JEL are affected equally, so the relative results of all tested implementations
remain valid. The server of the centralized implementation of JEL is started on the front-end
machine of the cluster.

6.1.1. DAS-2

Figure 5 shows the performance of JEL on the DAS-2 system. We started 10 nodes per
processor core on 50 dual processor machines, for a total of 1000 nodes. Due to the sharing
of network resources, all nodes, as well as the frontend running the server, have an effective
bandwidth of about 100Mbit/s.

For convenience, we only show the first 100 seconds of the experiment, when all nodes are
joining. The graph shows that the serial send dissemination suffers from a lack of network
bandwidth, and is the lowest performing implementation.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



JEL: UNIFIED RESOURCE TRACKING 17

Time (seconds)

0 20 40 60 80 100

A
ve

ra
ge

 p
er

ce
iv

ed
 p

oo
l s

iz
e

0

500

1000

1500

2000
Central, Serial Send
Central, Peer Bootstrap
Central, Broadcast Tree
Central, Gossip
Central, Adaptive Gossip
Distributed

Figure 6. 2000 nodes Join test (DAS-3)

The peer bootstrap and broadcast tree techniques perform equally well on this system.
This is not surprising, as the broadcast tree and peer bootstrap techniques utilize all nodes
to increase throughput. As the graph shows, adaptive gossip dissemination is faster than the
normal central gossip version, as it adapts its speed to the pool size.

While not shown in the graph, the fully distributed implementation is also converging to the
size of the pool, albeit slower than most versions of the centralized implementation. The slow
speed is caused by an overload of the bootstrap service, which receives 1000 gossip requests
within a few milliseconds when all the nodes start. This is an artifact of this artificial test that
causes all the nodes to start simultaneously. In a P2P environment this is unlikely to occur.
Multiple instances of the bootstrap service would solve this problem. Still, the performance
of the distributed implementation is acceptable, especially considering the high robustness of
this implementation.

6.1.2. DAS-3

Next, we examine the performance of the same benchmark on the newer DAS-3 system (see
Figure 6). As a faster network is available on this machine, congestion of the network is less
likely. Since the DAS-3 cluster has more processor cores, we increased the number of nodes
to 2000, resulting in 250Mbit/s of bandwidth per node. The frontend of our DAS-3 cluster
has 10Gbit/s of bandwidth. Performance on the DAS-3 increases significantly compared to the
DAS-2, mostly because of the faster network. The serial send and gossip techniques no longer
suffer from network congestion at the server or bootstrap service. As a result, performance
increases dramatically for both. Also, the graph shows that the performance of the broadcast
tree is now significantly better than any other dissemination technique.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



18 NIELS DROST ET AL.

Implementation Dissemination
Server Node Average
(MB) (MB)

Central

Serial Send 1521.47 0.76
Peer Bootstrap 677.23 0.45
Broadcast Tree 5.57 1.32

Gossip 9.83 0.49
Adaptive Gossip 40.36 0.57

Distributed Gossip n.a. 25.37

Table II. Total data transferred in Join test with 2000 nodes on the
DAS-3

Performance of the central implementation with gossiping is influenced by the larger size of
the pool. It takes considerably longer to disseminate the information to all nodes. As before,
the adaptive gossiping manages to adapt, and reaches the total pool size significantly faster.

From our low level benchmark on both the DAS-2 and DAS-3 we conclude that it is possible
to implement JEL such that it is able to scale to a large number of nodes. Also, a number of
different implementation designs are possible for JEL, all leading to reasonable performance.

6.2. Network bandwidth usage

To investigate the cost of using JEL, we recorded the total data transferred by both the server
and the clients in the previous experiment. Table II shows the total traffic generated by the
experiment on DAS-3, after all the nodes have joined and left the pool.

Using the serial send version, the server transferred over 1500 MB in the 10 minute
experiment. Using peer bootstrap already halves the traffic needed at the server. However,
the broadcast tree dissemination uses less than 5 MB of server traffic to accomplish the same
result. It does this by using the nodes of the system, leading to a slightly higher traffic at the
nodes (1.32 MB instead of 0.76 MB).

From this experiment we conclude that the dissemination techniques significantly increase
the scalability of our implementation. Also, the broadcast tree implementation is very suited
for low bandwidth environments. For the distributed implementation, the average traffic per
node is 25 MB, an acceptable cost for having a fully distributed implementation.

6.3. Low level benchmark in a dynamic environment

We now test the performance of JEL in a dynamic environment, namely the DAS-3 grid.
Besides the cluster at the VU used in the previous tests, the DAS-3 system consists of 4 more
clusters across the Netherlands. For this test we started our Join benchmark on two clusters
(800 nodes), and add two clusters later, for a total of 1600 nodes. Finally, two clusters also
leave, either gracefully, or by crashing.

Results of the test when the nodes leave gracefully are shown in Figure 7. We tested
both the central implementation of JEL and the distributed implementation. For the central

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



JEL: UNIFIED RESOURCE TRACKING 19

Time (seconds)

0 100 200 300 400 500 600 700 800

A
ve

ra
ge

 p
er

ce
iv

ed
 p

oo
l s

iz
e

0
200
400
600
800

1000
1200
1400
1600

800 nodes join 800 nodes leave

Central, Serial Send
Distributed

Figure 7. Join/Leave test run on 4 clusters across the DAS-3 grid. Half of the nodes only start after
200 seconds, and leave after 400 seconds

implementation we have selected the serial send dissemination technique, which performs
average on DAS-3 (see Figure 6). On the scale of the graph of Figure 7 results obtained
for the other techniques are indistinguishable.

Figure 7 shows that both implementations are able to track the entire pool. As said, the
pool size starts at 800 nodes, and increases to 1600 nodes 200 seconds into the experiment.
The dip in the graph at 200 seconds is an artifact of the metric used: At the moment 800
extra nodes are started, these nodes have a perceived pool size of 0. Thus, the average over
all nodes in the pool halves. As in the previous test, the central implementation is faster than
the distributed implementation. After 400 seconds, two of the four clusters (800 of the 1600
nodes) leave the pool. The graph shows that JEL correctly handles nodes leaving, with both
implementations processing the leaves shortly.

As said, we also tested with the nodes crashing by forcibly terminating the node’s process.
The results can be seen in Figure 8. When nodes crash instead of leaving, it takes longer for
JEL to detect these nodes have died. This delay is due to the timeout mechanism in both
implementations. A node is only declared dead if it cannot be reached for a certain time (a
configuration property of the implementations, in this instance set to 120 seconds). Thus, nodes
are declared dead with a delay after crashing. The central implementation of JEL has a slightly
longer delay, as it tries to contact the faulty nodes one more time after the timeout expires.
From this benchmark we conclude that JEL is able to function well in dynamic systems, with
both leaving and failing nodes.

6.4. Satin Gene Sequencing Application

To test the performance of our JEL implementations in a real world setting, we used 256 cores
of our DAS-3 cluster to run a gene sequencing application implemented in Satin [23]. Pairwise

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



20 NIELS DROST ET AL.

Time (seconds)

0 100 200 300 400 500 600 700 800

A
ve

ra
ge

 p
er

ce
iv

ed
 p

oo
l s

iz
e

0
200
400
600
800

1000
1200
1400
1600

800 nodes join 800 nodes fail

Central, Serial Send
Distributed

Figure 8. Join/Fail test run on 4 clusters across the DAS-3 grid. Half of the nodes only start after 200
seconds, and crash after 400 seconds

Implementation Dissemination
Time Run time Join Time

Small Large

Central

Serial Send 71.7 408.0 18.2
Peer Bootstrap 70.5 406.1 17.2
Broadcast Tree 66.4 402.9 10.6

Gossip 67.7 426.6 14.6
Adaptive Gossip 67.5 426.4 11.1

Distributed Gossip 82.3 462.4 14.1

Table III. Gene sequencing application on 256 cores of the DAS-3. Listed are total runtime (in
seconds) of the application for two problem sizes and time (in seconds) until all nodes have joined
fully (average perceived pool size is equal to the actual pool size). Runtime includes the join time.

sequence alignment is a bioinformatics application where DNA sequences are compared with
each other to identify similarities and differences. We run a large number of instances of
the well-known Smith-Waterman [25] algorithm in parallel using Satin’s divide-and-conquer
programming style. The resulting application achieves excellent performance (93%efficiency
on 256 processors).

Table III lists the performance of the application for various JEL implementations, and two
different problem sizes. We specifically chose to include a small problem on a large number of
cores to show that our JEL implementations are also suitable for short-running applications
where the overhead of resource tracking is relatively large. In this very small problem, the
application only ran for little over a minute. The table shows similar performance for all
versions of JEL. Moreover, the relative difference is even smaller in the large problem size. An
exception are the implementations based on gossiping techniques. The periodic gossiping causes

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



JEL: UNIFIED RESOURCE TRACKING 21

a small but constant amount of network traffic. Unfortunately, the load balancing mechanism of
Satin is very sensitive to this increase in network load. Though the distributed implementation
lacks the guaranteed delivery of notifications present in the central implementation, Satin is
able to perform the gene sequencing calculations with only minor delay. This is an important
result, given Satin’s transparent support for malleability and fault-tolerance, as explained in
Section 4.2.

To give an impression of the overhead caused by JEL, we also list the join time, the amount
of time from the start of the application it takes for the average perceived pool size to reach
the actual pool size, i.e. the time JEL needs to notify all nodes of all joins. The join time of an
application is independent of the runtime of the application, and mainly influenced by number
of nodes, JEL implementation, and resources used. Therefor, we only list the join time once,
for both problem sizes. The performance of the various JEL implementations is in line with the
low-level benchmark results, with the broadcast tree implementation being the fastest. Our
gene sequencing experiment shows that our model and implementations are able to handle
even these short running applications.

6.5. World Wide Experiment

To show that JEL is suitable for a large number of different environments, we performed a
world wide experiment using the central implementation of JEL with serial send dissemination.
We used a prototype of the pending re-implementation of Satin, especially designed for limited
connectivity environments. In our world-wide experiment, connectivity between sites is often
limited because of firewalls, and the network includes a number of low bandwidth and high
latency links.

As an application we used an implementation of First Capture Go, a variant of the Go
board game where a win is completed by capturing a single stone. Our application determines
the optimal move for a given player, given any board. It uses a simple brute-force algorithm
for determining the solution, trying all possible moves recursively using a divide-and-conquer
algorithm. Since the entire space needs to be searched to calculate the optimal answer, our
application does not suffer from search overhead.

Table IV shows an overview of the sites used. These consist of two grids (the DAS-3 in the
Netherlands, and the InTrigger [14] system in Japan), a desktop grid consisting of student PCs
at the VU University Amsterdam, and a number of machines in the Amazon EC2 [8] compute
cloud in the USA. We used a total of 176 machines, with a total of 401 cores. As we started
a single process per machine, and used threads to distribute work among cores, this amounts
to 176 JEL nodes.

Figure 9 shows the communication structure of the experiment. The graph shown is produced
by the visualization of the SmartSockets [20] library, which is used to connect all the nodes
despite of the firewalls present. In the graph, each site is represented by a different color. Next
to the compute nodes themselves (called Instances in the graph), and the central server, a
number of support processes is used. All part of the SmartSockets [20] library, these support
processes allow communication to pass through firewalls, monitor the communication, and
produce the visualization shown. The support processes run on the frontend machines of the
sites used.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



22 NIELS DROST ET AL.

Location Country Type Nodes Cores Efficiency
VU University, Amsterdam

The Netherlands

32 128 97.3%
University of Amsterdam Grid 16 64 96.5%
Delft University (DAS-3) 32 64 94.0%
Leiden University 16 32 96.7%
Nat. Inst. of Informatics, Chiba

Japan
Grid 8 16 84.0%

University of Tsukuba (InTrigger) 8 64 81.1%
VU University, Amsterdam The Netherlands Desktop Grid 16 17 98.0%
Amazon EC2 USA Cloud 16 16 93.2%

Total 176 401 94.4%

Table IV. Sites used in the world wide divide-and-conquer experiment. Efficiency is calculated
as the difference between total runtime of the application process, and time spent computing.
Overhead includes joining and leaving, as well as application communication for load

balancing, returning results, etc.

Our world wide system finishes the capture Go application in 35 minutes. We measured the
efficiency of the machines, comparing the total time spent computing to the total runtime of
the processes. Overhead includes joining and leaving, as well as time spent communicating
with other nodes to load balance the application, return results, etc. Efficiency of the nodes
ranges from 79.8% to 99.1%. The low efficiency on some nodes is due to the severely limited
connectivity of these nodes: the nodes of the InTrigger grid in Japan can only communicate
with the outside world through an ssh tunnel, with a bandwidth of only 1Mbit/s and a latency
of over 250ms to the DAS-3. Even with some nodes having a somewhat diminished efficiency,
the average efficiency over all nodes in the world-wide experiment is excellent, at 94.4%.

Although JEL adds to the overhead of the application, running the experiment without
JEL would be difficult, if not impossible. Without JEL, all nodes would have to be known
before starting the application, and this list would have to be spread manually to all nodes.
Also, the connectivity problems of the InTrigger grid in Japan lead to these nodes starting
the computation with a significant delay. With JEL, these nodes simply join the running
computation later, when the rest of the nodes have already done a significant amount of work.
Our experiment shows that JEL is suitable for running applications on a large scale and a
wide range of systems, including desktop grids and clouds.

6.6. Competitions

Recently, the software produced by the Ibis project (which includes JEL as one of its core
components) has been put to the test in two international competitions [2] organized by the
IEEE Technical Committee on Scalable Computing, as part of the CCGrid 2008 (Lyon, France)
and Cluster/Grid 2008 (Tsukuba, Japan) international conferences.

The first competition we participated in was SCALE 2008, or the First IEEE International
Scalable Computing Challenge. Our submission consisted of a multimedia application, which is
able to recognize objects from webcam images. These images are sent to a grid for processing,

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



JEL: UNIFIED RESOURCE TRACKING 23

Figure 9. Communication structure of the world wide divide-and-conquer experiment. Nodes in
this graph represent processes, edges represent connections. The experiment contains both nodes
performing the computation, as well as a number of support processes which allow communication to
pass through firewalls, monitor the communication, and produce this image. Each color represents a

different location.

and the resulting image descriptions are used to search for objects in a database. In our
application, JEL is used to keep track of precisely which grid resources are available for
processing images.

The second competition was DACH 2008, or the First International Data Analysis Challenge
for Finding Supernovae. Here, the goal was to find ’supernova candidates’ in a large distributed
database of telescope images. Again, we used JEL in our submission to keep track of all the
available resources.

The DACH challenge consisted of two categories: a Basic Category where the objective was
to search the entire database as fast as possible, and a Fault-Tolerant category, where next
to speed, fault tolerance was also measured by purposely killing over 30% of the nodes in

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



24 NIELS DROST ET AL.

the computation. Especially in the Fault-Tolerant category, JEL was vital for the successful
completion of the application.

Using our software (including JEL), we have won first prize in both SCALE 2008 and DACH
2008. Moreover, we won both the Basic and the Fault-Tolerant categories at DACH 2008. These
prizes show that JEL is very effective in many real-world scenarios, including dynamic systems
with failing nodes.

7. Related Work

Other projects have investigated supporting malleability and fault tolerance in various
environments, and resource tracking in these systems. However, most of these projects focus
on a single programming model, and a single target environment.

One area of active research for supporting applications on more dynamic environments is the
MPI standard. As said, the MPI-1 standard does not have support for nodes joining or leaving
the computations. To alleviate this problem the follow-up MPI-2 [21] standard also supports
changes to the nodes in a system. A process may spawn new instances of itself, or connect to
a different running set of MPI-2 processes. A very basic naming service is also available.

Although it is possible to add new processes to an MPI application, the resource tracking
capabilities of MPI-2 are very limited by design and a MPI implementation is not required
to handle node failures. Also, notifications of changes such as machines joining, leaving or
crashing are not available. Thus, resource tracking of MPI-2 is very limited, unlike our generic
JEL model.

One MPI derivative that does offer explicit support for fault-tolerance is FT-MPI [10]. FT-
MPI extends the MPI standard with functionality to recover the MPI library and run-time
environment after a node fails. In FT-MPI, an application can specify if failed nodes must be
simply removed (leaving gaps in the ranks used), replaced with new nodes, or if the groups and
communicators of MPI must be shrunk so that no gap remains. Recovering the application
must still be done by the application itself.

FT-MPI relies on the underlying system to detect failures and notify it of these failures.
The reference implementation of FT-MPI uses HARNESS [3], a distributed virtual machine
with explicit support for adding and removing hosts from the virtual machine, as well as
failure detection. HARNESS shares much of the same goals as JEL, and is able to overcome
many of the same problems JEL tries to solve. However, HARNESS focuses on a smaller
set of applications and environments than JEL. HARNESS does not explicitly support
distributed applications, as JEL does. Also, HARNESS does not offer the flexibility to select
the concurrency model required by the application, hindering the possibility for more loosely
coupled implementations of the model, such as the P2P implementation of JEL.

Other projects have investigated supporting dynamic systems. One example is Phoenix [26],
where an MPI-like message passing model is used. This model is extended with support for
virtual nodes, which are dynamically mapped to physical nodes, the actual machines in the
system. GridSolve [29] is a system for using resources in a grid based on a client-agent-server
architecture. The “View Synchrony” [1] shared data model also supports nodes joining, leaving
and failing. Again, all these programming models focus on resource tracking for a single model,

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



JEL: UNIFIED RESOURCE TRACKING 25

not the generic resource tracking functionality offered by JEL. All models mentioned can be
implemented using the functionality of JEL.

Although all our current JEL implementations use gossiping and broadcast trees as a means
for information dissemination, other techniques exist. One example is the publish-subscribe
model [9]. Despite the fact that information dissemination is an important part of JEL, our
model offers much more functionality to provide a full solution for the resource tracking
problem. Most importantly, further functionality includes the active creation and gathering of
information regarding (local) changes in the resource set.

All current implementations of JEL are build from the ground up, with little external
dependencies. However, JEL implementations could in principal interface with external
systems, for instance Grid Information Services (GIS [5]). These systems can be used both
for acquiring (monitoring) data, as well as disseminating the resulting information. One key
difference between JEL and current monitoring systems is the fact that JEL tracks resources of
applications, not systems. An application crashing usually does not cause the entire system to
cease functioning. Sole reliance of system monitoring data will therefore not detect application-
level errors.

8. Conclusions and Future Work

With the transition from static cluster systems to dynamic environments such as grids,
clusters, clouds, and P2P systems, fault-tolerance and malleability are now essential features
for applications running in these environments. A first step in creating a fault-tolerant and
malleable system is resource tracking : the capability to track exactly which resources are part
of a computation, and what roles they have. Resource tracking is an essential feature in any
dynamic environment, and should be implemented on the same level of the software hierarchy
as communication primitives.

In this paper we presented JEL: a unified model for tracking resources. JEL is explicitly
designed to be scalable and flexible. Although the JEL model is simple, it supports both
traditional programming models such as MPI, and flexible grid oriented models like Satin. JEL
allows programming models such as Satin to implement both malleability and fault-tolerance.
With JEL as a common layer for resource tracking, the development of programming models
is simplified considerably. In the Ibis project, we developed a number of programming models
using JEL, and we continue to add models regularly.

JEL can be used on a number of environments, ranging from clusters to highly dynamic
P2P environments. We described several implementations of JEL, including a centralized
implementation that can be combined with decentralized dissemination techniques, resulting in
high performance, yet with low resource usage at the central server. Furthermore, we described
several dissemination techniques that can be used with JEL. These include a broadcast tree
and gossiping based techniques. In addition, we showed that JEL can be implemented in a
fully distributed manner, efficiently supporting flexible programming models such as Satin,
and increasing fault-tolerance.

There is no single resource tracking model implementation that serves all purposes perfectly.
Depending on the circumstances and requirements of the programming model and application

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



26 NIELS DROST ET AL.

a different implementation is appropriate. In a reliable cluster environment, a centralized
implementation performs best. If applications are run on low bandwidth networks, the
broadcast tree dissemination technique has the benefit of using very little bandwidth. In a
hostile environment, such as desktop grids or P2P systems, a fully distributed implementation
is robust against failures. JEL explicitly supports different algorithms and implementations,
making it applicable in a large number of environments.

We evaluated JEL in a number of real-world scenarios. The scenarios include starting 2000
instances of an application, wide area tests with new machines joining, and resources failing,
and running an application on a world-wide system, including grids, P2P systems and cloud
computing resources. In addition to these experiments, we have won a number of international
competitions, showing the suitability of JEL for real-world applications.

Future work consists of implementing additional programming models using JEL, such as
a distributed hash table (DHT), and redesigning our implementation of the Satin divide-and-
conquer model to explicitly support low connectivity environments. In addition, we plan to
implement a fully distributed version of JEL that supports reliable joins and leaves and uniform
elections. One way of implementing this would be using Lamport clocks [17] and a distributed
election algorithm [13].

ACKNOWLEDGEMENT

This work was carried out in the context of the Virtual Laboratory for e-Science project (www.vl-
e.nl). This project is supported by a BSIK grant from the Dutch Ministry of Education, Culture and
Science (OC&W) and is part of the ICT innovation program of the Ministry of Economic Affairs (EZ).
This work has been supported by the Netherlands Organization for Scientific Research (NWO) grant
612.060.214 (Ibis: a Java-based grid programming environment).

We kindly thank Ceriel Jacobs, Kees Verstoep, Roelof Kemp, Nick Palmer and Kees van Reeuwijk
for all their help. We would also like to thank the people of the InTrigger grid (Japan) for access
to their system. We also like to thank the anonymous reviewers for their insightful and constructive
comments.

REFERENCES

1. O. Babaoğlu, A. Bartoli, and G. Dini. Enriched view synchrony: A programming paradigm for partitionable
asynchronous distributed systems. IEEE Trans. Comput., 46(6):642–658, 1997.

2. H. E. Bal, N. Drost, R. Kemp, J. Maassen, R. V. van Nieuwpoort, C. van Reeuwijk, and F. J. Seinstra.
Ibis: Real-world problem solving using real-world grids. In IPDPS ’09: Proceedings of the 2009 IEEE
International Symposium on Parallel&Distributed Processing, pages 1–8, Washington, DC, USA, 2009.
IEEE Computer Society.

3. M. Beck, J. J. Dongarra, G. E. Fagg, G. A. Geist, P. Gray, J. Kohl, M. Migliardi, K. Moore, T. Moore,
P. Papadopoulous, S. L. Scott, and V. Sunderam. Harness: a next generation distributed virtual machine.
Future Generation Computer Systems, 15(5-6):571–582, 1999.

4. M. Bornemann, R. V. van Nieuwpoort, and T. Kielmann. MPJ/Ibis: a flexible and efficient message
passing platform for Java. In Proceedings of PVM/MPI’05, Sorrento, Italy, September 2005.

5. K. Czajkowski, C. Kesselman, S. Fitzgerald, and I. Foster. Grid information services for distributed
resource sharing. High-Performance Distributed Computing, International Symposium on, 0:0181, 2001.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



JEL: UNIFIED RESOURCE TRACKING 27

6. N. Drost, E. Ogston, R. V. van Nieuwpoort, and H. E. Bal. Arrg: real-world gossiping. In HPDC ’07:
Proceedings of the 16th international symposium on High performance distributed computing, pages 147–
158, New York, NY, USA, 2007. ACM.

7. N. Drost, R. V. van Nieuwpoort, and H. Bal. Simple locality-aware co-allocation in peer-to-peer
supercomputing. In CCGRID ’06: Proceedings of the Sixth IEEE International Symposium on Cluster
Computing and the Grid, page 14, Washington, DC, USA, 2006. IEEE Computer Society.

8. Amazon ec2 website. http://aws.amazon.com/ec2.
9. P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of publish/subscribe.

ACM Comput. Surv., 35(2):114–131, 2003.
10. G. E. Fagg, E. Gabriel, G. Bosilca, T. Angskun, Z. Chen, J. Pjesivac-Grbovic, K. London, and J. J.

Dongarra. Extending the MPI specification for process fault tolerance on high performance computing
systems. In Proceedings of ICS’04, June 2004.

11. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable virtual organizations.
Int. J. High Perform. Comput. Appl., 15(3):200–222, 2001.

12. J.-P. Goux, S. Kulkarni, M. Yoder, and J. Linderoth. An enabling framework for master-worker
applications on the computational grid. In HPDC ’00: Proceedings of the 9th IEEE International
Symposium on High Performance Distributed Computing, page 43, Washington, DC, USA, 2000. IEEE
Computer Society.

13. I. Gupta, R. v. Renesse, and K. P. Birman. A probabilistically correct leader election protocol for large
groups. In DISC ’00: Proceedings of the 14th International Conference on Distributed Computing, pages
89–103, London, UK, 2000. Springer-Verlag.

14. Intrigger website. http://www.intrigger.jp.
15. M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen. The peer sampling service: experimental

evaluation of unstructured gossip-based implementations. In Middleware ’04: Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middleware, pages 79–98, New York, NY, USA, 2004.
Springer-Verlag New York, Inc.

16. T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F. Bhoedjang. Magpie: Mpi’s collective
communication operations for clustered wide area systems. In PPoPP ’99: Proceedings of the seventh
ACM SIGPLAN symposium on Principles and practice of parallel programming, pages 131–140, New
York, NY, USA, 1999. ACM.

17. L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21(7):558–
565, 1978.

18. P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID) URN Namespace. RFC
4122 (Proposed Standard), July 2005.

19. J. Maassen. Method Invocation Based Communication Models for Parallel Programming in Java. PhD
thesis, Vrije Universiteit, Amsterdam, The Netherlands, June 2003.

20. J. Maassen and H. E. Bal. Smartsockets: solving the connectivity problems in grid computing. In HPDC
’07: Proceedings of the 16th international symposium on High performance distributed computing, pages
1–10, New York, NY, USA, 2007. ACM.

21. MPI forum website. http://www.mpi-forum.org/.
22. R. Nieuwpoort, J. Maassen, G. Wrzesińska, R. F. H. Hofman, C. J. H. Jacobs, T. Kielmann, and H. E.

Bal. Ibis: a flexible and efficient java-based grid programming environment: Research articles. Concurr.
Comput. : Pract. Exper., 17(7-8):1079–1107, 2005.

23. R. Nieuwpoort, G. Wrzesinska, C. J. Jacobs, and H. E.Bal. Satin: a high-level and efficient grid
programming model. ACM Transactions on Programming Languages and Systems (TOPLAS), 32(3),
2010.

24. J. Postel. Transmission Control Protocol. RFC 793 (Standard), Sept. 1981. Updated by RFCs 1122,
3168.

25. T. Smith and M. Watherman. Identification of common molecular subsequences. Journal of Molecular
biology, 147, 1981.

26. K. Taura, K. Kaneda, T. Endo, and A. Yonezawa. Phoenix: a parallel programming model for
accommodating dynamically joining/leaving resources. In PPoPP ’03: Proceedings of the ninth ACM
SIGPLAN symposium on Principles and practice of parallel programming, pages 216–229, New York, NY,
USA, 2003. ACM.

27. D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the condor experience:
Research articles. Concurr. Comput. : Pract. Exper., 17(2-4):323–356, 2005.

28. J. Waldo. Remote procedure calls and java remote method invocation. IEEE Concurrency, 6(3):5–7,
1998.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



28 NIELS DROST ET AL.

29. A. YarKhan, J. Dongarra, and K. Seymour. Gridsolve: The evolution of network enabled solver. In
Proceedings of IFIP WoCo9, Prescott, AZ, USA, July 2006.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls


