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“FINITE INDEX OPERATORS ON SURFACES”

PIERRE BÉRARD AND PHILIPPE CASTILLON

Abstract. In this paper, we make some remarks on José Espinar’s
paper “Finite index operators on surfaces” [arXiv:0911.3767, to appear
in Journal of Geometric Analysis (2011)].
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1. Introduction

In [1], we considered operators of the form J = ∆+aK−q on a complete non-
compact Riemannian surface (M,g), where ∆ is the non-negative Laplacian,
and K the Gaussian curvature associated with the metric g. The parameter
a is some positive constant, and q is a non-negative locally integrable func-
tion on M . More precisely, we studied the consequences, for the geometry
of the triple (M,g; q), of the fact that the operator J is non-negative (in the
sense of quadratic forms).

Motivated by applications to minimal and cmc surfaces, J. Espinar [3] con-
siders a different framework (see also [4]). More precisely, he considers a
Riemannian surface (M,g), possibly with boundary ∂M and not necessarily
complete, and operators of the form ∆ + aK − c+P , where the parameters
a, c are positive constants, and P is a non-negative integrable function.

In this note, we consider complete surfaces without boundary, and prove
results similar to those in [3, 4], under weaker assumptions. For this purpose,
we apply the methods of [1].

2. General framework

Generally speaking, we will use the same notations as in [1], (M,g) will
denote a complete (possibly compact) surface without boundary.
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2.1. The operators. In this paper, we consider operators of the form,

(1) J = ∆ + aK − q + P .

Here ∆ is the non-negative Laplacian, and K the Gaussian curvature associ-
ated with the metric g. We let µ denote the Riemannian measure associated
with g.
⋄ We make the following assumptions on the operator J ,

(2)





a is a positive constant,
q is a non-negative, locally integrable function on M,

and we let c = infM q ≥ 0,
P is an integrable function on M,

and we let ‖P‖1 =
∫

M |P | dµ.

Note that we do not impose any sign condition on the function P .
⋄ We say that the open geodesic ball B(x0, R) is J-stable if the operator J
is non-negative in the sense of quadratic forms,

(3) 0 ≤ QJ(φ) =

∫

M

{
|dφ|2 + (aK − q + P )φ2}

dµ

for all φ in Lip0
(
B(x0, R)

)
, the Lipschitz functions with compact support

inside the ball.

2.2. Volume growth assumptions. Fix a reference point x0 in M . We
consider the following assumptions on the volume growth on (M,g).

⋄ We say that (M,g) has polynomial volume growth of order at most k if
there exists a constant Ck such that,

(4) V
(
B(x0, R)

)
≤ Ck(1 +R)k,

for all R > 0.

⋄ We say that (M,g) has k-subpolynomial volume growth if

(5) lim sup
R→∞

V
(
B(x0, R)

)

Rk
= 0.

⋄ We say that (M,g) has subexponential volume growth if

(6) lim sup
R→∞

ln
(
V

(
B(x0, R)

))

R
= 0.

For a complete surface without boundary, these definitions do not depend
on the choice of the reference point x0, although the constant Ck a priori
does.

2.3. Fundamental inequalities. We briefly recall the notations of [1], Sec-
tion 2. Given a reference point x0 ∈ M , we consider the open geodesic balls
B(x0, t), and their Euler-Poincaré characteristics χ

(
B(x0, t)

)
. More pre-

cisely, we introduce the function,

χ̂(s) = sup
{
χ

(
B(x0, t)

)
| t ≥ s

}
.

This is a non-increasing function with a sequence of discontinuities, finite

possibly empty, or infinite, {tj}N
j=1, with N ∈ N ∪ {∞}. Note that this

sequence depends on the choice of the reference point x0. We call ωj the
jump of the function χ̂ at the discontinuity tj.
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We call admissible a function ξ : [0, Q] → R, which is C1 and piecewise C2,
with ξ, ξ′′ ≥ 0 and ξ′ ≤ 0. Let N(Q) be the largest integer n such that
tn ≤ Q.

We now recall two key results from [1].

⋄ The topology of M is controlled by the function χ̂. More precisely, we
have the inequality (see [1], Lemma 2.1),

(7) 1 −
N∑

n=1

ωn ≤ χ(M).

⋄ Assume that the operator J satisfies the assumptions (2), and let B(x0, Q)
be some J-stable ball in M . Let ξ be any admissible function on [0, Q], with
ξ(Q) = 0, and let r denote the distance function to the center x0 of the ball.
Plugging the function ξ(r) into the quadratic form for J and applying [1],
Lemma 2.3, we obtain the inequality

(8)





∫
B(x0,Q) qξ

2(r) dµ ≤ 2πaξ2(0) − 2πa
∑N(Q)

j=1 ωnξ
2(tn)

+
∫

B(x0,Q) Pξ
2(r)

+
∫

B(x0,Q)

[
(1 − 2a)(ξ′)2 − 2aξξ′′

]
(r) dµ ,

which yields the weaker inequality,

(9)

{
c

∫
B(x0,Q) ξ

2(r) dµ ≤ 2πaξ2(0) + ‖ξ‖2
∞

‖P‖1

+
∫

B(x0,Q)

[
(1 − 2a)(ξ′)2 − 2aξξ′′

]
(r) dµ .

3. Statements

Inequality (8) shows that the case in which the operator J = ∆+aK−q+P
is non-negative –under the assumptions (2)– is similar to the case in which
the operator ∆ + aK − q has finite index, as treated in [1], Theorem 4.1.
More precisely, we have the following result.

Theorem 3.1. Let (M,g) be a complete Riemannian surface without bound-
ary, and let J be the operator,

J = ∆ + aK − q + P,

with q ≥ 0 locally integrable and P an integrable function. Assume that
J ≥ 0 on Lip0(M), and that either of the following conditions holds,

(i) a > 1
4 , or

(ii) a = 1
4 , and (M,g) has subexponential volume growth, or

(iii) a ∈ (0, 1
4), and (M,g) has ka-subpolynomial volume growth, with

ka = 2 + 4a
1−4a

.

Then, either M is closed, or (M,g) is non-compact with finite topology and
at most quadratic area growth. In particular, (M,g) is conformally equiv-
alent to a closed Riemannian surface with at most finitely many points re-
moved. Furthermore, q is integrable on (M,g), and we have,

(10)

∫

M
q dµ ≤ 2πaχ(M) +

∫

M
Pdµ.
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Remark. When considering an operator of the form J = ∆ + aK + W ,
taking q = W− and P = W+, the previous result gives the following. If
either of the conditions (i), (ii) or (iii) holds, and if W+ is integrable, then
W ∈ L1(M,µ), M has finite conformal type, and

0 ≤ 2πaχ(M) +

∫

M
Wdµ.

The interesting case, in the present framework, is the case in which the
infimum c of the function q is positive. We have the following result.

Theorem 3.2. Let (M,g) be a complete Riemannian surface without bound-
ary, and let J be the operator,

J = ∆ + aK − q + P,

with q ≥ c > 0 locally integrable, and P an integrable function on (M,g).
Assume that J ≥ 0 on Lip0(M), and that either of the following conditions
holds,

(i) a > 1
4 , or

(ii) a = 1
4 , and (M,g) has subexponential volume growth, or

(iii) a ∈ (0, 1
4), and (M,g) has polynomial volume growth of degree at

most k, for some k.

Then, either M is closed, or (M,g) is non-compact with finite topology and
finite volume. In particular, (M,g) is conformally equivalent to a closed
Riemannian surface with at most finitely many points removed. In both
case, M compact or non-compact,

(11) c V (M,g) ≤

∫

M
q dµ ≤ 2πaχ(M) +

∫

M
P dµ,

where V (M,g) is the volume of (M,g).

Remark. Under conditions (i) and (ii), this result is a direct consequence
of Theorem 3.1. Note however that we only need a polynomial volume
growth condition in (iii), without any bound on the degree (compare with
Theorem 3.1). This is so because the condition that J ≥ 0, with c > 0, is
quite strong. One might wonder whether it is possible to weaken the growth
condition in (ii).

Theorems 3.1 and 3.2 have their counterparts with the assumption that the
operator J is non-negative replaced by the assumption that the operator J
has finite index. As a matter of fact, one can immediately reduce the former
case to the latter by using the following proposition of independent interest.

Proposition 3.3. Let (M,g) be a complete Riemannian manifold and let
W be a locally integrable function on M . Then the operator ∆+W has finite
index if and only if there exists a locally integrable function P with compact
support such that the operator ∆ +W + P is non-negative.
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4. Proofs

4.1. Proof of Theorem 3.1. Let us first deal with the case in which M
is closed. In this case, we can use the constant function 1 in the quadratic
form associated with the operator J ,

QJ(f) =

∫

M

(
|df |2 + (aK − q + P )f2)

dµ

and (10) follows immediately from the Gauss-Bonnet theorem.

From now on, we assume that (M,g) is complete, non-compact.

⋄ Case (i). Assume that B(x0, Q) is a J-stable ball for some Q. Let ξ(t) =
(1 − t/Q)α

+, for some α ≥ 1. Then,

(12) (1 − 2a)(ξ′)2 − 2aξξ′′ = −
α[(4a − 1)α− 2a]

Q2 (1 −
t

Q
)2α−2
+ .

Choose α = 2a
4a−1 . Apply (8) with these choices of ξ and α. Then,

(13)

∫

M
q(1 −

r

Q
)2α
+ + 2πa

N(Q)∑

n=1

ωn(1 −
tn
Q

)2α ≤ 2πa+

∫

M
P (1 −

r

Q
)2α
+ .

SinceM is complete non-compact, and under the assumption of the theorem,
inequality (13) holds for all Q > 0, and we can let Q tend to infinity. Using
the monotone convergence theorem for the left-hand side and the dominated
convergence theorem for the right-hand side, we get

∫

M
q dµ ≤ 2πa(1 −

N̄∑

1

ωn) +

∫

M
Pdµ ,

and inequality (10) follows from Lemma 2.1 in [1]. This inequality implies
that the topology is finite (with a lower bound for the Euler characteristic),
and that q is integrable. To show that the surface is parabolic, we prove
that the volume growth is at most quadratic. To do so, we proceed as in [1].
From (9) and (12), choosing α large enough, we conclude that there exists
a positive constant Cα such that

Cα

22α−2Q2V
(
B(x0, (

Q

2
)
)

≤
Cα

Q2

∫

M
(1 −

t

Q
)2α−2
+ dµ ≤ 2πa+ ‖P‖1 ,

which concludes the proof.
⋄ Case (ii). Assume that B(x0, Q) is a J-stable ball. Take ξ(t) = e−αt−e−αQ

for some α > 0. Then,

(ξ′)2 − ξξ′′ = α2e−αte−αQ.

Applying (8) with a = 1
4 and ξ as above, gives

(14)





∫
B(x0,Q) qξ

2(r) dµ + π
2

∑N(Q)
n=1 ωnξ

2(tn) ≤

π
2 ξ

2(0) +
∫

M Pξ2(r)dµ + α2

2 e
−αQ

∫
B(x0,Q) e

−αr dµ.

Since M is complete non-compact, inequality (14) holds for all Q > 0, and
we can let Q tend to infinity and argue as in [1]. The point is that the last
term in the right-hand side of (14) goes to zero when Q tends to infinity
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for any fixed α > 0, because M has subexponential area growth. Using
monotone and dominated convergence theorems, it follows that

∫

M
qe−2αr dµ+

π

2

N∑

n=1

ωne
−2αtn ≤

π

2
+

∫

M
Pe−αrdµ.

Letting α tend to zero, and using [1] Lemma 2.1, we get inequality (10). In
particular, M has finite topology and q is integrable. To get quadratic area
growth, we use inequality (9) with the test function ξ given in [1] Lemma 2.4.
We get the inequality





1
4R2

∫
B(R) e

2(1−
r

2R
)2

dµ ≤ π
2 e

2 + ‖P‖1

+1
2α

2β2e−αQ
∫

C(R,Q) e
−αr dµ ,

and we let Q tend to infinity to finish the proof.
⋄ Case (iii). Assume that B(x0, Q) is a J-stable ball. Take ξ(t) = (1 +
ǫt)−α − (1 + ǫQ)−α with ǫ > 0 and α = 2a

1−4a
. Then,

(1 − 2a)(ξ′)2 − 2aξξ′′ = 2aǫ2α(α+ 1)(1 + ǫQ)−α(1 + ǫt)−α−2.

Applying (8) to ξ we find,

(15)





∫
B(x0,Q) qξ

2(r) dµ + 2πa
∑N(Q)

n=1 ωnξ
2(tn) ≤

2πaξ2(0) +
∫

M Pξ2(r)dµ

+2aǫ2α(α + 1)(1 + ǫQ)−α
∫

B(x0,Q)(1 + ǫr)−α−2 dµ.

Since M is complete non-compact, inequality (15) holds for all Q > 0, we
can let Q tend to infinity, and argue as in [1]. The point is that the last
term in the right-hand side of (15) goes to zero when Q tends to infinity
for any fixed ǫ > 0, because of the assumption on the area growth of M . It
follows that

∫

M
q(1 + ǫt)−α dµ+ 2πa

N∑

n=1

ωn(1 + ǫtn)−α ≤ 2πa+

∫

M
P (1 + ǫt)−αdµ.

Letting ǫ tend to zero and using [1] Lemma 2.1, we get (10). In particular,
M has finite topology and q is integrable. To get the quadratic area growth,
we use inequality (9) and the test function ξ given in [1] Lemma 2.5. We
get the inequality,





αβ
R2

∫
B(R)(1 + r

R
)−2β−2 dµ ≤ 2πa+ ‖P‖1

+2aǫ2α(α + 1)(1 + ǫQ)−α
∫

B(x0,Q)(1 + ǫr)−α−2 dµ.

We can conclude the proof by letting Q tend to infinity. �

4.2. Proof of Theorem 3.2. Cases (i) and (ii) are direct consequences of
Theorem 3.1, applying inequality (10) to the function q ≥ c > 0. In case
(iii), we first prove that (M,g) has in fact polynomial volume growth of
degree k less than 2 + 4a

1−4a
, this follows from the assumption c > 0.
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⋄ Case (iii), Preliminaries. Assume that B(x0, Q) is a J-stable ball. Take
ξ(t) = (1 + ǫt)−α − (1 + ǫQ)−α for ǫ, α > 0. Then,

{
(1 − 2a)(ξ′)2 − 2aξξ′′ = αǫ2[(1 − 4a)α− 2a](1 + ǫt)−2α−2

+2aǫ2α(α+ 1)(1 + ǫQ)−α(1 + ǫt)−α−2.

Applying (9) to ξ we find,

(16)





c
∫

B(x0,Q) ξ
2(r) dµ ≤

(
2πa+ ‖P‖1

)
ξ2(0)

+ǫ2α[(1 − 4a)α− 2a]
∫

B(x0,Q)(1 + ǫr)−2α−2 dµ

+2aǫ2α(α + 1)(1 + ǫQ)−α
∫

B(x0,Q)(1 + ǫr)−α−2 dµ.

Call respectively A2 and A3 the last two terms in the right-hand side of the
preceding inequality.

Assume that there exists a positive constant Ck such that V
(
B(x0, t)

)
≤

Ck(1 + t)k, for all t > 0. Then,

(17)

{ ∫
B(x0,Q)(1 + ǫr)−β dµ ≤ Ck(1 + ǫQ)−β(1 +Q)k

+βǫCk

∫ Q
0 (1 + ǫt)−β−1(1 + t)k dt.

Since (M,g) is complete non-compact, we can let Q tend to infinity in (16).
⋄ Case (iii) continued. Define k0 by

(18) k0 = inf{k
∣∣∃Ck such that V

(
B(x0, t)

)
≤ Ck(1 + t)k,∀t > 0}.

Claim: k0 < 2 + 4a
1−4a

. Indeed if not, let k1 be such that k0 < k1 < k0 + 1
2 .

Choose α such that 2α+ 2 = k1 + 1
2 , and ǫ = 1. Using (17), one finds that

the term A2 in (16) is uniformy bounded when Q tends to infinity. Similarly,
one sees that the term A3 tends to zero as Q tends to infinity. It follows
that for any R > 0, one has that

(19) c

∫

B(x0,R)
(1 + r)−2α dµ ≤ C(k1),

which implies that c V
(
B(x0, R)

)
≤ C(k1)(1 + R)2α ≤ C(k1)(1 + R)k0−1.

This contradicts the definition of k0.

Since k0 < 2 + 4a
1−4a

, the assumption of Theorem 3.1 (iii) is satisfied and we
can conclude. �

4.3. Proof of Proposition 3.3.

⋄ Assume that ∆ + W has finite index on C1
0 (M). Then there exists a

compact K ⊂ M such that ∆ + W is non-negative on C1
0 (M \ K). Take φ

to be a smooth function with compact support, such that 0 ≤ φ ≤ 1 and
φ ≡ 1 in a compact neighborhood of K. Given any ψ ∈ C1

0 (M), write ψ as
ψ = φψ + (1 − φ)ψ. An easy computation gives,

(20)





∫
M |dψ|2 +Wψ2 =

∫
M |d

(
(1 − φ)ψ

)
|2 +W

(
(1 − φ)ψ

)2

+
∫

M W
(
φ2 + 2φ(1 − φ)

)
ψ2

−1
2

∫
M ψ2∆

(
(1 − φ)2)

−
∫

M ψ2|dφ|2

+2
∫

M φ(1 − 1
2φ)|dψ|2 .
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Because ∆+W is non-negative in M \K, and because of our choice of φ, the
first and fourth terms in the right-hand side of (20) are non-negative. The
other terms can be written as −

∫
M Pψ2, where the function P is defined by

(21)

{
P := |dφ|2 − ∆

(
φ(1 − 1

2φ)
)

−Wφ2 − 2φ(1 − φ)W.

Recall that W is locally integrable and that φ is smooth with compact
support. It follows that P is locally integrable, with compact support. By
(20), the operator ∆ +W + P is non-negative on C1

0 (M), as stated.

⋄ Assume that there exists a function P , which is locally integrable with
compact support, such that ∆ +W + P is non-negative on C1

0 (M). Let K
be a compact neighborhood of the support of P . Then,

0 ≤

∫

M
|dψ|2 +Wψ2 + Pψ2 =

∫

M
|dψ|2 +Wψ2,

for any ψ ∈ C1
0 (M \ K), and this means that ∆ + W is non-negative on

C1
0 (M \K). By a result of B. Devyver [2], this implies that ∆+W has finite

index on C1
0 (M). �.
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