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Introduction

In [START_REF] Bérard | Inverse spectral positivity for surfaces[END_REF], we considered operators of the form J = ∆+aK-q on a complete noncompact Riemannian surface (M, g), where ∆ is the non-negative Laplacian, and K the Gaussian curvature associated with the metric g. The parameter a is some positive constant, and q is a non-negative locally integrable function on M . More precisely, we studied the consequences, for the geometry of the triple (M, g; q), of the fact that the operator J is non-negative (in the sense of quadratic forms).

Motivated by applications to minimal and cmc surfaces, J. Espinar [START_REF] José | Finite index operators on surfaces[END_REF] considers a different framework (see also [START_REF] Espinar | A Colding-Minicozzi inequality and its applications[END_REF]). More precisely, he considers a Riemannian surface (M, g), possibly with boundary ∂M and not necessarily complete, and operators of the form ∆ + aK -c + P , where the parameters a, c are positive constants, and P is a non-negative integrable function.

In this note, we consider complete surfaces without boundary, and prove results similar to those in [START_REF] José | Finite index operators on surfaces[END_REF][START_REF] Espinar | A Colding-Minicozzi inequality and its applications[END_REF], under weaker assumptions. For this purpose, we apply the methods of [START_REF] Bérard | Inverse spectral positivity for surfaces[END_REF].

General framework

Generally speaking, we will use the same notations as in [START_REF] Bérard | Inverse spectral positivity for surfaces[END_REF], (M, g) will denote a complete (possibly compact) surface without boundary.
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The operators.

In this paper, we consider operators of the form, (1) J = ∆ + aK -q + P .

Here ∆ is the non-negative Laplacian, and K the Gaussian curvature associated with the metric g. We let µ denote the Riemannian measure associated with g. ⋄ We make the following assumptions on the operator J,

(2)

          
a is a positive constant, q is a non-negative, locally integrable function on M, and we let c = inf M q ≥ 0, P is an integrable function on M, and we let

P 1 = M |P | dµ.
Note that we do not impose any sign condition on the function P . ⋄ We say that the open geodesic ball B(x 0 , R) is J-stable if the operator J is non-negative in the sense of quadratic forms,

(3) 0 ≤ Q J (φ) = M |dφ| 2 + (aK -q + P )φ 2 dµ
for all φ in Lip 0 B(x 0 , R) , the Lipschitz functions with compact support inside the ball.

2.2. Volume growth assumptions. Fix a reference point x 0 in M . We consider the following assumptions on the volume growth on (M, g). ⋄ We say that (M, g) has polynomial volume growth of order at most k if there exists a constant C k such that,

(4) V B(x 0 , R) ≤ C k (1 + R) k , for all R > 0. ⋄ We say that (M, g) has k-subpolynomial volume growth if (5) lim sup R→∞ V B(x 0 , R) R k = 0.
⋄ We say that (M, g) has subexponential volume growth if

(6) lim sup R→∞ ln V B(x 0 , R) R = 0.
For a complete surface without boundary, these definitions do not depend on the choice of the reference point x 0 , although the constant C k a priori does.

2.3. Fundamental inequalities. We briefly recall the notations of [START_REF] Bérard | Inverse spectral positivity for surfaces[END_REF], Section 2. Given a reference point x 0 ∈ M , we consider the open geodesic balls B(x 0 , t), and their Euler-Poincaré characteristics χ B(x 0 , t) . More precisely, we introduce the function,

χ(s) = sup χ B(x 0 , t) | t ≥ s .
This is a non-increasing function with a sequence of discontinuities, finite possibly empty, or infinite, {t j } N j=1 , with N ∈ N ∪ {∞}. Note that this sequence depends on the choice of the reference point x 0 . We call ω j the jump of the function χ at the discontinuity t j .

We call admissible a function ξ : [0, Q] → R, which is C 1 and piecewise C 2 , with ξ, ξ ′′ ≥ 0 and ξ ′ ≤ 0. Let N (Q) be the largest integer n such that t n ≤ Q.

We now recall two key results from [START_REF] Bérard | Inverse spectral positivity for surfaces[END_REF]. ⋄ The topology of M is controlled by the function χ. More precisely, we have the inequality (see [START_REF] Bérard | Inverse spectral positivity for surfaces[END_REF], Lemma 2.1), (7)

1

- N n=1 ω n ≤ χ(M ).
⋄ Assume that the operator J satisfies the assumptions (2), and let B(x 0 , Q) be some J-stable ball in M . Let ξ be any admissible function on [0, Q], with ξ(Q) = 0, and let r denote the distance function to the center x 0 of the ball.

Plugging the function ξ(r) into the quadratic form for J and applying [START_REF] Bérard | Inverse spectral positivity for surfaces[END_REF], Lemma 2.3, we obtain the inequality (8)

         B(x 0 ,Q) qξ 2 (r) dµ ≤ 2πaξ 2 (0) -2πa N (Q) j=1 ω n ξ 2 (t n ) + B(x 0 ,Q) P ξ 2 (r) + B(x 0 ,Q) (1 -2a)(ξ ′ ) 2 -2aξξ ′′ (r) dµ , which yields the weaker inequality, (9) c B(x 0 ,Q) ξ 2 (r) dµ ≤ 2πaξ 2 (0) + ξ 2 ∞ P 1 + B(x 0 ,Q) (1 -2a)(ξ ′ ) 2 -2aξξ ′′ (r) dµ .

Statements

Inequality (8) shows that the case in which the operator J = ∆ + aK -q + P is non-negative -under the assumptions (2)-is similar to the case in which the operator ∆ + aK -q has finite index, as treated in [START_REF] Bérard | Inverse spectral positivity for surfaces[END_REF], Theorem 4.1. More precisely, we have the following result. Theorem 3.1. Let (M, g) be a complete Riemannian surface without boundary, and let J be the operator, J = ∆ + aK -q + P, with q ≥ 0 locally integrable and P an integrable function. Assume that J ≥ 0 on Lip 0 (M ), and that either of the following conditions holds, (i) a > 1 4 , or (ii) a = 1 4 , and (M, g) has subexponential volume growth, or (iii) a ∈ (0, 1 4 ), and (M, g) has k a -subpolynomial volume growth, with k a = 2 + 4a 1-4a . Then, either M is closed, or (M, g) is non-compact with finite topology and at most quadratic area growth. In particular, (M, g) is conformally equivalent to a closed Riemannian surface with at most finitely many points removed. Furthermore, q is integrable on (M, g), and we have,

(10) M q dµ ≤ 2πa χ(M ) + M P dµ.
Remark. When considering an operator of the form J = ∆ + aK + W , taking q = W -and P = W + , the previous result gives the following. If either of the conditions (i), (ii) or (iii) holds, and if W + is integrable, then W ∈ L 1 (M, µ), M has finite conformal type, and

0 ≤ 2πa χ(M ) + M W dµ.
The interesting case, in the present framework, is the case in which the infimum c of the function q is positive. We have the following result. Theorem 3.2. Let (M, g) be a complete Riemannian surface without boundary, and let J be the operator, J = ∆ + aK -q + P, with q ≥ c > 0 locally integrable, and P an integrable function on (M, g). Assume that J ≥ 0 on Lip 0 (M ), and that either of the following conditions holds, (i) a > 1 4 , or (ii) a = 1 4 , and (M, g) has subexponential volume growth, or (iii) a ∈ (0, 1 4 ), and (M, g) has polynomial volume growth of degree at most k, for some k.

Then, either M is closed, or (M, g) is non-compact with finite topology and finite volume. In particular, (M, g) is conformally equivalent to a closed Riemannian surface with at most finitely many points removed. In both case, M compact or non-compact,

(11) c V (M, g) ≤ M q dµ ≤ 2πa χ(M ) + M P dµ,
where V (M, g) is the volume of (M, g).

Remark.

Under conditions (i) and (ii), this result is a direct consequence of Theorem 3.1. Note however that we only need a polynomial volume growth condition in (iii), without any bound on the degree (compare with Theorem 3.1). This is so because the condition that J ≥ 0, with c > 0, is quite strong. One might wonder whether it is possible to weaken the growth condition in (ii).

Theorems 3.1 and 3.2 have their counterparts with the assumption that the operator J is non-negative replaced by the assumption that the operator J has finite index. As a matter of fact, one can immediately reduce the former case to the latter by using the following proposition of independent interest. 

Q J (f ) = M |df | 2 + (aK -q + P )f 2 dµ
and (10) follows immediately from the Gauss-Bonnet theorem.

From now on, we assume that (M, g) is complete, non-compact.

⋄ Case (i). Assume that B(x 0 , Q) is a J-stable ball for some Q. Let ξ(t) = (1 -t/Q) α + , for some α ≥ 1. Then, ( 12 
) (1 -2a)(ξ ′ ) 2 -2aξξ ′′ = - α[(4a -1)α -2a] Q 2 (1 - t Q ) 2α-2 + .
Choose α = 2a 4a-1 . Apply (8) with these choices of ξ and α. Then, (

) M q(1 - r Q ) 2α + + 2πa N (Q) n=1 ω n (1 - t n Q ) 2α ≤ 2πa + M P (1 - r Q ) 2α + . 13 
Since M is complete non-compact, and under the assumption of the theorem, inequality (13) holds for all Q > 0, and we can let Q tend to infinity. Using the monotone convergence theorem for the left-hand side and the dominated convergence theorem for the right-hand side, we get

M q dµ ≤ 2πa(1 - N 1 ω n ) + M P dµ ,
and inequality (10) follows from Lemma 2.1 in [START_REF] Bérard | Inverse spectral positivity for surfaces[END_REF]. This inequality implies that the topology is finite (with a lower bound for the Euler characteristic), and that q is integrable. To show that the surface is parabolic, we prove that the volume growth is at most quadratic. To do so, we proceed as in [START_REF] Bérard | Inverse spectral positivity for surfaces[END_REF]. From ( 9) and ( 12), choosing α large enough, we conclude that there exists a positive constant C α such that

C α 2 2α-2 Q 2 V B(x 0 , ( Q 2 ) ≤ C α Q 2 M (1 - t Q ) 2α-2 + dµ ≤ 2πa + P 1 ,
which concludes the proof. ⋄ Case (ii). Assume that B(x 0 , Q) is a J-stable ball. Take ξ(t) = e -αt -e -αQ for some α > 0. Then,

(ξ ′ ) 2 -ξξ ′′ = α 2 e -αt e -αQ .
Applying (8) with a = 1 4 and ξ as above, gives

(14)    B(x 0 ,Q) qξ 2 (r) dµ + π 2 N (Q) n=1 ω n ξ 2 (t n ) ≤ π 2 ξ 2 (0) + M P ξ 2 (r)dµ + α 2
2 e -αQ B(x 0 ,Q) e -αr dµ. Since M is complete non-compact, inequality ( 14) holds for all Q > 0, and we can let Q tend to infinity and argue as in [START_REF] Bérard | Inverse spectral positivity for surfaces[END_REF]. The point is that the last term in the right-hand side of (14) goes to zero when Q tends to infinity for any fixed α > 0, because M has subexponential area growth. Using monotone and dominated convergence theorems, it follows that

M qe -2αr dµ + π 2 N n=1
ω n e -2αtn ≤ π 2 +

M P e -αr dµ.

Letting α tend to zero, and using [START_REF] Bérard | Inverse spectral positivity for surfaces[END_REF] Lemma 2.1, we get inequality (10). In particular, M has finite topology and q is integrable. To get quadratic area growth, we use inequality (9) with the test function ξ given in [START_REF] Bérard | Inverse spectral positivity for surfaces[END_REF] Lemma 2.4. We get the inequality

   1 4R 2 B(R) e 2(1-r 2R ) 2 dµ ≤ π 2 e 2 + P 1 + 1 2 α 2 β 2 e -αQ C(R,Q) e -αr dµ ,
and we let Q tend to infinity to finish the proof.

⋄ Case (iii). Assume that B(x 0 , Q) is a J-stable ball. Take ξ(t) = (1 + ǫt) -α -(1 + ǫQ) -α with ǫ > 0 and α = 2a 1-4a . Then, (1 -2a)(ξ ′ ) 2 -2aξξ ′′ = 2aǫ 2 α(α + 1)(1 + ǫQ) -α (1 + ǫt) -α-2 .
Applying (8) to ξ we find,

         B(x 0 ,Q) qξ 2 (r) dµ + 2πa N (Q) n=1 ω n ξ 2 (t n ) ≤ 2πaξ 2 (0) + M P ξ 2 (r)dµ +2aǫ 2 α(α + 1)(1 + ǫQ) -α B(x 0 ,Q) (1 + ǫr) -α-2 dµ. (15) 
Since M is complete non-compact, inequality (15) holds for all Q > 0, we can let Q tend to infinity, and argue as in [START_REF] Bérard | Inverse spectral positivity for surfaces[END_REF]. The point is that the last term in the right-hand side of (15) goes to zero when Q tends to infinity for any fixed ǫ > 0, because of the assumption on the area growth of M . It follows that

M q(1 + ǫt) -α dµ + 2πa N n=1 ω n (1 + ǫt n ) -α ≤ 2πa + M P (1 + ǫt) -α dµ.
Letting ǫ tend to zero and using [START_REF] Bérard | Inverse spectral positivity for surfaces[END_REF] Lemma 2.1, we get (10). In particular, M has finite topology and q is integrable. To get the quadratic area growth, we use inequality (9) and the test function ξ given in [START_REF] Bérard | Inverse spectral positivity for surfaces[END_REF] Lemma 2.5. We get the inequality,

   αβ R 2 B(R) (1 + r R ) -2β-2 dµ ≤ 2πa + P 1 +2aǫ 2 α(α + 1)(1 + ǫQ) -α B(x 0 ,Q) (1 + ǫr) -α-2 dµ.
We can conclude the proof by letting Q tend to infinity.

4.2.

Proof of Theorem 3.2. Cases (i) and (ii) are direct consequences of Theorem 3.1, applying inequality (10) to the function q ≥ c > 0. In case (iii), we first prove that (M, g) has in fact polynomial volume growth of degree k less than 2 + 4a 1-4a , this follows from the assumption c > 0.

⋄ Case (iii), Preliminaries. Assume that B(x 0 , Q) is a J-stable ball. Take

ξ(t) = (1 + ǫt) -α -(1 + ǫQ) -α for ǫ, α > 0. Then, (1 -2a)(ξ ′ ) 2 -2aξξ ′′ = αǫ 2 [(1 -4a)α -2a](1 + ǫt) -2α-2 +2aǫ 2 α(α + 1)(1 + ǫQ) -α (1 + ǫt) -α-2 .
Applying (9) to ξ we find,

       c B(x 0 ,Q) ξ 2 (r) dµ ≤ 2πa + P 1 ξ 2 (0) +ǫ 2 α[(1 -4a)α -2a] B(x 0 ,Q) (1 + ǫr) -2α-2 dµ +2aǫ 2 α(α + 1)(1 + ǫQ) -α B(x 0 ,Q) (1 + ǫr) -α-2 dµ. (16) 
Call respectively A 2 and A 3 the last two terms in the right-hand side of the preceding inequality. Assume that there exists a positive constant

C k such that V B(x 0 , t) ≤ C k (1 + t) k , for all t > 0. Then, (17) B(x 0 ,Q) (1 + ǫr) -β dµ ≤ C k (1 + ǫQ) -β (1 + Q) k +βǫC k Q 0 (1 + ǫt) -β-1 (1 + t) k dt. Since (M, g) is complete non-compact, we can let Q tend to infinity in (16). ⋄ Case (iii) continued. Define k 0 by (18) k 0 = inf{k ∃C k such that V B(x 0 , t) ≤ C k (1 + t) k , ∀t > 0}. Claim: k 0 < 2 + 4a 1-4a . Indeed if not, let k 1 be such that k 0 < k 1 < k 0 + 1 2 . Choose α such that 2α + 2 = k 1 + 1
2 , and ǫ = 1. Using (17), one finds that the term A 2 in (16) is uniformy bounded when Q tends to infinity. Similarly, one sees that the term A 3 tends to zero as Q tends to infinity. It follows that for any R > 0, one has that

(19) c B(x 0 ,R) (1 + r) -2α dµ ≤ C(k 1 ), which implies that c V B(x 0 , R) ≤ C(k 1 )(1 + R) 2α ≤ C(k 1 )(1 + R) k 0 -1 .
This contradicts the definition of k 0 .

Since k 0 < 2 + 4a 1-4a , the assumption of Theorem 3.1 (iii) is satisfied and we can conclude.

Proof of Proposition 3.3.

⋄ Assume that ∆ + W has finite index on C 1 0 (M ). Then there exists a compact K ⊂ M such that ∆ + W is non-negative on C 1 0 (M \ K). Take φ to be a smooth function with compact support, such that 0 ≤ φ ≤ 1 and φ ≡ 1 in a compact neighborhood of K. Given any ψ ∈ C 1 0 (M ), write ψ as ψ = φψ + (1 -φ)ψ. An easy computation gives, (20)

                   M |dψ| 2 + W ψ 2 = M |d (1 -φ)ψ | 2 + W (1 -φ)ψ 2 + M W φ 2 + 2φ(1 -φ) ψ 2 -1 2 M ψ 2 ∆ (1 -φ) 2 -M ψ 2 |dφ| 2 +2 M φ(1 -1 2 φ)|dψ| 2 .
Because ∆ + W is non-negative in M \K, and because of our choice of φ, the first and fourth terms in the right-hand side of (20) are non-negative. The other terms can be written as -M P ψ 2 , where the function P is defined by ( 21)

P := |dφ| 2 -∆ φ(1 -1 2 φ) -W φ 2 -2φ(1 -φ)W.
Recall that W is locally integrable and that φ is smooth with compact support. It follows that P is locally integrable, with compact support. By (20), the operator ∆ + W + P is non-negative on C 1 0 (M ), as stated. ⋄ Assume that there exists a function P , which is locally integrable with compact support, such that ∆ + W + P is non-negative on C 1 0 (M ). Let K be a compact neighborhood of the support of P . Then,

0 ≤ M |dψ| 2 + W ψ 2 + P ψ 2 = M |dψ| 2 + W ψ 2 ,
for any ψ ∈ C 1 0 (M \ K), and this means that ∆ + W is non-negative on C 1 0 (M \ K). By a result of B. Devyver [START_REF] Devyver | On the finiteness of the Morse index for Schrödinger operators[END_REF], this implies that ∆ + W has finite index on C 1 0 (M ). .

  Let us first deal with the case in which M is closed. In this case, we can use the constant function 1 in the quadratic form associated with the operator J,

Proposition 3.3. Let (M, g) be a complete Riemannian manifold and let W be a locally integrable function on M . Then the operator ∆+W has finite index if and only if there exists a locally integrable function P with compact support such that the operator ∆ + W + P is non-negative. 4. Proofs 4.1. Proof of Theorem 3.1.