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On the first Hochschild cohomology group of a

cluster-tilted algebra

Ibrahim Assem, Maŕıa Julia Redondo and Ralf Schiffler ∗

Abstract

Given a cluster-tilted algebra B, we study its first Hochschild cohomol-
ogy group HH1(B) with coefficients in the B-B-bimodule B. If C is a tilted
algebra such that B is the relation extension of C, then we show that if C is
constrained, or else if B is tame, then HH1(B) is isomorphic, as a k-vector
space, to the direct sum of HH1(C) with knB,C , where nB,C is an invariant
linking the bound quivers of B and C. In the representation-finite case,
HH1(B) can be read off simply by looking at the quiver of B.

2010 Mathematics Subject Classification : 13F60, 16E40, 16G20

1 Introduction

Our objective here is, for a cluster-tilted algebra B, to study its first Hochschild coho-
mology group HH1(B) with coefficients in the B-B-bimodule B, see [CE].

Cluster-tilted algebras were defined in [BMR] and in [CCS] for the type A, as a
by-product of the extensive theory of cluster algebras of Fomin and Zelevinsky [FZ].
Now, it has been shown in [ABS1] that every cluster-tilted algebra B is the relation
extension of a tilted algebra C. Our goal is to relate the Hochschild cohomologies of
the two algebras B and C. The main step in our argument consists in defining an
equivalence relation between the arrows in the quiver of B which are not in the quiver
of C. The number of equivalence classes is then denoted by nB,C . The first two authors
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by the project PICT-2007-02182 and is a research member of CONICET (Argentina), and the
third author gratefully acknowledges partial support from the NSF Grant DMS-1001637 and
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have shown in [AR] that, if the cluster-tilted algebra B is schurian, then there is a short
exact sequence of vector spaces

0 → knB,C → HH1(B) → HH1(C) → 0.

This holds true, for instance, when B is representation-finite. In the present paper,
we start by proving that this result also holds true in case the tilted algebra C is
constrained in the sense of [BM], that is, for every arrow i → j in the quiver of C, we
have dimk(eiCej) ≤ 1, where ei, ej are the primitive idempotents corresponding to the
points i, j respectively. Our first theorem can be stated as follows.

THEOREM 1.1 Let k be an algebraically closed field and B a cluster-tilted k-algebra.
If C is a constrained tilted algebra such that B is the relation extension of C, then there
is a short exact sequence of vector spaces

0 → knB,C → HH1(B) → HH1(C) → 0.

We next show that, for any cluster-tilted algebra B, we have HH1(B) = 0 if and
only if B is hereditary and its quiver is a tree, that is, B is simply connected. This
answers positively for all cluster-tilted algebras Skowroński’s question in [S, Problem
1].

We then consider tame cluster-tilted algebras. Because of [BMR], a cluster-tilted
algebra is tame if and only if it is of euclidean or Dynkin type. Our second theorem says
that in this case, one can delete the assumption that the tilted algebra is constrained.

THEOREM 1.2 Let k be an algebraically closed field and B a tame cluster-tilted k-
algebra. If C is a tilted algebra such that B is the relation extension of C, then there
is a short exact sequence of vector spaces

0 → knB,C → HH1(B) → HH1(C) → 0.

Finally, we consider the case where the cluster-tilted algebra B is representation-
finite and show that the k-dimension of HH1(B) can be computed simply by looking at
the quiver of B: indeed, in this case, for any tilted algebra C such that B is a relation
extension of C, we have HH1(C) = 0 and moreover the invariant nB,C does not depend
on the particular choice of C (and thus is denoted simply by nB). Recalling that an
arrow in the quiver of B is called inner if it belongs to two chordless cycles, our theorem
may be stated as follows.

THEOREM 1.3 Let B be a representation-finite cluster-tilted algebra. Then the di-
mension nB of HH1(B) equals the number of chordless cycles minus the number of
inner arrows in the quiver of B.
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The paper is organized as follows. In section 2, after briefly setting the notation and
recalling the necessary notions, we present results on systems of relations in cluster-
tilted algebras. We then introduce the arrow equivalence relation in section 3, and
section 4 is devoted to the proof of Theorem 1.1. Sections 5 and 6 contain the proofs
of Theorems 1.2 and 1.3, respectively.

2 Systems of relations.

Let k be an algebraically closed field, then it is well-known that any basic and connected
finite dimensional k-algebra C can be written in the form C = kQ/I, where Q is a
connected quiver, kQ its path algebra and I an admissible ideal of kQ. The pair (Q, I)
is then called a bound quiver. We recall that finitely generated C-modules can be
identified with representations of the bound quiver (Q, I) , thus any such module M
can be written as M = (M(x),M(α))x∈Q0,α∈Q1

(see, for instance, [ASS]).
A relation from x ∈ Q0 to y ∈ Q0 is a linear combination ρ =

∑m
i=1 aiwi where

each wi is a path of length at least two from x to y and ai ∈ k for each i. If m = 1 then
ρ is monomial. The relation ρ is minimal if each scalar ai is non-zero and

∑
J aiwi 6∈ I

for any non-empty proper subset J of the set {1, . . . ,m}, and it is strongly minimal if
each scalar ai is non-zero and

∑
J biwi 6∈ I for any non-empty proper subset J of the

set {1, . . . ,m}, where each bi is a non-zero scalar.
We sometimes consider an algebra C as a category, in which the object class C0 is a

complete set {e1, . . . , en} of primitive orthogonal idempotents of C and C(x, y) = exCey
is the set of morphisms from ex to ey. An algebra C is constrained if, for any arrow
from x to y in Q1, we have dimk exCey = 1.

For a general background on the cluster category and cluster-tilting, we refer the
reader to [BMRRT]. It is shown in [ABS1] that, if T is a tilting module over a hereditary
algebra A, so that C = EndA(T ) is a tilted algebra, then the trivial extension C̃ =
C ⋉ Ext2C(DC,C) (the relation-extension of C) is cluster-tilted and, conversely, any
cluster-tilted algebra is of this form (but in general, not uniquely: see [ABS2]). As a
consequence, we have a description of the quiver of C̃. Let R be a system of relations
for the tilted algebra C = kQ/I, that is, R is a subset of ∪x,y∈Q0

exIey such that
R, but no proper subset of R, generates I as an ideal of kQ. It is shown in [ABS1]

that the quiver Q̃ of C̃ is as follows:

(a) Q̃0 = Q0;

(b) For x, y ∈ Q0, the set of arrows in Q̃ from x to y equals the set of arrows in Q
from x to y (which we call old arrows) plus |R∩ I(y, x)| additional arrows (which
we call new arrows).
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The relations in Ĩ are given by the partial derivatives of the potentialW =
∑

ρ∈R αρρ,
with αρ the new arrow associated to the relation ρ, see [Ke].

Now we show that R can be chosen as a set of strongly minimal relations.

LEMMA 2.1 If ρ =
∑m

i=1 λiwi ∈ R, with λi 6= 0, is not strongly minimal, there exists
ρ′ =

∑m
i=1 µiwi ∈ I with µ1 = λ1 which is strongly minimal.

Proof. We proceed by induction on m. If m = 2 and ρ = λ1w1+λ2w2 is not strongly
minimal, then it is clear that w1, w2 are relations in I and hence we may take ρ′ = λ1w1.
Assume now m > 2 and ρ is not strongly minimal. Since m is finite, it is clear that
there exists a strongly minimal relation ρ1 =

∑
J βjwj ∈ I, with J a proper non empty

subset of {1, . . . ,m}, βj 6= 0. If 1 ∈ J , we take ρ′ = λ1

β1
ρ1 and we are done. If 1 6∈ J , let

s be the first element in J . We apply the inductive hypothesis to the relation ρ− λs

βs
ρ1.

�

LEMMA 2.2 Any system of relations R = {ρ1, · · · , ρt} can be replaced by a system
of strongly minimal relations R′ = {ρ′1, · · · , ρ

′
t}

Proof. We proceed by induction on t. If t = 1 then ρ =
∑m

i=1 λiwi is already
strongly minimal, since if it is not, then, by the previous lemma we get a relation
ρ′ =

∑m
i=1 µiwi ∈ I with µ1 = λ1. Without loss of generality we may assume that w1

has maximal length, and hence the relation ρ− ρ′ =
∑m

i=2(λi − µi)wi belonging to the
ideal generated by ρ yields a contradiction: in its expression as an element in < ρ >,
there should be a summand of the form µu1w1u2, with µ a non-zero scalar, u1, u2 paths
in Q, and then u1w1u2 is w1 or a path of greater length, so this term cannot appear in
ρ− ρ′.
Let t > 1, let {w1, . . . , ws} be a complete set of paths appearing in the relations ρi,
that is,

ρi = λ1iw1 + · · ·+ λsiws.

Without loss of generality, we may assume that w1 has maximal length and that λ11 6= 0.
Now, the ideal generated by the set {ρ1, · · · , ρt} is equal to the ideal generated by the
set

{ρ1, ρ̃2, · · · , ρ̃t}

with

ρ̃j = ρj −
λ1j

λ11
ρ1.

If we apply the previous lemma to ρ1 we get a strongly minimal relation ρ′1 with λ11

as the first coefficient. Following an argument similar to what we did in the case
t = 1, using the maximality of w1 we get that the relation ρ1 − ρ′1 belongs to the
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ideal < ρ̃2, · · · , ρ̃t >, and so we get a system of relations {ρ′1, ρ̃2, · · · , ρ̃t}, with ρ′1
strongly minimal. Now we proceed by induction on the set {ρ̃2, · · · , ρ̃t}, and we get a
system of relations {ρ′2, · · · , ρ

′
t} which are strongly minimal with respect to the ideal

I ′ =< ρ′2, · · · , ρ
′
t >. Assume that one of these relations is not strongly minimal with

respect to I, say ρ′i =
∑s

i=2 βiwi and ρ′′ =
∑

J µiwi ∈ I, where J is a proper subset of
{2, · · · , s}. So ρ′′ 6∈ I ′ says that if we write it as an element in I, the relation ρ′1 should
appear. Again we get a contradiction when considering the summands that contain w1

as a subpath. �

LEMMA 2.3 Let C = kQ/I be a tilted algebra. Then its relation-extension C̃ con-
tains no walk of the form w = αw′β, where α, β are new arrows, and w′ is a walk
consisting entirely of old arrows, no subpath of which is antiparallel to a new arrow.

Proof. The proof is similar to the proof in the schurian case (see [AR, Lemma 2.1]).
We insert it for the convenience of the reader. Suppose there exists such a walk, and
assume without loss of generality that the length of w′ is minimal. Since new arrows
correspond to relations in C, and the quiver Q of C is acyclic, then the existence of
such a walk in the quiver Q̃ of C̃ implies that C contains a subquiver, maybe not full,
of one of the following forms, where w′ is the walk from b1 to bs:

(a)

a1
//l h c _ [ V
· · · // ar = b1 · · · bs = c1 //

h d _ Z V Q
· · · // ct

(b)

• . . . •

  @
@@

@@
@@

@

a1
//l h c _ [ V
. . . // ar = b1 . . . bs = c1

;;xxxxxxxxx

��4
44

44
44

44
44

44
4

##F
FF

FF
FF

FF
______________ ct

• . . . •

>>~~~~~~~~

• . . . •

GG�������������
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(c)

• . . . •

##G
GG

GG
GG

GG

a1

>>}}}}}}}}

  A
AA

AA
AA

A

��0
00
00
00
00
00
00

______________ ar = b1 . . . bs = c1
//

h d _ Z V Q
. . . // ct

• . . . •

;;wwwwwwwww

• . . . •

DD















(d)

• . . . •

##G
GG

GG
GG

GG
• . . . •

  @
@@

@@
@@

@

a1

>>}}}}}}}}

  A
AA

AA
AA

A

��0
00
00
00
00
00
00

______________ ar = b1 . . . bs = c1

;;xxxxxxxxx

##F
FF

FF
FF

FF

��4
44

44
44

44
44

44
4

______________ ct

• . . . •

;;wwwwwwwww
• . . . •

>>~~~~~~~~

• . . . •

DD














• . . . •

GG�������������

(e)

bs = a1

g c _ [ W
// . . . // ar = b1

GG
GG

GG
GG

G

•

wwwwwwwww
• . . . • •

(f)

• . . . •

��4
44

44
44

44
44

44
4

• . . . •

##G
GG

GG
GG

GG

bs = a1

;;wwwwwwwww

DD















##G
GG

GG
GG

GG
______________ ar = b1

DD
DD

DD
DD

DD
DD

DD
DD

DD

• . . . •

;;wwwwwwwww

•

zzzzzzzzzzzzzzzzzz
• . . . • •
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where we have represented relations by dotted lines. The last two cases occur when
α = β. The hypothesis that w′ has no subpath antiparallel to a new arrow means that
there is no relation in C having both of its endpoints among the bj’s. Let C ′ be the
full subcategory of C generated by all the points ai, bj , ck. By [Ha1, III.6.5, p. 146],
C ′ is a tilted algebra. Since w′ is of minimal length, then there is no additional arrow
between two bj ’s. In each of these cases above, let M be the C ′-module defined as a
representation by

M(x) =

{
k, if x ∈ {b1, · · · , bs},
0, otherwise,

and

M(α) =

{
id, if s(α), t(α) ∈ {b1, · · · , bs},
0, otherwise,

for every point x and arrow α in the quiver of C ′. Since there is no relation having its
two endpoints among the bj ’s, then M is indeed a module. It is clearly indecomposable
and it can be easily seen that both of its projective and its injective dimensions equal
two, a contradiction because C ′ is tilted. �

3 Arrow equivalence

The following lemma is an easy consequence of the main result in [ACT]. For the
benefit of the reader, we give an independent proof.

Recall from [DWZ] that for a given arrow β, the cyclic partial derivative ∂β in β is
defined on each cyclic path β1β2 · · · βs by ∂β(β1β2 · · · βs) =

∑
i:β=βi

βi+1 · · · βsβ1 · · · βi−1.
Note that ∂β(β1β2 · · · βs) = ∂β(βj · · · βsβ1 · · · βj−1), in other words, the cyclic derivative
is invariant under cyclic permutations.

LEMMA 3.1 Let B = kQ̃/Ĩ be a cluster-tilted algebra, and C = kQ/I a tilted algebra
such that B = C̃. Let ρ =

∑m
i=1 aiwi be a minimal relation in Ĩ. Then either ρ is a

relation in I, or there exist exactly m new arrows α1, . . . , αm such that wi = uiαivi
(with ui, vi paths consisting entirely of old arrows).

Proof. Let ρ1, . . . , ρs be a system of minimal relations for the tilted algebra C. Then
each relation ρi induces a new arrow αi and the product ρiαi is a linear combination
of cyclic paths in the quiver of the cluster tilted algebra B. The potential of B can be
given as W =

∑s
i=1 ρiαi and the ideal of B is generated by all partial derivatives ∂βW

of the potential W with respect to the arrows β. If β is one of the new arrows αi then
∂βW is just the “old” relation ρi ∈ I.

If β is an old arrow then ∂βW =
∑s

i=1(∂βρi)αi and each term on the right hand
side contains exactly one new arrow αi. �
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Lemma 3.1 above brings us to our main definition. Let B = kQ̃/Ĩ be a cluster-tilted
algebra and C = kQ/I a tilted algebra such that B = C̃. We define a relation ∼ on
the set Q̃1 \ Q1 of new arrows as follows. For every α ∈ Q̃1 \ Q1, we set α ∼ α. If
ρ =

∑m
i=1 aiwi is a strongly minimal relation in Ĩ and αi are as in Lemma 3.1 above,

then we set αi ∼ αj for any i, j such that 1 ≤ i, j ≤ m.
By Lemma 2.3, the relation ∼ is unambiguously defined. It is clearly reflexive and

symmetric. We let ≈ be the least equivalence relation defined on the set Q̃1 \Q1 such
that α ∼ β implies α ≈ β (that is, ≈ is the transitive closure of ∼).

We define the relation invariant of B to be the number nB,C of equivalence classes
under the relation ≈.

The following two lemmata will be useful in section 5. They use essentially the fact
that cluster-tilted algebras of type Ã are gentle (because of [ABCP, Lemma 2.5]) and
in particular all relations are monomial of length 2 contained inside 3-cycles that is,
cycles of the form

·
β

��=
==

==
==

·

α
@@�������

·γ
oo

bound by αβ = βγ = γα = 0.

LEMMA 3.2 Let B be a cluster-tilted algebra of type Ã and let C1, C2 be tilted algebras
such that B = C̃1 = C̃2. Let R1, R2 be systems of relations for C1, C2 respectively.
Then |R1| = |R2|.

Proof. Indeed, in order to obtain C1 and C2 from B, we have to delete exactly one
arrow from each chordless cycle (for the notion of chordless cycle, see [BGZ] or section
6 below). Because B is of type Ã, then the chordless cycles are 3-cycles, and no arrow
belongs to two distinct 3-cycles. Deleting exactly one arrow from each 3-cycle leaves a
path of length 2. The system of relations for the tilted algebra consists in exactly these
paths of length 2. This implies the statement. �

LEMMA 3.3 Let B = C̃, where C is a tilted algebra of type Ã. Let R be a system of
relations for C. Then nB,C = |R|. In particular, nB,C does not depend on the choice
of C.

Proof. Let αi, αj be two equivalent new arrows, then there exists a sequence of new
arrows

αi = β1 ∼ β2 ∼ · · · ∼ βt = αj

where βℓ, βℓ+1 appear in the same strongly minimal relation in (Q̃, Ĩ). Now, B is gentle.
Hence strongly minimal relations contain just one monomial. Therefore βℓ = βℓ+1 for
each ℓ, and αi = αj . This shows that the relation invariant nB,C is equal to the number
of new arrows, and the latter is equal to |R| because of [ABS1, Theorem 2.6]. �
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4 Hochschild cohomology of cluster-tilted alge-

bras

For the Hochschild cohomology groups, we refer the reader to [CE, Ha2]. We recall
that, it B is a finite dimensional k-algebra, then the first Hochschild cohomology group
of B is given by the quotient HH1(B) = DerB/ IntB, where DerB is the k-vector
space of derivations and IntB the k-vector space of inner derivations on B. Moreover,
we have

HH1(B) = Der0 B/ Int0 B, where Der0B is the k-vector space of the normalized
derivations, that is, of the derivations δ such that δ(ex) = 0 for every primitive idem-
potent ex, and Int0 B is the subspace of the interior normalized derivations, that is,
derivations δ = δc given by δc(b) = cb − bc, where c is a fixed element in B (see, for
instance, [Ha2, 3.1]).

We start by presenting a result for split algebras concerning the first Hochschild
cohomology group. A split algebra B is a k-algebra with a subalgebra C and a two-
sided ideal M such that B = C⊕M . In other words B consists of the following data: a
k-algebra C and a multiplicative C-bimodule M with a product, that is, an associative
C-bimodule map M ⊗C M → M . The algebra structure in C ⊕M is given by

(c+m)(c′ +m′) = cc′ + cm′ +mc′ +mm′.

In particular, the trivial extension of C by M is a split algebra with M2 = 0.

LEMMA 4.1 Let B = C ⊕ M be a split algebra. Then there exists a k-linear map
HH1(B) → HH1(C).

Proof. We show first that we can define a k-linear map φ : DerB → DerC. Let
δ ∈ DerB and let φ(δ) = pδi : C → C, with i : C → C ⊕M and p : C ⊕M → C the
canonical inclusion and projection maps respectively. Then φ(δ) ∈ DerC since

φ(δ)(ab) = pδi(ab)
= pδ[(a+ 0).(b + 0)] = p[(a+ 0)δ(b + 0) + δ(a+ 0)(b+ 0)]
= apδ(b+ 0) + pδ(a+ 0)b = aφ(δ)(b) + φ(δ)(b)a.

On the other hand, for any c+m ∈ B, we have that

φ(δc+m)(a) = pδc+m(a+ 0) = p[(c+m)(a+ 0)− (a+ 0)(c+m)] = ca− ac

and hence φ(IntB) ⊆ IntC. �

THEOREM 4.2 Let B be a cluster-tilted algebra, and C a constrained tilted algebra
such that B = C̃. Then there exists a short exact sequence of k-vector spaces

0 → knB,C → HH1(B) → HH1(C) → 0.

9



Proof. As usual, we let B = kQ̃/Ĩ and C = kQ/I. Because of Lemma 2.2, we can
choose a system of relations R = {ρ1, ..., ρm} with ρi a strongly minimal relation for all
i. We show first that there exists a short exact sequence of k-vector spaces

0 → knB,C
ζ
→ Der0 B

φ
→ Der0 C → 0

where φ(δ) = pδi as in the previous lemma. Note that φ is well-defined on the
normalized derivations because, if δ ∈ Der0 B, then φ(δ)(ex) = pδ(ex) = 0, whence
φ(δ) ∈ Der0 C.
Let δ ∈ Der0 C then, for every arrow α : x → y in Q1, we have α = exαey, hence

δ(α) = δ(exαey) = exδ(α)ey ∈ exCey.

Since C is constrained, there exists a scalar λα such that δ(α) = λαα. Let then
w = α1α2 . . . αt be a path in Q, then

δ(w) = δ(α1α2 . . . αt) = (λα1
+ . . .+ λαt)α1α2 . . . αt.

We denote λw = λα1
+ . . . + λαt . In particular, δ is uniquely determined by its value

on the arrows.
Let ρ =

∑m
i=1 aiwi, with ai ∈ k∗, be a strongly minimal relation, then ρ ∈ I implies

m∑

i=1

aiδ(wi) =

m∑

i=1

aiλwi
wi ∈ I

which yields
m∑

i=1

aiλwi
wi − λw1

m∑

i=1

aiwi =
m∑

i=2

ai(λwi
− λw1

)wi ∈ I

and since ρ is strongly minimal we get that λwi
= λw1

for any i. We denote λρ = λwi
.

We use this observation to prove that φ is surjective. Moreover, we define a section
ϕ : Der0 C → Der0 B for φ.
Let δ ∈ Der0C, then we let ϕ(δ) = δ̃ be defined by its action on the arrows according
to

δ̃(α) =

{
δ(α), if α ∈ Q1,

−λρα, if α = αρ ∈ Q̃1 \Q1,

where ρ is the strongly minimal relation associated to the new arrow α = αρ.
In order to show that δ̃(α) is well-defined, we prove that δ̃∂β(W ) = δ̃∂β(

∑
ρ αρρ) ∈

Ĩ, for any arrow β ∈ Q̃1: the assertion is clear if β is a new arrow since

δ̃∂β(W ) = δ̃(ρβ) = δ(ρβ).
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If β is an old arrow, let µu0βu1 · · · βum be any summand in ρ where the arrow β appears
at least once, that is, m ≥ 1. Then λρ =

∑m
i=0 λui

+mλβ and

δ̃(∂β(αρu0βu1 · · · βum)) =

m∑

i=1

δ̃(uiβ · · · βumαρu0β · · · ui−1)

= (

m∑

i=0

λui
+ (m− 1)λβ − λρ)

m∑

i=1

uiβ · · · βumαρu0β · · · ui−1

= −λβ

m∑

i=1

uiβ · · · βumαρu0β · · · ui−1

= −λβ∂β(αρu0βu1 · · · βum).

So δ̃∂β(W ) = −λβ∂β(W ). Thus δ̃(α), and hence ϕ, are well defined. It is also clear
that φϕ = id.
Now we define the map

ζ : knB,C → Der0 B

as follows. Let (µα)α∈S ∈ knB,C where S is a complete set of representatives of the
equivalence classes of the new arrows under the relation ≈. We set ζ(µα)α∈S = δ where
we define δ ∈ Der0B by its value on the arrows as follows

δ(α) =

{
0 if α ∈ Q1

µα′α if α ∈ Q̃1 \Q1 and α ∼ α′, α′ ∈ S.

This is clearly a derivation, ζ is injective and φζ = 0.
Now we want to prove that Kerφ = knB,C . Let δ ∈ Der0 B be such that φ(δ) = 0. This
implies that δ(α) = λαα = 0 for any old arrow α ∈ Q1, and moreover δ(u) = 0 for
any path u in C. On the other hand, for every new arrow α ∈ S there is an element
(λα)α∈S ∈ knB,C such that δ(α) = λαα+ w with w a linear combination of paths in C
parallel to α. This element does not depend on the particular representative chosen
in the class of α. Assume thus that α1 ∼ α2. Then there exists a strongly minimal
relation

∑s
i=1 aiuiαivi, with ai ∈ k∗ and ui, vi paths in C. Then we have

δ(uiαivi) = uiδ(αi)vi = λαi
uiαivi + uiwivi

with wi ∈ C, and hence

δ(
s∑

i=1

aiuiαivi) =
s∑

i=1

(λαi
aiuiαivi + aiuiwivi)

is an element in Ĩ . Let
∑

J λαi
aiuiαivi +

∑
J ′ aiuiwivi be a minimal relation in Ĩ, with

J and J ′ subsets of the set {1, . . . , s}, and
∑

J λαi
aiuiαivi 6= 0. Using Lemma 3.1 in
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this minimal relation, we get that
∑

J λαi
aiuiαivi ∈ Ĩ. But then J must be the whole

set {1, . . . , s} since the relation
∑s

i=1 aiuiαivi is strongly minimal. Now

λα1

s∑

i=1

aiuiαivi −

s∑

i=1

λαi
aiuiαivi =

s∑

i=2

(λα1
− λαi

)aiuiαivi ∈ Ĩ

and since the relation is strongly minimal we get that λα1
= λα2

.
From the previous lemma we know that φ(IntB) ⊆ IntC, and this map preserves
normalized derivations. Hence φ(Int0 B) ⊆ Int0 C. We now claim that the equality
holds. Let δa ∈ Int0 C, then there exists a ∈ C such that δa(c) = ac − ca (for every
c ∈ C). Since δa is normalized, we have, for every primitive idempotent ex,

0 = δa(ex) = aex − exa.

Hence

a = a.1 = a
∑

ex =
∑

aex =
∑

(aex)ex =
∑

(exa)ex =
∑

axex

with ax ∈ k for every x. This indeed follows from the fact that exaex ∈ exCex and C
is constrained.
We now prove that δ̃a is an inner derivation. For an arrow α ∈ Q1 having source s(α)
and target t(α), we have

δ̃a(α) = δa(α) = aα− αa = (as(α) − at(α))α.

Let now α ∈ Q̃1 \Q1 and β1 · · · βr be a path appearing in the relation defining α. Note
that

δa(βi) = λβi
βi = (as(βi) − at(βi))βi

for every i such that 1 ≤ i ≤ r. Therefore

r∑

i=1

λβi
=

r∑

i=1

(as(βi) − at(βi)) = −as(α) + at(α)

so we have

δ̃a(α) = −(
r∑

i=1

λβi
)α = (as(α) − at(α))α.

This shows that δ̃a ∈ Int0B, so ϕ(Int0 C) ⊆ Int0 B. Hence Int0C = φϕ(Int0 C) ⊆
φ(Int0 B) and we get the desired equality.
We have thus shown that there exists a short exact sequence of k-vector spaces

0 → knB,C
ζ
→ Der0B

φ
→ Der0C → 0.

Since φ(Int0B) = Int0C, the statement follows at once. �
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EXAMPLE 4.3 Let C be the tilted algebra of euclidean type Ã2,2 given by the quiver

2
β

����
��
��
��

1 4

α
^^>>>>>>>>

γ
����
��
��
��

3
δ

^^>>>>>>>>

bound by the relations αβ = 0 and γδ = 0. This algebra is constrained, so Theorem 4.2
applies. The corresponding cluster-tilted algebra B is given by the quiver

2
β

����
��
��
��

1
σ

//
ǫ // 4

α
^^>>>>>>>>

γ
����
��
��
��

3
δ

^^>>>>>>>>

bound by the relations αβ = βǫ = ǫα = 0 and γδ = δσ = σγ = 0. Note that B is not
schurian so the results from [AR] cannot be used. The arrow equivalence class in this
example consists of the two new arrows ǫ and σ, and therefore the relation invariant
nB,C is equal to 2. Now Theorem 4.2 implies that HH1(B) ∼= HH1(C)⊕ k2 ∼= k3.

The following result has been proved for schurian cluster-tilted algebras in [AR,
Corollary 3.4]. The statement is inspired from Skowroński’s famous question [S, Prob-
lem 1]: For which algebras is simple connectedness equivalent to the vanishing of the
first Hochschild cohomology group?

THEOREM 4.4 Let B = kQ̃/Ĩ be a cluster-tilted algebra. Then HH1(B) = 0 if and
only if B is hereditary with ordinary quiver a tree.

Proof. By [ABS3], the cluster repetitive algebra is a Galois covering of B with infinite
cyclic group Z. Moreover it is connected if and only if B is not hereditary (because of
[ABS3, 1.4, Lemma 5]). Assume thus that B is not hereditary. Because of the universal
property of the Galois covering, there exists a group epimorphism

π1(Q̃, Ĩ) → Z.

Let k+ denote the additive group of the field k. The previous epimorphism induces a
monomorphism of abelian groups

Hom(Z, k+) → Hom(π1(Q̃, Ĩ), k+)

13



which, composed with the canonical monomorphism Hom(π1(Q̃, Ĩ), k+) → HH1(B) of
[PS, Corollary 3], yields a monomorphism Hom(Z, k+) → HH1(B).

Therefore, if B is not hereditary, we have HH1(B) 6= 0. On the other hand, if B is
hereditary, then, because of [Ha2, 1.6], we have HH1(B) = 0 if and only if the quiver
Q̃ of B is a tree. �

5 The tame case

Our objective in this section is to show that our main theorem 4.2 can be used to com-
pute the first Hochschild cohomology group of any tame cluster-tilted algebra. Because
of [BMR, Theorem A], the tame cluster-tilted algebras are just the cluster-tilted alge-
bras of euclidean type, that is, the relation extensions of the tilted algebras of euclidean
type. Since representation-finite tilted algebras are schurian and thus constrained, we
can assume that we are dealing with relation extensions of representation-infinite tilted
algebras of euclidean type.

An algebra K is tame concealed if there exists a hereditary algebra A and a postpro-
jective tilting A-module T such that K = EndA(T ). Then Γ(modK) consists of a post-
projective component PK , a preinjective component QK and a family TK = (Tλ)λ∈P1(k)

of stable tubes separating PK from QK , see [Ri, 4.3].
We now define tubular extensions of a tame concealed algebra. A branch L with a

root a is a finite connected full bound subquiver, containing a, of the following infinite
tree, bound by all possible relations of the form αβ = 0.
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•

β

��@
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@@
@@

. . .

.

Let now K be a tame concealed algebra, and (Ei)
n
i=1 be a family of simple regular

K-modules. For each i, let Li be a branch with root ai. The tubular extension B =
K[Ei, Li]

n
i=1 has as objects those of K,L1, · · · , Ln and as morphism spaces

B(x, y) =





K(x, y) if x, y ∈ K0

Li(x, y) if x, y ∈ (Li)0
Li(x, ai)⊗k Ei(y) if x ∈ (Li)0, y ∈ K0

0 otherwise.

The tubular coextension n
i=1[Ei, Li]K is defined dually.

For each λ ∈ P1(k), let rλ denote the rank of the stable tube Tλ of Γ(modK). The
tubular type nB = (nλ)λ∈P1(k) of B is defined by

nλ = rλ +
∑

Ei∈Tλ

|(Li)0|.

Since all but at most finitely many nλ equal 1, we write for nB the finite sequence
containing at least two nλ, including all those larger than 1, in non-decreasing order. We
say that nB is domestic if it is one of the forms (p, q), (2, 2, r), (2, 3, 3), (2, 3, 4), (2, 3, 5).
The following structure theorem is due to Ringel, see [Ri, Theorem 4.9, p. 241].
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THEOREM 5.1 Let C be a representation-infinite tilted algebra of euclidean type.
Then C contains a unique tame concealed full convex subcategory K and C is a domestic
tubular extension or a domestic tubular coextension of K.

As a consequence of Ringel’s theorem, we obtain the following.

LEMMA 5.2 Let C be a tilted algebra of euclidean type which is not constrained.
Then C is given by one of the following two bound quivers, or their duals.

(1)

3

�����

??
??

?

4

�����

??
??

?

5

�����

??
??

?

2
||

α

yyyyyyyyyyyyyoo β __________bb

ǫ

FF
FF

FF
FF

FF
FF

F1
oo δ
oo

γ

where the triangles are branches, possibly empty, bound by αδ = 0, βδ = βγ, ǫγ =
0, and the branch relations.

(2)

p+2

�����
??

??
?

�����

?????

λp−1

��

�����

?????

λp−2

��

�����

?????

λ2

��

�����

?????

λ1

��
2

δp
����
��
��
��
��

3
δp−1

oo p−1 p
δ2

oo

1 p+1γ
oo

δ1

``BBBBBBBBBB 		

α

���������
�����
??

??
?

β
oo

where the triangles are branches, possibly empty, bound by αδ1 · · · δp = αγ, βγ =
0, λiδi+1 = 0 for all i such that 1 ≤ i < p, and the branch relations.

Proof. Assume C is a tilted algebra of euclidean type which is not constrained. Then
there exists an arrow γ : x → y such that dimkC(x, y) ≥ 2. Since C is tame, we
actually have dimkC(x, y) = 2. In particular, C is representation-infinite. Applying
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Ringel’s theorem, we get that C is, up to duality, a domestic tubular extension of a
unique tame concealed full convex subcategory K of C. On the other hand, let K ′ be
the convex envelope of the points x, y in C. Then K ′ is of the form

•

yytt
tt
tt
tt
tt
tt

•
oo

• •
oo

•

ttjjjj
jjjj

jjj •
oo

• •
oo

y xγ
oo

eeJJJJJJJJJJJJ
jjTTTTTTTTTTT

with dimkK
′(x, y) = 2. Note that K ′ is a full convex subcategory of C, hence it is

tilted (because of [Ha1, III.6.5 p.146]). Applying Lemma 2.3 to K ′, we deduce that K ′

is of the form

•

ttjjjj
jjjj

jjj •
oo

• •
oo

y xγ
oo

jjTTTTTTTTTTT

Since K ′ is hereditary, we get that K ′ = K. The statement now follows by consid-
ering the possible branch extensions of K. �

LEMMA 5.3 Let B be a cluster-tilted algebra of euclidean type. Assume that there
exists no constrained tilted algebra C such that B = C̃. Then B is a cluster-tilted
algebra of type Ã of one of the following forms or their duals:

(i)

4

�����

??
??

?2 oo β
1

ǫ

::oo δ
oo

γ

(ii)

�����

?????

λp−1

��

�����

?????

λp−2

��

�����

?????

λ2

��

�����

?????

λ1

��
2

δp
����
��
��
��
��

µp−2

44

3
δp−1

oo p−1

µ1

44

p
δ2

oo

1

ǫ

33

µp−1

88

p+1γoo
δ1

``BBBBBBBBBB
p+2

�����
??

??
?βoo
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where the triangles are cluster-tilted algebras of type A, possibly empty, bound by βγ = 0,
γǫ = 0, ǫβ = 0, and, in the case (ii), by the additional relations λiδi+1 = 0, δi+1µi = 0,
µiλi = 0.

Proof. Let B be cluster-tilted of euclidean type. Because of [ABS1], there exists a
tilted algebra C such that

B = C̃ = C ⋉ Ext2(DC,C).

The hypothesis says that C is not constrained. Because of Lemma 5.2, C is given by
one of the bound quivers in (1) or (2) above. We examine these cases separately.

(1) Assume C is given by the quiver

3

�����

??
??

?

4

�����

??
??

?

5

�����

??
??

?

2
||

α

yyyyyyyyyyyyyoo β __________bb

ǫ

FF
FF

FF
FF

FF
FF

F1
oo δ
oo

γ

where the triangles are branches, possibly empty, bound by αδ = 0, βδ = βγ, ǫγ = 0
and the branch relations. Observe that, if one of the branches is empty, then it has no
root and consequently, the arrow from that root to the point 2 does not exist.

We consider the following subcases:
(1a) Assume none of the branches rooted at 3,4,5 is empty. In this case, we refer

to C as C1. Then the corresponding cluster-tilted algebra B is of the form

3

�����

??
??

?

4

�����

??
??

?

5

�����

??
??

?

2
||

α

yyyyyyyyyyyyyoo β __________bb

ǫ
FF

FF
FF

FF
FF

FF

1
oo δ
oo

γ

ν

88

λ ,,

µ 22

where the triangles are cluster-tilted algebras of type A, and there are, additionally,
the relations of C1 and the relations λα = −νβ, νβ = µǫ, δλ = 0, δν = γν and γµ = 0.
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Now, this algebra B can be written as B=C̃ ′
1, where C ′

1 is given by the quiver

3

�����

??
??

?

4

�����

??
??

?

5

�����

??
??

?

2
||

α

yyyyyyyyyyyyyoo β __________bb

ǫ
FF

FF
FF

FF
FF

FF

1

ν

88

λ ,,

µ 22

where the triangles are again branches, bound by relations λα = −νβ, νβ = µǫ.
This is easily seen to be a representation-finite tilted algebra of type D̃ (indeed,

one can simply construct the Auslander-Reiten quiver of the algebra and identify a
complete slice). In particular, C ′

1 is constrained, a contradiction.
(1b) Assume that the branch rooted, say at 4, is empty while the other two are not.

In this case, we refer to C as C2. Then the cluster-tilted algebra B is of the form

3

�����

??
??

?

5

�����

??
??

?

2
ww

α
ooooooooooogg

ǫ

OOO
OOO

OOO
OO1

oo δ
oo

γ

λ
**

µ

44

where the triangles are cluster-tilted algebras of type A, bound by the relations of C2

and the additional relations λα = 0, δλ = 0, γµ = 0, µǫ = 0.
Again, the algebra B can be written as B = C̃ ′

2, where C ′
2 is given by the quiver

3

�����

??
??

?

5

�����

??
??

?

2
ww

α
ooooooooooogg

ǫ

OOO
OOO

OOO
OO1

λ
**

µ

44

where the triangles are branches, bound by λα = 0, µǫ = 0 and the branch relations.
This is easily seen to be a representation-finite tilted algebra of type Ã (see, for instance,
[AS]), thus C ′

2 is constrained, another contradiction.
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(1c) If at least two of the branches, say at 4 and 5, are empty, then we are left with
the quiver (i) of the statement.

(2) Assume C is given by the quiver

p+2

�����
??

??
?

�����

?????

λp−1

��

�����

?????

λp−2

��

�����

?????

λ2

��

�����

?????

λ1

��
2

δp
����
��
��
��
��

3
δp−1

oo p−1 p
δ2

oo

1 p+1γ
oo

δ1

``BBBBBBBBBB 		

α

���������
p+3

�����
??

??
?βoo

where the triangles are branches, possibly empty, bound by αδ1 · · · δp = αγ, βγ = 0,
λiδi+1 = 0 for all 1 ≤ i < p, and the branch relations.

We consider the following subcases.
(2a) Assume that none of the branches rooted at p+1, p+2 is empty. In this case,

we refer to C as C3. Then the corresponding cluster-tilted algebra is of the form

p+2

�����
??

??
?

�����

?????

λp−1

��

�����

?????

λp−2

��

�����

?????

λ2

��

�����

?????

λ1

��
2

δp
����
��
��
��
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3
δp−1
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44

p
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oo

1

ǫ

33

δ

44µp−1
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p+1γoo
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``BBBBBBBBBB 		

α
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p+3

�����
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?βoo

where the triangles are cluster-tilted algebras of type A, bound by the relations of C3

and the additional relations ǫβ = δα, γǫ = 0, δ1 · · · δpδ = γδ and µiλi+δi+2 · · · δpδαδ1 · · · δi =
0, δi+1µi = 0, for all i.

Now, this algebra can be written as B = C̃ ′
3, where C ′

3 is given by the quiver

p+2

�����
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??
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with the inherited relations. This is again seen to be a representation-finite tilted
algebra of type D̃. In particular, it is constrained, a contradiction.

(2b) If at least one of the branches, say at p+2 is empty, then we are left with the
quiver (ii) of the statement. �

Observe that in the proof of Lemma 5.3, in each of the cases (1a), (1b) and (2a), we
have replaced the original non-constrained tilted algebra C1, C2 and C3 by a constrained
one C ′

1, C
′
2 and C ′

3, respectively.

LEMMA 5.4 With the above notation, for each i ∈ {1, 2, 3}, we have nB,Ci
= nB,C′

i

and HH1(Ci) ∼= HH1(C ′
i).

Proof. The first statement follows immediately from the description of the relations
in the respective algebras. Thus nB,C1

= nB,C′

1
= 1, nB,C2

= nB,C′

2
= 2 and nB,C3

=
nB,C′

3
= 1.

It suffices to show the second statement. We consider each of the cases as in the
proof of Lemma 5.3.

(1a) Let D1 be the full convex subcategory of C1 (and C ′
1) generated by all points

except the point 1. Then D1 is a representation-finite tilted algebra and C1 (or C ′
1) is a

one-point coextension (or extension, respectively) of D1 by an indecomposable module.
This module being a rigid brick, we deduce immediately from Happel’s sequence [Ha2,
5.3] that

HH1(C1) ∼= HH1(D1) ∼= HH1(C ′
1).

(1b) Let D2 be the full convex subcategory of C2 (and C ′
2) generated by all points

except the point 1. Then D2 is a representation-finite tilted algebra and C2 (or C ′
2)

is a one-point coextension (or extension, respectively) of D2 by the direct sum of two
Hom-orthogonal, rigid bricks X,Y such that Ext1D2

(X,Y ) = 0 and Ext1D2
(Y,X) = 0.

Again Happel’s sequence yields

HH1(C2) ∼= HH1(D2) ∼= HH1(C ′
2).

(2a) Let D3 be the full convex subcategory of C3 (and C ′
3) generated by all points

except the points 1, 2, · · · , p. Then there is a sequence

C3 = E0 ) E1 ) · · · ) Ep = D3,

where Ei is a one-point coextension of Ei+1. Moreover, each Ei is a direct product
of representation-finite tilted algebras and the coextension module is a direct sum of
rigid bricks with supports in distinct connected components of Ei. Similarly, there is a
sequence

C ′
3 = Fp ) Fp−1 ) · · · ) F0 = D3,
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where Fi+1 is a one-point extension of Fi. Moreover, each Fi is a direct product of
representation-finite tilted algebras and the extension module is a direct sum of rigid
bricks with supports in distinct connected components of Fi. Therefore easy inductions
yield

HH1(C3) ∼= HH1(D3) ∼= HH1(C ′
3).

�

LEMMA 5.5 Let B = C̃ be a non-hereditary cluster-tilted algebra of type Ã of one of
the forms of Lemma 5.3 and R a system of relations for C. Then

(i) If B is of the form (i), then HH1(B) = k|R|+2

(ii) If B is of the form (ii), then HH1(B) = k|R|+1

Proof. (i) We use the formula of [CS], as applied to our special situation in [AR,
Proposition 5.1]

dimkHH
1(B) = dimk Z(B)− |Q̃0 //N |+ |Q̃1 //N | − |(Q̃1 //N)e| − dimk ImRg.

Here, Z(B) is the centre of B, so dimk Z(B) = 1. Next, Q̃0 //N is the set of non-zero
oriented cycles in (Q̃, Ĩ) (where, as usual, B = kQ̃/Ĩ) including points. Then

|Q̃0 //N | = |Q̃0| = |Q0|.

Thirdly, Q̃1 //N is the set of pairs (α,w), where α ∈ Q̃1 and w is a non-zero path (of
length ≥ 0) parallel to α. This consists of all pairs (α,α), with α ∈ Q̃1 and the two
pairs (δ, γ), (γ, δ) arising from the double arrow

1 2
γ

oo
δoo .

Thus, |Q̃1 //N | = |Q̃1|+ 2.
Since it is shown in [AR, Proof of Proposition 5.1] that Rg = 0, there remains to

compute

(Q̃1 //N)e = (Q̃1 //N) \
(
(Q̃1 //N)g ∪ (Q̃1 //N)a

)
.

Here:

1. (Q̃1 //N)g is the set of all pairs (α,w) ∈ Q̃1 //N where w is either a point or a
path starting or ending with the arrow α. Therefore

(Q̃1 //N)g = {(α,α) | α ∈ Q̃1}.
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2. (Q̃1 //N)a is the set of all pairs (α,w) ∈ Q̃1 //N where, in each relation where
α appears, replacing α by w yields a zero path. Therefore

(Q̃1 //N)a = {(α,α) | α ∈ Q̃1} ∪ {(δ, γ)}.

This implies that

|(Q̃1 //N)| − |(Q̃1 //N)e| = |(Q̃1 //N)g ∪ (Q̃1 //N)a| = |Q̃1|+ 1.

Therefore

dimkHH
1(B) = 1− |Q̃0|+ |Q̃1|+ 1

= 1− |Q0|+ |Q1|+ |R|+ 1

= |R|+ 2,

because |Q̃1| = |Q1|+ |R| and |Q0| = |Q1|.
(ii) For this case again dimk Z(B) = 1 and |(Q̃0 //N)| = |Q̃0| = |Q0|. Here

Q̃1 //N = {(α,α) | α ∈ Q̃} ∪ {(γ, δ1 · · · δp)}.

Now, as before
(Q̃1 //N)g = {(α,α) | α ∈ Q̃1},

while
(Q̃1 //N)a = {(α,α) | α ∈ Q̃1},

so that
|(Q̃1 //N)| − |(Q̃1 //N)e| = |(Q̃1 //N)g ∪ (Q̃1 //N)a| = |Q̃1|.

Therefore

dimkHH
1(B) = 1− |Q̃0|+ |Q̃1|

= 1− |Q0|+ |Q1|+ |R|

= |R|+ 1,

because |Q̃1| = |Q1|+ |R| and |Q0| = |Q1|. �

THEOREM 5.6 Let B = C̃ be a tame cluster-tilted algebra with C tilted. Then there
exists a short exact sequence of k-vector spaces

0 −→ knB,C −→ HH1(B) −→ HH1(C) −→ 0.
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Proof. If C is hereditary, then B = C, nB,C = 0 and HH1(B) = HH1(C). If
not, assume first that C is constrained. Then the result follows from Theorem 4.2.
Otherwise, C is, up to duality, of one of the forms (i) (ii) of Lemma 5.2. As observed
in the proof of Lemma 5.3, we have two distinct cases:

(a) Either one can replace the non-constrained algebra C by a constrained algebra
C ′ such that nB,C = nB,C′ and HH1(C) ∼= HH1(C ′) because of Lemma 5.4. The
statement then follows from Theorem 4.2 applied to B and C ′.

(b) Otherwise B is, up to duality, of one of the forms (i) (ii) of Lemma 5.3. Note
that there exist several tilted algebras C having B as a relation-extension. However,
because of Lemma 3.2, the cardinality |R| of a system of relations R for each such tilted
algebra C is independent of the choice of C. Moreover, in this case, nB,C = |R|, by
Lemma 3.3.

Using Lemma 5.5, it suffices to prove that, if C is of the form (i), then HH1(C) = k2

and, if C is of the form (ii), then HH1(C) = k. This follows from another straightfor-
ward application of Happel’s sequence. �

6 The representation-finite case

Throughout this section, let B be a representation-finite cluster-tilted algebra. We
present easy methods to compute the relation invariant nB,C and thus HH1(B) in this
case. Let Q̃ be the quiver of B and let n be the number of points in Q̃.

Choose a tilted algebra C such that B = C⋉Ext2C(DC,C). The number of relations
in C is the dimension of Ext2C(SC , SC), where SC is the sum of a complete set of
representatives of the isomorphism classes of simple C-modules. We say that a relation
r in B is a new relation if it is not a relation in C. It has been shown in [AR, Corollary
3.3] that in this case nB,C is equal to the number of relations in C minus the number
of new commutativity relations in B, and, moreover,

HH1(B) = knB,C .

In particular, the integer nB,C does not depend on the choice of the tilted algebra C,
and therefore we shall denote it in the rest of this section by nB. The objective of this
section is to show that one can read off the integer nB from the quiver Q̃ of B.

Recall from [BGZ] that a chordless cycle in Q̃ is a full subquiver induced by a set of
points {x1, x2, . . . , xp} which is topologically a cycle, that is, the edges in the chordless
cycle are precisely the edges xi xi+1.

LEMMA 6.1 The number of chordless cycles in Q̃ is equal to the number of zero
relations in C plus twice the number of commutativity relations in C.
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Proof. Consider the map {relations in C} → {new arrows in B} that associates to
a relation ρ ∈ Ext2C(Si, Sj) the new arrow α(ρ) : j → i. By [BR, Corollary 3.7], every
chordless cycle contains exactly one new arrow, and therefore it suffices to show that
if ρ is a commutativity relation, then α(ρ) lies in precisely two chordless cycles in Q̃,
and if ρ is a zero relation, then α(ρ) lies in precisely one chordless cycle in Q̃.

If ρ is a commutativity relation, say ρ = c1 − c2 where c1, c2 are paths from i to
j in Q, then the concatenations α(ρ)c1 and α(ρ)c2 are two chordless cycles. Then it
follows from the fact that Q̃ is a planar quiver (see [CCS2, Theorem A1]), that α(ρ)
lies in precisely two chordless cycles.

Otherwise, ρ is a zero relation in C, and α(ρ)ρ is a chordless cycle in Q̃. We have
to show that α(ρ) does not lie in two chordless cycles. Suppose the contrary. Because
of [FZ2, Proposition 9.7], every chordless cycle in Q̃ is oriented. Therefore there exists
another path ρ′ from i to j in Q̃ such that α(ρ)ρ′ is a chordless cycle. If ρ′ is also a
path in Q, then ρ and ρ′ are two parallel paths whose difference ρ− ρ′ is not a relation
in C. This implies that the fundamental group of C is non-trivial, and this contradicts
the well-known fact that tilted algebras of Dynkin type are simply connected (see, for
instance, [L]). On the other hand, if ρ′ is a path in Q̃ but not in Q then it must contain
at least one new arrow. But then the chordless cycle α(ρ)ρ′ contains two new arrows,
a contradiction to [BR, Corollary 3.7].

�

An arrow in Q̃ is called inner arrow if it is contained in two chordless cycles. Arrows
which are not inner arrows are called outer arrows.

LEMMA 6.2 The number of new inner arrows in B is equal to the number of com-
mutativity relations in C.

Proof. Each commutavity relation in C gives a new inner arrow in B. Conversely,
suppose that α is a new inner arrow in B and let ρ, ρ′ be the two paths in Q̃ such that
αρ and αρ′ are the chordless cycles. By [BR, Corollary 3.7], ρ and ρ′ contain no new
arrows, and hence ρ and ρ′ are paths in Q. Since the algebra C is simply connected, it
follows that ρ− ρ′ is a relation in C. �

LEMMA 6.3 The number of old inner arrows in B is equal to the number of new
commutativity relations in B.

Proof. We recall from [CCS2, BMR2] the description of B as a bound quiver algebra:
For any arrow α in Q̃ let Sα be the set of paths ρ in Q̃ such that ρα is a chordless cycle
and define

ρα =

{
ρ if Sα = {ρ}
ρ− ρ′ if Sα = {ρ, ρ′}.
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Let I be the ideal in kQ̃ generated by the relations ∪α∈(Q̃)1
{ρα}. Then

B = kQ̃/I.

Because of the previous remarks, commutativity relations are in bijection with inner
arrows. If the relation is new, then the arrow is old and if the arrow is new than the
relation is old. �

We are now able to prove the main theorem of this section.

THEOREM 6.4 Let B be a representation finite cluster-tilted algebra and Q̃ the
quiver of B. Then nB equals the number of chordless cycles in Q̃ minus the num-
ber of inner arrows in Q̃.

Proof. By definition, nB is the number of relations in C minus the number of new
commutativity relations in B. By Lemmata 6.1 and 6.2, the number of relations in C
is equal to the number of chordless cycles minus the number of new inner arrows in Q̃.
On the other hand, the number of new commutativity relations in B is equal to the
number of new inner arrows in Q̃, because of Lemma 6.3. Therefore

nB = number of chordless cycles in Q̃− number of inner arrows in Q̃.

�

COROLLARY 6.5 If Q̃ is connected then

nB = 1 + number of outer arrows in Q̃− n.

Proof. Because of [CCS2, Theorem A1] the quiver Q̃ is planar. In particular,
every arrow lies in at most two chordless cycles. Hence one can associate a simplicial
complex on the 2-dimensional sphere to the quiver Q̃, in such a way that Q0 is the
set of points, Q1 the set of edges and the set of chordless cycles is the set of faces of
the simplicial complex except the face coming from the “outside” of the quiver (the
unbounded component of the complement when embedded in the plane). Using Euler’s
formula, we see that the number of chordless cycles in Q̃ is equal to 1+ |(Q̃)1| − |(Q̃)0|,
and then Theorem 6.4 yields

nB = 1 + (|(Q̃)1| − number of inner arrows in Q̃)− |(Q̃)0|,

and the statement follows. �
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REMARK 6.6 If Q̃ is not connected then

nB = number of connected components of Q̃

+ number of outer arrows in Q̃− n.

As an application, we show the following corollary on deleting points. Let x ∈ (Q̃)0,
and ex ∈ B the associated idempotent. Then B/BexB is cluster-tilted and the quiver
of B/BexB is obtained from Q̃ by deleting the point x and all arrows adjacent to x,
see [BMR3, Section 2]. Define the Hochschild degree of x to be the integer

degHH(x) = nB − nB/BexB

COROLLARY 6.7

degHH(x) = number of chordless cycles going through x
− number of inner arrows on the chordless cycles going through x

Proof. Using Theorem 6.4, we get that degHH(x) is equal to the number of chordless
cycles that are adjacent to x minus the number of inner arrows in Q̃ plus the number
of inner arrows in QB/BexB . Now α is an inner arrow in Q̃ which is not an inner arrow

in QB/BexB , precisely if α lies on two chordless cycles in Q̃ at least one of which goes
through x. �

EXAMPLE 6.8 The following quiver is the quiver of a cluster-tilted algebra of type
E8.

1 //

����
��
��
�

2 //

����
��
��
�

3

����
��
��
�

4 // 5

XX0000000

��

6

XX0000000

7

OO

8oo

The quiver has 4 chordless cycles and 2 inner arrows, so Theorem 6.4 yields

HH1(B) = k4−2 = k2.

On the other hand, the quiver has 9 outer arrows, so, using Corollary 6.5, we also get

HH1(B) = k1+9−8 = k2.

The point 2 has Hochschild degree 2− 1 = 1, by Corollary 6.7. So HH1(B/Be2B) = k.
The quiver of B/Be2B is the following.
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