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By capillary fluids we mean compressible, inviscid fluids whose energy depends not only on their density but also on their density gradient. Their motion is thus governed by systems of conservation laws, either in Eulerian coordinates or in Lagrangian coordinates, that are higher order modification of the usual equations of gas dynamics. In both settings, we receive models that also arise in other fields, in particular in water waves theory and quantum hydrodynamics. Those Hamiltonian systems typically admit three types of planar traveling waves, namely, heteroclinic, homoclinic, and periodic ones. The purpose here is to review the main tools and results regarding the stability of those waves, under most general assumptions on the energy law. Special attention is devoted to the correspondence between traveling waves in Eulerian coordinates and those in Lagrangian coordinates.

Introduction

The Euler-Korteweg system of PDEs arises as a mathematical model for various phenomena in fluid dynamics, e. g. flow of capillary fluids (liquid-vapor mixtures, superfluids), long water waves, vortex dynamics, quantum hydrodynamics. Its main features are

• conservativity, the equations being local conservation laws,

• reversibility, which means that all possible diffusion processes are neglected -neither viscosity nor heat conductivity is taken into account,

• dispersivity due to higher order derivatives that are not present in the usual Euler equations for compressible fluids,

• and a natural Hamiltonian structure in terms of the total energy (which is conserved because of reversibility).

Mathematical physicists acquainted with, for instance, the Korteweg-de Vries equation (KdV), would suspect another feature from the above ones, namely, integrability. However, we are mostly interested in 'real' fluids, with rather general pressure laws (as well as with general capillarity coefficients, to allow some flexibility when passing from Eulerian coordinates to Lagrangian coordinates). To some extent, the Euler-Korteweg system we consider is a vector-valued analog of the so-called generalized Korteweg-de Vries equation (gKdV) 1 . General nonlinearities as we have preclude algebraic approaches based on integrability. So we will not dwell much on algebraic aspects, even though we do perform some algebra in the sequel.

As expected from a general observation made by Benjamin [START_REF] Benjamin | Impulse, flow force and variational principles[END_REF], a Hamiltonian structure is inherited by the ODEs governing the planar travelling waves that are independent of transverse variables (the only ones that we will consider here; otherwise, we would have to deal with elliptic PDEs, which is not our purpose). These ODEs being two-dimensional, their Hamiltonian structure make them integrable by quadrature. Therefore, the existence and classification of the Euler-Korteweg planar travelling waves follows from an easy phase portrait analysis. Trickier is their stability analysis, which can be addressed from several points of view and is the main topic of this survey paper.

2 The Euler-Korteweg system

Original and related models

The most general form of what we call the Euler-Korteweg system is made of the (d + 1) evolution PDEs in space dimension d

(1)

∂ t ρ + div(ρu) = 0 , ∂ t u + (u • ∇)u + ∇(δE ) = 0 .
These equations are supposedly governing the motion of an inviscid fluid whose density is ρ, velocity is u, and internal or free2 energy per unit volume is E . The first equation in [START_REF] Alexander | A topological invariant arising in the stability analysis of travelling waves[END_REF] is the continuity equation, expressing the (local) conservation of mass. The velocity equation is written in terms of δE , the variational gradient of E . If this energy depends only on ρ then

δE = dE dρ ,
and (1) is nothing but the usual Euler equations (in non-conservative form) for compressible fluids. Here we are most interested in 'nonclassical' fluids in which E also depends on ∇ρ. In this case

δE = E ρ E := ∂E ∂ρ - d j=1 D x j ∂E ∂ρ x j ,
where E ρ stands for the Euler operator with respect to ρ (we shall use Euler operators with respect to velocity components u j later on), D x j denotes the total derivative with respect to x j while ρ x j means the partial derivative of ρ with respect to x j . A typical example that goes back to Korteweg's theory of capillarity is

(2) E (ρ, ∇ρ) = F (ρ) + 1 2 K(ρ) ∇ρ 2 ,
for which

(3) δE = F (ρ) + 1 2 K (ρ) ∇ρ 2 -div(K(ρ)∆ρ)

= g(ρ) -1 2 K (ρ) ∇ρ 2 -K(ρ) ∆ρ , g := dF dρ .

As recalled in Appendix, (1) can be deduced from a variational principle using the 'natural' Lagrangian 1 2 ρ u 2 -E (ρ, ∇ρ) .

Moreover, irrotational velocities remain so (at least formally) under evolution by [START_REF] Alexander | A topological invariant arising in the stability analysis of travelling waves[END_REF], and for irrotational flows (1) admits a Hamiltonian structure associated with the total energy

H := 1 2 ρ u 2 + E (ρ, ∇ρ) . Indeed, since δH = 1 2 u 2 + δE ρ u and 1 2 ∇( u 2 ) = (u • ∇)u
for irrotational vector fields u, (1) can be viewed as the infinite-dimensional Hamiltonian system (4)

∂ t ρ u = - 0 div ∇ 0 d δH .
(In fact, (1) admits a Hamiltonian structure associated with H for more general vector fields u, namely those admitting Clebsch coordinates, which play the role of 'canonical variables' in this infinite-dimensional setting, see §A.2 in the appendix for more details.) Another remarkable feature is that (1) can equivalently be written, as far as smooth solutions are concerned, in the conservative form [START_REF] Benzoni-Gavage | Linear stability of propagating phase boundaries in capillary fluids[END_REF] ∂ t ρ + div(ρu) = 0 , ∂ t (ρu) + div(ρu ⊗ u) = divΣ , where

Σ := (E -ρ δE ) I d -∇ρ ⊗ ∂E ∂∇ρ (6) 
is the energy-momentum tensor (under mass constraint) in connection with Noether's theorem (see for instance [12, p. 121], who unfortunately does not refer to Noether): the d (local) conservation laws for the momentum ρu are linked to the invariance of the energy with respect to translations in space variables x j , j = 1, . . . , d. In coordinates,

Σ k j = (E -ρ δE ) δ k j -ρ x k ∂E ∂ρ x j .
The reader not familiar with Noether's theorem will verify with bare hands the identity

1 ρ divΣ + ∇(δE ) = 0 ,
and combine the mass conservation law with the velocity equation to get the momentum conservation law 3 . Now, thanks to the conservative form [START_REF] Benzoni-Gavage | Linear stability of propagating phase boundaries in capillary fluids[END_REF] we can easily rewrite the equations in Lagrangian coordinates, at least in space dimension one. Indeed, the onedimensional system (7)

   ∂ t ρ + ∂ x (ρu) = 0 , ∂ t (ρu) + ∂ x (ρu 2 ) = ∂ x Σ , Σ := E -ρ δE -ρ x ∂E ∂ρ x ,
is found to be equivalent to

(8) ∂ s v -∂ y u = 0 , ∂ s u = ∂ y Σ , Σ( v, v y , v yy ) := Σ(ρ, ρ x , ρ xx ) ,
where y is the mass Lagrangian coordinate defined by dy = ρ dx -ρ u dt , where s = t is time, u(y, s) = u(x, t), and v(s, y) = 1 ρ(x, t) ,

is the specific volume. The existence of y follows from the conservation law of mass in [START_REF] Benzoni-Gavage | On the well-posedness for the Euler-Korteweg model in several space dimensions[END_REF]. A straightforward way to pass from the conservation law of momentum in [START_REF] Benzoni-Gavage | On the well-posedness for the Euler-Korteweg model in several space dimensions[END_REF] to the velocity equation in [START_REF] Benzoni-Gavage | Structure of Korteweg models and stability of diffuse interfaces[END_REF] is to note that both are equivalent (in a simply connected domain) to the differential form ρ u dx + (Σ -ρu 2 ) dt = u dy + Σ ds being exact. In the sequel, we omit the tildas when no confusion can occur.

Finally, let us observe that

(9) Σ = δ e = E v e = ∂ e ∂v -D y ∂ e ∂v y where (10) e(v, v y ) := 1 ρ E (ρ, ρ x )
is the specific (internal or free) energy. Indeed, we have by definition

ρ = 1 v , ρ x = - v y v 3 , so that ∂ e ∂v = E + v - 1 v 2 ∂E ∂ρ + 3 v y v 4 ∂E ∂ρ x = E -ρ ∂E ∂ρ -3 ρ x ∂E ∂ρ x , ∂ e ∂v y = v - 1 v 3 ∂E ∂ρ x = -ρ 2 ∂E ∂ρ x , D y ∂ e ∂v y = v D x -ρ 2 ∂E ∂ρ x = -ρ D x ∂E ∂ρ x -2 ρ x ∂E ∂ρ x .
In particular when the energy E is as in [START_REF] Arnold | Topological methods in hydrodynamics[END_REF], we have in one space dimension

E (ρ, ρ x ) = F (ρ) + 1 2 K(ρ) (ρ x ) 2 , ( 11 
) e(v, v y ) = f (v) + 1 2 κ(v) (v y ) 2 , ( 12 
) with f (v) := 1 ρ F (ρ) , κ(v) := ρ 5 K(ρ) .
In all cases, the one-dimensional equations of motion in Lagrangian coordinates (8) read ( 13)

∂ s v = ∂ y u , ∂ s u = ∂ y (δ e) ,
of which the Hamiltonian formulation analogous to ( 4) is

(14) ∂ s v u = 0 ∂ y ∂ y 0 δh , h := 1 2 u 2 + e(v, v y ) .
Indeed, we have

δh = δ e u
where δ e = E v e as defined in [START_REF] Benzoni-Gavage | Stability issues in the Euler-Korteweg model[END_REF], hence the equivalence between ( 13) and [START_REF] Bona | Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation[END_REF]. Let us warn the reader that the significance of the symbol δ for the variational derivative δh in ( 14) is different from the one for δH in (4) because h is viewed as a function of (v, v y , u) whereas H is viewed as a function of (ρ, ρ x , u). One purpose of this paper is to shed light on the interplay between the equations in Lagrangian coordinates [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF] and those in Eulerian coordinates, (15)

∂ t ρ + ∂ x (ρu) = 0 , ∂ t u + u∂ x u + ∂ x (δE ) = 0 , or equivalently (16) ∂ t ρ u = - 0 ∂ x ∂ x 0 δH , H = 1 2 ρ u 2 + E (ρ, ρ x ) ,
the one dimensional version of (4), in the analysis of various types of 'localized' solutions.

Related models

When the energy has the form (2) with capillarity coefficient

K(ρ) = 1 4ρ ,
the Euler-Korteweg system (1) equivalently reads (17)

     ∂ t ρ + div(ρu) = 0 , ∂ t u + (u • ∇)u + ∇g(ρ) = ∇ ∆ √ ρ 2 √ ρ ,
which may be viewed as a reformulation via the Madelung transform

ψ → (ρ, u) ; ψ = √ ρ exp iφ , u = ∇φ , of the NonLinear Schrödinger equation (NLS) (18) i∂ t ψ + 1 2 ∆ψ = ψ g(|ψ| 2 )
away from zeroes of ψ. In particular, the Gross-Pitaevskii equation corresponds to g(ρ) = ρ -1.

In the first approximation, the evolution of vortex curves in 3-D incompressible fluids obeys the so-called filament equation (see [2, p. 332])

∂ t γ = ∂ x γ × ∂ 2 x γ ,
where γ = γ(x, t) is a parametrization of the curve by x ∈ S 1 at time t. Equivalent reformulations of this equation are the 1-D NonLinear Schrödinger equation [START_REF] Bresch | Mathematical justification of a shallow water model[END_REF] with g(ρ) = -ρ/4 (a focusing case!), or the 1-D Euler-Korteweg system [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF] where the energy is as in [START_REF] Benzoni-Gavage | On whitham's modulated equations for the Euler-Korteweg system[END_REF] with

K(ρ) = 1 4ρ , F (ρ) = - ρ 2 8 ,
and ρ(x, t) = k(x, t) 2 where k(x, t) is the curvature of γ while u(x, t) plays the role of its torsion.

In water waves theory, the first nonlinear and dispersive equation was derived by Boussinesq [START_REF] Boussinesq | Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond[END_REF], and reads

∂ 2 t h -g H ∂ 2 x h + 3 h 2 2 H + H 2 3 ∂ 2 x h = 0 ,
where g denotes the gravity, H is the reference depth of water, and h is the height of water waves. After being forgotten for almost one century, this equation came back to light in a generalized form

(19) ∂ 2 t h + ∂ 2 x p(h) + κ ∂ 4 x h = 0 ,
considered in particular by Bona and Sachs [START_REF] Bona | Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation[END_REF], together with its 2 × 2 system version (20)

∂ t h = ∂ x u , ∂ t u + ∂ x p(h) = -κ ∂ 3 x h .
Changing notations in [START_REF] Chiron | Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one[END_REF], and more precisely substituting s for t, v for h, and -f for p, we recognize the Euler-Korteweg system in Lagrangian coordinates [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF] with the energy as in [START_REF] Victor | Variational principles of continuum mechanics[END_REF]. Another way of inviting the Euler-Korteweg system in water waves theory is to take into account surface tension, which is meaningful for ripples over thin films. This amounts to adding a third order term to Saint Venant's shallow water equations (see [START_REF] Bresch | On some compressible fluid models: Korteweg, lubrication, and shallow water systems[END_REF][START_REF] Bresch | Mathematical justification of a shallow water model[END_REF] for more details), and leads to the Euler-Korteweg system in Eulerian coordinates [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF] in which the energy is as in [START_REF] Benzoni-Gavage | On whitham's modulated equations for the Euler-Korteweg system[END_REF] with F being quadratic.

Gallery of traveling waves

Limiting ourselves to planar traveling waves that are independent of transverse variables (for more complicated patterns, see for instance [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF] and related work), we need only consider the one-dimensional equations ( 15) to find such waves. In this respect, it is tempting to consider the simpler-looking equations in Lagrangian coordinates [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF]. However, if we have in mind multidimensional perturbations it seems important to stick to Eulerian coordinates (because Lagrangian coordinates in several space dimensions are hardly handleable). So we shall keep track of both, and on the way we shall pay attention to the relationship between Lagrangian traveling waves and Eulerian traveling waves. First of all, let us emphasize that the 'speed' of a Lagrangian traveling wave is actually not a speed but a momentum density. Nevertheless, the governing ODEs of both Lagrangian traveling waves and Eulerian traveling waves have the common feature of being Hamiltonian, as predicted by [START_REF] Benjamin | Impulse, flow force and variational principles[END_REF] for general Hamilonian PDEs. A little more subtle is the one-to-one correspondence between those waves, together with the fact that the (constant) Hamiltonian along either one appears as a Lagrange multiplier associated with the other.

Theorem 1. If (ρ, u) = (R, U )(x -σt
) is a traveling wave solution to [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF] of speed σ such that R is positive, bounded and bounded away from zero, then there exist a unique j ∈ R and (v, u) = (V, W )(y + jt) a traveling wave solution to [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF] such that

R(ξ) (U (ξ) -σ) = W (ζ) -σ V (ζ) ≡: j , (21) 
ζ = Z(ξ) , Z = R = 1 V • Z , U = W • Z . (22)
Conversely, if (v, u) = (V, W )(y + jt) is a traveling wave solution to (13) such that V is positive, bounded and bounded away from zero, then there exist a unique σ ∈ R and (ρ, u) = (R, U )(x -σt) a traveling wave solution to (15) satisfying (21)- [START_REF] Deconinck | On the orbital (in)stability of spatially periodic stationary solutions of generalized Korteweg-de Vries equations[END_REF]. More precisely, the governing ODE for the Eulerian profile R is parametrized by some real number µ, and coincides with the Euler-Lagrange equation δL = 0 for the Lagrangian

L : = E - j 2 2ρ -µρ ,
while the governing ODE for the Lagrangian profile V is parametrized by some real number λ, and coincides with the Euler-Lagrange equation δ = 0 for the Lagrangian

:= e - j 2 v 2 2 -λv .
The numbers λ and µ may be viewed either as Lagrange multipliers or as values of first integrals: they are indeed given by

λ = -L ρ L , µ = -L v ,
where L ρ L and L v stand for the (formal) Legendre transforms of L and evaluated at profiles,

L ρ L := ρ x ∂L ∂ρ x -L , L v := v y ∂ ∂v y -,
the former being the Hamiltonian associated with δL = 0, and the latter with δ = 0.

Proof. On the one hand, if (ρ, u) = (R, U )(x -σt) is a traveling wave solution to [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF] of speed σ such that R is positive and bounded away from zero then

• any primitive Z of R is an increasing diffeomorphism of R,

• by the continuity equation in [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF], R (U -σ) is equal to some constant j, and we claim that V := 1/(R • Z -1 ), W := U • Z -1 give a traveling wave solution (v, u) = (V, W )(y + jt) of [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF]. Note that the degree of freedom in the choice of the primitive Z merely yields translation in the variable ζ = Z(ξ).

On the other hand, if (v, u) = (V, W )(y + jt) is a traveling wave solution to (13) such that V is positive and bounded away from zero, then

• any solution of the scalar differential equation Z = 1/V (Z) is a (global) increasing diffeomorphism of R,

• by the first equation in [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF], W -jV is equal to some constant σ, and we claim that R := Z , U := W • Z give a traveling wave solution (ρ, u) = (R, U )(xσt) of [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF]. Note that this time the degree of freedom in the choice of the solution Z yields translation in the variable ξ (if Z 0 and Z 1 are solutions of Z = 1/V (Z) then by the mean value theorem there exists ξ 1 such that Z 0 (ξ 1 ) = Z 1 (0), and by translation invariance of this differential equation we have Z 0 (ξ + ξ 1 ) = Z 1 (ξ) for all ξ ∈ R).

Our claims above can be proved in a most abstract way, which we are going to describe now, or can be viewed as a consequence of the computations we shall make afterwards. This abstract proof relies on the 'pivot' system that is hidden in the passage from the Euler-Korteweg system [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF] in Eulerian coordinates to [START_REF] Benzoni-Gavage | Structure of Korteweg models and stability of diffuse interfaces[END_REF] in mass Lagrangian coordinates, and reads [START_REF] Dunford | Linear operators. Part III[END_REF] 

ρ 0 ∂ s v = ∂ ξ ȗ , ρ 0 ∂ s ȗ = ∂ ξ Σ .
Indeed, we pass from [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF] to ( 23) by solving at least locally the flow map problem

∂ t χ = u(t, χ) , χ(0, ξ) = ξ ,
and by setting v(t, ξ) = 1/ρ(t, χ(t, ξ)) , ȗ(t, ξ) = u(t, χ(t, ξ)) , ρ 0 (ξ) = ρ(0, ξ) , while we pass from [START_REF] Dunford | Linear operators. Part III[END_REF] to [START_REF] Benzoni-Gavage | Structure of Korteweg models and stability of diffuse interfaces[END_REF] merely by setting

( v, u)(s, y 0 (ξ)) = (v, ȗ)(s, ξ) , Σ( v, v y , v yy ) = Σ(v, vξ , vξξ ) , dy 0 dξ = ρ 0 .
In particular, the flow map χ associated with a traveling wave (ρ, u)(t, x) = (R, U )(x-σt) solution of ( 15) is such that χ σ (t, ξ) := χ(t, ξ) -σt solves the autonomous ODE problem

∂ t χ σ = U (χ σ ) -σ , χ σ (0, ξ) = ξ .
Using that R (U -σ) ≡ j and introducing Y a primitive of R, we get a sort of conjugation identity

(24) R(χ(t, ξ) -σt) = R(ξ) + j t .
Let us now define the solution ( v, u) of (8) by

v(t, Y (ξ)) = 1/ρ(t, χ(t, ξ)) , u(t, Y (ξ)) = u(t, χ(t, ξ)) , dY dξ = R .
Thanks to [START_REF] Gallay | Orbital stability of periodic waves for the nonlinear Schrödinger equation[END_REF] we see that

( v, u)(t, Y (ξ)) = ( v 0 , u 0 )(Y (ξ) + j t) , where v 0 (Y (ξ)) := 1/R(ξ) , u 0 (Y (ξ)) := U (ξ) .
This exactly means that ( v, u) is a traveling wave solution of [START_REF] Benzoni-Gavage | Structure of Korteweg models and stability of diffuse interfaces[END_REF]. The argument also goes backward, that is to say from a Lagrangian traveling wave solution ( v, u)(s, y) = (V, W )(y + js) to an Eulerian one, provided that the ODE Y = 1/V (Y ) and the implicit equation ( 24) have a unique solution χ(t, ξ). This is the case at least locally in (t, ξ) when V is positive, bounded and bounded away from zero (which by the way implies that the solutions of Y = 1/V (Y ) are global).

Let us now examine the profile equations closer. We make in parallel the computations for ( 15) and ( 13), and postpone for a while the investigation of their relationship. The profile equations for [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF] and ( 13) read respectively

R (U -σ) ≡: j , D ξ E ρ E + 1 2 U 2 -σ U = 0 , W -jV ≡: σ , D ζ (E v e -jW ) = 0 ,
from which we can eliminate the velocities and find

(25) D ξ E ρ E + j 2 2R 2 = 0 , (26) 
D ζ (E v e -j 2 V ) = 0 .
One may observe that

(27) 1 2R 2 = E ρ Q , V = E v q , where Q := 1 2ρ , q := 1 2 v 2 .
(These notations Q and q are consistent with the convention we have been using for uppercase and lowercase letters since Q = ρq.) Note that the variational derivatives E ρ E and E v e in [START_REF] Gardner | On the structure of the spectra of periodic travelling waves[END_REF] and [START_REF] Gardner | The gap lemma and geometric criteria for instability of viscous shock profiles[END_REF] are respectively evaluated at (V, V ζ , V ζζ ) and (R, R ξ , R ξξ ), and similarly E ρ Q and E v q stand for (E ρ Q)(R) and (E v q)(V ) in [START_REF] Gardner | Spectral analysis of long wavelength periodic waves and applications[END_REF]. The equations ( 25), ( 26), [START_REF] Gardner | Spectral analysis of long wavelength periodic waves and applications[END_REF] above thus yield µ and λ such that

(28) E ρ (E -j 2 Q -µ ρ) = 0 , (29) 
E v ( e -j 2 q -λ v) = 0 .
This is where the definitions of the Lagrangians L and come from, as we recognize their Euler-Lagrange equations δL = 0 and δ = 0 in ( 28) and ( 29) respectively. It remains to check the equivalence between the existence of a constant µ and a positive bounded (below and above) function R = R(ξ) solution of [START_REF] Sergey | A model of a plug-chain system near the thermodynamic critical point: connection with the Korteweg theory of capillarity and modulation equations[END_REF], and the existence of a constant λ and a positive bounded (below and above) function

V = V (ζ) solution of (29) with ζ = Z(ξ), Z = R = 1/(V • Z).
Let us first point out that ( 28) and ( 29) are second order differential equations so that by the Poincaré-Bendixson theorem their bounded solutions can only be homoclinic, heteroclinic, or periodic solutions. Moreover, as soon as

(30) R(ξ) = 1/V (ζ), dζ = R dξ
with R positive, bounded and bounded by below then obviously so is V , and if R tends to ρ ± at ±∞ then V tends to v ± := 1/ρ ± at ±∞. Thus a homo/hetero-clinic Eulerian orbit will (fortunately) correspond to a homo/hetero-clinic Lagrangian orbit. The same correspondence will occur for periodic orbits. Indeed, we have by change of variables

ξ 1 ξ 0 R ξ dξ = - ζ 1 ζ 0 V ζ dζ ,
(with the obvious notations ζ 0,1 = Z(ξ 0,1 )), so that R is periodic of period ξ 1 -ξ 0 if and only if V is periodic of period Z(ξ 1 ) -Z(ξ 0 ). We finally turn to the explicit verification of the relationship between Eulerian profile equations and Lagrangian profile equations. Let us recall from ( 9) that ( 31)

E v e = E -ρ E ρ E -ρ x ∂E ∂ρ x .
To be more precise we are going to use that

(E v e)(V, V ζ , V ζζ ) = E (R, R ξ ) -R (E ρ E )(R, R ξ , R ξξ ) -R ξ ∂E ∂ρ x (R, R ξ )
when V and R are related through [START_REF] Grillakis | Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system[END_REF]. For simplicity we omit to write below the dependent variables V, V ζ , V ζζ , R, R ξ , R ξξ , as long as no confusion can occur. Thanks to [START_REF] Hǎrǎguş | On the spectra of periodic waves for infinitedimensional Hamiltonian systems[END_REF] and to the analogous, though simpler, formula

E v q = Q -ρ E ρ Q ,
we have

E v e -j 2 E v q -λ = -R (E ρ E -j 2 E ρ Q -µ) + E -j 2 Q -µ R -R ξ ∂E ∂ρ x -λ .
This equivalently reads ( 32)

E v = -R E ρ L -L ρ L -λ , with := e -j 2 q -λ v , L := E -j 2 Q -µ ρ .
For the moment, λ and µ are just arbitrary parameters, and

L ρ L = ρ x ∂L ∂ρ x -L
is not necessarily constant: in general we have

D x (L ρ L ) = -ρ x E ρ L .
For symmetry reasons (note that (E , Q, µ, R, ξ) ↔ ( e, q, λ, V, ζ) exchanges L and while leaving (30) invariant), we have

(33) E ρ L = -V E v -L v -µ ,
similarly to [START_REF] Höwing | Stability of large-and small-amplitude solitary waves in the generalized Korteweg-de Vries and Euler-Korteweg / Boussinesq equations[END_REF]. From these two equations follows the equivalence between

E ρ L = 0 , L ρ L = -λ ,
and

E v = 0 , L v = -µ .
As seen in the course of the previous proof, planar traveling waves solutions to the Euler-Korteweg system basically pertain to three types of waves, namely,

• heteroclinic waves, which are often called kinks,

• homoclinic waves, which are usually called solitons,

• periodic waves.

The sets of these waves are generically manifolds of increasing dimensions, the lowest dimension being for kinks, and the highest for periodic waves. Indeed, if we adopt for instance the Eulerian point of view, a kink is determined up to spatial translations by its endstates ρ ± , the relative momentum j, the speed σ, and the parameters λ and µ. (Note that (ρ -, ρ + , j, σ) determine unique endstates in the velocity components, namely u ± = σ + j/ρ ± .) Those six parameters are not independent and must satisfy four equations, namely those given by the profile equation δL at both ends,

∂E ∂ρ (ρ ± , 0) + j 2 2ρ 2 ± = µ ,
and the constraints that the endpoints (ρ ± , 0) be on the same level curve of the Hamiltonian

H := L ρ L at level -λ, E (ρ ± , 0) - j 2 2ρ ± -µ ρ ± = λ .
In other words, the mapping

ρ → L (ρ, 0) -λ = E (ρ, 0) - j 2 2ρ -µ ρ -λ
must have double zeroes at ρ ± . Equivalently, looking at equations from the Lagrangian point of view,

v → (v, 0) -µ = e(v, 0) - j 2 v 2 2 -λ v -µ
must have double zeroes at v ± . So generically the set of heteroclinic orbits (i.e. kinks up to spatial translations) is a two-dimensional surface. As regards solitons, they are determined up to spatial translations by their only endstate ρ ∞ , the relative momentum j, the speed σ, and the parameters λ and µ, under the constraints that

ρ → E (ρ, 0) - j 2 2ρ -µ ρ -λ
has a double zero at ρ ∞ . These two equations being independent, the set of homoclinic orbits (solitons up to spatial translations) is thus a three-dimensional manifold. To finish with, a periodic wave is determined up to spatial translation by say its trough ρ * , and still (j, σ, λ, µ) such that

E (ρ * , 0) - j 2 2ρ * -µ ρ * = λ .
Thus closed orbits (i.e. periodic waves up to spatial translations) generically form a four-dimensional manifold.

It is usually expected that the fewer degrees of freedom some special solution has, the stronger its stability. This is roughly what happens here, as we shall see in the next section.

Let us now make a few comments on the existence of heteroclinic/homoclinic/periodic waves when the energy is of the form in [START_REF] Benzoni-Gavage | On whitham's modulated equations for the Euler-Korteweg system[END_REF], or equivalently [START_REF] Victor | Variational principles of continuum mechanics[END_REF]. In this case, the governing ODEs of those waves read, in canonical variables4 (34)

       dρ dξ = ∂H ∂π (ρ, π) , dπ dξ = - ∂H ∂ρ (ρ, π) , H = 1 2 π 2 K(ρ) -F (ρ) + j 2 2ρ + µ ρ ,
from the Eulerian point of view or, from the Lagrangian point of view

(35)        dv dζ = ∂h ∂w (v, w) , dw dζ = - ∂h ∂v (v, w) , h = 1 2 w 2 κ(v) -f (v) + j 2 v 2 2 + λ v .
It follows from Theorem 1 that there is a one-to-one correspondance between orbits of (34) lying on the level curve H = -λ and orbits of ( 35) lying on the level curve h = -µ. Otherwise, it is worth noting that by changing coordinates into π = π/ K(ρ) and w = w/ κ(v), the ODEs above 'simplify' into (36)

       K(ρ) dρ dξ = π , K(ρ) d π dξ = F (ρ) + j 2 2ρ 2 -µ , (37) 
       κ(v) dv dζ = w , κ(v) d w dζ = f (v) -j 2 v -λ .
By reparametrizing the orbits we see that the phase portraits of ( 36) and ( 37) are actually independent of the capillarity coefficient K, or equivalently κ, provided that it is positive and bounded away by zero. This shows that the existence of heteroclinic/homoclinic/periodic planar waves for the Euler-Korteweg system with an energy as in ( 2) does not depend on the expression of capillarity. From a physical point of view, this is rather satisfactory because K is not directly amenable to experiments 5 . Thus we are left with investigating the possible phase portraits of the reparametrized version of [START_REF] Kollár | Spectral stability of vortices in two-dimensional Bose-Einstein condensates via the Evans function and Krein signature[END_REF], which merely reads

(38) v = w , ẇ = f (v) -j 2 v -λ .
(For simplicity, we have omitted the tilda over the modified coordinate w.) Let us mention that, physically, p(v) := -f (v) represents the pressure in the fluid. We may distinguish between several cases of pressure laws, namely 1. monotonically decaying and convex pressure law, 2. monotonically decaying and nonconvex pressure law,

nonconvex pressure law.

A well-known example exhibiting all three behaviours for various values of parameters is the van der Waals pressure law

p(v) = RT v -b - a v 2 .

This law admits two transition temperatures

T 0 := 81a 256bR , T c := 8a 27bR ,
(note that the relative difference between the two is only of 2%), and we have that 1. for T > T 0 , p is monotonically decaying and convex, 2. for T c < T < T 0 , p is monotonically decaying and admits two inflection points, 3. for T < T c , p admits one local minimum, one local maximal, and two inflection points.

The latter case is a model for liquid-vapor mixtures. In the first two cases, the thermodynamical state of the fluid is supercritical and it is not possible to distinguish between a vapor phase and a liquid phase. The typical phase portrait for [START_REF] Lamb | Hydrodynamics. Cambridge Mathematical Library[END_REF] in the first case is depicted on Figure 1. Of course, if λ is taken too large, the Rayleigh line of equation p = -j 2 v -λ fails to intersect the pressure graph, in which case no fixed point and a fortiori no bounded traveling wave arises at all. Another simple remark that can be drawn from this picture is that for j = 0, the only bounded traveling 'wave' is the fixed point at which p assumes the value -λ (if it exists). In other words, for monotone convex pressure laws the Euler-Korteweg system in Lagrangian coordinates does not admit any stationary soliton nor any stationary (spatially) periodic solution. Recalling that j is actually not a physical speed but a momentum density, this means that in Eulerian coordinates the Euler-Korteweg system does not admit any bounded traveling wave without mass transfer across it. Otherwise, phase portraits for monotone nonconvex and nonmonotone nonconvex are similar, see Figures 2,3, 4 (on pp. [START_REF] Rohde | On local and non-local Navier-Stokes-Korteweg systems for liquidvapour phase transitions[END_REF][START_REF] Rousset | A simple criterion of transverse linear instability for solitary waves[END_REF] for three typical ones that can be obtained with for instance the van der Waals law under critical temperature T c . 

j 2 v v v' p= f'(v)

Stability analysis of planar traveling waves

As general rule, stability should not depend on coordinates. This is not completely obvious when speaking of Lagrangian coordinates versus Eulerian coordinates though. Among other things, we shall point out why it is so on the specific waves we are considering. Another issue of interest in this section is the independence of stability upon the specific choice of capillarity (we have already seen that the existence of planar traveling waves does not depend on capillarity provided that it remains positive everywhere).

Tools and issues

The purpose of this section is to review various tools involved in the stability analysis of planar traveling waves, namely Boussinesq's moment of instability, Krein's signature, Evans functions, Whitham's theory of modulated equations. As far as possible, we apply them to the Euler-Korteweg system, and point out relationships between them. The actual results of stability/instability that can be drawn from those tools will be detailed in Section 3.2.

A first, natural approach when investigating the stability of a special solution to a Hamiltonian evolution equation is to try and see whether the Hamiltonian itself has any chance to play the role of a Lyapunov function. Of course one of the requirements for being a Lyapunov function is trivially satisfied by Hamiltonians, which are (almost) by definition constant along solutions. A more delicate thing is the behavior of the Hamiltonian in the 'neighborhood' of the special solution considered. For a Hamiltonian PDE like (4) (or similarly [START_REF] Bona | Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation[END_REF]) a candidate for a Lyapunov function is not exactly the (local) Hamiltonian H (or h) but the functional H dx (or h dy). A first difficulty is that this integral has no reason to be convergent. In several space dimensions, there is hardly any way to make an integral of this type convergent when H is evaluated at states that are close to a planar wave (because of obvious lack of decay in directions of the plane). However, as long as we are concerned with one-dimensional stability, there is a rather simple remedy for this lack of convergence, which consists in considering the integral

(H (ρ, u, ρ x ) -H (R, U, R x )) dx (or similarly (h(v, u, v y ) -h(V, W, V y )) dy) to investigate the stability of a wave whose profile is (R, U ) (or (V, W )). If (R, U ) is a profile homoclinic to (ρ ∞ , u ∞ ), an even simpler alternative is (H (ρ, u, ρ x ) -H (ρ ∞ , u ∞ , 0)) dx .
Yet this is not enough, because (R, U ) has no reason to be a critical point of this integral, or equivalently to cancel its variational derivative δH . This time the remedy lies in the observation that (R, U ) is a critical point of a modified functional. We almost saw it in Theorem 1. It was just hidden by the fact that we (intentionally) eliminated velocities.

Indeed, the profile equations for (15) read, in vectorial form,

D ξ δH -σ R U = 0 0 ,
where the variational derivarive δH is (as usual) evaluated at (R, U ). Observing that the second term can also be written as a variational derivative, namely the one of Q := ρ u, at (R, U ), we may equivalently write the system above as ( 39)

δ(H -σ Q -µ 1 ρ -µ 2 u) = 0 ,
for some real numbers µ 1 and µ 2 . This equation precisely means that the profile (R, U ) is a critical point of the modified Hamiltonian H -σ Q under constraints on ρ and u associated respectively with µ 1 and µ 2 as Lagrange multipliers. The 'modifier' Q has been called an impulse by Benjamin [START_REF] Benjamin | Impulse, flow force and variational principles[END_REF]. Eq. ( 39) is to be understood as the system

E ρ (H -σ Q) = µ 1 , E u (H -σ Q) = µ 2 .
Comparing these equations with those in the proof of Theorem 1 we see that

µ 1 = µ - 1 2 σ 2 , µ 2 = j .
Unsurprisingly, we can make similar observations from the Lagrangian point of view. In deed, the profile equations for (13) read ( 40)

δ(h -j p -λ 1 v -λ 2 u) = 0 , or equivalently E v (h -j p) = λ 1 , E u (h -j p) = λ 2 ,
where p := v u, and in fact λ 1 = λ -j σ, λ 2 = σ. Therefore, a better candidate for a Lyapunov function is, in the one-dimensional Euler framework,

M dx , M := [H -σ Q -(µ -1 2 σ 2 ) ρ -j u] ,
and in the Lagrangian framework

m dy , m := [h -j p -(λ -j σ) v -σ u] ,
where for simplicity we have used square brackets to denote the difference between the Hamiltonians evaluated at a perturbed state and those evaluated at a reference state (as seen above, we typically have

[H ] = H (ρ, u, ρ x ) -H (R, U, R x ), or more simply [H ] = H (ρ, u, ρ x ) -H (ρ ∞ , u ∞ , 0) when we consider solitary waves homoclinic to (ρ ∞ , u ∞ )).
With these notations, Eqs. ( 39) and ( 40) are merely the Euler-Lagrange equations δM = 0 and δ m = 0 associated with the modified Hamiltonians M and m. Remarkably enough, a straightforward calculation shows that, under the constraints ρ (u -σ) = j, u -jv = σ, those modified Hamiltonians merely coincide with the Lagrangians

L = E - j 2 2ρ -µρ , = e - j 2 v 2 2 -λv
defined in Theorem 1. It turns out that the Eulerian functional M dx and the Lagrangian function mdy coincide, as shown below.

Lemma 1. Assume that

ρ (u -σ) ≡ j , w -jv ≡ σ , ρ(x) = 1 v(y) , u(x) = w(y) , dy = ρ dx , lim x→±∞ ρ(x) = ρ ∞ , lim x→±∞ u(x) = u ∞ , lim y→±∞ v(y) = v ∞ , lim y→±∞ w(y) = u ∞ ,
these limits being attained sufficiently fast ( e.g. exponentially fast) so that derivatives tend to zero. Let us define

µ := g ∞ + j 2 2ρ 2 ∞ , λ := -p ∞ -j 2 v ∞ ,
where

g ∞ := ∂E ∂ρ (ρ ∞ , 0) , p ∞ := - ∂ e ∂v (v ∞ , 0) .
Then we have the equality

M dx = m dy ,
where

M = H (ρ, u, ρ x ) -σ ρu -(µ -1 2 σ 2 ) ρ -j u -H (ρ ∞ , u ∞ , 0) + σ ρ ∞ u ∞ + (µ -1 2 σ 2 ) ρ ∞ + j u ∞ , m = h(v, w, v y ) -j v w -(λ -j σ) v -σ w -h(v ∞ , u ∞ , 0) + j v ∞ u ∞ + (λ -j σ) v ∞ + σ u ∞ .
Proof. As remarked above, we have

M = L (ρ, u, ρ x ) -L (ρ ∞ , u ∞ , 0) , m = (v, w, v y ) -(v ∞ , u ∞ , 0) , hence M dx = (E (ρ, ρ x ) -E (ρ ∞ , 0) - j 2 2 1 ρ - 1 ρ ∞ -µ(ρ -ρ ∞ )) v dy .
Recalling that e(v, v y ) = v E (ρ, ρ x ) , which implies in particular at infinity

E (ρ ∞ , 0) = ρ ∞ g ∞ -p ∞ ,
and taking into account the definitions of µ and λ, we easily recognize that

M dx = ( e(v, v y ) -e(v ∞ , 0) - j 2 2 (v 2 -v 2 ∞ ) -λ (v -v ∞ )) dy = m dy .
As a further remark, let us point out that the integral M dx = m dy along a solitary wave is invariant by translation in x (or y) of this wave. This is just because solitary waves are critical points of the (autonomous) Hamiltonian M (or equivalently m), and fully justifies the following.

Definition 1. For a (planar) solitary wave solution of density ρ ∞ at infinity, relative momentum j, and velocity σ, we call moment of instability of Boussinesq6 

M(ρ ∞ , j, σ) := M dx = m dy ,
where M and m are defined, as in Lemma 1, respectively along the Eulerian profile (ρ, u) = (R, U ) and the Lagrangian profile (v, w) = (V, W ) of the solitary wave.

Remark 1. In the particular case when the energy is as in [START_REF] Benzoni-Gavage | On whitham's modulated equations for the Euler-Korteweg system[END_REF], [START_REF] Victor | Variational principles of continuum mechanics[END_REF], we see that the constrained energies reduce to

M = K(R) R 2 x , m = κ(V ) V 2 y ,
along the profiles, which readily shows why

M dx = m dy by change of variables (R(x) = 1/V (y), dy = R dx, κ(V ) = R 5 K(ρ)).
In addition, we recognize in these integrals the energy carried by the wave, a 'localized' energy usually referred to by physicists as surface tension.

At first glance, the only fact that all translated waves have the same Boussinesq moment is bad news as regards stability. There is indeed no hope that M(ρ ∞ , j, σ) have a strict minimum at any given solitary wave. A way to 'factor out' translation invariance was nevertheless pointed out in [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF][START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] (see section 3.2 for more details). This projection trick turns out to be sufficient to show the orbital stability of heteroclinic waves (or kinks, see [START_REF] Benzoni-Gavage | Structure of Korteweg models and stability of diffuse interfaces[END_REF]Theorem 3]) because they have few degrees of freedom. The additional degree of freedom for homoclinic waves ruins the argument and something more is needed. It is in fact the convexity of M(ρ ∞ , j, σ) on the line {(j, σ) ; ρ ∞ (u ∞ -σ) = j} that determines the orbital stability (with respect to perturbations that vanish at infinity) of a given solitary wave. This was formalized by Grillakis, Shatah and Strauss [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] in an abstract setting, and used for a wide variety of Hamiltonian PDEs since then, starting with both the socalled Korteweg-de Vries equation [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF] and the Boussinesq equation itself [START_REF] Bona | Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation[END_REF]. The idea behind the sufficient stability condition is that when M is strictly convex the 'unstable direction' is transverse to the level sets of Benjamin's impulse and thus that unstable direction is harmless, see §A.3 the appendix for more details. On the contrary, if at some point (ρ ∞ , j, σ) we have

∂ 2 ∂σ 2 M(ρ ∞ , ρ ∞ (u ∞ -σ)
, σ) ≤ 0 , then there exist (a curve of) nearby perturbed states along which M dx is less than M(ρ ∞ , j, σ) (see for instance [START_REF] Benzoni-Gavage | Structure of Korteweg models and stability of diffuse interfaces[END_REF]Prop. 10], or the original proof in [15, Theorem 3.1]), which of course precludes the use of the functional M dx as a Lyapunov function. This does not readily show instability of the wave, but gives a clue. Grillakis, Shatah and Strauss actually proved, in their abstract framework, that the positivity of the second derivative of the Boussinesq moment is an iff condition for orbital stability of the solitary wave. Since their result did not apply to the Korteweg-de Vries (KdV) equation (because the skew-symmetric operator of its 'natural' Hamilonian formulation is not onto), it was one purpose of [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF] to prove the same result on the specific example of KdV. In fact, it was pointed out a couple of years later by Pego and Weinstein [START_REF] Pego | Eigenvalues, and instabilities of solitary waves[END_REF] that, for three types of Hamiltonian PDEs (namely, generalized KdV, Benjamin-Bona-Mahoney, and Boussinesq), the second derivative of the Boussinesq moment is related to the low frequency behavior of the so-called Evans function associated with the solitary wave, a consequence being that a negative second derivative of the Boussinesq moment implies spectral instability. This is also the case for solitary waves of the Euler-Korteweg system, see Theorem 2 below.

Speaking of unstable directions, let us leave for a while Lyapunov functions, and describe in more details the material needed for the Evans functions machinery. In order to study the stability of a traveling wave from the spectral point of view, the starting point is to make the wave stationary, which is always possible by a 'change of frame'. More precisely, for a traveling wave of speed σ in the Eulerian framework we should change the spatial variable x into ξ := x-σt (or x-σtn in several variables when the wave propagates in direction n), while for a Lagrangian traveling wave of momentum j we should change the Lagrangian mass coordinate y into ζ := y + jt. Then the role of Benjamin's impulse becomes clearer because in the new coordinates the equations of motion read (41)

∂ s v u = 0 ∂ ζ ∂ ζ 0 δ(h -j p) , h = 1 2 u 2 + e(v, v ζ ) , p = v u , ( 42 
) ∂ t ρ u = - 0 ∂ ξ ∂ ξ 0 δ(H -σQ) , H = 1 2 ρ u 2 + E (ρ, ρ ξ ) , Q = ρ u ,
instead of ( 14) and [START_REF] Boussinesq | Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond[END_REF]. Recalling that the traveling wave equations may be written as ( 40) and ( 39), we see that by translation in y or x these waves are indeed changed to stationary solutions, say (V, W ) or (R, U ), of ( 41) or ( 42) respectively. We may now linearize (41) about (V, W ), or (42) about (R, U ). We receive the systems

(43) ∂ s v u = ∂ ζ J A v u , A := Hess(h -j p)(V, W ) , (44) 
∂ t ρ u = -∂ ξ J B ρ u , B := Hess(H -σQ)(R, U ) ,
where for simplicity we have introduced the matrix

J := 0 1 1 0 ,
and by definition HessH (R, U ) is the symmetric, second order, vector-valued differential operator defined by As is well-known, spectral stability is necessary to have linear stability (since the existence of an unstable eigenvalue for an operator A prevents the semi-group generated by A to be contractive), but it may be not sufficient. We shall not discuss this question here (see for instance [START_REF] Benzoni-Gavage | Stability issues in the Euler-Korteweg model[END_REF] for some hints regarding the Euler-Korteweg system).

d 2 dθ 2 (H (R + θρ, U + θu) -H (R, u)) dξ |θ=0 = (ρ, u) • HessH (R, U )(ρ,
Another remark is that we cannot expect strong spectral stability (which would mean that the spectrum of A entirely lies in the open half-plane {z ; Rez < 0}), and thus neither asymptotic linear stability (which would mean that the semigroup (e tA ) goes to zero when t → +∞) nor a fortiori asymptotic nonlinear stability. There are several reasons to that but the first one is linked to translation invariance. Indeed, the profile equation ( 40) is satisfied by any translated profile (

V s , W s )(ζ) = (V, W )(ζ + s), that is we have δ(h -j p)(V s , W s ) = λ 1 λ 2 ,
so that by differentiation with respect to s we readily get

Hess(h -j p)(V, W )(∂ ζ V, ∂ ζ W ) = 0 ,
which means that the derivative of the profile is in the kernel of A and thus also of A . This is a common feature of all translation invariant waves, and it is not the worst. If we have more degrees of freedom, for instance if we consider solitary waves parametrized by j, we may also differentiate with respect to j and receive ( 45)

Hess(h -j p)(V, W )(∂ j V, ∂ j W ) = δp(V, W ) + ∂ j λ 1 ∂ j λ 2 .
Recalling that

δp(V, W ) = W V , A = ∂ ζ 0 1 1 0 Hess(h -j p)(V, W ) ,
we obtain from Eq. ( 45) that

A ∂ j V ∂ j W = ∂ ζ V ∂ ζ W .
In other words, for solitary waves the linearized operator A (and also its Eulerian counterpart B) has a Jordan block of size at least 2 associated with the eigenvalue zero. We could nevertheless hope for a spectral gap up this unavoidable Jordan chain at zero. This is not the case though. For it can be shown that, for saddle-point connections (either kinks or solitons), the whole imaginary axis is made of essential spectrum, see [START_REF] Benzoni-Gavage | Structure of Korteweg models and stability of diffuse interfaces[END_REF]Theorem 3.6]. More precisely, the essential spectrum of A (and of B) coincides with the imaginary axis (and since A is vector-valued, its essential spectrum cannot be shifted merely by the usual trick of considering weighted functional spaces).

From now on, we concentrate on locating possible spectrum of A (or B) in the right half-plane. As a preliminary remark we may observe that the point spectrum has two symmetries:

• since the operator A (or B) is real-valued, its spectrum is invariant by complex conjugation;

• since A = J A with J skew-adjoint and A self-adjoint, its point spectrum is invariant by τ → -τ (for the spectrum of AJ = -A * is opposite to the spectrum of A , and if AJ u = τ u with τ = 0 and u = 0 then J u = 0 and A J u = τ J u, thus τ is an eigenvalue of A ).

So the occurrence of an eigenvalue anywhere outside the imaginary axis implies spectral instability. Furthermore, the observation above is the starting point for defining the Krein signature [START_REF] Grillakis | Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system[END_REF][START_REF] Mackay | Stability of equilibria of Hamiltonian systems[END_REF] of an eigenvalue τ : denoting by I τ the real invariant space associated with the eigenvalues τ , τ , -τ , -τ , the Krein signature of τ is 0 if A |Iτ is indefinite, +1 if A |Iτ is definite positive, and -1 if A |Iτ is definite negative. It turns out that the Krein signature is especially interesting for purely imaginary eigenvalues. Indeed, if τ is of nonzero real part, its Krein signature is zero,whereas the Krein signature of τ ∈ iR is nonzero in general, with the additional bifurcation result that colliding purely imaginary eigenvalues of opposite Krein signatures generically leave the imaginary axis as a quadruplet (τ, τ , -τ, -τ ) where τ / ∈ (R ∪ iR). This point of view has been used in recent work [START_REF] Deconinck | On the orbital (in)stability of spatially periodic stationary solutions of generalized Korteweg-de Vries equations[END_REF][START_REF] Hǎrǎguş | On the spectra of periodic waves for infinitedimensional Hamiltonian systems[END_REF][START_REF] Kapitula | The Krein signature, Krein eigenvalues, and the Krein oscillation theorem[END_REF][START_REF] Kapitula | Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems[END_REF][START_REF] Kollár | Spectral stability of vortices in two-dimensional Bose-Einstein condensates via the Evans function and Krein signature[END_REF] to study the stability of various equilibria, and in particular periodic waves, in both abstract Hamiltonian PDEs and various examples of them (Schrödinger, KdV, Gross-Pitaevskii).

Let us now draw a rather striking information from Eq. ( 45) (or its counterpart from the Eulerian point of view). Recalling Definition 1 for the Boussinesq moment M, and using Eq. ( 40), we can indeed infer from Eq. ( 45) that the second derivative of M with respect to

j at fixed (v ∞ , u ∞ , σ = u ∞ -jv ∞ ), is ∂ 2 j M(ρ ∞ , j, u ∞ -jv ∞ ) = -(∂ j V, ∂ j W ) • A ∂ j V ∂ j W dζ .
Similarly, the second derivative of M with respect to

σ at fixed (ρ ∞ , u ∞ , j = ρ ∞ (u ∞ -σ)), is ∂ 2 σ M(ρ ∞ , ρ ∞ (u ∞ -σ), σ) = -(∂ σ R, ∂ σ U ) • B ∂ σ R ∂ σ U dξ ,
see §A.3 in the appendix for more details. Therefore, when M is strictly convex on the line {(j, σ) ; ρ ∞ (u ∞ -σ) = j}, the self-adjoint operator A (as well as B) necessarily has spectrum in the left-half plane, which is in fact point spectrum. This may seem to be bad news again because the number of eigenvalues of A in the left-half plane controls, according to [START_REF] Pego | Eigenvalues, and instabilities of solitary waves[END_REF]Theorem 3.1], the number of unstable eigenvalues of A , so that there is in principle room for (at least) one unstable eigenvalue of A . Nevertheless and remarkably enough, the strict convexity of M serves to eliminate that possibility. Indeed, according to the Grillakis-Shatah-Strauss theory, the strict convexity of M together with the facts that A has a single negative eigenvalue and has its kernel exactly spanned by the derivative of the profile, even imply the orbital stability of the wave, see again §A.3 for a few more details.

In other words, the strict convexity of M provides a sufficient condition for stability. A somehow more delicate problem is whether its concavity implies instability -a problem which was dealt with by Grillakis, Shatah, and Strauss under the assumption that the Hamiltonian operator J be onto, which is obviously violated here 7 by the differential operator J = ∂ ζ J. In order to prove instability, the Evans function is a useful, alternative tool. Evans functions were coined and investigated from the topological point of view in the framework of dissipative PDEs in [START_REF] Alexander | A topological invariant arising in the stability analysis of travelling waves[END_REF], but are also widely used in Hamiltonian frameworks (see in particular the seminal paper by Pego and Weinstein [START_REF] Pego | Eigenvalues, and instabilities of solitary waves[END_REF], or the more recent work in [START_REF] Bridges | Constructing the symplectic Evans matrix using maximally analytic individual vectors[END_REF][START_REF] Kapitula | Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations[END_REF]). Let us mention that they have also been used in conjunction with the Krein signature approach in [START_REF] Kollár | Spectral stability of vortices in two-dimensional Bose-Einstein condensates via the Evans function and Krein signature[END_REF].

The idea behind Evans functions is spatial dynamics, which consists in viewing the eigenvalue equations ( 46)

A v w = τ v w
as a dynamical system in the ζ-variable. To be more concrete, let us observe that

A = ∂ ζ 0 1 1 0 Hess e(V ) -j -j 1 = ∂ ζ -j 1 Hess e -j
,

Hess e = -D ζ α D ζ + γ , α := ∂ 2 e ∂v 2 ζ (V, V ζ ) , γ := ∂ 2 e ∂v 2 (V, V ζ ) -D ζ ∂ 2 e ∂v∂v ζ (V, V ζ ) ,
and assume for what follows that α only takes positive values (note that α

(ζ) = κ(V (ζ))
in the special case ( 12)). Then the eigenvalue equations ( 46) are equivalent to the 4 × 4 system of ODEs

(47) (D(ζ)V) ζ = E(τ ) V with (48) V :=     v v ζ v ζζ w     , D(ζ) :=     1 0 0 0 0 1 0 0 γ -α ζ -α -j -j 0 0 1     , E(τ ) :=     0 1 0 0 0 0 1 0 0 0 0 τ τ 0 0 0     .
Note that D(ζ) is nonsingular since α(ζ) = 0. Furthermore, when (V, W ) is either a kink or a soliton, we can show that for Reτ > 0 the system (47) is asymptotically hyperbolic, which means that the limit matrices

A ± (τ ) := lim ζ→±∞ D(ζ) -1 E(τ ) ,
do not have any purely imaginary spectrum. This is due to the fact that the endpoints (v ± , w ± ) are necessarily saddle point of the profiles ODEs, see for instance [6, Lemma 1]. Therefore a way to formulate the existence of a nontrivial solution to the eigenvalue equations [START_REF] Serre | Spectral stability of periodic solutions of viscous conservation laws: large wavelength analysis[END_REF] tending to zero at infinity is to require the vanishing of a Wronskian d(τ ) made of solutions of [START_REF] Van Saarloos | Hydrodynamics for an ideal fluid: Hamiltonian formalism and Liouville equation[END_REF] tending to zero at either -∞ or +∞, provided that the dimensions of the 'unstable subspace' (the one of solutions going to zero at -∞) and of the 'stable subspace' (of solutions going to zero at +∞) be complementary. In practice we find their dimensions by a perturbation/connectedness argument. Here they are both two-dimensional. When constructed carefully (following [START_REF] Pego | Eigenvalues, and instabilities of solitary waves[END_REF][START_REF] Alexander | A topological invariant arising in the stability analysis of travelling waves[END_REF]), d is as smooth a function of τ as A . Since the latter depends linearly on τ , d depends analytically on τ . Still, this remains an abstract object since there is no general method for solving variable coefficients systems of ODEs, and therefore an Evans function is hardly ever known explicitly. To really be useful the Evans function d must be constructed in such a way that it has a smooth continuation to a neighborhood of τ = 0, in which we are likely to infer its local behavior from properties of the underlying profile. The technique to extend Evans functions near 0 (which belongs to the essential spectrum of A ) is by now well-known, and usually referred to as the gap lemma [START_REF] Gardner | The gap lemma and geometric criteria for instability of viscous shock profiles[END_REF][START_REF] Kapitula | Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations[END_REF].

In particular if (v ± , w ± ) = (v ∞ , w ∞ )
is the endstate of a soliton, the following result (of which a detailed proof is given in [6, Lemma 1] in the Eulerian framework) makes the connection between the local behavior of the Evans function and the second derivative of the Boussinesq moment (also see [START_REF] Bridges | Constructing the symplectic Evans matrix using maximally analytic individual vectors[END_REF][START_REF] Pego | Eigenvalues, and instabilities of solitary waves[END_REF][START_REF] Zumbrun | Dynamical stability of phase transitions in the p-system with viscosity-capillarity[END_REF]).

Theorem 2. Let us consider the operator

A = ∂ ζ JHess(h -jp)(V, W )
where (V, W ) is the profile of a traveling wave solution of (13) that is homoclinic to (v ∞ , w ∞ ) and whose momentum of propagation is j. Similarly, we consider

B = -∂ ξ JHess(H -σQ)(R, U )
where (R, U ) is the profile of a traveling wave solution of (15) that is homoclinic to (ρ ∞ , u ∞ ) and whose speed of propagation is σ. We assume that these waves are related to each other as in Theorem 1, and in particular that

ρ ∞ = 1/v ∞ , ρ ∞ (u ∞ -σ) = j ,
and we consider the Boussinesq moment M as defined in Lemma 1. Then there exist smooth functions d : [0, ∞) → R, D : [0, ∞) → R such that 1. For all τ > 0, d(τ ) = 0, respectively D(τ ) = 0, if and only if the eigenvalue equations [START_REF] Serre | Spectral stability of periodic solutions of viscous conservation laws: large wavelength analysis[END_REF], respectively those associated with B, have a nontrivial solution;

2. For τ 1, d(τ ) > 0, D(τ ) > 0;

3. Both d and D have (at least) double zeroes at τ = 0, and there exist positive numbers ν and υ such that

d (0) = ν∂ 2 j M(ρ ∞ , j, u ∞ -jv ∞ ) , D (0) = υ∂ 2 σ M(ρ ∞ , ρ ∞ (u ∞ -σ), σ) .
Observing that

β := ∂ 2 ∂σ 2 M(ρ ∞ , ρ ∞ (u ∞ -σ), σ) = ρ 2 ∞ ∂ 2 ∂j 2 M(ρ ∞ , j, u ∞ -jv ∞ ) ,
we readily infer from Theorem 2 and the mean value theorem that if β < 0 then both the Lagrangian and the Eulerian solitary wave are spectrally unstable (the Evans functions d and D vanish somewhere on the positive real axis (0, +∞)).

Corollary 1. Under the assumptions of Theorem 2, if the moment of instability M(ρ ∞ , j, σ) is strictly concave on the line {(j, σ) ; ρ ∞ (u ∞ -σ) = j}, then the solitary wave is spectrally unstable in both the Eulerian and the Lagrangian frameworks.

Let us now turn to Evans functions (and other tools) for periodic waves. As noted by Gardner [START_REF] Gardner | Spectral analysis of long wavelength periodic waves and applications[END_REF], Evans functions are easier to construct for periodic waves than for saddlepoints connecting orbits. However, if we are to consider arbitrary perturbations of the wave (and not only 'co-periodic' perturbations), the Evans function will consist of a Wronskian depending not only on the complex number τ but also on a so-called Floquet multiplier8 , say γ ∈ S 1 (a unitary complex number). Indeed, for a periodic profile (V, W ) the spectrum of A in L ∞ consists entirely of continuous spectrum (which means that there are no isolated eigenvalues at all, see [23, p. 1487]), and more precisely it is the set of what Gardner called γ-eigenvalues [START_REF] Gardner | On the structure of the spectra of periodic travelling waves[END_REF]. The definition of γ-eigenvalues comes out naturally once the eigenvalue equations ( 46) are rewritten as a system of ODEs like [START_REF] Van Saarloos | Hydrodynamics for an ideal fluid: Hamiltonian formalism and Liouville equation[END_REF], for which the existence of a nontrivial bounded solution is equivalent to the existence of an eigenvalue γ on the unit circle of the monodromy matrix S(Z; τ ), in which Z is the wavelength (or profile period), and S(ζ; τ ) denotes the fundamental solution9 of (47). Therefore, it suffices to define the Evans function by d(τ, γ) = det(S(Z; τ ) -γId) , so that the γ-eigenvalues of A are the zeroes of d(•, γ). This apparently simple definition does not mean that it is easy to locate those zeroes. (In addition, there are subtle issues regarding multiplicities for which we refer to [START_REF] Gardner | On the structure of the spectra of periodic travelling waves[END_REF].) We may however obtain information on the zeros of d(•, γ) by perturbation arguments. In this respect, let us mention two results. The first one is due to Gardner [START_REF] Gardner | Spectral analysis of long wavelength periodic waves and applications[END_REF] and shows that a necessary condition for the spectral stability of large wave-length periodic solutions is the stability of the limiting soliton (indeed, as should be clear from phase portraits, periodic orbits tend to an homoclinic orbit in the phase plane when their wavelength goes to infinity). The second result is by Serre [START_REF] Serre | Spectral stability of periodic solutions of viscous conservation laws: large wavelength analysis[END_REF] (also see the earlier work [START_REF] Oh | Stability of periodic solutions of conservation laws with viscosity: analysis of the Evans function[END_REF][START_REF] Oh | Stability of periodic solutions of conservation laws with viscosity: pointwise bounds on the Green function[END_REF] by Oh and Zumbrun) and shows in the framework of dissipative conservation laws that the local behavior of the Evans function near frequency τ = 0 and Floquet multiplier γ = 1 is linked to the Whitham modulated equations. As a consequence, it gives a(nother) necessary condition for the spectral stability of large wavelength periodic solutions, which is the hyperbolicity 10 of modulated equations. We shall come back to these equations below, and see how Serre's result adapts to our (dispersive) framework (also see the series of work by Bronski, Johnson, and Zumbrun [START_REF] Johnson | On the modulation equations and stability of periodic generalized Korteweg-de Vries waves via Bloch decompositions[END_REF] regarding the KdV equation). Let us complete this sketchy description by commenting on functional spaces. The γ-eigenvalues have been introduced as point spectrum of A viewed as an unbounded operator on L ∞ . A natural question is the relationship between this L ∞ spectrum and the L 2 spectrum, because we may well imagine that a wave be unstable with respect to L ∞ perturbations, and nevertheless stable with respect to 'localized', L 2 perturbations. In this respect, let us assume that some τ ∈ C is a γ-eigenvalue for all γ = e 2iπθ ∈ S 1 . This means that there exists a smooth, bounded solution V = V(ζ; θ) of ( 47) such that ( 49)

V(ζ + mZ; θ) = e 2iπθm V(ζ; θ) , ∀ζ ∈ R, ∀m ∈ Z .
We can synthesize V and define

(50) V(ζ + mZ) := 1 0 V(ζ; θ) e 2iπmθ dθ , ∀ζ ∈ (0, Z) , ∀m ∈ Z .
Indeed, let us recall the following basic things about Bloch transforms. If w is any L 1 function then the series n∈Z w(ζ + nZ) converges in L 1 (0, Z), and we can define

w ∈ C (R/Z; L 1 (0, Z)) by w(θ, ζ) = n∈Z e -2iπnθ w(ζ + nZ) , ∀θ ∈ R/Z , for almost all ζ ∈ (0, Z) .
At fixed ζ, we may view w(•, ζ) as the sum of a Fourier series, hence the inverse formula (which can also be obtained directly by Fubini's theorem)

w(ζ + mZ) = 1 0 w(θ, ζ) e 2iπmθ dθ , ∀ζ ∈ (0, Z) , ∀m ∈ Z .
This motivates [START_REF] Zumbrun | Dynamical stability of phase transitions in the p-system with viscosity-capillarity[END_REF] in the sense that V(θ, ζ) = V(ζ; θ) . Furthermore, if for instance w ∈ D(R), we see by an elementary computation that

w L 2 (R) = w L 2 (R/Z×(0,Z)) ,
and by a density argument it can be shown that the Bloch transformation B : w → w defines an isometry from L 2 (R) onto L 2 (R/Z×(0, Z)). Therefore, our synthesized solution V of ( 47) is square integrable on R. Finally, its first and last components yield a square integrable solution of the eigenvalue equations ( 46) of A since this differential operator has Z-periodic coefficients and thus commutes with the Bloch transformation B. In other words, if τ ∈ C is a γ-eigenvalue for all γ ∈ S 1 then it is an eigenvalue on L 2 . The argument works as well in the other way round: by Bloch transforming the eigenvalue equations we are led to find a solution to (47)(49) for all θ ∈ R/Z, which exists if and only if d(τ, γ) = 0 for all γ ∈ S 1 . To summarize, a complex number τ is an L 2 eigenvalue of A if and only if the Riemann surface {(τ, γ) ∈ C 2 ; d(τ, γ) = 0} contains {τ } × S 1 . After these general observations, let us point out that the stability with respect to perturbations of the same period as the wave is encoded by the restriction of the Evans function d to γ = 1 (θ = 0), and more precisely is characterized by {τ ; Reτ > 0 , d(τ, 1) = 0} = ∅.

To finish with this tool-oriented section, let us exemplify Whitham's modulated equations. For the system (13), they were derived by Gavrilyuk and Serre in [START_REF] Sergey | A model of a plug-chain system near the thermodynamic critical point: connection with the Korteweg theory of capillarity and modulation equations[END_REF] by a direct asymptotic approach (instead of the variational approach advocated by Whitham himself [START_REF] Whitham | Linear and nonlinear waves[END_REF]Chap. 14]). Since this is a nice computation from a not so-well known paper, we feel useful to reproduce it here (in the light of other observations we have made). First of all, let us point out that both the Hamiltonian h = 1 2 u 2 + e and the impulse p = vu are associated with local conservation laws, namely (51)

∂ s h -∂ y u δ e + u y ∂ e ∂v y = 0 , (52) 
∂ s p + ∂ y e -v δ e -v y ∂ e ∂v y - 1 2 u 2 = 0 ,
which are easily checked to be satisfied by smooth solutions of [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF]. The aim of modulation theory is to find solutions having an asymptotic expansion of the form (v, u)(s, y) = (v 0 , u 0 )(εs, εy, φ(εs, εy)/ε) + ε (v 1 , u 1 )(εs, εy, φ(εs, εy)/ε, ε) + o(ε) ,

where the 'profiles' (v 0 , u 0 ) and (v 1 , u 1 ) are, say 2π, periodic in their third variable θ. Denoting by S and Y their first and second variables (here, the rescaled time and Lagrangian mass coordinate respectively), we introduce the further notations

k := φ Y , ω := φ S , j := ω k .
What we expect is that the leading profile (v 0 , u 0 ) be a 'slowly modulated' periodic wave, supposedly close in a O(1/ε) domain in the (s, y) plane to a reference periodic wave (V, W ) = (V, W )(y + j 0 s ), j 0 = ω 0 /k 0 . Since the periodic waves form a four-dimensional manifold (see p. [START_REF] Bona | Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation[END_REF], it is natural to seek a 4 × 4 'homogenized' system of equations for the evolution in the 'slow variables' (S, Y ) of that modulated wave. This was done in [START_REF] Sergey | A model of a plug-chain system near the thermodynamic critical point: connection with the Korteweg theory of capillarity and modulation equations[END_REF]. The resulting homogenized system resembles the full Euler equations in Lagrangian coordinates (conservation laws for the mean specific volume, the mean velocity, the mean energy) supplemented with a conservation law for the mean impulse. This is not surprising per se, but expressing those conservation laws in a closed and exploitable form requires some algebra as well as a good choice of dependent variables.

Theorem 3 (Gavrilyuk-Serre). Assume that (V, W ) is a periodic traveling wave solution of y-period 2π/k 0 . Then in a neighborhood of ( V , k 0 , V W -V W ), where the brackets •, • stand for mean values over [0, 2π/k 0 ], there exists a function e = e(v, k, ∆) such that the modulated equations for (13) about (V, W ) read

(53)        ∂ S v -∂ Y u = 0 , ∂ S u + ∂ Y p = 0 , ∂ S ( 1 2 u 2 + e) + ∂ Y (pu -j 2 ∆ -j k Θ) = 0 , ∂ S (vu + ∆) + ∂ Y (e + v p -k Θ -1 2 u 2 -2 j ∆ ) = 0 ,
with the generalized Gibbs relation (54) de = -pdv + Θ dk + j d∆ .

In addition, if e is a convex function of (v, k, ∆/k), then (53) is hyperbolic.

Proof. Plugging the asymptotic expansion in [START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF], using that ∂ s = ε∂ S + ω ∂ θ and ∂ y = ε∂ Y + k ∂ θ , and retaining only the leading order terms we get that

∂ θ u 0 -j ∂ θ v 0 = 0 , j ∂ θ u 0 + ∂ θ p 0 = 0 ,
where

p 0 := - ∂ e ∂v (v 0 , k∂ θ v 0 ) + k D θ ∂ e ∂v y (v 0 , k∂ θ v 0 ) , hence u 0 -j v 0 = u -j v , j u 0 + p 0 = j u + p , v := v 0 , u := u 0 , p := p 0 ,
the brackets •, • standing for mean values over the period 2π in θ. Now, if we retain the O(ε) term when plugging the asymptotic expansion in ( 13)-( 51)-( 52), we receive after averaging the four equations (55)

               ∂ S v -∂ Y u = 0 , ∂ S u + ∂ Y p = 0 , ∂ S 1 2 u 2 0 + e 0 + ∂ Y p 0 u 0 -∂ e ∂vy (v 0 , k∂ θ v 0 ) k ∂ θ u 0 = 0 , ∂ S v 0 u 0 + ∂ Y e 0 + v 0 p 0 -∂ e ∂vy (v 0 , k∂ θ v 0 ) k ∂ θ v 0 -1 2 u 2 0 = 0 ,
where e 0 := e(v 0 , k∂ θ v 0 ). Then, defining Θ := ∂ e ∂vy (v 0 , k∂ θ v 0 ) ∂ θ v 0 , e := 1 2 u 2 0 + e 0 -1 2 u 2 , ∆ := v 0 u 0 -v u , and differentiating these relations we see that de = u 0 du 0 -p 0 dv 0 + Θ dk -u du , d∆ = v 0 du 0 + u 0 dv 0 -v du -u dv and thus de -j d∆ = (u 0 -j v 0 ) du 0 -(p 0 + j u 0 ) dv 0 + Θ dk -u du + j v du + j u dv.

Using the identities

(56) p -p 0 = j (u 0 -u) = j 2 (v 0 -v) ,
this gives (54). It remains to express the last two equations in (55) in terms of (v, u, k, ∆).

For the moment they just read

∂ S ( 1 2 u 2 + e) + ∂ Y p 0 u 0 -∂ Y (j kΘ) = 0 , ∂ S (vu + ∆) + ∂ Y e 0 + v 0 p 0 -1 2 u 2 0 -∂ Y (kΘ) = 0 .
To obtain the final form of (53) we use again (56) and show that

p 0 u 0 = p v -j 2 ∆ , e 0 + v 0 p 0 -1 2 u 2 0 = e + p v -1 2 u 2 -2 j ∆ .
In order to have an hyperbolicity criterion for (53), Gavrilyuk and Serre pointed out that it admits the 'symmetric' equivalent form (as far as smooth solutions are concerned) (57)

                       ∂ S v -∂ Y u = 0 , ∂ S u -∂ Y ∂ e ∂v = 0 , ∂ S k -∂ Y ∂ e ∂δ = 0 , ∂ S δ -∂ Y ∂ e ∂k = 0 , e(v, k, δ) := e(v, k, kδ)
The third equation above is just a reformulation of the natural constraint

∂ S k -∂ Y ω = 0 , ω = j k ,
ensuring that the phase φ can be reconstructed from k and ω, and the fourth one is the reformulation of

∂ S (∆/k) -∂ Y (Θ + j ∆/k) = 0 ,
an additional conservation law for (53) that can be checked using (54). If e is convex then (57) can be symmetrized (by Godunov's approach) thanks to the Hessian of e + u 2 /2 and thus is hyperbolic.

State of the art 3.2.1 Kinks

As was pointed out by Grillakis, Shatah, and Strauss (see Remark p. 188 in [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]) "the kinks are always stable". At the spectral level, this is due to the monotonicity of the profile V , which implies by Sturm-Liouville theory that the operator Hess e -j 2 -whose kernel contains V ζ -is monotone, and in fine that the linearized operator

A = ∂ ζ -j
1 Hess e -j has no unstable spectrum. Similarly, HessE -j 2 /R 3 is monotone since its kernel contains R ξ , and as a consequence

B = -∂ ξ j/R R HessE (R) j/R
has no unstable spectrum (this was noticed in [START_REF] Benzoni-Gavage | Linear stability of propagating phase boundaries in capillary fluids[END_REF] without referring to [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]). Even though we can think of kinks as being stable 'by nature', nonlinear stability results demand a certain knowledge on the Cauchy problem. At present day, its well-posedness is only known to hold true locally in time, in Sobolev spaces of 'high' index. More precisely, let us recall the following, in which the reference, global smooth solutions can for instance be constants, or travelling wave solutions.

Theorem 4 ( [START_REF] Benzoni-Gavage | Well-posedness of one-dimensional Korteweg models[END_REF]). If (v, u) is a global smooth solution of (13)-( 12), then the Cauchy problem for (13)-( 12) is locally well-posed in (v, u)

+ (H k+1 × H k ), k ≥ 2.
Theorem 5 ([7]). If (ρ -, u) is a global smooth solution of (1)-( 2), then the Cauchy problem for (1)-( 2) is locally well-posed in (ρ -, u) + (H s+1 × H s ), s > d/2 + 1.

Even in one space dimension, nothing is known for the Cauchy problem in the 'energy space' directed by H 1 × L 2 . This is why the orbital stability results are rather weak in that they do not yield global existence of perturbed solutions. We just have the following.

Theorem 6 ([8]

). Let U be a global smooth solution of (13)-( 12) (resp. ( 15)-( 11))

∀ε > 0 , ∃η > 0 ; ∀ solution U ∈ U + C([0, T [; H 3 × H 2 ) , of (13)-(12) (resp. (15)-(11)) max U(0) -U H 1 ×L 2 , U(0) -U L 1 ×L 1 < η ⇒ ∀t ∈ [0, T [ , inf s∈R U(t) -U s H 1 ×L 2 < ε .
In the case of ( 13)-( 12) with κ ≡ 1 considered in [START_REF] Bona | Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation[END_REF], it is possible to induce a genuine stability result, with global existence: Bona and Sachs cope with the lack of control of derivatives in the energy space by differentiating the equations, which works because the principal part of the equations is linear with constant coefficient.

Solitons

As explained before, the stability of solitons is governed by the convexity of the moment of Boussinesq. Analytical verification of this convexity condition is far from being trivial. A fairly general result is the following.

Theorem 7 ([32]

). All solitary wave solutions of (13)-( 12) with κ constant and f (3) (v) < 0, f (4) (v) ≥ 0, are orbitally stable.

Otherwise, for nonconvex pressure laws, there is numerical evidence that some solitons are stable and some others are unstable, see [START_REF] Benzoni-Gavage | Structure of Korteweg models and stability of diffuse interfaces[END_REF], as well as the more recent work [START_REF] Chiron | Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one[END_REF] on (NSL).

Periodic waves

Regarding perturbations of the same period as the wave, it is possible to adapt the approach of Grillakis, Shatah and Strauss. This was done on cubic (NLS) (which corresponds to ( 15)-( 11) with 4ρK ≡ 1, F (ρ) = ρ) via the Madelung transform) by Gallay and Hǎrǎgus [START_REF] Gallay | Orbital stability of periodic waves for the nonlinear Schrödinger equation[END_REF] (also see [START_REF] Deconinck | On the orbital (in)stability of spatially periodic stationary solutions of generalized Korteweg-de Vries equations[END_REF] on KdV). For more general perturbations, showing a stability result is very difficult. For instance in [START_REF] Gallay | Orbital stability of periodic waves for the nonlinear Schrödinger equation[END_REF], the authors obtain the spectral stability of weak amplitude periodic waves to the price of much technical effort. We have more convenient tools to prove instability. Recall from [START_REF] Gardner | Spectral analysis of long wavelength periodic waves and applications[END_REF] that periodic waves of large wave length whose limiting soliton is unstable are themselves unstable. Another criterion is given by the relationship with Whitham's modulated equations. In a forthcoming work [START_REF] Benzoni-Gavage | On whitham's modulated equations for the Euler-Korteweg system[END_REF], we show the following. Theorem 8. Whitham's modulated equations for the Euler-Korteweg system read

• in the Eulerian framework (58)                ∂ T K + ∂ X (σK) = 0 , ∂ T ρ 0 + ∂ X ρ 0 u 0 = 0 , ∂ T u 0 + ∂ X 1 2 u 2 0 + ∂ X g 0 = 0 , ∂ T ρ 0 u 0 + ∂ X ρ 0 u 2 0 + ρ 0 g 0 + K (∂ θ ρ 0 ) ∂E ∂ρ x (ρ 0 , K∂ θ ρ 0 ) -E 0 = 0 ,
which is endowed with the additional conservation law (59)

∂ T 1 2 ρ 0 u 2 0 + E 0 + ∂ X 1 2 ρ 0 u 3 0 + ρ 0 u 0 g 0 + K ∂ θ (ρ 0 u 0 ) ∂E ∂ρ x (ρ 0 , K∂ θ ρ 0 ) = 0 ,
• in the Lagrangian framework

(60)                ∂ S k -∂ Y (jk) = 0 , ∂ S v 0 -∂ Y w 0 = 0 , ∂ S w 0 + ∂ Y p 0 = 0 , ∂ S v 0 w 0 + ∂ Y -1 2 w 2 0 + v 0 p 0 + e 0 -k (∂ θ v 0 ) ∂ e ∂v y (v 0 , k∂ θ v 0 ) = 0 ,
which is endowed with the additional conservation law

(61) ∂ S 1 2 w 2 0 + e 0 + ∂ Y w 0 p 0 -k (∂ θ w 0 ) ∂ e ∂v y (v 0 , k∂ θ v 0 ) = 0 .
Furthermore, (60) is equivalent to (58) through the relations

(62) ρ 0 = K k , v 0 = k K , v 0 = 1 ρ 0 , w 0 = ρ 0 u 0 ρ 0 ,
and dY = ρ 0 dX -ρ 0 u 0 dT , S = T .

In addition, the strict convexity of e := e 0 + 1 2 w 2 0 -1 2 w 0 2 , as a function of ( v 0 , k, ( v 0 w 0 -v 0 w 0 )/k) is equivalent to the convexity of

ρ 0 e = E 0 + 1 2 ρ 0 u 2 0 - 1 2 ρ 0 u 0 2 ρ 0
as a function of ( ρ 0 , K, ( ρ 0 u 0 -ρ 0 u 0 )/K). Strict convexity of these functions imply the hyperbolicity of (58) and (60). Finally, the hyperbolicity of (58)/ (60) in the neighborhood of a periodic traveling wave solution to (1)/ ( 13) is a necessary condition for the stability of this wave.

To finish with periodic waves, let us mention the following instability result, proved by Serre in 1994 in an unpublished work.

Theorem 9 (Serre). The stationary (that is, with j = 0) periodic solutions of (13) are unstable.

Proof. It relies on a careful spectral analysis of Hess e -j 2 . For the moment we keep j arbitrary on purpose, even though j will be taken equal to zero in fine. For each θ ∈ R/Z, the Sturm-Liouville operator Hess e -j 2 has discrete spectrum on

L 2 θ := {V ∈ L 2 loc (R) ; V(ζ + Z; θ) = e 2iπθ V(ζ; θ) , ∀ζ ∈ R} , say λ 0 (θ) ≤ λ 1 (θ) ≤ • • • → +∞ .
Furthermore, λ 2k is increasing with θ on [0, 1], whereas λ 2k+1 is decreasing, see [43, pp. 293-294].Since ∂ ζ V belongs to the kernel of Hess e -j 2 in L 2 0 , 0 is necessarily λ 1 (0). As a consequence, we have

λ 0 (θ) ≤ λ 1 (θ) < 0 , ∀θ ∈]0, 1] .
Denoting by P θ the eigenspace associated with λ 0 (θ) and λ 1 (θ), we thus have

V, (Hess e -j 2 )V ≤ λ 1 (θ) V 2 , ∀V ∈ P θ , θ ∈]0, 1] .
Therefore, there exists V or zero mean value such that V, (Hess e -j 2 )V < 0 .

Defining φ as a primitive of V, we have φ ∈ L 2 0 , and after integrating by parts,

∂ ζ (Hess e -j 2 )∂ ζ φ , φ > 0 .
This implies that the fourth-order operator ∂ ζ (Hess e -j 2 )∂ ζ has at least one positive eigenvalue, say τ 2 0 for some positive τ 0 . Let us denote by φ 0 an associated eigenvector. Now, eliminating the velocity from the eigenvalue equations, we get the following equivalence

A v w = τ v w ⇔ w = (τ + j∂ ζ )z , ∂ ζ z = v , ∂ ζ ((Hess e)(∂ ζ z)) = (τ + j∂ ζ ) 2 z .
Therefore, in the special case j = 0, τ 0 is an eigenvalue of A associated with the eigenvector (∂ ζ φ 0 , τ 0 ∂ 2 ζ φ 0 ). Of course there is no contradiction with Gallay-Hǎrǎgus' stability result, because there are simply no stationary periodic solutions of ( 13)- [START_REF] Benzoni-Gavage | On whitham's modulated equations for the Euler-Korteweg system[END_REF] with f (v) = 1/(2v) (or equivalently, p(v) = 1/(2v 2 ), whose graph is intersected only once by any horizontal Rayleigh line), which would correspond to periodic travelling wave solutions of ( 15)- [START_REF] Benzoni-Gavage | On whitham's modulated equations for the Euler-Korteweg system[END_REF] with F (ρ) = ρ.

The role of transverse directions

To conclude, let us say a few words about the stability of planar heteroclinic/homoclinic waves in several space dimensions. By Fourier transform in the (hyper)plane where the wave is constant, we are left with eigenvalue equations for operators A (η) (and B(η)) parametrized by wave vectors η ∈ R d-1 , which may be viewed as perturbations of the one-D operator A (and respectively B). Let us recall that for heteroclinic waves A (and B) has no unstable spectrum. It turns out that in several space dimensions, the wave vector η plays a 'stabilizing role', and that A (η) does not have any point spectrum outside the imaginary axis either, see [START_REF] Benzoni-Gavage | Linear stability of propagating phase boundaries in capillary fluids[END_REF]. On the contrary, transverse directions η 'destabilize' homoclinic waves. This was shown in [START_REF] Rousset | A simple criterion of transverse linear instability for solitary waves[END_REF], where a small unstable eigenvalue τ was found for arbitrary wave vectors η, and independently in [START_REF] Benzoni-Gavage | Spectral transverse instability of solitary waves in Korteweg fluids[END_REF] using the Evans function approach (the multi-D Evans function D(τ, η) being smooth on rays in R + × R d-1 ) and Rouché's theorem (similarly as in [START_REF] Zumbrun | Viscous and inviscid stability of multidimensional planar shock fronts[END_REF] for parabolic PDEs) to find a small unstable eigenvalue τ = O(η) for small wave vectors η.

Indeed, we have

E ϕ L = 0 ⇔ ∂ t ρ + div(ρ u) = 0 , E µ L = 0 ⇔ ∂ t (ρλ) + div(ρ λ u) = 0 , E λ L = 0 ⇔ ρ∂ t µ + ρ u • ∇µ = 0 , E ρ L = 0 ⇔ ∂ t ϕ + λ ∂ t µ + 1 2 u 2 + E ρ E = 0 .
Differentiating the last equation and using successively the identities ). Now, we may introduce the Hamiltonian

H := ϕ t ∂L ∂ϕ t + µ t ∂L ∂µ t -L = 1 2 ρ u 2 + E ,
to be seen (at least formally) as a function of (ρ = -∂L ∂ϕt , Λ := ρλ = -∂L ∂µt , ϕ, µ, ∇ϕ, ∇µ). Then the Euler-Lagrange system δL = 0 is equivalent to

         ∂ t ρ = E ϕ H , ∂ t Λ = E µ H , ∂ t ϕ = -E ρ H , ∂ t µ = -E Λ H , or equivalently, ∂ t     ρ Λ ϕ µ     = J δH [ρ, Λ, ϕ, µ] , J :=     0 0 1 0 0 0 0 1 -1 0 0 0 0 -1 0 0     .
This is a Hamiltonian formulation of the Euler-Korteweg system in "canonical" coordinates 11 .

A.3 The role of Boussinesq's moment convexity

Let us explain how (the most elementary part in) the Grillakis-Shatah-Strauss theory (Theorem 3.3 in [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]) applies to the Euler-Korteweg system, that is, why the strict convexity of Boussinesq's moment implies that the unstable eigenvector of the Hessian of the constrained energy is transverse to the level sets of Benjamin's impulse (and therefore that unstable direction is harmless regarding stability of the wave, which is Theorem 3.5 in [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]). For concreteness we consider the Euler-Korteweg system in Eulerian coordinatesthe very same arguments would work in Lagrangian coordinates. Assume that for each σ we have a stationary solution (ρ, u) = (R, U )(ξ) of

∂ t ρ = -∂ ξ (E u (H -σQ)) , ∂ t u = -∂ ξ (E ρ (H -σQ)) ,
that is homoclinic to (ρ ∞ , u ∞ ). We simply denote by M the function of σ defined by

M(σ) = M dξ , M = L (R, U, R ξ ) -L (ρ ∞ , u ∞ , 0) , L := H -σ Q -µ 1 ρ -µ 2 u , µ 1 := ∂E ∂ρ (ρ ∞ , 0)+ j 2 2ρ 2 ∞ -1 2 σ 2 , µ 2 := j := ρ ∞ (u ∞ -σ) .
Recalling that δL = 0 at (R, U ), we find that

M (σ) = - Q -Q ∞ + (R -ρ ∞ ) ∂µ 1 ∂σ + (U -u ∞ ) ∂µ 2 ∂σ dξ .
Noticing that

∂µ 1 ∂σ = -u ∞ , ∂µ 2 ∂σ = -ρ ∞ ,
we can simplify that expression into

M (σ) = -(R -ρ ∞ ) (U -u ∞ ) dξ , hence M (σ) = -((R -ρ ∞ ) U σ + (U -u ∞ ) R σ ) dξ ,
where for simplicity we have denoted by R σ and U σ the derivatives of R and U with respect to σ. Furthermore, by differentiating the profile equations δL = 0 we get

(HessH -σ HessQ)(R, U ) R σ U σ = U -u ∞ R -ρ ∞ .
Therefore, denoting by •, • the L 2 inner product, we see that

M (σ) = -(R σ , U σ ), B R σ U σ , B := (HessH -σ HessQ)(R, U ) .
Consequently, if M (σ) > 0, the self-adjoint operator B has at least one negative eigenvalue. This we can also infer from a Sturm-Liouville argument. Indeed, we know by differentiation of δL = 0 with respect to ξ that R ξ U ξ is in the kernel of B. Observing that R ξ vanishes exactly once, and eliminating u from the eigenvalue equations

B ρ u = τ ρ u ,
we can invoke Sturm-Liouville theory to justify that B has exactly one negative eigenvalue. Besides, the spectrum of the asymptotic operator

B ∞ := (HessH -σ HessQ)(ρ ∞ , u ∞ )
is found to be positive and bounded away from zero because the endstate (ρ ∞ , u ∞ ) is an hyperbolic fixed point of the profile ODEs (δL = 0). As a consequence, the essential spectrum of B is positive and bounded away from zero. Now the explicit formula

B R σ U σ = U -u ∞ R -ρ ∞
found above says in fact much more, and enables to us to show that B is positive definite on the space orthogonal to the plane spanned by R ξ U ξ and U -u ∞ R -ρ ∞ . Indeed, let us denote for simplicity

U ξ := R ξ U ξ , U σ := R σ U σ , and 
Q := U -u ∞ R -ρ ∞
We know that B is self-adjoint, BU ξ = 0 , BU σ = Q , and Q, U σ < 0 , and by our considerations on B's spectrum, B is positive definite on the space orthogonal to the plane spanned by U ξ and X, say a unitary eigenvector of B associated with its only negative eigenvalue λ. Let us denote by Π the orthogonal projection onto (span(U ξ , X)) ⊥ , and take Y ∈ (span(U ξ , Q)) ⊥ . We have λ U σ , X 2 + BΠ(U σ ), Π(U σ ) = BU σ , U σ < 0 , λ U σ , X Y, X + BΠ(U σ ), Π(Y)

= BU σ , Y = 0 , λ Y, X 2 + BΠ(Y), Π(Y) = BY, Y .

Recalling that BΠ(U σ ), Π(U σ ) > 0 , and using the Cauchy-Schwarz inequality, we thus see that

BY, Y ≥ λ Y, X 2 + BΠ(U σ ), Π(Y) 2 BΠ(U σ ), Π(U σ ) = λ Y, X 2 1 + λ U σ , X 2 BΠ(U σ ), Π(U σ ) > 0 . p v 0 v 3 v 2 v v 0 v 1 v 2 v 3 v' v 1 v
Figure 2: A nonconvex pressure law and the associated phase portrait for capillary profiles.

(Observe that equal area rule yields two solitons.) (Observe that equal area rule yields one heteroclinic orbit and one soliton.) 
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 1 Figure 1: A monotone convex pressure law and the associated phase portrait. Dashed areas are supposed to be equal, and determine the height of the soliton.

∇ 1 2 u 2 =

 2 u∧(∇∧u)+(u•∇)u, u∧(∇∧u) = u∧(∇λ∧∇µ) = (u•∇µ)-(u•∇λ)∇µ ,together with the first three equations E ϕ L = 0, E µ L = 0, E ρ L = 0, we recover the velocity equation as expressed in (A.[START_REF] Benjamin | Impulse, flow force and variational principles[END_REF]
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 3 Figure 3: A nonconvex pressure law and the associated phase portrait for capillary profiles.(Observe that equal area rule yields one heteroclinic orbit and one soliton.)

Figure 4 :

 4 Figure 4: A nonconvex pressure law and the associated phase portrait for capillary profiles. (Observe that equal area rule yields three solitons.)

In fact, we shall point out explicit relationships between the Euler-Korteweg equations and other famous dispersive equations, namely the NonLinear Schrödinger equation (NLS) and the generalized Boussinesq equation.

Physically, E corresponds to the free energy for isothermal motions, and to the internal energy for adiabatic motions.

All these computations are made from a purely algebraic point of view (from the analytical point of view we should assume the dependent variables to be smooth enough in order to justify all manipulations of derivatives).

These variables are just (ρ, π) where π is the partial derivative of L with respect to ρ x at fixed ρ. When the energy is of the form in[START_REF] Benzoni-Gavage | On whitham's modulated equations for the Euler-Korteweg system[END_REF], π = K(ρ) ρ x .

It is its macroscopic effect, surface tension, that can be measured.

The term "moment d'instabilité" was coined by Boussinesq himself in his monumental 1872 paper [16, p. 100], even though he could not view it as a Lyapunov function. The concept was resurrected by Benjamin[START_REF] Benjamin | The stability of solitary waves[END_REF] a century later.

We might cope with this problem by using instead the Hamiltonian formulation in Clebsch coordinates (see §A.2), in which the Hamiltonian operator is merely a skew-symmetric matrix J.

This additional parameter somehow plays a similar role as the transverse wave vector η in multi-D Evans functions, of which we briefly speak at the end of §3.2.

By definition, the column vectors of S(ζ; τ ) are independent solutions of (47), and S(0; τ ) = Id.

In the most general result, this hyperbolicity condition is to be understood in a weak sense (characteristics are real). Under an additional, generic condition, it is the usual hyperbolicity condition (characteristics are real and semi simple).

The term canonical refers to the special form of J.

Appendix A.1 Derivation of the Euler-Korteweg system

A rather short way is the one followed by Rohde in [START_REF] Rohde | On local and non-local Navier-Stokes-Korteweg systems for liquidvapour phase transitions[END_REF], which we describe here for completeness. The idea is to find motions, in Eulerian coordinates, as critical points of the space-time Lagrangian

under two differential constraints, namely the conservation law (A.1)

for the mass density, and the transport equation

for the initial point positions. The existence of the field p implicitly assumes that the flow map χ defined by ∂ t χ = u(χ, t) and χ(ξ, 0) = ξ for all ξ ∈ R d is global and nonsingular, in such a way that ξ = p(x, t) is equivalent to x = χ(ξ, t). (We consider motions in the whole space R d in order to avoid boundary conditions issues.) Then by adding a scalar unknown ϕ and a vector-valued unknown q, we are left with looking for critical points of

We recover of course the constraints (A.1) and (A.2), these equations being nothing but E ϕ L = 0 and E q L = 0 (the latter provided that ρ = 0), and E ρ L = 0 gives

Thanks to the mass conservation law (A.1), the latter can equivalently be rewritten as

By some elementary algebra we can now eliminate ϕ, p and q from the equations above to retrieve the sought, second equation in the Euler-Korteweg system (A.4)

(Note that if we omitted the constraint (A.2) we would just recover the equation for a potential velocity u = ∇ϕ, Eq. (A.3) then being Bernoulli's form of that equation.)

A.2 The Euler-Korteweg system in Clebsch coordinates

The following way of deriving the Euler-Korteweg equations is excerpted from [START_REF] Van Saarloos | Hydrodynamics for an ideal fluid: Hamiltonian formalism and Liouville equation[END_REF]. We consider 3D velocity fields u admitting so-called Clebsch coordinates [START_REF] Clebsch | [END_REF] (also see the book by Lamb [38, §167]), u = ∇ϕ + λ ∇µ , where ∇ϕ is clearly potential (and thus irrotational), and µ is a 'secondary' potential associated with a third unknown λ. The Euler-Korteweg system (A.4) turns out to be a by-product of the Euler-Lagrange equations for the Lagrangian L := -ρ (∂ t ϕ + λ ∂ t µ) -1 2 ρ u 2 -E (ρ, ∇ρ) .