
HAL Id: hal-00686027
https://hal.science/hal-00686027v2

Submitted on 18 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Cost Models for View Materialization in the Cloud
Thi-Van-Anh Nguyen, Laurent d’Orazio, Sandro Bimonte, Jérôme Darmont

To cite this version:
Thi-Van-Anh Nguyen, Laurent d’Orazio, Sandro Bimonte, Jérôme Darmont. Cost Models
for View Materialization in the Cloud. Workshop on Data Analytics in the Cloud (EDBT-
ICDT/DanaC 2012), Mar 2012, Berlin, Germany. http://www.edbt.org/Proceedings/2012-
Berlin/papers/workshops/danac2012/a2-nguyen.pdf. �hal-00686027v2�

https://hal.science/hal-00686027v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Cost Models for View Materialization in the Cloud

Thi-Van-Anh Nguyen
CNRS, UMR 6072, GREYC
Université de Caen Basse

Normandie, France
thi-van-

anh.nguyen@unicaen.fr

Laurent d’Orazio
CNRS, UMR 6158, LIMOS

Université Blaise Pascal
Clermont-Ferrand, France

laurent.dorazio@univ-
bpclermont.fr

Sandro Bimonte
Irstea, UR TSCF

Clermont-Ferrand, France
sandro.bimonte@irstea.fr

Jérôme Darmont
ERIC Lyon 2, Université de

Lyon, France
jerome.darmont@univ-lyon2.fr

ABSTRACT
In classical databases, query performance is casually
achieved through physical data structures such as caches,
indexes and materialized views. In this context, many cost
models help select a “best set” of such data structures. How-
ever, this selection task becomes more complex in the cloud.
The criterion to optimize is indeed at least two-dimensional,
with the monetary cost of using the cloud balancing query
response time. Thus, we define in this paper new cost models
that fit into the pay-as-you-go paradigm of cloud computing.
These cost models help achieve a multi-criteria optimization
of the view materialization vs. CPU power consumption
problem, under budget constraints. Finally, we present ex-
perimental results that provide a first validation of our con-
tribution and show that cloud view materialization is always
desirable.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems-Distributed
databases, Query processing

General Terms
Algorithms, Design, Economics, Performance

Keywords
Cloud computing, Cost models, Materialized views, Perfor-
mance and cost optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
Cloud computing has recently emerged as a new challeng-

ing paradigm. Cloud computing may be defined as a pay-
per-use model for enabling on-demand access to reliable and
configurable resources that can be quickly provisioned and
released with minimal management. Users only pay for the
resources they use. They need not set up the infrastructure,
nor buy the software. These features make the design of
cloud data management systems desirable. Unfortunately,
performance in cloud computing usually relies on scalability,
using bigger instances (scale-up) or more nodes (scale-out),
making the bill more expensive.

On the other hand, performance optimization in databases
has been intensively studied for decades. Reusing methods
such as indexing, buffering or view materialization in the
cloud could help improving performances without increasing
costs. For instance, materialized views, which we particu-
larly focus on in this paper, physically store the results of
some relevant, frequent queries. One of the main challenges
is then to select what views to materialize. Traditionally, the
criteria to consider in the selection process mainly include
view storage and maintenance costs [6, 8].

In cloud computing, storage is virtually infinite, enabling
to store all possible materialized views. However, each mate-
rialized view implies an extra storage cost. Thus, the perfor-
mance optimization problem becomes finding the best trade-
off between raw scalability (i.e., increasing resources) and
materialized views under budget constraints. To illustrate
the complexity of selecting materialized views in the cloud,
let us introduce a simple, fictitious example. Let the storage
cost be $0.10 per GB and per month, and the computing cost
be $0.24 per hour. A 500 GB dataset is stored in the cloud
for a month. Let Q, the monthly query workload, process in
50 hours. Then, storage cost is $50, computing cost is $12,
for a total of $62. If some materialized views are used, let
us assume that workload processing time becomes 40 hours.
Thus, computing cost becomes $9.6. However, materialized
views use up additional storage space, e.g., 50 GB. Thus,
storage cost becomes $55, for a total cost of $64.6. Over-
all, performance has improved by 20%, but cost has also
increased by 4%.

The selection of views to materialize depends on several
parameters, such as the workload (query execution time,
database size, etc.), the cloud pricing model (CPU, storage,

Year Month Day Country Region Department Profit
2000 12 31 France Auvergne Puy-de-Dôme $35.000
2000 1 1 France Auvergne Puy-de-Dôme $40.000
2000 12 31 Italy Campanie Naples $23.000
1999 1 1 Italy Campanie Naples $50.000

Table 1: Sales dataset excerpt

network, etc.). This choice is a trade-off between response
time and cost, and depends on the needs of a particular
user. At one end of the spectrum, users under a strong
budget constraint may accept long response times, whereas
at the other end, users may disregard cost if they need fast
response.

In this paper, we address the multi-criteria optimization
problem of selecting a set of materialized views while opti-
mizing the global monetary cost of storing and querying a
database in the cloud. To achieve this goal, our main contri-
bution is the design of cost models for storing, maintaining
and querying data with materialized views over a cloud ar-
chitecture.

The remainder of this paper is organized as follows. In
Section 2, we provide the background information that is
used throughout the paper. In Sections 3 and 4, we define
cost models for cloud data management and materializing
views, respectively. In Section 5, we describe the optimiza-
tion process that is based on these cost models. In Section 6,
we present an experimental evaluation and the first perfor-
mance analyses of our models. In Section 7, we discuss the
state of the art and compare it to our approach. Finally, in
Section 8, we conclude this paper and hint at future research
directions.

2. BACKGROUND
We present in this section the background information re-

lated to view materialization in the cloud. We first introduce
a simple fictitious use case that serves as a running example
throughout this paper. Then, we describe a typical pric-
ing model in the cloud, illustrated by some of Amazon Web
Services (AWS). Then, we briefly recall the principle of view
materialization.

2.1 Running example
To illustrate our work, we rely on a simulated dataset

storing the sales of an international supply chain. Business
users need to analyze the total profit per day, month, and
year; and per administrative department, region, and coun-
try. Table 1 provides an excerpt of this dataset.

Our full dataset stores 10 years (2000-2010) of sale data.
Its size is 500 GB. We run over this dataset a query workload
Q that includes such queries as Q1 = “sales per year and
country”, whose processing time is 0.2 hour. The size of the
Q’s result is 10 GB. A typical materialized view we may
consider to optimize overall response time is V1 = “sales
per month and country”, whose processing time is 0.1 hour.
The whole set of selected materialized views is denoted V .
V ’s size is 50 GB. Finally, the times to process Q with and
without exploiting V are 40 hours and 50 hours, respectively.

2.2 Cloud pricing policies
Cloud Service Providers (CSPs) supply a pool of re-

sources, such as hardware (CPU, storage, networks), devel-

opment platforms and services. There are many CSPs on
the market, such as Amazon, Google and Microsoft. Each
CSP offers different services and pricing. This paper relies
on a limited, yet representative enough model that includes
the main, commonly billed elements, i.e., CPU, storage and
bandwidth consumption. In order for the reader to have
an overview of such a pricing policy, the following examples
present a simplified version of AWS’s offer.

In AWS, Elastic Compute Cloud (EC2) [1] provides com-
puting resources. Different instance configurations can be
rent (micro, small, large, extra large, etc.) at various prices,
as illustrated in Table 2. For example, the cost for a small
instance (1.7 GB RAM, 1 EC2 Compute Unit, 160 GB of lo-
cal storage under Windows) is $0.12 per hour. Let us apply
this pricing model onto our use case running on two small
instances. Without materialized views, processing time is
50 hours, and thus computing cost is 2 × 0.12 × 50 = $12.
With materialized views, processing time falls down to 40
hours and computing cost down to 2× 0.12× 40 = $9.6.

Instance configuration Price per hour
Micro $0.03
Small $0.12
Large $0.48
Extra large $0.96
... ...

Table 2: EC2 computing prices

Bandwidth consumption is billed with respect to data vol-
ume (Table 3). In this model, input data transfers are free,
whereas output data transfer cost varies with respect to
data volume, with an earned rate when volume increases.
When applying this pricing model onto our use case, the
cost of bandwidth consumption (query result of 10 GB) is
(10− 1)× 0.12 = $1.08.

Data volume Price per month
Input data
Any input data Free
Output data
First 1 GB Free
Up to 10 TB $0.12 per GB
Next 40 TB $0.09 per GB
Next 100 TB $0.07 per GB
... ...

Table 3: Amazon bandwidth prices

Finally, the Amazon Simple Storage Service (S3) [2] sup-
plies storage capabilities. In this model, the price varies with
respect to data volume, with an earned rate when volume in-
creases (Table 4). In our running example, monthly storage

price when not using materialized views (500 GB dataset)
is 0.14× 500 = $70, and 0.14× (500 + 50) = $77 when using
materialized views (additional 50 GB storage).

Data volume Price per month
First 1 TB $0.14 per GB
Next 49 TB $0.125 per GB
Next 450 TB $0.11 per GB
... ...

Table 4: Amazon storage prices

2.3 Materialized views
In Database Management Systems, a view is a virtual ta-

ble associated to a query answer. Views help indirectly save
complex queries, present the same data in different forms,
support logical independence and reinforce security by mask-
ing some pieces of data from unauthorized users. Material-
izing a view, i.e., storing it physically into a table, further
helps improve response time by avoiding to recompute the
corresponding query each time the view itself is queried.
However, materialized views must be refreshed when source
data are updated, which induces some maintenance over-
head.

In this work, we assume that we have at our disposal a
set of candidate materialized views that have already been
generated by an existing materialized view selection method
(e.g., [8]). We aim at choosing the best candidates with
respect to the cloud’s pay-as-you-go model, taking pricing
constraints into account before any view materialization.

3. DATA MANAGEMENT COST MODELS
This section presents general cost models for data man-

agement in the cloud, i.e., without considering the use of
materialized views. In cloud computing, customers rent re-
sources to a CSP to run some applications. Figure 1 recalls
the costs involved (Section 2.2), i.e., bandwidth consump-
tion for input data transfers and query result retrieval, data
storage, and applications’ processing time.

Figure 1: Costs involved in cloud data management

Let Cc be the sum of computing costs, Cs be the sum
of storage costs and Ct be the sum of data transfer costs.
Then, the total cost C for cloud data management is:

C = Cc + Cs + Ct. (1)

Let us define the general parameters that we use to express
our cost models (Table 5), as well as two functions. Function
s() returns the size in GB of any of these parameters, e.g.
s(DS) is the size of the dataset. Function ts() returns the
storage time of any dataset, e.g. ts(DS) is the storage time
of the dataset in the cloud.

Parameter Description
DS Dataset
Q = {Qi}i=1..m Query workload
R = {Ri}i=1..m Set of query answers

Table 5: General parameters

3.1 Data transfer cost
Data transfer cost depends on several parameters: the size

of the initial dataset, the amount of data related to queries
and query results, the volume of inserted new data and the
pricing model applied by the CSP. The total data transfer
cost Ct is the product of the CSP’s atomic transfer cost ct
by the total size of transferred data:

Ct = (

m∑
i=1

(s(Ri) + s(Qi)) + (s(DS) + s(insertedData))× ct.

(2)
If we adopt Amazon’s EC2 like pricing model, which does

not charge for input data transfers, we may ignore input
queries, the initial data set and inserted data. As a conse-
quence, the total data transfer cost becomes:

Ct =

m∑
i=1

s(Ri)× ct. (3)

Moreover, recall that Amazon EC2’s cost is variable. It is
null for the first GB. Then, it becomes $0.12 up to 10 TB,
and so on (Section 2.2).

Example 1: In our running example, with 10 GB (with
the first one being free) of bandwidth consumption, data
transfer cost is: Ct = s(RQ)× ct = (10− 1)× 0.12 = $1.08.

3.2 Computing cost
Let us pose that queries are executed on computing in-

stances {ICj}j=1..n. Each instance may bear different per-
formances (with respect to its number of CPUs, its available
RAM, etc.), and thus different costs. The cost for renting
instance ICj is denoted c(ICj). It must be paid at each
connection to the cloud. Processing time of query Qi on
instance ICj is denoted tij . Then, the processing cost of
running the set of queries Q = {Q1, ..., Qm} is:

Cc =

m∑
i=1

tij × c(ICj). (4)

Example 2: In our running example, let us consider that
the query workload Q is processed on two small instances.
Then, its processing cost is: Cc = t × c(IC) + t × c(IC) =
RoundUp(50) × 0.12 + RoundUp(50) × 0.12 = 50 × 0.12 +
50×0.12 = $12. We must use a function to round processing
time up because every started hour is charged.

3.3 Storage cost
Storage cost depends on parameters such as the CSP’s

pricing policy, the size of the data (original dataset and in-

serted data) and the storage time. We assume that the stor-
age period in the cloud is devided into intervals. In each
interval, the size of the stored data is fixed. The total stor-
age cost is the CSP’s storage cost function cs(s(DS)) (where
DS is the data storage size, that is to say the size of the orig-
inal data set and the inserted data) multiplied by the sum
of sizes of the initial dataset and inserted data multiplied by
their respective storage time during the intervals.

Cs =
∑

intervals

cs(DS)× (tend − tstart)× s(DS) (5)

Where tstart, tend are start point and end point of an
interval.

Example 3: Using Amazon S3 for storage pricing (re-
ferred to table 4) and considering that 0.5 TB (512 GB)
data has been stored for 12 months. At the beginning of
the eighth month, we insert 2 TB (2048 GB) of new data in
the cloud. Thus we have two intervals. The storage cost is:
Cs =

∑
intervals cs(DS) × (tend − tstart) × s(DS) = (512 ×

0, 14× (7− 0) + (512 + 2048)× 0, 125× (12− 7) = $2131.76.

4. COST MODELS FOR MATERIALIZING
VIEWS IN THE CLOUD

This section presents cost models for materializing views
in the cloud, relying on the costs models developed in Sec-
tion 3. We assume here that queries are executed on a
constant number, nbIC of identical instances IC. In future
work, we shall consider the evaluation process on multiple,
variable instances.

Let Vcand = {Vk}k=1..p be a set of candidate material-
ized views output by any existing materialized view selection
technique.

4.1 Data transfer cost
We assume that materialized views are selected on the

client’s side, outputting final set of materialized views V
that are materialized in the cloud. This tactic helps save
bandwidth and benefit from the computing performance of
the cloud. With materialized views created in the cloud,
transfer costs of materialized views are null. As a conse-
quence, total transfers cost Ct is not impacted and remains
expressed by Formula 3.

4.2 Computing cost
Using materialized views implies modifying computing

costs, since query processing may exploit materialized views,
and views must be materialized and maintained. Computing
cost expressed by Formula 4 thus becomes:

Cc = CprocessingQ +CmaintenanceV +CmaterializationV (6)

where CprocessingQ is the cost of processing queries,
CmaintenanceV is the cost of materialized views’ mainte-
nance, and CmaterializationV is the cost of materializing
views.

4.2.1 Materialization cost
If a view is materialized, its associated query must be

executed, which must be paid for in the cloud. Let the
materialization time of view Vk be tmaterialization(Vk). We
assume that all views are materialized on a constant number
of identical instances, nbIC .

The total materialization time is:

TmaterializationV =

p∑
k=1

tmaterialization(Vk). (7)

According to Formula 4, materialization cost is:

CmaterializationV = TmaterializationV × c(IC)× nbIC . (8)

Example 4: In our running example with two nodes,
we assume that V = {V1}, the total materialization
time is TmaterializationV =

∑p
k=1 tmaterialization(Vk) =

tmaterialization(V1) = 1 hour. Then, materialization cost
is: CmaterialisationV = tmaterialisation(V1)× c(IC)×nbIC =
1× 0.12× 2 = $0.24.

4.2.2 Query processing cost
When using materialized views, query processing time is

defined by two main parameters: query workload Q and set
of materialized views V . Queries may use the contents of
materialized views instead of recomputing their result. Note
that we consider that Q is fixed. Since views are usually
materialized with respect to a given workload and ours is
fixed, then V is also fixed.

Let tiV be the processing time of query Qi when exploiting
the set of materialized views V .Thus, the total processing
time of Q against V is:

TprocessingQ =

m∑
i=1

tiV . (9)

Example 5: In our running example, total processing
time when using V is 40 hours.

After taking view materialization into account, Formula 4
becomes:

CprocessingQ = TprocessingQ × c(IC)× nbIC . (10)

Example 6: So, the computing cost becomes:
CprocessingQ =

∑m
i=1 tiV × c(IC)× nbIC = 40× 0.12× 2 =

$9.6.

4.2.3 Maintenance cost
The maintenance cost of materialized views is directly

proportional to the time required for updating materialized
views when they are impacted by modifications of the source
dataset. Note that we consider that querying and mainte-
nance do not occur at the same time. For example, queries
are posed during day-time and maintenance is performed
during night-time. Let the maintenance time of view Vk be
tmaintenance(Vk). Then, the total maintenance time of V is:

TmaintenanceV =

p∑
k=1

tmaintenance(Vk). (11)

Example 7: The maintenance time in the running ex-
ample is 5 hours.

As a consequence, the cost of maintaining the set of ma-
terialized views V is:

CmaintenanceV = TmaintenanceV × c(IC)× nbIC . (12)

Example 8: Thus, the maintenance cost is:
CmaintenanceV = TmaintenanceV × c(IC) × nbIC =
5× 0.12× 2 = $1.2.

4.3 Storage cost
Using materialized views does not impact the storage cost

as presented by Formula 5. Exploiting materialized views
to enhance query performance implies storing them in the
cloud and pay the corresponding cost. As a consequence,
some data can be duplicated. In that case DS represents
the data set, the duplicated data due to materialized views
and possible inserted data. Note that original data and ma-
terialized views are stored for the whole considered storage
period.

Example 9: In our running example, the data set has
been stored for a year, the size of duplicated data due to ma-
terialized views is 50 GB. In addition, no data are inserted
during the considered period. Thus, we have a single interval
and storage cost is Cs = ((500+50)× (12−0)×0.14 = $924

5. OPTIMIZATION PROCESS
In this section, we investigate how the use of materialized

views in the cloud impacts query performance, while trying
to minimize overhead storage cost. We propose an algorithm
to select the best set of materialized views by exploiting the
cost models introduced in Section 4.

5.1 Objective functions
Base on the ideas in [20], we distinguish in this section

three scenarios, i.e., three objective functions, with respect
to the needs and capacity of customers (budget limit, re-
sponse time limit).

5.1.1 Budget limit
Given a predefined financial budget Bl, our objective in

this scenario (denoted MV1) is to select, from the set of
candidate materialized views Vcand, the set of views to ma-
terialize in the cloud V that minimizes query processing time
(Figure 2: The chosen solution are colored in red).

MV1 =

{
Minimize TprocessingQ

C = Cc + Ct + Cs ≤ Bl (13)

Figure 2: Minimizing processing time under budget
constraint

5.1.2 Response time limit
Given a predefined response time limit T l, our objective

in this scenario (denoted MV2) is to select, from the set of
candidate materialized views Vcand, the set of views to ma-
terialize in the cloud V that minimizes financial cost (Fig-
ure 3).

MV2 =

{
Minimize C = Cc + Ct + Cs

TprocessingQ ≤ T l (14)

Figure 3: Minimizing cost under response time con-
straint

5.1.3 Response time vs. cost tradeoff
In this scenario (denoted MV3), our objective is to select,

from the set of candidate materialized views Vcand, the set
of views to materialize in the cloud V that offers the best
tradeoff between query processing time and financial cost
(Figure 4). To provide the user with control over this pro-
cess, we introduce a weight parameter on processing time
(α) and cost (1− α).

MV3 = Minimize (α× TprocessingQ + (1− α)× C) (15)

Figure 4: Optimizing response time and cost

5.2 Optimization algorithm
In order to select the set of views to materialize, we rely

on an existing algorithm such as [8] enabling to obtain a set
of candidate views Vcand. Then we solve the Knapsack 0/1

problem [14] considering this set. To solve this problem, we
have opted for a dynamic programming approach.

As a input, we provide elements of our cost models. For
example, in the case of MV1 (budget limit), the result is:
V = Knapsack(Vcand, FCt, FCc, FCs, Bl), where FCt, FCc,
FCs are functions which represent the parameters of the
models described in the section 4. In particular, FCt in-
volves transfer cost parameters (section 4.1), FCc involves
computing cost parameters(section 4.2), and FCs involves
storage cost parameters (section 4.3).

6. EXPERIMENTAL VALIDATION
In this section, we describe the overall setup of our prelimi-

nary experimentation effort and the results we have obtained
from it. This experiment is realized on both sides: in the
cloud and on the client’s side. The dataset and materialized
views are stored in the cloud, and queries are processed in
the cloud. The view selection algorithms are implemented
in Java on the client’s side. The idea is to select views on
the client’s side and to materialize them in the cloud.

6.1 Experimental setup
The experiments were conducted on a virtual cluster com-

posed of five virtual machines with a 50 GB disk, 2 GB of
RAM and 4 vCPU. This virtual cluster is deployed on a
physical architecture consisting of two bi-pros 493 GHz with
32 GB of RAM, interconnected by a 1 GB/s network in a
8x2 DRS cluster; and a bi-pro 2,526 GHz with hyperthread-
ing enabled, outside of the DRS cluster, with 16 logical cores
with 72 GB of RAM on a 1 GB/s network. All machines
feature Hadoop (version 0.20.2) [3] and Pig Latin (version
0.7.0) [23]. Queries are written in Pig Latin and are exe-
cuted by the Pig compiler on the Hadoop cluster within the
MapReduce framework [17]. On the client’s side, algorithms
are implemented on a PC Dual Core 2 T6660 2.2GHz, with
2 GB of RAM.

We used in our experiments a subset of the dataset from
our case study (Section 2.1), whose size is 10 GB. The work-
load we applied on the dataset was made of 10 queries that
calculate the total profit per day, month, year and per coun-
try, department, and region such as “per year and per coun-
try”.

6.2 Experimental results
We experimented the three scenarios MV1, MV2 and MV3

described in Section 5.1, with a variable workload made of 3,
5, and 10 queries, with and without exploiting materialized
views. Our results are plotted on Figure 5. They clearly
show that, in all scenarios, creating materialized views in
the cloud is desirable.

In scenario MV1, a significantly better response time is
achieved with materialized views, under the same budget
constraint than without (Figure 5(a)). The improved per-
formance rates are shown in the Table 6.

Number of queries Budget limit IP Rate
3 $0.8 25%
5 $1.2 36%
10 $2.4 60%

Table 6: Improved performance rates between with
and without materialized views under the same bud-
get limit in the scenario MV1

In scenario MV2, a significantly lower global cost is
achieved with materialized views, under the processing time
constraint than without (Figure 5(b)). The improved cost
rates are shown in the Table 7.

Number of queries Time limit IC Rate
3 0.57h 75%
5 0.99h 72%
10 2.24h 75%

Table 7: Improved cost rates between with and with-
out materialized views under the same time limit in
the scenario MV2

Similarly, in scenario MV3, materialized views help
achieve a tradeoff (chosen by the client) between cost and re-
sponse time, whether the priority is put on cost (Figure 5(c))
or response time (Figure 5(d)). Improved tradeoff rates are
shown in the Table 8.

Number of queries Rate (α = 0.3) Rate (α = 0.7)
3 55% 32%
5 50% 35%
10 68% 45%

Table 8: Improved tradeoff rates between with and
without materialized views in the scenario MV3

7. RELATED WORK
Although there has been a lot of research related to the

cloud for a couple of years, relatively few approaches relate
to the optimization of data management in the cloud. In this
section, we provide a brief overview of cost models, database-
like features and the use of optimization techniques in the
cloud.

Cost models have been proposed in the cloud for schedul-
ing of dataflows with regard to monetary cost and/or com-
pletion time [20], and cost amortization of data structures
to ensure the economic viability of the provider [19], partic-
ularly for self-tuned caching [16]. Other cost models have
been developed for a real-life astronomy application using
the Amazon cloud fee structure [9, 18]. The cost perfor-
mance tradeoffs of different execution and resource provi-
sioning plans have been simulated, showing that by pro-
visioning the right amount of storage and computing re-
sources, cost can be significantly reduced with no significant
impact on application performance [18]. The performance
of three workflow applications with different I/O, memory
and CPU requirements has also been compared on Amazon
EC2 and a typical high-performance cluster (HPC) to iden-
tify what applications achieve the best performance in the
cloud at the lowest cost [9].

Recent research takes interest in various aspects of
database and decision support technologies in the cloud.
For example, different studies investigate the storage and
processing of structured data [13], the optimization of join
queries, and how to support analysis operations such as ag-
gregation [15]. Cloud data warehousing and OLAP systems
also raise various problems related to storage and query
performance [22]. Adaptations of these technologies to the
cloud’s specificities are also addressed, e.g., pay-as-you-go
pricing and elasticity [7], or the calculation of OLAP cuboids
using the MapReduce runtime environment [25].

(a) Scenario MV1 (budget limit) (b) Scenario MV2 (response time limit)

(c) Scenario MV3 (tradeoff) with α = 0.3 (d) Scenario MV3 (tradeoff) with α = 0.65

Figure 5: Experimental results of application of materialized views

Finally, although massive scale distributed database sys-
tems such as BigTable have begun to incorporate indexes
and materialized views [11], the many techniques developed
for maintaining materialized views in traditional, relational
databases [5], such as incremental view maintenance [12],
deferred maintenance [27] and distributed view maintenance
[21], have not been incorporated into the cloud yet. This is
thus the main incentive for our own approach.

8. CONCLUSION
In this paper, we proposed an approach for decreasing the

cost of data management in the cloud, by using a classical
database performance optimization technique, i.e., view ma-
terialization. Our main contributions are novel cost models
that complement the existing materialized view cost mod-
els with a monetary cost component that is primordial in
the cloud. Then, we exploit these cost models into an opti-
mization process that achieves a tradeoff between computing
power enhancement and view materialization, under bud-
get constraints. Our first experimental validation hints that
view materialization is always desirable.

Many perspectives are opened by this preliminary re-
search. We indeed have many plans on improving our cost
models. First, we should include pricing models from several
CSPs but Amazon, to render our cost models more versa-
tile. Second, it is well-known that optimization techniques
are the most efficient when combined, e.g., when materi-
alized views and index are jointly exploited [6]. Thus, we
should incorporate indexing, caching and/or fragmentation

into our approach. Third, we should exploit the specifici-
ties of cloud languages (such as HiveQL [26], Jaql [10] and
Pig Latin [23]) with respect to semantics and parallelism
to further improve performance. Finally, in this paper, we
worked on one single cloud instance, thus minimizing the
primordial elasticity characteristic of the cloud. Thus, we
should expand our cost models on variable resources.

Another line of future work relates to the experimental
validation of our proposals. Here, due to limited resources,
we experimented our cost models on a small cluster and a
toy dataset. Thus, we plan to design a wider-scale experi-
mentation plan that would exploit a full-fledged database or
data warehouse benchmark, such as TPC-E [4] or the Star
Schema Benchmark [24], onto AWS or other infrastructure
providers.

Acknowledgment
This work is sponsored by the ANR under grant SYSEO
ANR-10-TECSAN-005-01. We would like to sincerely thank
all the colleagues in IRSTEA, LIMOS and ERIC laboratories
for the interesting discussions and the reviewers for their
extremely insightful remarks for improving this paper.

9. REFERENCES
[1] Amazon ec2. http://aws.amazon.com/ec2/, February

2012.

[2] Amazon s3. http://aws.amazon.com/s3/, February
2012.

[3] Hadoop. http://hadoop.apache.org/, February 2012.

[4] Tpc-e. http://www.tpc.org/tpce, February 2012.

[5] P. Agrawal, A. Silberstein, B. F. Cooper,
U. Srivastava, and R. Ramakrishnan. Asynchronous
view maintenance for vlsd databases. In Proceedings of
the ACM SIGMOD International Conference on
Management of Data, pages 179–192, Providence,
USA, 2009.

[6] K. Aouiche and J. Darmont. Data mining-based
materialized view and index selection in data
warehouses. Journal of Intelligent Information
Systems, 33(1):65–93, 2009.

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud
computing. Communications of the ACM, 53(4):50–58,
2010.

[8] X. Baril and Z. Bellahsene. Selection of materialized
views: A cost-based approach. In International
Conference on Advanced Information Systems
Engineering, pages 665–680, Klagenfurt, Austria, 2003.

[9] G. B. Berriman, E. Deelman, G. Juve, M. Regelson,
and P. Plavchan. The application of cloud computing
to astronomy: A study of cost and performance.
CoRR, abs/1010.4813, 2010.

[10] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin,
M. Y. Eltabakh, C.-C. Kanne, F. Özcan, and E. J.
Shekita. Jaql: A scripting language for large scale
semistructured data analysis. PVLDB,
4(12):1272–1283, 2011.

[11] M. J. Cafarella, E. Y. Chang, A. Fikes, A. Y. Halevy,
W. C. Hsieh, A. Lerner, J. Madhavan, and
S. Muthukrishnan. Data management projects at
google. SIGMOD Record, 37(1):34–38, 2008.

[12] S. Ceri and J. Widom. Deriving production rules for
incremental view maintenance. In Proceedings of the
International Conference on Very Large Data Bases,
September, pages 577–589, Barcelona, Spain, 1991.

[13] D. Chatziantoniou and E. Tzortzakakis. Asset queries:
a declarative alternative to mapreduce. SIGMOD
Record, 38(2):35–41, 2009.

[14] V. Chvatal. Hard knapsack problems. Operations
Research, 28:1402–1411, 1980.

[15] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
J. Gerth, J. Talbot, K. Elmeleegy, and R. Sears.
Online aggregation and continuous query support in
mapreduce. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 1115–1118, Indianapolis, USA, 2010.

[16] D. Dash, V. Kantere, and A. Ailamaki. An economic
model for self-tuned cloud caching. In Proceedings of
the International Conference on Data Engineering,
pages 1687–1693, Shanghai, China, 2009.

[17] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[18] E. Deelman, G. Singh, M. Livny, G. B. Berriman, and
J. Good. The cost of doing science on the cloud: the
montage example. In Proceedings of the ACM/IEEE
Conference on High Performance Computing, page 50,
Austin, USA, 2008.

[19] V. Kantere, D. Dash, G. Gratsias, and A. Ailamaki.
Predicting cost amortization for query services. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 325–336,
Athens, Greece, 2011.

[20] H. Kllapi, E. Sitaridi, M. M. Tsangaris, and Y. E.
Ioannidis. Schedule optimization for data processing
flows on the cloud. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 289–300, Athens, Greece, 2011.

[21] G. Luo, J. F. Naughton, C. J. Ellmann, and
M. Watzke. A comparison of three methods for join
view maintenance in parallel rdbms. In Proceedings of
the International Conference on Data Engineering,
pages 177–188, Bangalore, India, 2003.

[22] H. Mahboubi and J. Darmont. Enhancing xml data
warehouse query performance by fragmentation. In
Proceedings of the ACM Symposium on Applied
Computing, pages 1555–1562, Honolulu, USA, 2009.

[23] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 1099–1110, Vancouver, BC, Canada, 2008.

[24] P. E. O’Neil, E. J. O’Neil, X. Chen, and S. Revilak.
The star schema benchmark and augmented fact table
indexing. In Proceedings of the TPC Technology
Conference on Performance Evaluation and
Benchmarking, pages 237–252, Lyon, France, 2009.

[25] K. Sergey and K. Yury. Applying map-reduce
paradigm for parallel closed cube computation. In
Proceedings of the International Conference on
Advances in Databases, Knowledge, and Data
Applications, pages 62–67, Gosier, France, 2009.

[26] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive -
a petabyte scale data warehouse using hadoop. In
Proceedings of the International Conference on Data
Engineering, pages 996–1005, Long Beach, USA, 2010.

[27] J. Zhou, P.-Å. Larson, and H. G. Elmongui. Lazy
maintenance of materialized views. In Proceedings of
the International Conference on Very Large Data
Bases, pages 231–242, Vienna, Austria, 2007.

