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ABSTRACT

In classical databases, query performance is casually
achieved through physical data structures such as caches,
indexes and materialized views. In this context, many cost
models help select a “best set” of such data structures. How-
ever, this selection task becomes more complex in the cloud.
The criterion to optimize is indeed at least two-dimensional,
with the monetary cost of using the cloud balancing query
response time. Thus, we define in this paper new cost models
that fit into the pay-as-you-go paradigm of cloud computing.
These cost models help achieve a multi-criteria optimization
of the view materialization vs. CPU power augmentation
problem, under budget constraints. Finally, we present ex-
perimental results that provide a first validation of our con-
tribution and show that cloud view materialization is always
desirable.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems-Distributed
databases, Query processing
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Algorithms, Design, Economics, Performance
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1. INTRODUCTION

Cloud computing has recently emerged as a new challeng-
ing paradigm. Cloud computing may be defined as a pay-
per-use model for enabling on-demand access to reliable and
configurable resources that can be quickly provisioned and
released with minimal management. Users only pay for the
resources they use. They need not set up the infrastructure,
nor buy the software. These features make the design of
cloud data management systems desirable. Unfortunately,
performance in cloud computing usually relies on scalability,
using bigger instances (scale-up) or more nodes (scale-out),
making the bill more expensive.

On the other hand, performance optimization in databases
has been intensively studied for decades. Reusing methods
such as indexing, buffering or view materialization in the
cloud could help improving performances without increasing
costs. For instance, materialized views, which we particu-
larly focus on in this paper, physically store the results of
some relevant, frequent queries. One of the main challenges
is then to select what views to materialize. Traditionally, the
criteria to consider in the selection process mainly include
view storage and maintenance costs [6, 8].

In cloud computing, storage is virtually infinite, enabling
to store all possible materialized views. However, each mate-
rialized view implies an extra storage cost. Thus, the perfor-
mance optimization problem becomes finding the best trade-
off between raw scalability (i.e., increasing resources) and
materialized views under budget constraints. To illustrate
the complexity of selecting materialized views in the cloud,
let us introduce a simple, fictitious example. Let the storage
cost be $0.10 per GB and per month, and the computing cost
be $0.24 per hour. A 500 GB dataset is stored in the cloud
for a month. Let ), the monthly query workload, process in
50 hours. Then, storage cost is $50, computing cost is $12,
for a total of $62. If some materialized views are used, let
us assume that workload processing time becomes 40 hours.
Thus, computing cost becomes $9.6. However, materialized
views use up additional storage space, e.g., 50 GB. Thus,
storage cost becomes $55, for a total cost of $64.6. Over-
all, performance has improved by 20%, but cost has also
increased by 4%.

The selection of views to materialize depends on several
parameters, such as the workload (query execution time,
database size, etc.), the cloud pricing model (CPU, storage,



Year | Month | Day | Country | Region | Department | Profit
2000 12 31 France Auvergne | Puy-de-Dome | $35.000
2000 1 1 France Auvergne | Puy-de-Déme | $40.000
2000 12 31 ITtaly Campanie Naples $23.000
1999 1 1 Italy Campanie Naples $50.000

Table 1: Sales dataset excerpt

network, etc.). This choice is a trade-off between response
time and cost, and depends on the needs of a particular
user. At one end of the spectrum, users under a strong
budget constraint may accept long response times, whereas
at the other end, users may disregard cost if they need fast
response.

In this paper, we address the multi-criteria optimization
problem of selecting a set of materialized views while opti-
mizing the global monetary cost of storing and querying a
database in the cloud. To achieve this goal, our main contri-
bution is the design of cost models for storing, maintaining
and querying data with materialized views over a cloud ar-
chitecture.

The remainder of this paper is organized as follows. In
Section 2, we provide the background information that is
used throughout the paper. In Sections 3 and 4, we define
cost models for cloud data management and materializing
views, respectively. In Section 5, we describe the optimiza-
tion process that is based on these cost models. In Section 6,
we present an experimental evaluation and the first perfor-
mance analyses of our models. In Section 7, we discuss the
state of the art and compare it to our approach. Finally, in
Section 8, we conclude this paper and hint at future research
directions.

2. BACKGROUND

We present in this section the background information re-
lated to view materialization in the cloud. We first introduce
a use case that serves as a running example throughout this
paper. Then, we describe a typical pricing model in the
cloud, illustrated by some of Amazon Web Services (AWS).
Then, we briefly recall the principle of view materialization.

2.1 Running example

To illustrate our work, we rely on a simulated dataset stor-
ing the sales of an international supply chain. Business users
need to analyze the total profit per day, month, and year
(temporal dimension); and per administrative department,
region, and country (spatial dimension). Table 1 provides
an excerpt of this dataset.

Our full dataset stores 100 years (1900-2000) of sale data.
Its size is 500 GB. We run over this dataset a query workload
Q@ that includes such queries as Q1 = ”sales per year and
country”, whose processing time is 0.2 hour. The size of the
Q@’s result is 10 GB. A typical materialized view we may
consider to optimize overall response time is Vi = ”sales per
month and country”, whose processing time is 0.1 hour. The
whole set of selected materialized views is denoted V. V’s
size is 50 GB. The maintenance time of V' is 5 hours. Finally,
the times to process @ with and without exploiting V' are
40 hours and 50 hours, respectively.

2.2 Cloud pricing policies
Cloud Service Providers (CSPs) supply a pool of re-

sources, such as hardware (CPU, storage, networks), devel-
opment platforms and services. There are many CSPs on
the market, such as Amazon, Google and Microsoft. Each
CSP offers different services and pricing. This paper relies
on a limited, yet representative enough model that includes
the main, commonly billed elements, i.e., CPU, storage and
bandwidth consumption. In order for the reader to have
an overview of such a pricing policy, the following examples
present a simplified version of AWS’s offer.

In AWS, Elastic Compute Cloud (EC2) [1] provides com-
puting resources. Different instance configurations can be
rent (micro, small, large, extra large, etc.) at various prices,
as illustrated in Table 2. For example, the cost for a small
instance (1.7 GB RAM, 1 EC2 Compute Unit, 160 GB of lo-
cal storage under Windows) is $0.12 per hour. Let us apply
this pricing model onto our use case running on two small
instances. Without materialized views, processing time is
50 hours, and thus computing cost is 2 x 0.12 x 50 = $12.
With materialized views, processing time falls down to 40
hours and computing cost down to 2 x 0.12 x 40 = $9.6.

Instance configuration | Price per hour
Micro $0.03
Small $0.12
Large $0.48
Extra large $0.96

Table 2: EC2 computing prices

Bandwidth consumption is billed with respect to data vol-
ume (Table 3). In this model, input data transfers are free,
whereas output data transfer cost varies with respect to
data volume, with an earned rate when volume increases.
When applying this pricing model onto our use case, the
cost of bandwidth consumption (query result of 10 GB) is
(10 — 1) x 0.12 = $1.08.

Data volume | Price per month
Input data

Any input data | Free

Output data

First 1 GB Free

Up to 10 TB $0.12 per GB

Next 40 TB $0.09 per GB

Next 100 TB $0.07 per GB

Table 3: Amazon bandwidth prices

Finally, the Amazon Simple Storage Service (S3) [2] sup-
plies storage capabilities. In this model, the price varies with
respect to data volume, with an earned rate when volume in-
creases (Table 4). In our running example, monthly storage



price when not using materialized views (500 GB dataset)
is 0.14 x 500 = $70, and 0.14 x (500 4 50) = $77 when using
materialized views (additional 50 GB storage).

Data volume | Price per month
Input data

First 1 TB $0.14 per GB
Next 49 TB $0.125 per GB
Next 450 TB $0.11 per GB

Table 4: Amazon storage prices

2.3 Materialized views

In Database Management Systems, a view is a virtual ta-
ble associated to a query answer. Views help indirectly save
complex queries, present the same data in different forms,
support logical independence and reinforce security by mask-
ing some pieces of data from unauthorized users. Material-
izing a view, i.e., storing it physically into a table, further
helps improve response time by avoiding to recompute the
corresponding query each time the view itself is queried.
However, materialized views must be refreshed when source
data are updated, which induces some maintenance over-
head.

In this work, we assume that we have at our disposal a
set of candidate materialized views that have already been
generated by an existing materialized view selection method
(e.g., [8]). We aim at choosing the best candidates with
respect to the cloud’s pay-as-you-go model, taking pricing
constraints into account before any view materialization.

3. DATA MANAGEMENT COST MODELS

This section presents general cost models for data man-
agement in the cloud, i.e., without considering the use of
materialized views. In cloud computing, customers rent re-
sources to a CSP to run some applications. Figure 1 recalls
the costs involved (Section 2.2), i.e., bandwidth consump-
tion for input data transfers and query result retrieval, data
storage, and applications’s processing time.

) Storage cost
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Figure 1: Costs involved in cloud data management
Let C. be the sum of computing costs, Cs be the sum

of storage costs and C; be the sum of data transfer costs.
Then, the total cost C' for cloud data management is:

C=C.+Cs+Ch. 1)

Let us finally define the general parameters that we use to
express our cost models (Table 5), as well as two functions.
Function s() returns the size in GB of any of these param-
eters, e.g., s(DS) is the size of the initial dataset. Function
ts() returns the storage time of any dataset, e.g., ts(DS) is
the time that is necessary to store the initial dataset in the
cloud.

Parameter Description

DS Initial dataset

Q ={Q:}i=1..m | Query workload

R ={Ri}i=1.m | Set of query answers

ND Set of inserted (new) data

Table 5: General parameters

3.1 Data transfer cost

Data transfer cost depends on several parameters: the size
of the initial dataset, the amount of data related to queries
and query results, the volume of added data and the pricing
model applied by the CSP. The total data transfer cost C}
is the product of the CSP’s atomic transfer cost c; by the
total size of transferred data:

Cr = (D _(s(Ri) +s(Q:)) + Y _ s(ND) + s(DS)) x cr. (2)

i=1

If we adopt Amazon’s EC2 pricing model, which does not
charge for input data transfers, we may ignore input queries,
the initial data set and inserted data. As a consequence, the
total data transfer cost becomes:

Ct = ZS(Rl) X Ct. (3)

i=1

Moreover, recall that Amazon EC2’s cost is variable. It is
null for the first GB. Then, it becomes $0.12 up to 10 TB,
and so on (Section 2.2).

Example 1: In our running example, with 10 GB (with
the first one being free) of bandwidth consumption, data
transfer cost is: Cy = s(Rg) x ¢ = (10 — 1) x 0.12 = $1.08.

3.2 Computing cost

Let us pose that queries are executed on computing in-
stances {IC;};—1..n. Each instance may bear different per-
formances (with respect to its number of CPUs, its available
RAM, etc.), and thus different costs. The cost for renting
instance IC; is denoted ¢(ICj). It must be paid at each
connection to the cloud. Processing time of query @; on a
number nbrc; of instance IC; is denoted ¢;;. Then, the pro-
cessing cost of running the set of queries Q = {Q1, ..., Qm}
is:

m
Cc = Zti]' X C(]C]') X ’I’Lb[cj. (4)

i=1
Example 2: In our running example, let us consider
that the query workload @ is processed on two small in-
stances. Then, its processing cost is: C. =t x ¢(IC) x 2 =
RoundUp(50) x 0.12 X nbyc = 50 % 0.12 x 2 = $12. We must
use a function to round processing time up because every

started hour is charged.

3.3 Storage cost



Storage cost depends on parameters such as the CSP’s
pricing policy, the size of the data (original dataset and in-
serted data) and the storage time. We assume storage period
in the cloud is devided into intervals. Each interval stores
data whose size is fixed. The total storage cost is the CSP’s
storage cost function c¢s(s(DS)) (where DS is the data stor-
age size, that is to say the size of the original data set and the
inserted data, because CSP’s storage cost depends on such
a size) multiplied by the sum of sizes of the initial dataset
and inserted data multiplied by their respective storage time
during the intervals.

Co= > ¢s(DS) % (tend — tstart) X s(DS).  (5)

intervals

Where tstart, tend are start point and end point of an inter-
val.

Example 3: Using Amazon S3 for storage pricing (re-
ferred to table 4). We consider 0.5 TB (512 GB) data
has been stored for 12 months. At the beginning of the
eighth month, we insert 2 TB (2048 GB) of new data
in the cloud. This data is stored until the end of the
tenth month. So we have 3 intervals. The storage cost
is: Os = Einteruals CS(DS) X (tend - tstart) X S(DS) -
512 x 0.14 x (7 — 0) + (512 + 2048) x 0.125 x (10 — 7) +
512 x 0.14 x (12 — 10) = $1605.12.

4. COST MODELS FOR MATERIALIZING
VIEWS IN THE CLOUD

This section presents cost models for materializing views
in the cloud, relying on the costs models developed in Sec-
tion 3. We assume here that queries are executed on a
constant number, nbrc of identical instances IC. In future
work, we shall consider the evaluation process on multiple,
variable instances.

Let Veana = {Vik}r=1.p be a set of candidate material-
ized views output by any existing materialized view selection
technique.

4.1 Data transfer cost

We assume that materialized views are selected on the
client’s side, outputting final set of materialized views V'
that are materialized in the cloud. This tactic helps save
bandwidth and benefit from the computing performance of
the cloud. With materialized views created in the cloud,
transfer costs of materialized views are null. As a conse-
quence, total transfers cost C; is not impacted and remains
expressed by Formula 3.

4.2 Computing cost

Using materialized views implies modifying computing
costs, since query processing may exploit materialized views,
and views must be materialized and maintained. Computing
cost thus becomes:

Cc = CprocessingQ + Cmaintenancev + Cmaterializationv (6)

where Chrocessing@ 18 the cost of processing queries,
Crmaintenancev 18 the cost of materialized views’ mainte-
nance, and Chateriatizationy 18 the cost of materializing
views.

4.2.1 Materialization cost

If a view is materialized, its associated query must be
executed, which must be paid for in the cloud. Let the
materialization time of view Vi be tmaterialization(Vk). We
assume that all views are materialized on a constant number
of instances, nbrc.

The total materialization time is:

p
Tmaterialization\/ = 5 tmaterialization(vk)~ (7)

k=1

According to Formula 4, materialization cost is:

Cmate'rializationV - TmaterializationV X C(IC) X anC« (8)

Example 4: In our running example with two nodes, we
assume that V' = {Vi}. So, the total materialization view
time is: Thmaterializationv = ZZ:I tmaterialization(vk) -
tmaterialization(V1) = 0.1 hour. Then, materialization cost
is: Cmuterializationv = TnaterializationV X C(IC) X anC =
0.1 x 0.12 x 2 = $0.024.

4.2.2  Query processing cost

When using materialized views, query processing time is
defined by two main parameters: query workload @ and set
of materialized views V. Queries may use the contents of
materialized views instead of recomputing their result. Note
that we consider that @ is fixed. Since views are usually
materialized with respect to a given workload and ours is
fixed, then V is also fixed.

Let t;v be the processing time of query @Q; when exploiting
the set of materialized views V', and t; the processing time
of Q; without materialized views. Thus, we have:

P
tiv =t — thik 9)
k=1

where tb;; is the processing time saved when query Q;
exploits view V.

Example 5: In our running example, we assume that
V = {Vi} and that query Q1 uses view Vi, leading to a
reduction tb11 = 0.05 hour. Thus, the processing time of
query Q1 when using Vi is: t1y = t1 —tb11 = 0.2—1x0.05 =
0.15 hour.

Finally, the total processing time of @) against V is:

TprocessingQ - thV (10)
=1

Example 6: In our running example, total processing
time when using V' is 40 hours.

After taking view materialization into account, Formula 4
becomes:

CprocessingQ - TprocessingQ X C(IC) X nb;c. (11)

Example T: So, the computing cost becomes:
Cprocessing@ = TprocessingQ X C(]C) xnbrc =40x0.12x2 =
$9.6.

4.2.3 Maintenance cost

The maintenance cost of materialized views is directly
proportional to the time required for updating materialized
views when they are impacted by modifications of the source



dataset. Note that we consider that querying and mainte-
nance do not occur at the same time. For example, queries
are posed during day-time and maintenance is performed
during night-time. Let the maintenance time of view Vj be
tmaintenance(Vi). Then, the total maintenance time of V is:

P

Tmaintenancev = Z tmaintenance (Vk ) . (12)

k=1

Example 8: This maintenance time in the running ex-
ample is 5 hours.

As a consequence, the cost of maintaining the set of ma-
terialized views V is:

CnLaintenanceV = TnLaintenanceV X C(IC) X nb1C~ (13)
Example 9: Thus, the maintenance cost is:
Cmaintenancev = Tmaintenance\/ X C(IC) X nblc =

5x0.12x2=281.2

4.3 Storage cost

Exploiting materialized views to enhance query perfor-
mance implies storing them in the cloud, and pay the cor-
responding cost. Moreover, with data evolution and view
maintenance, storage costs must take the size of inserted
data s(IND) and the size of data duplicated in materialized
views s(DD) (with s(DD) < s(ND)) into account. Data
size of each interval accordingly change however the storage
cost is identical to the formula 5. Note that original data
and materialized views have been stored for whole storage
period.

Example 8: In our running example, the data set has
been stored for a year, the size of materialized views is 50
GB. In addition, no data are inserted during the considered
period. Thus, we have a single interval and storage cost is
Cs = (500 4+ 50) x (12 —0) x 0.14 = $924.

5. OPTIMIZATION PROCESS

In this section, we investigate how the use of materialized
views in the cloud impacts query performance, while trying
to minimize overhead storage cost. We propose an algorithm
to select the best set of materialized views by exploiting the
cost models introduced in Section 4.

5.1 Objective functions

Base on the ideas in [20], we distinguish in this section
three scenarios, i.e., three objective functions, with respect
to the needs and capacity of customers (budget limit, re-
sponse time limit).

5.1.1 Budget limit

Given a predefined financial budget B, our objective in
this scenario (denoted MV7) is to select, from the set of
candidate materialized views Vegnd, the set of views to ma-
terialize in the cloud V' that minimizes query processing time
(Figure 3: The chosen solution are colored in red).

Minimize Tprocessing@

C=C,+Ci+C,<BI (14)

mvi = {

Budget limit
e o
% L 4 L 4
] @
0 L —
Time

Figure 3: Minimizing processing time under budget
constraint

5.1.2 Response time limit

Given a predefined response time limit 7', our objective
in this scenario (denoted MV5) is to select, from the set of
candidate materialized views Vegnd, the set of views to ma-
terialize in the cloud V' that minimizes financial cost (Fig-
ure 4).

_ | Minimize C' = C. + Cy + Cs
MV2 o { TprocessingQ S Tl (15)
Time limit
® o
2 L 4
] @
o) e o
Time

Figure 4: Minimizing cost under response time con-
straint

5.1.3 Response time vs. cost tradeoff

In this scenario (denoted MV3), our objective is to select,
from the set of candidate materialized views V,qn4q, the set
of views to materialize in the cloud V that offers the best
tradeoff between query processing time and financial cost
(Figure 5). To provide the user with control over this pro-
cess, we introduce a weight parameter on processing time
(o) and cost (1 — ).

MV3 = Minimize & X Tprocessing@ + (1 —a) x C'° (16)

Weight
L e
S

” ‘® °

H S ']

(¥} e =

e, @
oo Rl -
Time

Figure 5: Optimizing response time and cost
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Figure 2: Experimental results of application of materialized views

5.2 Optimization algorithm

To select the set of views to materialize in the cloud V'
from Viand, which is output by any existing view selection
algorithm such as [8], we simply use the Knapsack 0/1 prob-
lem[14]. To solve this problem, we have opted for a dynamic
programming approach.

We parameterize this algorithm with elements of our cost
models. For example, in the case of MV; (budget limit), the
result is: V = Knapsack(Veand, Fet, Foe, Fos, Bl). Where
Fei, Fee, Fos are functions which represent the parameters
of the models described in the section 4. In particular, Fc:
involves transfer cost parameters (section 4.1), Fc. involves
computing cost parameters(section 4.2), and Fc, involves
storage cost parameters (section 4.3).

6. EXPERIMENTAL VALIDATION

In this section, we describe the overall setup of our prelimi-
nary experimentation effort and the results we have obtained
from it. This experiment is realized on both sides: in the
cloud and on the client’s side. The dataset and materialized
views are stored in the cloud, and queries are processed in
the cloud. The view selection algorithms are implemented
in Java on the client’s side. The idea is to select views on
the client’s side and to materialize them in the cloud.

6.1 Experimental setup

The experiments were conducted on a virtual cluster com-
posed of five virtual machines with a 50 GB disk, 2 GB of
RAM and 4 vCPU. This virtual cluster is deployed on a
physical architecture consisting of two bi-pros 493 GHz with
32 GB of RAM, interconnected by a 1 GB/s network in a
8x2 DRS cluster; and a bi-pro 2,526 GHz with hyperthread-
ing enabled, outside of the DRS cluster, with 16 logical cores

with 72 GB of RAM on a 1 GB/s network. All machines
feature Hadoop (version 0.20.2) [3] and Pig Latin (version
0.7.0) [23]. Queries are written in Pig Latin and are exe-
cuted by the Pig compiler on the Hadoop cluster within the
MapReduce framework [17]. On the client’s side, algorithms
are implemented on a PC Dual Core 2 T6660 2.2GHz, with
2 GB of RAM.

We used in our experiments a subset of the dataset from
our case study (Section 2.1), whose size is 10 GB. The work-
load we applied on the dataset was made of 10 queries that
calculate the total profit per day, month, year (temporal di-
mension) and per country, department, and region (location
dimension), plus combinations of these two dimensions such
as ”"per year and per country”.

The problem of choosing the set of views for materializing
is an another problem that has not yet got into this paper.
In this experimentation, we simply select candidate whose
dimension is smaller than the dimension of the actual query.
For example, query Q1 "sales per year and country” may
have some candidates such as: ”sales per month and country”
and "sales per year and region”.

6.2 Experimental results

We experimented the three scenarios MV, MV, and MVs
described in Section 5.1, with a variable workload made of 3,
5, and 10 queries, with and without exploiting materialized
views. Our results are plotted on Figure 2. They clearly
show that, in all scenarios, creating materialized views in
the cloud is desirable. Note that time limit, buget limit and
weights are chosen by the client. His choice depends on his
budget and/or his desire. Of course, in this experimentation,
we played the role of the client.

In scenario MV, a significantly better response time is



achieved with materialized views, under the same budget
constraint than without (Figure 2(a)). The improved per-
formance rates are shown in the Table 6.

Number of queries | Budget limit | IP Rate
3 $0.8 25%
5 $1.2 36%
10 $2.4 60%

Table 6: Improved performance rates between with
and without materialized views under the same bud-
get limit in the scenario MV

In scenario MVa, a significantly lower global cost is
achieved with materialized views, under the processing time
constraint than without (Figure 2(b)). The improved cost
rates are shown in the Table 7.

Number of queries | Time limit | IC Rate
3 0.57h 75%
5 0.99h 2%
10 2.24h 75%

Table 7: Improved cost rates between with and with-
out materialized views under the same time limit in
the scenario MV,

Similarly, in scenario MV3, materialized views help
achieve a tradeoff (chosen by the client) between cost and re-
sponse time, whether the priority is put on cost (Figure 2(c))
or response time (Figure 2(d)). Improved tradeoff rates are
shown in the Table 8.

Number of queries | Rate (o« = 0.3) | Rate (a =0.7)
3 55% 32%
5 50% 35%
10 68% 45%

Table 8: Improved tradeoff rates between with and
without materialized views in the scenario M V3

7. RELATED WORK

Although there has been a lot of research related to the
cloud for a couple of years, relatively few approaches relate
to the optimization of data management in the cloud. In this
section, we provide a brief overview of cost models, database-
like features and the use of optimization techniques in the
cloud.

Cost models have been proposed in the cloud for schedul-
ing of dataflows with regard to monetary cost and/or com-
pletion time [20], and cost amortization of data structures
to ensure the economic viability of the provider [19], partic-
ularly for self-tuned caching [16]. Other cost models have
been developed for a real-life astronomy application using
the Amazon cloud fee structure [9, 18]. The cost perfor-
mance tradeoffs of different execution and resource provi-
sioning plans have been simulated, showing that by pro-
visioning the right amount of storage and computing re-
sources, cost can be significantly reduced with no significant
impact on application performance [18]. The performance
of three workflow applications with different I/O, memory
and CPU requirements has also been compared on Amazon

EC2 and a typical high-performance cluster (HPC) to iden-
tify what applications achieve the best performance in the
cloud at the lowest cost [9].

Recent research takes interest in various aspects of
database and decision support technologies in the cloud.
For example, different studies investigate the storage and
processing of structured data [13], the optimization of join
queries, and how to support analysis operations such as ag-
gregation [15]. Cloud data warehousing and OLAP systems
also raise various problems related to storage and query
performance [22]. Adaptations of these technologies to the
cloud’s specificities are also addressed, e.g., pay-as-you-go
pricing and elasticity [7], or the calculation of OLAP cuboids
using the MapReduce runtime environment [25].

Finally, although massive scale distributed database sys-
tems such as BigTable have begun to incorporate indexes
and materialized views [11], the many techniques developed
for maintaining materialized views in traditional, relational
databases [5], such as incremental view maintenance [12],
deferred maintenance [27] and distributed view maintenance
[21], have not been incorporated into the cloud yet. This is
thus the main incentive for our own approach.

8. CONCLUSION

In this paper, we proposed an approach for decreasing the
cost of data management in the cloud, by using a classical
database performance optimization technique, i.e., view ma-
terialization. Our main contributions are novel cost models
that complement the existing materialized view cost mod-
els with a monetary cost component that is primordial in
the cloud. Then, we exploit these cost models into an opti-
mization process that achieves a tradeoff between computing
power enhancement and view materialization, under bud-
get constraints. Our first experimental validation hints that
view materialization is always desirable.

Many perspectives are opened by this preliminary re-
search. We indeed have many plans on improving our cost
models. First, we should include pricing models from several
CSPs but Amazon, to render our cost models more versa-
tile. Second, it is well-known that optimization techniques
are the most efficient when combined, e.g., when materi-
alized views and index are jointly exploited [6]. Thus, we
should incorporate indexing, caching and/or fragmentation
into our approach. Third, we should exploit the specifici-
ties of cloud languages (such as HiveQL [26], Jaql [10] and
Pig Latin [23]) with respect to semantics and parallelism
to further improve performance. Finally, in this paper, we
worked on one single cloud instance, thus minimizing the
primordial elasticity characteristic of the cloud. Thus, we
should expand our cost models on variable resources.

Another line of future work relates to the experimental
validation of our proposals. Here, due to limited resources,
we experimented our cost models on a small cluster and a
toy dataset. Thus, we plan to design a wider-scale experi-
mentation plan that would exploit a full-fledged database or
data warehouse benchmark, such as TPC-E [4] or the Star
Schema Benchmark [24], onto AWS or other infrastructure
providers.
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