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A strong edge-colouring of a graph G is a proper edge-colouring such that every path of length 3 uses three different colours. In this paper we improve some previous results on the strong edgecolouring of subcubic graphs by showing that every subcubic graph with maximum average degree strictly less than 7 3 (resp. 5 2 , 8 3 , 20 7 ) can be strongly edge-coloured with six (resp. seven, eight, nine) colours. These upper bounds are optimal except the one of 8 3 . Also, we prove that every subcubic planar graph without 4-cycles and 5-cycles can be strongly edge-coloured with nine colours.

Introduction

In this paper the graphs considered are finite, simple and without loops. A proper edge-colouring of a graph G = (V, E) is an assignment of colours to the edges of the graph such that two adjacent edges do not use the same colour. A strong edge-colouring (called also distance 2 edge-colouring) of a graph G is a proper edge-colouring of G, such that the edges of any path of length 3 use three different colours. We denote by χ ′ s (G) the strong chromatic index of G which is the smallest integer k such that G can be strongly edge-coloured with k colours.

Strong edge-colouring was introduced by Fouquet and Jolivet in 1983 [START_REF] Fouquet | Strong edge-colorings of graphs and applications to multi-k-gons[END_REF][START_REF] Fouquet | Strong edge-coloring of cubic planar graphs[END_REF]. Strong edgecolouring can be used to model the conflict-free channel assignment in radio networks [START_REF] Barrett | Strong edge coloring for channel assignment in wireless radio networks[END_REF][START_REF] Nandagopal | Achieving MAC layer fairness in wireless packet networks[END_REF][START_REF] Ramanathan | A unified framework and algorithm for (T/F/C) DMA channel assignment in wireless networks[END_REF][START_REF] Ramanathan | Scheduling algorithms for multi-hop radio-networks[END_REF].

Let ∆(G) be the maximum degree of a graph G (we will use ∆ if no ambiguity). The following conjecture was posed by Erdős and Nešetřil [START_REF] Erdős | Problems and results in combinatorial analysis and graph theory[END_REF][START_REF] Erdős | Problem[END_REF] and revised by Faudree et al. [START_REF] Faudree | The strong chromatic index of graphs[END_REF] and Chung et al. [START_REF] Chung | The maximum number of edges in 2K 2 -free graphs of bounded degree[END_REF]:

Conjecture 1 (Erdős and Nešetřil [START_REF] Erdős | Problems and results in combinatorial analysis and graph theory[END_REF][START_REF] Erdős | Problem[END_REF]). For every graph G,

χ ′ s (G) ≤ 5 4 ∆ 2 , if ∆ is even; 1 4 (5∆ 2 -2∆ + 1), if ∆ is odd.
If this conjecture is true, then the given upper bounds for the strong chromatic index are tight as the authors gave constructions of graphs with strong chromatic index reaching these bounds. The conjecture was verified for graphs having ∆ ≤ 3 [START_REF] Andersen | The strong chromatic index of a cubic graph is at most 10[END_REF][START_REF] Horák | Induced matchings in cubic graphs[END_REF]. When ∆ > 3, the only case on which some progress was made is when ∆ = 4 and the best upper bound stated is χ ′ s (G) ≤ 22 [START_REF] Cranston | Strong edge-coloring of graphs with maximum degree 4 using 22 colors[END_REF]. An upper bound for the strong chromatic index of subcubic graphs in terms of the maximum average degree mad(G) = max 2|E(H)|

|V (H)| , H ⊆ G , was given in [START_REF] Hocquard | Strong edge colouring of subcubic graphs[END_REF]. More precisely, it was proved the following.

Theorem 1 (Hocquard and Valicov [11]). Let G be a subcubic graph (a graph with ∆ ≤ 3).

1. If mad(G) < 15 7 , then χ ′ s (G) ≤ 6.

2. If mad(G) < 27 11 , then χ ′ s (G) ≤ 7.

3. If mad(G) < 13 5 , then χ ′ s (G) ≤ 8.

4.

If mad(G) < 36 13 , then χ ′ s (G) ≤ 9.

Recall that the girth of a graph is the length of a shortest cycle in this graph. As every planar graph with girth g satisfies mad(G) < 2g g-2 , the following corollary, can be easily derived from Theorem 1:

Corollary 1 (Hocquard and Valicov [11]). Let G be a planar subcubic graph with girth g.

1. If g ≥ 30, then χ ′ s (G) ≤ 6.

2. If g ≥ 11, then χ ′ s (G) ≤ 7.

3. If g ≥ 9, then χ ′ s (G) ≤ 8.

4. If g ≥ 8, then χ ′ s (G) ≤ 9.

In this paper, we strengthen Theorem 1 by proving that:

Theorem 2. Let G be a subcubic graph.

1. If mad(G) < 7 3 , then χ ′ s (G) ≤ 6.

2. If mad(G) < 5 2 , then χ ′ s (G) ≤ 7.

3. If mad(G) < 8 3 , then χ ′ s (G) ≤ 8.

4.

If mad(G) < 20 7 , then χ ′ s (G) ≤ 9.

For cases 1, 2 and 4, the given upper bounds on the maximum average degree are sharp: there exist graphs with mad(G) = 7 3 (resp. 5 2 , 20 7 ) which are not strong edge-colourable with six (resp. 7, 9) colours. Examples of such graphs are given in Section 2.2.

For planar graphs it follows:

Corollary 2. Let G be a planar subcubic graph with girth g:

1. If g ≥ 14, then χ ′ s (G) ≤ 6. 2. If g ≥ 10, then χ ′ s (G) ≤ 7.

3. If g ≥ 8, then χ ′ s (G) ≤ 8. 4. If g ≥ 7, then χ ′ s (G) ≤ 9.
In this paper we are also interested in finding a bound for the strong chromatic index of planar subcubic graphs. The interest for this class of graphs is motivated by the following conjecture:

Conjecture 2 (Faudree et al. [7]). If G is a planar subcubic graph, then χ ′ s (G) ≤ 9.
If the conjecture is true, then it is the best possible bound since the prism P has χ ′ s (P ) = 9 (see Figure 1). An interesting fact about Conjecture 2 is that from the algorithmic aspect the problem of computing the strong chromatic index was proved to be NP-complete for the class of subcubic planar graphs with an arbitrarily large girth [START_REF] Hocquard | Strong edge colouring and induced matchings[END_REF].

For general planar graphs, an upper bound in terms of ∆ was proved by Faudree et al. [START_REF] Faudree | The strong chromatic index of graphs[END_REF]:

Theorem 3 (Faudree et al. [7]). If G is a planar graph, then χ ′ s (G) ≤ 4∆ + 4 for ∆ ≥ 3.
In case of planar graphs we improve the fourth part of Corollary 2 and give a partial answer to Conjecture 2, by showing the following: Theorem 4. Let G be a planar subcubic graph containing neither induced 4-cycles, nor induced 5-cycles. Then χ ′ s (G) ≤ 9.

The paper is organized as follows. In Section 2 we prove Theorem 2 and discuss the optimality of the upper bounds on the maximum average degree. In Section 3 we provide the proof of Thorem 4.

Let us introduce some notations.

Definitions and notations. Two edges are at distance 1 if they share one of their ends and they are at distance 2 if they are not at distance 1 and there exists an edge adjacent to both of them. 

Let d G (v) (or d(v) if it is clear from the context) denote the degree of a vertex v in a graph G. A vertex of degree k (resp. at most k) is called a k-vertex (resp. k --vertex ). A 3 k -vertex is a 3-vertex adjacent to exactly k 2-vertices. A bad 2-vertex is a 2-vertex

Bounds using maximum average degree

Proof of Theorem 2

The proof is done by induction. Let H be a minimum counterexample. In each of the cases, first of all we prove the non-existence of some set of subgraphs S in H. In the next step, we use the discharging technique in order to obtain a contradiction. For this, we define a weight function ω : V (H) → R with ω(x) = d(x)m (where m ∈ R is the value of the upper bound on the maximum average degree given by Theorem 2). An important observation is that by hypothesis on the maximum average degree, the total sum of weights must be strictly negative. Next, we define discharging rules to redistribute weights and once the discharging process is finished, a new weight function ω * will be produced. During the discharging process the total sum of weights is kept fixed. Nevertheless, by the non-existence of S, it will follow that ω * (x) ≥ 0 for all x ∈ V (H). This will lead to the following contradiction:

0 ≤ x ∈ V (H) ω * (x) = x ∈ V (H) ω(x) < 0
Therefore, such a counterexample cannot exist.

First part

Let H be a counterexample to Theorem 2.1 minimizing |E(H)| + |V (H)|: H is not strong edge-colourable with six colours, mad(H) < 7 3 and for any edge e, χ ′ s (He) ≤ 6. One can assume that H is connected; otherwise, by minimality of H, we can colour each connected component independently. In this subsection, a 3-vertex adjacent to a 1-vertex is a light 3-vertex. Otherwise it is a heavy 3-vertex.

In order to proof our result we need the following claim proved in [START_REF] Hocquard | Strong edge colouring of subcubic graphs[END_REF]:

Claim 1. (Hocquard and Valicov [11]) The minimal counterexample H to Theorem 2.1 satisfies the following properties:

1. H does not contain a 1-vertex adjacent to a 2-vertex.

2.

H does not contain a 3-vertex adjacent to a 1-vertex and a 2-vertex.

3.

H does not contain a 3-vertex adjacent to two 1-vertices. We prove the second item. Suppose H contains a path stuvw where s, t, v and w are four light 3-vertices, u is a 3-vertex adjacent to a light 3-vertex x distinct from s, t, v, w. Call s 1 (resp. t 1 , v 1 , w 1 , x 1 ) the neighbour of s (resp. t, v, w, x) of degree 1. Let r (resp. y, z) be the third neighbour of s (resp. x, w). Also, for i = 1, 2, let r i (resp. y i , z i ) be the neighbours of r (resp. y, z), other than s (resp. x, w). By Claims 1.2 and 1.3, r, y and z are 3-vertices. By Claims 1.5 and 2.1, we can assume that Figure 2 illustrates the given configuration (with r, y, z possibly not distinct).

Let us consider H ′ = H \ {ss 1 , tt 1 , vv 1 , ww 1 , xx 1 , st, tu, uv, vw, ux}. By minimality of H, there exists a strong edge-colouring φ of H ′ , using six colours. We show how to extend this colouring to

H. r r 1 r 2 s s 1 t t 1 u v v 1 w w 1 z z 1 z 2 x x 1 y y 1 y 2 Figure 2: The configuration of Claim 2.2
Without loss of generality we can suppose that φ(xy) = 1, φ(yy 1 ) = 2 and φ(yy 2 ) = 3. First, we colour edge ux and we distinguish two cases:

1. Suppose that rs is not coloured in {1, 2, 3}, say φ(rs) = 4. Colour uv with a colour in {φ(yy 1 ), φ(yy 2 )} that does not appear on wz. Finally, we consider the remaining edges in the following order: vw, ww 1 , vv 1 , tu, st, ss 1 , tt 1 and xx 1 . At each step, there exists an available colour for the corresponding edge. Similarly, we get the result if wz is not coloured in {1, 2, 3}.

2. Suppose now that φ(rs), φ(wz) ∈ {1, 2, 3}. Then it is easy to observe that there exists a colour, say 4, such that ux and ss 1 , can be coloured with 4. We set φ(ux) = φ(ss 1 ) = 4.

Next, we distinguish the following cases for φ(rs) and φ(wz):

• Suppose φ(rs) ∈ {φ(yy 1 ), φ(yy 2 )} = {2, 3} and φ(wz) = φ(rs). Without loss of generality we can suppose that φ(rs) = φ(yy 1 ) = 2. Then we assign φ(uv) = 2. We colour the remaining edges in the following order: vw, ww 1 , vv 1 , tu, st, tt 1 and xx 1 . Note that at each step, there exists a colour left for the corresponding edge.

• Suppose φ(rs) ∈ {φ(yy 1 ), φ(yy 2 )} = {2, 3} and φ(wz) = φ(rs). Without loss of generality we can suppose that φ(wz) = φ(rs) = 2 and we assign φ(uv) = 3. Suppose we can assign φ(ww 1 ) = 4. Next, we colour first st and then tu (note that at each step there is at least one colour left). If there is a colour left for vw, then the colouring of H can be finished easily as edges tt 1 , vv 1 and xx 1 are pairwise at distance 3 and for each of these edges there would be a colour left. Therefore, there is no colour left for vw which implies that {φ(tu), φ(zz 1 ), φ(zz 2 )} = {1, 5, 6} and since tu cannot be coloured 1, without loss of generality we can assume φ(tu) = 5, φ(zz 1 ) = 1 and φ(zz 2 ) = 6. Similarly, by uncolouring st, recolouring tu with 6 and assigning to vw colour 5, we conclude that {φ(rr 1 ), φ(rr 2 )} = {1, 5}. But then we do the following reassignment of colours φ(ss

1 ) = 6, φ(st) = 4, φ(tu) = 5, φ(ux) = 6, φ(vw) = 4, φ(ww 1 ) = 5.
Finally there is a colour left for each of the edges tt 1 , vv 1 and xx 1 , thus we are done. Suppose ww 1 cannot be coloured with 4. Therefore, without loss of generality φ(zz 1 ) = 4. On the other hand, recall that φ(ss 1 ) = φ(ux) = 4 and by previous paragraphs, it is not possible to colour ss 1 , ux and ww 1 with the same colour (4, 5 or 6). Hence we must have {5, 6} ⊆ {φ(zz 2 ), φ(rr 1 ), φ(rr 2 )}. Obviously one of the colours 5 or 6, say 5, is not assigned to zz 2 and is assigned to either rr 1 or rr 2 (we can suppose φ(rr 1 ) = 5). Hence we can assign φ(ww 1 ) = φ(tu) = 5 and we colour the remaining edges in the following order: vw, vv 1 , st, tt 1 , xx 1 . Observe that at each step there exists at least one colour left for every edge.

• Suppose {φ(rs), φ(wz)} ∩ {φ(yy 1 ), φ(yy 2 )} = ∅. Hence, φ(rs) = φ(wz) = 1. We assign φ(tu) = 2 and then we colour the following edges in the given order: st, vw, uv, vv 1 , tt 1 and xx 1 . It remains to colour ww 1 . If we have a colour left for ww 1 , then we are done. Otherwise, {φ(uv), φ(vv 1 ), φ(vw), φ(zz 1 ), φ(zz 2 )} = {2, 3, 4, 5, 6}. Therefore, {φ(uv), φ(vv 1 ), φ(vw)} = {3, 5, 6} and {φ(zz 1 ), φ(zz 2 )} = {2, 4}. But then we permute the colours of tu and uv and we obtain a free colour for ww 1 (which is the same as the colour of tu), a contradiction.

As a corollary from the proof of Claim 2 we derive the following:

Corollary 3. The minimal counterexample H to Theorem 2.1 does not contain a path stuvw where s, t, v and w are either light 3-vertices or 2-vertices and u is a 3-vertex adjacent to a vertex x which is either a light 3-vertex x or a 2-vertex.

Let H ′′ be the graph obtained from H by removing all 1-vertices of H, i.e.

H ′′ = H \ {v ∈ V (H), d H (v) = 1}.
Clearly, H ′′ is connected and mad(H ′′ ) < 7 3 . One can derive the following structural properties of H ′′ : Claim 3. Due to Claim 1 and to Corollary 3, H ′′ has the following properties:

1. δ(H ′′ ) ≥ 2, where δ(H ′′ ) is the minimum degree of H ′′ (from Claim 1.1 and 1.3).

2. H ′′ does not contain a path uvw where u, v, w are 2-vertices (from Claims 1.2, 1.4 and 1.5).

H ′′ does not contain a 3 3 -vertex adjacent to two bad 2-vertices (from Corollary 3).

For each vertex x of H ′′ , we assign a charge w(x) equal to d(x)- 7 3 . We apply now a discharging procedure on H ′′ with the following rules: (R1) Every 3-vertex gives 1 3 to each adjacent bad 2-vertex. (R2) Every 3-vertex gives 1 6 to each adjacent good 2-vertex.

Let v ∈ V (H ′′ ) be a k-vertex. By Claim 3.1, k ≥ 2.
Consider the following cases:

Case k = 2. Observe that ω(v) = -1 3 . Suppose v is a bad 2-vertex. By Claim 3.2, v is adjacent to a 3-vertex. Hence, by (R1), ω * (v) = -1 3 + 1 3 = 0. If v is a good 2-vertex, then ω * (v) = -1 3 + 2 × 1 6 = 0 by (R2). Case k = 3. Observe that ω(v) = 2
3 . Suppose v is adjacent to a bad 2-vertex. By Claim 3.3, v is not adjacent to another bad 2-vertex. Hence, by (R1) and (R2),

ω * (v) ≥ 2 3 -1× 1 3 -2× 1 6 = 0. If v is not adjacent to a bad 2-vertex, then ω * (v) ≥ 2 3 -3 × 1 6 > 0 by (R2).
Therefore, H ′′ cannot exist and consequently H does not exist neither. This completes the proof.

Second part

Let H be a counterexample to Theorem 2. (c) or w 2 is a light 3-vertex.

Proof Claims 4.1 to 4.4 are proved in [START_REF] Hocquard | Strong edge colouring of subcubic graphs[END_REF]. We now prove Claim 4.5. Suppose H contains a path uvw where u is a

3 3 -vertex, v is a 2-vertex, w is a 3 2 -vertex and w is adjacent to a 2-vertex w 1 (distinct from v) and to a 3-vertex w 2 . Let H ′ = H \ {u 1 u, u 2 u, uv, vw}.

By minimality of H, χ ′

s (H ′ ) ≤ 7 and there exists a strong edge-colouring φ of H ′ , which uses seven colours. We will extend this colouring to H. We colour the edges vw, uv and u 2 u in this order. Note that at each step there exists at least one colour left for the corresponding edge. In order to complete the strong edge-colouring of H, we must assign a colour to

u 1 u. If | 7 \SC(N 2 (u 1 u))| ≥ 1, then we are done. Hence | 7 \ SC(N 2 (u 1 u))| = 0 and since |N 2 (u 1 u)| = 7
, the edges of N 2 (u 1 u) must be assigned distinct colours. Next, observe that it is possible to colour u 1 u with the colour of u 2 u, uncolour u 2 u and then apply the same argument as previously to show that all the edges of N 2 (u 2 u) must be assigned distinct colours. And then similarly, it is possible to colour u 1 u with the colour of uv, to uncolour uv and if there is no colour left for uv, then all the colours of N 2 (uv) must be distinct. We conclude that w 1 = u 1 , u 2 and w 2 = x, y, x 1 , x 2 , y 1 , y 2 . Hence the configuration and its fixed precolouring of edges is as depicted in Figure 3.

5.a Suppose w 1 is adjacent to a 3 3 -vertex t as in Figure 4.

Let us consider the edge ww 1 . Observe that SC(N 2 (ww 1 )) contains the colours 1, 4 and 5. Otherwise, we can recolour ww 1 with 1 (or 4, or 5), vw with 6 and u 1 u with 3. This extends the colouring to whole H, a contradiction. Observe that 3 ∈ {φ(tt 1 ), φ(tt 2 )}. Otherwise, we can permute the colours of vw and ww 1 , and assign colour 3 to u 1 u. Similarly, observe that 2 ∈ {φ(w 1 t), φ(tt 1 ), φ(tt 2 ), φ(w 2 z 1 ), φ(w 2 z 2 )}. Otherwise, we can permute the colours of ww 1 and uv, and colour u 1 u with 2.

x x 1 x 2 y y 1 y 2 u 1 u 2 u v w w 1 t t 1 t 2 w 2 z 1 z 2 • • • • • •
y 2 u 1 u 2 u v w w 2 w 1 z 1 z 2 t t 1 t ′ 1 t 2 t ′
From the above, we conclude that {φ(w 1 t), φ(tt 1 ), φ(tt 2 ), φ(w 2 z 1 ), φ(w 2 z 2 )} = {1, 2, 3, 4, 5} and 3 ∈ {φ(tt 1 ), φ(tt 2 )} (w 1 t, tt 1 , tt 2 , w 2 z 1 , w 2 z 2 are assigned pairwise distinct colours).

Suppose that {φ(t

1 t ′ 1 ), φ(t 2 t ′ 2 )} = {φ(w 2 z 1 ), φ(w 2 z 2 )}. Let α ∈ {φ(w 2 z 1 ), φ(w 2 z 2 )} \ {φ(t 1 t ′ 1 ), φ(t 2 t ′ 2 )}, α ∈ {1, 2 
, 4, 5} (because 3 ∈ {φ(tt 1 ), φ(tt 2 )}). We do the following assignment of colours (in the given order): φ(u 1 u) = 2, φ(uv) = 3, φ(vw) = 6, φ(ww 1 ) = φ(w 1 t), φ(w 1 t) = α.

It follows that {φ(t 1 t ′ 1 ), φ(t 2 t ′ 2 )} = {φ(w 2 z 1 ), φ(w 2 z 2 )} and 6 ∈ {φ(t 1 t ′ 1 ), φ(t 2 t ′ 2 )}. But then we permute the colours of w 1 t and ww 1 , recolour uv with colour 6 and assign to u 1 u colour 2. We obtain a strong edge-colouring of H, a contradiction. 5.b Suppose w 2 is a 3 2 -vertex as depicted in Figure 5. Observe that 3 ∈ {φ(z 1 s), φ(z 2 r)}. Otherwise we can permute the colours of vw and ww 2 , and assign 3 to u 1 u. Observe that 1, 2, 4, 5 ∈ {φ(w 1 t), φ(w 2 z 1 )φ(w 2 z 2 ), φ(z 1 s), φ(z 2 r)}. Otherwise we can recolour ww 2 with 1 or 2 or 4 or 5, uv with 7, and assign colour 2 to u 1 u. Hence {φ(w 1 t), φ(w 2 z 1 )φ(w 2 z 2 ), φ(z 1 s), φ(z 2 r)} = {1, 2, 3, 4, 5}. Observe that 3 ∈ {φ(tt 1 ), φ(tt 2 )}.

x x 1 x 2 y y 1 y 2 u 1 u 2 u v w w 1 t t 1 t 2 w 2 z 1 z 2 s s 1 s 2 r r 1
Otherwise we can permute the colours of vw and ww 1 , and assign colour 3 to u 1 u. Hence, without loss of generality we can assume φ(tt 1 ) = φ(z 1 s) = 3. Moreover, we prove that φ(tt 2 ) = φ(z 2 r). By contradiction, assume that φ(z 2 r) = α = φ(tt 2 ) (α ∈ {1, 2, 4, 5}). We recolour ww 1 with α, uv with 6, and assign 2 to u 1 u. Now let us uncolour uv and assign colour 2 to u 1 u. Observe that 7 ∈ {φ(ss 1 ), φ(ss 2 )}. Otherwise we can permute the colours of ww 2 and w 2 z 1 , and assign colour 7 to uv. Observe that φ(w 1 t) ∈ {φ(ss 1 ), φ(ss 2 )}. Otherwise we use φ(w 2 z 1 ) to recolour ww 1 , we recolour w 2 z 1 with φ(w 1 t) (recall that {φ(tt 1 ), φ(tt 2 )} = {φ(z 1 s), φ(z 2 r)}), and assign colour 6 to uv. It follows that {7, φ(w 1 t)} = {φ(ss 1 ), φ(ss 2 )} (φ(w 1 t) = 6).

Finally we permute the colours of w 2 z 1 and ww 1 and assign 6 to uv. A contradiction.

5.c Suppose w 2 is a light 3-vertex as depicted in Figure 6. Let us uncolour uv and assign to u 1 u colour 2. If the permutation of the colours of ww 2 and w 2 z 2 is possible, then uv can be recoloured with 7. Hence φ(rr 1 ) = 7. Now we uncolour vw and assign colour 3 to uv. Observe that: {φ(w 1 t), φ(tt 1 ), φ(tt 2 )} = {φ(z 1 s 1 ), φ(z 1 s 2 ), φ(z 2 r)} By contradiction, let us suppose that there exists an α ∈ {φ(w 1 t), φ(tt 1 ), φ(tt 2 )} \ {φ(z 1 s 1 ), φ(z 1 s 2 ), φ(z 2 r)}. Recall α ∈ {1, 2, 3, 4, 5} and φ(w 2 z 2 ) = 3. We colour vw with 7, assign colour φ(w 2 z 2 ) to ww 2 , and recolour w 2 z 2 with α.

x x 1 x 2 y y 1 y 2 u 1 u 2 u v w w 1 t t 1 t 2 w 2 z 1 z 2 s 1 s 2 r r 1 r 2 r 3
Finally we permute the colours of ww 1 and w 2 z 2 , assign colour 6 to uv and colour 3 to vw.

The discharging rules are defined as follows:

(R1) Every 3 3 -vertex gives 1 6 to each adjacent good 2-vertex. (R2) Every 3 2 -vertex and 3 1 -vertex gives 1 4 to each adjacent good 2-vertex if this 2-vertex is not adjacent to a 3 3 -vertex.

(R3) Every 3 0 -vertex gives 1 12 to each adjacent 3 2 -vertex if any. (R4) Every 3 1 -vertex u gives 1 12 to each adjacent 3 2 -vertex v if v has a 2-neighbour w adjacent to a 3 3 -vertex.

(R5) Every 3-vertex gives 1 3 to each adjacent 2-vertex which is a neighbour of 3 3 -vertex. (R6) Every 3-vertex gives 1 2 to each adjacent bad 2-vertex.

Let v ∈ V (H) be a k-vertex. By Claim 4.1, k ≥ 2.
Case k = 2. Observe that ω(v) = -1 2 . Suppose v is a good 2-vertex. If v is adjacent to a 3 3 -vertex, then v cannot be adjacent to another 3 3 -vertex by Claim 4.4. Hence, ω * (v) ≥ - 1 2 + 1 × 1 6 + 1 × 1 3 = 0 by (R1) and (R5). If v is not adjacent to a 3 3 -vertex, then

ω * (v) ≥ -1 2 + 1 × 1 4 + 1 × 1 4 = 0 by (R2). Suppose v is bad. Vertex v is adjacent to one 3-vertex by Claim 4.2. Hence, ω * (v) = -1 2 + 1 × 1 2 = 0 by (R6). Case k = 3. Observe that ω(v) = 1
2 . We have the following cases for v: 

• Vertex v is
(v) ≥ 1 2 -1 × 1 4 + 1 × 1 12 -1 × 1 3 = 0 by (R2), ( R3 
(v) ≥ 1 2 -1 × 1 2 = 0 by (R6). Suppose u is a good 2-vertex. Let w be the other neighbour of u (d(w) = 3). If w is a 3 3 -vertex, then ω * (v) ≥ 1 2 -2 × 1 12 -1 × 1 3 = 0 by (R4) and (R5). If w is not a 3 3 -vertex, then ω * (v) ≥ 1 2 -2 × 1 12 -1 × 1 4 > 0 by (R2) and (R4). • Vertex v is a 3 0 -vertex. Hence, ω * (v) ≥ 1 2 -3 × 1 12 > 0 by (R3).
This completes the proof.

Third part

Let H be a counterexample to Theorem 2.3 minimizing |E(H)| + |V (H)|: H is not strong edgecolourable with eight colours, mad(H) < 8 3 and for any edge e, χ ′ s (He) ≤ 8. One can assume that H is connected; otherwise, by minimality of H, we can colour each connected component independently. Recall that ω(x) = d(x) - 8 3 .

Claim 5. The minimal counterexample H to Theorem 2.3 satisfies the following properties:

1. H does not contain 1 --vertices.

2. H does not contain two adjacent 2-vertices.

3.

H does not contain a 3-vertex adjacent to three 2-vertices.

4.

H does not contain a 2-vertex adjacent to two 3 2 -vertices.

5.

H does not contain a 3-vertex adjacent to a 3 2 -vertex and a 2-vertex.

6.

H does not contain a 3-vertex adjacent to two 3 2 -vertices.

Claims 5.1 to 5.4 are proved in [START_REF] Hocquard | Strong edge colouring of subcubic graphs[END_REF]. Before proving Claims 5.5 and 5.6, we need to introduce some definitions and notations. Let φ be a partial strong 8-edge-colouring of H. For an edge uv, we denote by P C φ (uv) the set of permissible colours that would extend φ to uv. Let SC(N 1 (uv)) be the set of colours used by edges at distance 1 from uv. Proposition 1. Suppose H contains a 3 2 -vertex x. Let u and r be its adjacent 2-neighbours, and let y be its adjacent 3-neighbour. Also let v and s be the other neighbours (distinct from x) of u and r respectively. Finally let z and t be the other neighbours of y (distinct from x).

Consider φ a strong 8-edge-colouring of H ′ = (V (H), E(H) \ {xy, xu, uv, xr, rs}). Then φ satisfies the following:

P1. P C φ (uv) ∩ P C φ (rs) = ∅. P2. {φ(zy), φ(yt)} ∩ (P C φ (uv) ∪ P C φ (rs)) = ∅. P3. P C φ (xy) ⊆ P C φ (uv) ∪ P C φ (rs). P4. SC(N 1 (uv)) = SC(N 1 (rs)). P5. |P C φ (uv)| = 2 = |P C φ (rs)|. P6. SC(N 1 (uv)) ∩ {φ(zy), φ(yt)}) = ∅.

Proof

In the following we prove the proposition for each of the items. P2. By contradiction, assume that φ(zy) ∈ P C φ (uv). We colour uv with φ(zy). Then we colour xy (|P C φ (xy)| ≥ 2; hence it remains at least one colour). We colour sequentially rs (at least one available colour), xr (at least two available colours, since zy and uv have the same colour), and ux (at least one available colour, again zy and uv have the same colour). To summarize Proposition 1 one can assume without loss of generality that:

P C φ (uv) = {1, 2}, P C φ (rs) = {3, 4}, φ(zy) = 5, φ(yt) = 6, SC(N 1 (uv)) = SC(N 1 (rs)) = {7, 8}, P C φ (xy) ⊆ {1, 2, 3, 4}.
Now we prove the remaining parts of the claim.

Proof of Claim 5.5. This follows from the previous discussion in Proposition 1. By contradiction suppose t is a 2-vertex. Observe that the edge yt is coloured with α and has also an other available colour, say β (at most six other coloured edges at distance at most 2). Now β / ∈ P C φ (uv) ∪ P C φ (rs). Otherwise we permute α and β, and this contradicts P2. It suffices then to colour xy with β, the edges uv and ux with the colours of P C φ (uv), and the edges rs and xr with the colours of P C φ (rs). This extends φ to whole H.

Proof of Claim 5.6. By contradiction, suppose H contains a 3-vertex y adjacent to two 3 2 -vertices x 1 and x 2 . Let u i and r i be the two 2-neighbours of x i (i = 1, 2). Finally let v i and s i be the two other neighbours of u i and r i respectively (i = 1, 2). Consider H ′ = (V (H), E(H) \ {yx 1 , x 1 u 1 , u 1 v 1 , x 1 r 1 , r 1 s 1 }). By minimality of H, H ′ admits a strong 8-edge-colouring φ. By the previous discussion and without loss of generality one • Assign φ(xz) = φ(yz) and recolour yz with a free colour.

• Assign φ(xz) = φ(xy) and recolour xy with a free colour. This is a contradiction.

6.

Let ztu be such a path and y and v be the 2-vertices neighbours of z and u respectively.

Let x be the neighbour of y distinct from z and w be the neighbour of v distinct from u. By Claims 6.1, 6.2 and 6.3, x and w are 3-vertices. By Claims 6.3 and 6.4, t is a 3 0 -vertex. Let z 1 , t 1 and u 1 be the neighbours of z, t and u respectively. Since H has no triangles (by Claim 6.5), we have the configuration depicted in Figure 7. Note that in H there might exist edges z 1 t 1 , t 1 u 1 or z 1 u 1 and the representation of the given figure is a general one.

x 1 x 2 x y z t u v w z 1 z 2 z 3 t 1 t 2 t 3 u 1 u 2 u 3 w 1 w 2 Figure 7:
The configuration of Claim 6.6

Let H ′ = Hy. By minimality of H, H ′ can be strongly edge-coloured with at most nine colours. Let us consider such a colouring φ. We show how to extend φ to H. In order to complete the colouring of H one need to assign a colour to xy and yz. By counting the number of edges in N 2 (xy), it is easy to see that there is at least one colour left for xy, so we assign it to this edge. Now, if there is a colour left for yz, then we are done. Therefore, since |N 2 (yz)| = 9, all the colours of 9 must appear exactly once in N 2 (yz) and without loss of generality we can fix the colours of all edges of N 2 (yz) as depicted in Figure 8.

x 1 x 2 x y z t u v w z 1 z 2 z 3 t 1 t 2 t 3 u 1 u 2 u 3
Observe that {5, 6, 7, 9} ⊆ SC(N 2 (xy)) as otherwise one could recolour xy with one of these colours and assign φ(yz) = 1. Therefore, all edges incident to x 1 and x 2 for which we did not fix a colour yet, must have distinct colours from the set {5, 6, 7, 9}. If one could recolour tu with 1, 2, 3, 5 or 6 then yz could be coloured 9 which is impossible. Hence {1, 2, 3, 5, 6} ⊆ SC(N 2 (tu)). Observe that t cannot be neither x 1 nor x 2 as none of the edges incident to t is coloured 2 or 3. Also, since u is adjacent to v which is a 2-vertex, by Claim 6.4 u cannot be neither x 1 nor x 2 . Therefore, if one could permute the colours of tu and zt, then 8 would not belong to SC(N 2 (xy)) any more, thus xy could be recoloured with 8 and yz could be assigned colour 1. Therefore, 8 ∈ {φ(u 1 u 2 ), φ(u 1 u 3 ), φ(vw)}.

Observe that recolouring zz 1 with 2 or 3 must not be possible as otherwise colour 4 could be used for yz to complete the colouring of H. Hence out of all the edges incident to z 2 and z 3 , two of them must be coloured 2 and 3 respectively. Let us uncolour edges xy, zz 1 , zt and tu. We claim that it is not possible to assign colour 4 to tu. Indeed, if tu could be coloured with 4, then we assign φ(tu) = φ(xy) = 4 and by using the fact that two out of all the edges incident to z 2 and z 3 must be coloured 2 and 3 respectively, one of the following assignments of colours would be valid:

• φ(yz) = 1, φ(zz 1 ) = 9 and φ(zt) = 8.

• φ(yz) = 9, φ(zz 1 ) = 1 and φ(zt) = 8.

• φ(yz) = 1, φ(zz 1 ) = 8 and φ(zt) = 9.

Therefore, tu cannot be assigned colour 4 and we must have the following statement:

{φ(t 1 t 2 ), φ(t 1 t 3 ), φ(uu 1 ), φ(u 1 u 2 ), φ(u 1 u 3 ), φ(uv), φ(vw)} = {1, 2, 3, 4, 5, 6, 8} (⋆) 
Observe that in (⋆) both sets have the same cardinality and hence φ(t 1 t 2 ), φ(t 1 t 3 ), φ(uu 1 ), φ(u 1 u 2 ), φ(u 1 u 3 ), φ(uv), φ(vw) are pairwise distinct and this implies that there is no edge between t 1 and u 1 .

Consider the edge uv. Since at the beginning of the proof we have fixed φ(tt 1 ) = 7, φ(zt) = 8 and φ(tu) = 9, obviously φ(uv) ∈ 6 .

We distinguish the following cases for φ(uv):

(a) Suppose φ(uv) ∈ {1, 2, 3, 5, 6}. We will denote this colour a. By (⋆) we know that φ(t 1 t 2 ) = a and φ(t 1 t 3 ) = a. We uncolour uv and do the following assignment of colours: φ(xy) = 1, φ(yz) = 9, φ(zt) = 8 and φ(tu) = a. If we manage to colour uv, then we are done. In order to do this, observe that by (⋆), {9, φ(t

1 t 2 ), φ(t 1 t 3 )} ∩ {φ(uu 1 ), φ(u 1 u 2 ), φ(u 1 u 3 ), φ(vw)} = ∅.
Therefore we could use one of the three colours 9, φ(t 1 t 2 ) or φ(t 1 t 3 ) for uv, distinct from the colours assigned to ww 1 and ww 2 . A contradiction.

(b) We have φ(uv) = 4. Let us come back to the fixed colouring of Figure 8. If one could recolour zt with 2 or 3, then yz could be coloured 8. Therefore, two of the three edges t 1 t 2 , t 1 t 3 and uu 1 must be coloured with 2 and 3 respectively. Without loss of generality we can assume that φ(t 1 t 2 ) = 2. Moreover, by (⋆) φ(uv) ∈ {φ(t 1 t 2 ), φ(t 1 t 3 )} = {2, φ(t 1 t 3 )}, which means that {φ(ww 1 ), φ(ww 2 )} = {2, φ(t 1 t 3 )} and without loss of generality we have φ(ww 1 ) = 2. Now, we uncolour zz 1 , zt, uv and assign φ(xy) = φ(tu) = 4. We obtain a valid partial stong edge-colouring of the configuration as depicted in Figure 9. Since φ(t 1 t 3 ) = 9 and none of the other edges of N 2 (uv) is coloured 9, we assign φ(uv) = 9.

x 1 x 2 x y z t u v w z 1 z 2 z 3 t 1 t 2 t 3 u 1 u 2 u 3 w 1 w 2 4 
We claim that out of all edges incident to z 2 and z 3 , two of them must be coloured with 1 and 9. Indeed, if it is not the case then by assigning φ(zt) = 8, we could assign either φ(zz 1 ) = 1 and φ(yz) = 9 or φ(zz 1 ) = 9 and φ(yz) = 1 and we would be done. Therefore, four edges incident to z 2 and z 3 except z 1 z 2 and z 1 z 3 must have distinct colours which are namely 2, 3, 1 and 9. If none of the edges t 1 t 3 and uu 1 is coloured 1 then one of the following assignments of colours would be a valid strong edge-colouring:

• φ(yz) = 1, φ(zt) = 8 and φ(zz 1 ) = 9.

• φ(yz) = 9, φ(zt) = 8 and φ(zz 1 ) = 1.

• φ(yz) = 9, φ(zt) = 1 and φ(zz 1 ) = 8.

Therefore, one of the edges t 1 t 3 and uu 1 must be coloured 1. On the other hand, as proved previously, one of these edges must be coloured 3. Therefore, {φ(t 1 t 3 ), φ(uu 1 )} = {1, 3}. Recall from the previous paragraph that in N 2 (zz 1 ), none of the edges is coloured 7. We recolour zz 1 with 7 and uncolour edges tt 1 and tu. Observe that by (⋆) 7 ∈ {φ(uu 1 ), φ(u 1 u 2 ), φ(u 1 u 3 ), φ(vw), φ(ww 1 ), φ(ww 2 )}, so we recolour uv with 7. Moreover, we assign colour 1 to yz and obtain the partial strong edge-colouring of the configuration as depicted in Figure 10. In order to finish the colouring of H we must assign colours to zt, tt 1 and tu. We know that φ(t 1 t 3 ) ∈ {1, 3} and φ(t 1 t 2 ) = 2. Let us consider temporarily the colouring given in Figure 8. If one could recolour edge tt 1 with 5 or 6, then colour 7 could be assigned to yz which implies that out of all the edges incident to t 2 and t 3 , two of them must be coloured 5 and 6 respectively. Applying these to the colouring given in Figure 10, we conclude that one of the following assignments of colours is valid:

• φ(zt) = 8, φ(tt 1 ) = 4 and φ(tu) = 9.

• φ(zt) = 8, φ(tt 1 ) = 9 and φ(tu) = 4.

• φ(zt) = 9, φ(tt 1 ) = 8 and φ(tu) = 4.

Optimality

In [START_REF] Hocquard | Strong edge colouring of subcubic graphs[END_REF], the question about the optimality of the bounds on the strong chromatic index of subcubic graphs in terms of maximum average degree was raised. Let f (r) = inf{mad(G) | χ ′ s (G) > r}. It was proved that: The authors provided graphs reaching the upper bounds for f (6), f (7) and f (9), as depicted in Figure 11.

f (6) ≤
By Theorem 2, we have: Hence the upper bounds on the maximum average degree for f (6), f (7) and f (9) are best possible. Although, we improved the lower bound for f [START_REF] Fouquet | Strong edge-colorings of graphs and applications to multi-k-gons[END_REF] given in [START_REF] Hocquard | Strong edge colouring of subcubic graphs[END_REF] from 13 5 to 8 3 , we did not manage to find a better upper bound. The problem of finding this value is even more challenging since till now we do not have an example of subcubic graph G having χ ′ s (G) = 9 and mad(G) < 20 7 .

(a) A graph G with mad(G) = 

Proof of Theorem 4

We prove Theorem 4 by contradiction. Suppose the statement is not true and let H be a counterexample minimizing |V (H)| + |E(H)|. We will prove some structural properties of H in order to show that H does not exist.

In the following we use Claim 6 of the proof of Theorem 2.4 as the proof of this claim remains valid within the hypothesis of Theorem 4. 

Proof

Suppose there exists such a cycle C as depicted in Figure 12. Observe that x, z, t, u, v, x 1 , z 1 , t 1 , v 1 are 3-vertices by Claims 6.2, 6.3, 6.4 and u 1 is a 3-vertex by Claim 6.6.

Figure 1 :

 1 Figure 1: The prism P has χ ′ s (P ) = 9

2 .

 2 H does not contain a path uvw where u, v and w are 2-vertices.

3 .

 3 H does not contain a 3-vertex adjacent to two 2-vertices one of them being bad.

4 .

 4 H does not contain two 3 3 -vertices having a 2-vertex as a common neighbour.5. H does not contain a 3 3 -vertex u with one of the neighbours, say v, adjacent to a 3 2 -vertex w having as neighbours a 2-vertex w 1 and a 3-vertex w 2 , such that: (a) either w 1 is adjacent to a 3 3 -vertex. (b) or w 2 is a 3 2 -vertex.

Figure 3 :

 3 Figure 3: A fixed precolouring of the configuration of Claim 4.5

Figure 4 :

 4 Figure 4: The configuration of Claim 4.5.a

Figure 5 :

 5 Figure 5: The configuration of Claim 4.5.b

Figure 6 :

 6 Figure 6: The configuration of Claim 4.5.c

  adjacent to three 2-vertices. By Claim 4.3 these 2-vertices are good. Moreover, by Claim 4.4 none of these 2-vertices is adjacent to another 3 3 -vertex. Hence, ω * (v) = 1 2 -3 × 1 6 = 0 by (R1). • Vertex v is adjacent to exactly two 2-vertices. By Claim 4.3, none of these 2-vertices is bad. Suppose that none of these 2-vertices are adjacent to a 3 3 -vertex. Hence, ω * (v) ≥ 1 2 -2 × 1 4 = 0 by (R2). Assume now that one of the 2-vertices adjacent to v is adjacent to a 3 3 -vertex (note that among the 2-vertices adjacent to v, at most one can be adjacent to a 3 3 -vertex by Claim 4.5.a). Hence v cannot be adjacent to a 3 2 -vertex by Claim 4.5.b. Then, v must have either a 3 1 -vertex or a 3 0 -vertex as a neighbour. Hence, ω *

  ) (or (R4)) and (R5).• Vertex v is adjacent to exactly one 2-vertex u. If u is a bad 2-vertex, then by Claim 4.5.c, v cannot be adjacent to a 3 2 -vertex w which has a 2-neighbour y adjacent to a 3 3 -vertex. Hence, ω *

P1.

  Suppose P C φ (uv) ∩ P C φ (rs) = ∅. Let α be a colour of the intersection. First we colour uv and rs with α, then we colour xy (|P C φ (xy)| ≥ 2 ; hence it remains at least one colour). Finally we colour ux (|SC(N 2 (ux))| ≤ 7) and xr (|SC(N 2 (ux))| ≤ 8, but colour α is repeated twice).

P3.

  By contradiction. Observe that |P C φ (uv)| ≥ 2. Let α, β ∈ P C φ (uv). Similarly, let γ, λ ∈ P C φ (rs). Finally let ζ ∈ P C φ (xy) \ (P C φ (uv) ∪ P C φ (rs)). Assign ζ to xy, α to uv, β to ux, γ to rs. Finally, by P1 and P2 we can assign colour λ to xr. P4. By contradiction. Colour first xy, then uv and rs. Count the number of available colours for ux and xr. If one of them has two available colours, then we colour it the last. So each has one available colour. Suppose these two colours are the same. Then we have SC(N 1 (uv)) = SC(N 1 (rs)). P5. By contradiction suppose |P C φ (uv)| ≥ 3 and α, β, γ ∈ P C φ (uv). Suppose P C φ (xy) P C φ (uv). Colour first xy with a colour that does not appear in P C φ (uv), then rs. Assign α to uv, β to ux, and γ to xr (possible by P1, P2 and P4). Now suppose that P C φ (xy) ⊆ P C φ (uv) and P C φ (xy) contains α, β. Colour xy with α, ux with β, uv with γ, xr and rs with the colours of P C φ (rs) (that is possible by P1 and P2). P6. If not true one can colour sequentially xy, uv, rs, xr, ux.

Figure 8 :

 8 Figure 8: The initial fixed colouring of the edges of the configuration of Claim 6.6. Edge yz is the only non-coloured edge.

Figure 9 :

 9 Figure 9: Case (b) of the proof of Claim 6.6. The dashed edges are not coloured.

Figure 10 :

 10 Figure 10: A partial strong edge-colouring of the configuration of Claim 6.6. The dashed edges are not coloured.

7 3

 7 and χ ′ s (G) > 6.(b) A graph G with mad(G) = 5 2 and χ ′ s (G) > 7.(c) A graph G with mad(G) = 20 7 having χ ′ s (G) > 9.

Figure 11 :

 11 Figure 11: Graphs proving the optimality of the bounds of parts 1, 2 and 4 of Theorem 2.

Claim 7 .

 7 H has no 6-cycle C = xyztuvx where y is a 2-vertex.

  4. H does not contain a path uvw where u, v and w are 2-vertices.5.H does not contain a path uvw where u, v and w are three light 3-vertices.ProofSuppose H contains a triangle xyz, where x is a light 3-vertex and let x 1 be the 1-vertex neighbour of x. By minimality of H, the graph Hxx 1 can be strongly edge-coloured with at most six colours. Since |N 2 (xx 1 )| ≤ 5, every colouring of Hxx 1 using the minimum number of colours can be extended to H.

	Claim 2. The minimal counterexample H to Theorem 2.1 satisfies the following properties:
	1. H does not contain a triangle xyz, where x is a light 3-vertex.
	2. H does not contain a path stuvw where s, t, v and w are four light 3-vertices, u is a 3-vertex
	adjacent to a light 3-vertex x.

  2 minimizing |E(H)| + |V (H)|: H is not strong edge-colourable with seven colours, mad(H) < 5 2 , and for any edge e, χ ′ s (He) ≤ 7. Recall that ω(x) = d(x) -5 2 . One can assume that H is connected; otherwise, by minimality of H, we can colour each connected component independently. In this subsection a 3-vertex adjacent to a bad 2-vertex is a light 3-vertex. Otherwise it is a heavy 3-vertex. Claim 4. The minimal counterexample H to Theorem 2.2 satisfies the following properties:

1. H does not contain 1 --vertices.

$ Partially supported by ANR-NSC Project GRATEL -ANR-09-blan-0373-01 and NSC99-2923-M-110-001-MY3

can assume that P C φ (u 1 v 1 ) = {1, 2}, P C φ (r 1 s 1 ) = {3, 4}, φ(zy) = 5, φ(yx 2 ) = 6, SC(N 1 (u 1 v 1 )) = SC(N 1 (r 1 s 1 )) = {7, 8}, P C φ (yx 1 ) ⊆ {1, 2, 3, 4}.

Hence observe that if we can change the colour of yx 2 , then we will be able to extend the colouring (by P2 or P6). To do this uncolour x 2 r 2 . Recolour yx 2 with an available colour distinct from 6. Colour x 2 r 2 . We are done.

We apply now a discharging procedure with the following rules:

(R) Every 3-vertex gives 1 3 to each adjacent 2-vertex and to each adjacent 3 2 -vertex.

Let v ∈ V (H) be a k-vertex. By Claim 5.1, k ≥ 2.

Case k = 2. Observe that ω(v) = -2 3 . By Claim 5.2, the neighbours of v have degree 3. Hence v receives twice 1 3 by (R), and so ω

3 . We have the following cases for v: • If v is not adjacent to any 2-vertices, then v is adjacent to at most one 3 2 -vertex by Claim 5.6, and so gives at most 1 3 by (R) ; it follows ω * (v) ≥ 1 3 -1 3 = 0. • If v is adjacent to exactly one 2-vertex, then its 3-neighbours are not 3 2 -vertices by Claim 5.5. It follows that ω 1 3 from its 3-neighbour (which is not a 3 2 -vertex by Claim 5.5) and gives 1 3 to each adjacent 2-vertex. Hence ω

• The case where v is adjacent to three 2-vertices does not appear by Claim 5.3. This completes the proof.

Fourth part

Let H be a counterexample to Theorem 2.4 minimizing |V (H)| + |E(H)|. We can assume that H is connected as otherwise, by minimality of H, we can colour each connected component independently. Recall that ω(x) = d(x) -20 7 . We first prove some structural properties of H. Claim 6. The minimum counterexample to Theorem 2.4 does not contain:

1. 1 --vertices.

2. two adjacent 2-vertices. 

Proof

The proofs of first four parts are given in [START_REF] Hocquard | Strong edge colouring of subcubic graphs[END_REF]. Let u, v and t be the neighbours of x, y and z respectively (u, v and t being outside the triangle). Let H ′ = Hx. By minimality of H, we have χ ′ s (H ′ ) ≤ 9. Consider a strong edge-colouring φ of H ′ using the minimum number. We show how to extend it to H. We colour xu and xy (in each case there exists a free colour). If we have a colour left for xz, then we are done. Therefore, |N 2 (xz)| = 9 and |SC(N 2 (xz))| = 9, which implies that all edges in N 2 (xz) are assigned pairwise distinct colours. Now, one of the following assignment of colours is possible: This is a contradiction.

The discharging rules are defined as follows:

(R1) Every 3 0 -vertex gives 1 7 to each adjacent 3 1 -vertex. (R2) Every 3 1 -vertex gives 3 7 to its adjacent 2-vertex.

Case k = 2. Observe that ω(v) = -6 7 . By Claims 6.2 and 6.3, v is adjacent to two 3 1 -vertices. Hence, by (R2), ω * (v) = - 6 7 + 2 × 3 7 = 0. Case k = 3. Observe that ω(v) = 1 7 . By Claim 6.3, v can be a 3 1 -vertex or a 3 0 -vertex. Suppose, v is a 3 1 -vertex. By Claim 6.4 and by (R1) and (R2), ω ′ (v) = 1 7 + 2 × 1 7 -3 7 = 0. Suppose now that v is a 3 0 -vertex. By Claim 6.6, v is adjacent to at most one 3 1 -vertex. Then by (R1), ω * (v)

This completes the proof. Consider the graph H ′ = Hy. Consider a strong edge-colouring φ of H ′ using at most nine colours. We will extend φ to H in order to obtain a contradiction. Observe that |SC(N 2 (xy))| ≤ 8, thus there exists a colour left for xy. If we can colour yz, then we are done. Therefore, since |N 2 (yz)| = 9, we must have SC(N 2 (yz)) = 9 and every colour is used exactly once in N 2 (yz). Therefore, we claim that |SC(N 2 [xy])| = 9 as otherwise one could recolour xy with another colour and obtain a free colour for yz. Without loss of generality we can assume that φ(zt) = 1, φ(zz 1 ) = 2, φ(xx 1 ) = 3, φ(vx) = 4, φ(uv) = 5, φ(vv 1 ) = 6, φ(x 1 x ′ 1 ) = 7, φ(x 1 x ′′ 1 ) = 8 and φ(xy) = 9. Since SC(N 2 (yz)) = 9 we have {φ(tu), φ(tt 1 ), φ(z 1 z ′ 1 ), φ(z 1 z ′′ 1 )} = {5, 6, 7, 8}. Observe that since 5 ∈ SC(N 2 (tu)) and 5 ∈ SC(N 2 (tt 1 )), without loss of generality we can assume that φ(z 1 z ′ 1 ) = 5. Also, 6 ∈ SC(N 2 (tu)) and therefore φ(tu) ∈ {7, 8}. Since colours 7 and 8 are fixed only on edges x 1 x ′ 1 and x 1 x ′′ 1 respectively, we can assume without loss of generality that φ(tu) = 7 and therefore {φ(tt 1 ), φ(z 1 z ′′ 1 )} = {6, 8}. Figure 13 shows the unique colouring (up to permutation) of the edges described previously.

We claim that one of the edges

must have the same colour as the edge zt (colour 1 in Figure 13). Otherwise, one could change the colour of vx to the colour of zt and colour yz with 4. Similarly, 2 ∈ {φ(v 1 v ′′ 1 ), φ(uu 1 )} (we can assign 2 to vx and 4 to yz). Observe that one can use the same argument conversely (by trying to assign to tz the colour of vx) by recalling from the previous paragraph that {φ(tt 1 ), φ(z 1 z ′′ 1 )} = {6, 8}. Hence, we conclude that one of the edges t 1 t ′ 1 or t 1 t ′′ 1 , say t 1 t ′ 1 , must have the same colour as the edge vx (colour 4 in Figure 13). If it is possible to permute the colours of edges uv and vx, one could obtain a free colour (colour 4) for yz, thus either uu ′ 1 or uu ′′ 1 must have the same colour as vx (colour 4 in Figure 13). Without loss of generality φ(u 1 u ′ 1 ) = 4. If it is possible to permute the colours of edges tu and uv (7 and 5 respectively), then one could obtain a free colour for yz. Hence either φ(v 1 v ′′ 1 ) = 7 or φ(t 1 t ′′ 1 ) = 5 (or both).

1. Suppose φ(v 1 v ′′ 1 ) = 7. Hence φ(uu 1 ) = 2. If one can permute the colours of tu and zt, such that tu is assigned colour 1 and zt is assigned colour 7, then xy could be recoloured with 1 and colour 9 would be free for yz. Hence φ(u 1 u ′′ 1 ) = 1. But now it is possible to permute the colours of xy and uv and to use colour 9 for yz. A contradiction.

2. Suppose φ(t 1 t ′′ 1 ) = 5. If it is possible to change the colour of edge zt (which is 1) to the colour of the edge xx 1 (which is 3), then yz could be coloured with 1. Hence φ(uu 1 ) = 3 and therefore, φ(v 1 v ′′ 1 ) = 2. By permuting the colours of edges vx and xy (4 and 9 respectively) and by recolouring zt with 9, we can colour yz with 1. A contradiction. Consider now the graph H 1 obtained from H by replacing each path of two edges xyz, where y is a 2-vertex and x, z are 3-vertices, by an edge xz. Clearly, H 1 is planar. By Claim 6.5 H has no triangle and since it does not contain an induced 4-cycle, H 1 is simple. Moreover, since it has no 1 --vertices (Claim 6.1) and no two adjacent 2-vertices (Claim 6.2), H 1 is 3-regular. Therefore, H 1 must contain a face of length at most 5, say C ′ . Recall that H has girth at least 6, thus by Claim 6.2, Claim 6.3 and Claim 6.4, C ′ cannot be obtained from a cycle of H of length l ≥ 7. Therefore, in H there exists a cycle C of length 6 having a vertex of degree 2 on its boundary. But this is impossible by Claim 7. Hence H cannot exist.

This completes the proof of Theorem 4.