
HAL Id: hal-00686001
https://hal.science/hal-00686001

Submitted on 6 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Active XML-based Framework for Integrating
Complex Data

Rashed Salem, Omar Boussaïd, Jérôme Darmont

To cite this version:
Rashed Salem, Omar Boussaïd, Jérôme Darmont. An Active XML-based Framework for Integrating
Complex Data. 27th Annual ACM Symposium On Applied Computing (SAC 2012), Mar 2012, Riva
del Garda (Trento), Italy. pp.888-892. �hal-00686001�

https://hal.science/hal-00686001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


An Active XML-based Framework for
Integrating Complex Data

Rashed Salem, Omar Boussaïd and Jérôme Darmont
Université de Lyon (ERIC Lyon 2)

5 av. P. Mendès-France, 69676 Bron Cedex, France
{rashed.salem, omar.boussaid, jerome.darmont}@univ-lyon2.fr

ABSTRACT
Data integration is a critical problem in data warehousing
and decision-support systems. Traditional data integration
systems are very successful in integrating structured data,
but structured data represent only a small subset of inter-
esting data that could be warehoused by many enterprises.
Current data integration systems also lack of self-managing
capabilities. Therefore, we propose a data integration frame-
work for integrating complex data actively. The purpose of
our framework is twofold. Firstly, it integrates complex data
using Web standards into an Active XML (AXML) reposi-
tory. Secondly, beside warehousing logged events into event
repository, it exploits active rules and framework events min-
ing to self-manage, automate and activate different data in-
tegration tasks. Finally, we have implemented a prototype
framework as a web application.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administra-
tion—Data warehouse and repository ; H.3.5 [Online In-
formation Services]: Web-based services

General Terms
Design, Languages, Management

Keywords
Active XML, active integration, active rules, complex data,
integration services.

1 Introduction
Data warehousing is a very successful approach for decision-
support. Classical data warehousing is well adapted to in-
tegrate structured data, but structured data represent only
a small subset of interesting data that could be warehoused
by many enterprises [9]. Indeed, there are huge volumes
of heterogeneous data (e.g., semi-structured/XML, emails,
Web, text, and multimedia data) that are available and dis-
tributed over networks. Such data can be termed as complex
data. Data may be qualified as complex if they are: diversely
structured, represented in various formats, originating from
several different sources, and/or changing in terms of defini-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 26-30, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

tion or value over time [5]. As “simple” data, complex data
must be warehoused into a unified storage to be later ana-
lyzed for decision-support purposes. However, the classical
warehousing approach [6, 7] is not very adequate when deal-
ing with complex data, particularly in the data integration
phase. Therefore, there is an increasing demand to handle
the complexity aspects of data sources.

Moreover, traditional data integration systems are based
on batch ETL (Extraction, Transformation, and Loading),
which is achieved at regular interval (e.g., nightly, weekly
or monthly), conforming to a static scheduling plan. ETL
processes perform integration tasks passively, and they can-
not satisfy real-time requirements [11, 12], specifically when
integrating complex data. Nevertheless, there is an increas-
ing need to eliminate (or rather minimize) user intervention
in processing complex and routine data integration tasks, to
provide event-based autonomous integration systems, and
to refresh integrated data dynamically, in real-time.

In this paper, we are motivated to tackle the two afore-
mentioned problems of traditional integration systems, i.e.,
integrating complex data into a unified repository for sup-
porting complex queries and analysis, and performing data
integration tasks autonomously in reactive and dynamic way.
Therefore, we propose an innovative framework for this pur-
pose. To the best of our knowledge, there exists no such in-
tegration framework in the literature that combines reactive,
real-time features and complex data context together into a
warehousing environment. Complementing these features is
necessary to meet a wide variety of today’s operational busi-
ness intelligence applications, which are typically based on
active and real-time data warehousing. To integrate complex
data, the framework exploits XML to cope with heterogene-
ity of data, and employs Web services (WSs) to tackle the
distribution and interoperability problems of data sources.
Unlike in traditional data integration systems, specifically
mediation-based approaches, the integrated data are ware-
housed into so-called Active XML (or AXML) repository.
AXML documents are XML documents where some of the
data are given explicitly, while other parts are given implic-
itly by embedding calls to WSs [2]. In AXML repository,
data are not only warehoused but also functions (or services)
for integrating up-to-date information. Embedded AXML
services are invoked implicitly or explicitly realizing on-the-
fly data integration, for warehousing (not mediation).

The rest of this paper is organized as follows. Data in-
tegration approaches and positioning our approach are dis-
cussed in section 2. Section 3 introduces our framework for
integrating complex data actively. The framework imple-
mentation is demonstrated in section 4. Section 5 discusses
a case study to validate our framework concepts. Finally,
we conclude and discuss future research trends in section 6.



2 Data Integration Approaches
There are two main families of approaches to integrate data:
virtual views and materialized views (warehousing).

Virtual Data Integration . In this approach, data are ac-
cessed from the sources on demand when a user submits a
query to the information system (e.g., mediators). Mediated
systems integrate data from heterogeneous data sources by
providing a virtual view of all data sources (e.g., the TSIM-
MIS [4] and Ariadne [8] projects). Mediated systems provide
the single mediated schema to the user, and users pose their
queries w.r.t. this schema. In this context, XML and WSs
are used efficiently for integrating web data in federated sys-
tems [13], and in peer-to-peer (P2P) and mediated systems
(e.g., the AXML project [1, 2]). The major advantage of
this approach is its flexibility, since mediators are able to re-
formulate and/or approximate queries to better satisfy the
user needs. However, when the data sources are updated,
modified data are lost, which is not pertinent in a decision-
support context where historicity of data is important.

Data Warehousing . In this approach, relevant data are
filtered from data sources and pre-stored into a repository
(namely a warehouse) that can be later queried by users [6,
7]. This approach is mainly designed for decision-making
purposes and supports complex query operations [5]. Com-
pared to virtual data integration approaches, classical ware-
housing approaches lack of data freshness when dealing with
data sources that may update their contents very frequently.
They also cannot handle a large number of heterogeneous
and distributed data sources that need to store their data in
a central repository and keep them always up-to-date.

To improve data freshness and realize real-time decision
support systems, a framework for building Zero-Latency Data
Warehouse (ZLDW) is proposed [12]. It captures and loads
data from heterogeneous data sources using a continuous
data integration technique. Moreover, it combines the inte-
gration technique with an Active Data Warehousing (ADW)
approach [11]. ADW exploits active rules to achieve auto-
decision-making by minimizing user intervention in process-
ing complex analysis tasks, so-called analysis rules.

Discussion and Positioning . Although our approach con-
forms to warehousing systems, it inspires some virtual ap-
proach features. For instance, it integrates data from a large
number of heterogeneous and distributed data sources that
are likely to be updated frequently, due to using AXML.
Different than virtual approach whereas AXML can be used
for mediation-based integration, our approach stores rele-
vant data using AXML. The target repository contains not
only the integrated data but also calls to integration ser-
vices. Hence, both historical data and real-time data are
integrated together in the AXML repository. Accordingly,
a better performance can be achieved from saving response
time when querying data, especially if data sources are phys-
ically located far from the integration system.

Comparing our approach to related works, i.e., ZLDW
and ADW, ZLDW must update data more frequently to im-
prove data freshness using push/pull technology via a mes-
sage queuing system. The ZLDW and ADW approaches use
traditional batch data integration to integrate data that do
not need to be continuously updated and integrated. There
is also no mention on how to handle heterogeneity and dis-
tributed issues of data sources. In a different way, while
ZLDW and ADW approaches use active rules for automat-
ing routine analysis tasks, our approach employs active rules
along with event mining to automate and reactivate data in-
tegration, the early phase of data warehousing process.

3 Complex Data Integration Framework
Data integration is a crucial phase in data warehousing. The
complexity issues of data and the autonomous integration
requirements need to be handled. We present in this sec-
tion our framework to accomplish the integration tasks on
complex data in an original way. Metadata-based integra-
tion services are employed for performing data integration
tasks. The target of these tasks is a set of AXML docu-
ments, warehoused in a native XML-based repository. Em-
ploying XML and WSs in integrating data ensures tackling
data heterogeneity, interoperability, distribution and fresh-
ness. In addition to “data sources” as input and the unified
“AXML repository” as target, the data integration frame-
work consists of three main modules: integration services,
logging events, and management and reactivity, as shown
in figure 1. Framework processes are represented as rectan-
gles, metadata as rounded rectangles and flow of data among
framework components are shown using arrows. Framework
modules are briefly discussed in following sections. A proto-
type framework including different components and services
is implemented and deployed as a Web application.

Relational 
sources

XML sources

MM sources

AXML
Repository

Metadata 
Extraction

Extraction Interfaces

Loading Interfaces

Change 
Detection

ECA Engine AXML Engine
+ More

Complex data 
sources

Event Mining

Event Repository

Logging                                     Events

Management & Reactivity

AXML 
Query

Input
Schema

Src.-Srv.-Target
Mapping

Source 
Events

Service 
Events

Querying 
Events

ECA Rules

Extraction Transformation Loading

Integration services

Figure 1: Complex data integration framework

3.1 Integration Services
As in traditional data integration frameworks, ETL tasks
are the main processes of our framework, for integrating
data from their sources to a target. Nevertheless, such ETL
tasks are performed via a set of metadata-based services.
Depending on metadata ensures minimal user intervention
for maintaining services. Moreover, integration services are
invoked autonomously either due to triggering ECA rules
(where the action part invokes a specific integration ser-
vice), or due to querying the embedded calling services in
AXML documents. Beside ETL services, some aided inter-
faces (i.e., extraction and loading interfaces), processes (i.e.,
metadata extraction), and metadata (i.e., input schema,
sources-to-services, and services-to-target mapping schema)
are required to accomplish different data integration tasks.

ETL Services. ETL services involve three main tasks. i)
extracting relevant data from a variety of data sources us-
ing extraction services. ii) transforming extracted data into
XML format using transformation services. iii) loading trans-
formed data into the AXML repository using loading ser-
vices. ETL services are based on a metadata-driven ap-
proach for integrating relevant data. The metadata-driven
approach allows users to specify “what” data need to be in-
tegrated, without regarding “how” to integrate them. Due
to the heterogeneity of data sources, extraction services can
utilize several types of interfaces. Transformation services
involve several functions or services to manipulate extracted
data. Loading services help load transformed data into the



AXML repository. The type of data to be loaded is defined
either as “explicit data” or “implicit data” in the services-to-
target mapping schema. An explicit data type is mapped to
a static element in the corresponding target of AXML docu-
ments, while an implicit data type is mapped to a dynamic
element that represented as call to service.

Extraction Interfaces. Extraction interfaces are sets of spec-
ifications that extraction services follow in order to access
complex data sources. They facilitate interaction between
data sources and integration services.

Metadata Extraction. Metadata extraction is the process
of extracting metadata from several complex data sources
via extraction interfaces. Beside extracting metadata of non-
hierarchical data sources, such processes navigate metadata
of hierarchical structured data sources from high to low level.
Users then select a relevant metadata schema via a GUI.

Input Schema. The input schema specifies the structure of
relevant complex data sources. The more metadata we have,
the better and easier the administration and automation of
the data integration services. Extracted relevant metadata
are stored into the input schema that is considered as catalog
of input data sources’ structure. The input schema could be
queried continuously to maintain data integration tasks.

Sources-Services-Target Mapping. Sources-to-services and
services-to-target mapping schemas bind data sources and
their associated services, and services and their associated
targets, respectively. Mapping schemas have a significant
role in automating and managing data integration services.

Loading Interfaces. Loading interfaces are sets of speci-
fications that loading services follow in order to access the
target repository. Hence, they communicate between inte-
gration services and the AXML repository.

3.2 Logging Events
Our framework logs events about activities of different mod-
ules. Then, data mining techniques are applied on logged
events to discover some interesting rules. Discovered rules
can be utilized to maintain, automate, and reactivate the
working of data integration services.

Change Detection. Change detection processes monitor
changes that may occur in data sources. We distinguish be-
tween two types of event changes, namely“structure changes”
and “content changes”. Due to the data sources heterogene-
ity, there are several alternatives for detecting changes (e.g.,
relational and XML databases triggers, metadata-snapshots
comparison, timestamps of last modification, version num-
bers, and third-party change detection applications).

AXML Querying. AXML documents can be queried either
by the user or analysis modules that built upon the AXML
repository. When querying AXML documents, embedded
services could be invoked implicitly. Service results replace
the calling service node, or append to it. Appending results
after the calling node permits the service to be reused later.

Event Repository. The event repository involves a variety
of events that are logged from different framework modules.
Events can arise from changing structures or contents of
data sources. Examples of structure changes events include
events of adding, altering, and/or dropping data sources.
Content changes events include data manipulation events
such as inserting, updating, and/or deleting values at spe-
cific data source. Integration services log events about data
sources that they extract, transform, and load. Event in-
formation includes date processed, number of records read,

written, input, output, updated, errors, and services car-
ried out. Another category of events is logged when query-
ing AXML documents, including information about AXML
documents, XPaths and XQuery expressions.

3.3 Management and Reactivity
One of the most important framework features is carrying
out data integration tasks autonomously and reactively. To
achieve reactivity, our framework is supplied with a set of
active rules that follow the ECA paradigm. Events of ac-
tive rules are defined by users or discovered from the event
repository by the event mining module. Moreover, invok-
ing the embedded services of AXML documents refreshes
the repository with active and up-to-date information. Such
embedded services are managed via the AXML engine.

ECA Rules. ECA or active rules are associated to frame-
work objects such as data sources, integrations services, and
the AXML repository. These rules make objects responsive
to a variety of events, where the actions are taken when en-
countering an event and satisfying the condition. A generic
example of ECA rule follows.

ON data-source-update WHEN condition DO
invoke-integration-service

Events are either simple or composite. Simple events (also
called, primitive or atomic events) correspond to a data
modification operation, execution of integration service, or
querying an AXML document. A composite event is a logi-
cal combination of simple events or other composite events,
defined by logical operators such as disjunction (or), con-
junction (and), sequence (and then), and negation (not).
Such composite events are semantically and formally defined
in [3], where an event E is a function on the time domain
onto the Boolean values: E(T )→ True; if an event E occurs
at time point t, and E(T )→ False; otherwise.

Disjunction of two events E1 and E2, denoted (E15E2),
occurs when either E1 or E2 occurs.
Example 1 (Disjunctive Event): If inserting or updating
contents of a specific object (e.g., table “orders” of database
“sales”), the framework invokes the corresponding integra-
tion service to integrate new data. The semantic structure
being detected and manipulated by the ECA engine.

<eca:event xmlns:evtCnt="http://www.eca-rules.com/events/content">
<evt:disconjunctive>
<evt:simple><evtCnt:insert-tuples obj-type="table"

obj-name="sales.orders"/></evt:simple>
<evt:simple><evtCnt:update-tuples obj-type="table"

obj-name="sales.orders"/></evt:simple>
</evt:disconjunctive>
</eca:event>

Conjunction of two events E1 and E2, denoted (E14E2),
occurs when both E1 and E2 occurs in any arbitrary order.
Example 2 (Conjunctive Event): If content changes are
detected in multiple data sources, so that a specific item is
deleted, action to send a message indicating that the item
is no longer available can be taken.

<eca:event xmlns:evtCnt="http://www.eca-rules.com/events/content">
<evt:conjunctive>
<eca:variable name="itemID" lang="xpath" expr="./@ID"/>
<evt:simple>
<evtCnt:delete-tuples objSrc="src1.items"

attribute="item_key" value="$itemID"/>
</evt:simple>
<evt:simple>
<evtCnt:delete-tuples objSrc="src2.products"

attribute="product_key" value="$itemID"/>
</evt:simple>
</evt:conjunctive>
</eca:event>



The sequence of two events E1 and E2, denoted (E1;E2),
occurs when E1 occurs before E2.
Example 3 (Sequence Event): When a data steward adds
a specific database as data source, selects one object of this
database, and then selects the relevant fields from this ob-
ject, action can be taken to invoke integration services to in-
tegrate data considering all parameters selected by the user.

<eca:event xmlns:evtStr="http://www.eca-rules.com/events/structure">
<evt:sequence>
<evt:simple><evtStr:add-data-source type="database"

name="sales"/></evt:simple>
<evt:simple><evtStr:add-object type="table"

name="orders"/></evt:simple>
<evt:simple><evtStr:add-field><eca:variable name="newField"
lang="xpath" expr="./@Field"/></evtStr:add-field></evt:simple>
</evt:sequence>
</eca:event>

The negation of event E, denoted (¬E), occurs when there
is no occurrence of E.
Example 4 (Negation Event): When adding a specific ob-
ject of data source to integration application is important,
the data steward can be notified if this object is not added.

<eca:event xmlns:evtStr="http://www.eca-rules.com/events/structure">
<evt:not>
<evt:simple><evtStr:add-object type="table"
name="promotions"/></evt:simple>

</evt:not>
</eca:event>

Complex events can be noted as combination of composite
events (e.g., when either E1 or E2 occurred, and then E3,
but not E4). Conditions denote queries to one or several
events and are expressed in XPath or XQuery.
Example 5 (Condition): If the framework detects content
changes in an object, it further requires querying the input
schema to test whether this object is relevant or not.

<eca:condition lang="xpath"
check="./*/object-name/text()=$updatedObject"/>

Actions can be notifying the integration server when a
data source changes, sending message, executing an integra-
tion service, or invoking embedded AXML services.
Example 6 (Action): If condition in Example 5 evaluates
to true, then an action can be taken to update the corre-
sponding target object.

<eca:action>
<act:invoke-service name="updateTarget" opertion="updateObject"
input="$updatedObject"/>

</eca:action>

Event Mining. Event mining processes apply data mining
techniques on the framework’s XML logged events. Each
event type is mined for a specific purpose. For instance,
event mining can be applied to judge classification and de-
termine whether the rule should be fired and/or activated.
In addition, event mining can help to discover association
rules and frequent logged events that may change the policy
of AXML activation timing [10].

ECA Engine. The ECA engine plays an important role to
control the evaluation of the ECA rules, which parsed as
XQuery triggers. It manages event triggering, evaluates the
conditions, and performs the associated rule actions.

AXML Engine. The AXML engine manages the evalua-
tion of embedded AXML services. It monitors querying the
AXML documents, and then invokes the embedded services
to refresh them with up-to-date information. Beside evaluat-
ing services implicitly when data are requested, services can
also be evaluated explicitly (e.g., hourly, daily or after oc-
curring event). The engine manages where services’ results
are written, either replacing the calling service or appending
to it. Moreover, AXML engine manages different versions
of AXML documents in AXML repository.

4 Implementation
We implement our framework prototype mostly using stan-
dard open-source software. It is implemented as a Web-
based application using Oracle, XML and Java technologies.
Figure 2 shows the deployment diagram, which visualizes the
hardware, middleware and software. The diagram is com-
posed of multiple tiers: data source, integration application,
web, client and target tiers. Different tiers communicate via
several protocols and interfaces.

Figure 2: Deployment diagram of data integration
web application

The integration application tier is composed of two main
sets of cooperative components: application manager and
native XML database. Our framework utilizes the Java
library of Pentaho Data Integration (PDI)1 for perform-
ing ETL tasks. The XML database is implemented using
Sedna2. It involves several collections of databases, such as
metadata, defined and mined active rules, and logged events.
Active rules are implemented, triggered and fired using the
XQuery trigger facility supported by Sedna.

In the web tier, integration services, dispatcher services,
and user interface components bindings are implemented in
Java. They are deployed to Oracle WebLogic server 11g.
At the client tier, users can explore our application via a
web browser. The application’s GUI is developed using
components of Oracle ADF and Sun JSF. The user spec-
ifies the interesting data source, and then extraction ser-
vices bring out the metadata from which to select a relevant
schema. Users have access to several functionalities such as
mapping data sources with integration services and targets,
scheduling the execution of integration services, browsing
and querying AXML repository, browsing changes of data
sources, and defining ECA rules. Moreover, a demo of the
AXML browser is implemented in order to navigate AXML
documents. The browser is split to display the AXML doc-
uments before and after invoking embedded services.
1http://kettle.pentaho.com/
2http://www.modis.ispras.ru/sedna/



5 Case Study
The main power of our framework is to integrate complex
data into an unified repository autonomously and reactively.
This can be accomplished by capturing the metadata schema
of data sources, integrating data using metadata-based inte-
gration services, monitoring sources to detect any occurred
changes, and apply event-driven rules to reactivate integra-
tion services. There are several case studies that have het-
erogeneous and distributed data with frequently changing
nature such as: health-care, traveling, retails, comparing
prices, and e-commerce.

Let us address the “compare prices” case study where a
data integration framework is needed to integrate product
(e.g., digital cameras and camcorders) data from several ven-
dors. The framework helps define data sources, one by one,
via a GUI. Metadata extraction services are invoked to ex-
tract data sources’ structure, and then the user selects rele-
vant attributes from the extracted structure. Defining data
sources events are logged into the event repository. Data
sources may include data about vendors, products, pricing,
seasons, promotions, date, ads, product images, product
videos, as well as images and videos captured by product
for reviewing. Such heterogeneous types of data are unified
into XML. Integration services communicate with suppli-
ers by accessing their data sources (e.g., Web servers, rela-
tional databases, spreadsheets, multimedia, delimited text,
and XML), which are distributed over networks. Relevant
metadata are written into the input schema. An XML file
is generated from the input schema, and is adapted into a
format that can be manipulated by the PDI engine, for per-
forming ETL. Beside integration services, external WSs 3

can be imported, such as WSs to return latest currency ex-
change rates for currency conversion into a unified currency
format. Moreover, other services can be developed, such as
comparing prices of the same camera from different vendors
returning the cheapest one that is written as call to service.
Example 7: This example shows a fragment of AXML doc-
ument before and after invoking the embedded services.

AXML fragment before invoking embedded services:

<lowestPrice>
<axml:cs mode="replace" serviceName="getPricesService"
serviceURL="http://localhost:7101/services/getPricesPort?WSDL"
methodName="getLowestPrice">
<axml:parameters>
<axml:param name="product_key" value="5000001"/>
</axml:parameters>
</axml:cs>
</lowestPrice>

AXML after invoking embedded services:

<lowestPrice>
<axml:result>$315</axml:result>
</lowestPrice>

To get rid of slow-selling and high in-stock items, most
vendors offer promotions to their stock throughout the year.
An event-driven mechanism can be applied effectively to
monitor such discount amounts, and to feed the discounted
prices into the target repository by invoking the appropriate
integration services.Content change events are logged when
adding a new camera item, updating or deleting one. But
structure change events are when adding a new vendor with
its family of products or dropping existing vendor with its
family of products. Purchasing items, their timing, pro-
motions, products, and their vendors are queried. Query-
ing events are also logged into the event repository. All
event types need to be mined in order to discover interest-
ing knowledge, for reactivating the integration services via
a set of defined rules.
3http://www.xmethods.net, http://webservices.lb.lt, etc.

6 Conclusions and Perspectives
In this paper, we propose a framework for integrating com-
plex data into an AXML repository autonomously. Our
framework tackles limitations of traditional data integra-
tion systems. It combines both advantages of virtual in-
tegration and warehousing approaches, either by handling
a large number of heterogeneous data sources using XML
and WSs, or storing integrated data into a unified AXML
repository to support complex analysis queries later. The
target repository stores not only data, but also service calls.
Thus, such services can be invoked implicitly or explicitly to
refresh repository contents. Moreover, our framework has
reactive and autonomic capabilities by warehousing events
about framework activities, mining such events, and then
following ECA rules mechanism to reactivate integration
tasks. Discovering interesting knowledge from logged events
and triggering active rules help minimize user intervention
to execute frequent integration tasks. Our software proto-
type and detailed technical report are available on-line 4.

Recall that different framework activities are logged in a
specific repository for events. Since the event repository can
be considered as miniature copy of a data warehouse, OLAP
tools can thus be coupled with data mining to explore and
analyze logged events information. We also aim to carry out
machine learning techniques to automate schema matching
and mapping between data sources and integration services,
using descriptions of sources and services.

7 References
[1] S. Abiteboul, O. Benjelloun, and T. Milo. Web services and

data integration. In WISE ’02, pages 3–6, Washington, DC,

USA, 2002.

[2] S. Abiteboul, O. Benjelloun, and T. Milo. The active XML: an

overview. In VLDB Journal, pages 1019–1040, 2008.

[3] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim.

Composite events for active databases: Semantics, contexts and

detection. In Proceedings of VLDB, pages 606–617, Santiago,

Chile, 1994.

[4] S. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland,

Y. Papakonstantinou, J. D. Ullman, and J. Widom. The

TSIMMIS project: Integration of heterogeneous information

sources. In IPSJ, pages 7–18, 1994.

[5] J. Darmont, O. Boussaid, J. Ralaivao, and K. Aouiche. An

architecture framework for complex data warehouses.

ICEIS’05, Miami, USA, pages 370–373, 2005.

[6] W. Inmon. Building the Data Warehouse. John Wiley & Sons,

1996.

[7] R. Kimball. The data warehouse toolkit. John Wiley & Sons,

1996.

[8] C. A. Knoblock, S. Minton, J. L. Ambite, N. Ashish, I. Muslea,

A. G. Philpot, and S. Tejada. The ariadne approach to

web-based information integration. IJCIS, 10(1 & 2):145–169,

2001.

[9] T. B. Pedersen. Warehousing the world: a few remaining

challenges. Proceedings 10th DOLAP, pages 101–102, 2007.

[10] R. Salem, J. Darmont, and O. Boussaid. Efficient incremental

breadth-depth xml event mining. In IDEAS’11, Lisbon,

Portugal, 2011.

[11] T. Thalhammer, M. Schrefl, and M. Mohania. Active data

warehouses: Complementing OLAP with active rules. Data and

Knowledge Engineering, 39(3):241–269, 2001.

[12] M. N. Tho and A. Tjoa. Zero-latency data warehousing for

heterogeneous data sources and continues data streams. In

iiWAS’03, Jakarta, Indonesia, pages 55–64, 2003.

[13] F. Zhu, M. Turner, I. A. Kotsiopoulos, K. H. Bennett,

M. Russell, D. Budgen, P. Brereton, J. A. Keane, P. J. Layzell,

M. Rigby, and J. Xu. Dynamic data integration using web

services. In ICWS, pages 262–269, 2004.

4http://eric.univ-lyon2.fr/∼rsalem/axdi/


