
HAL Id: hal-00685984
https://hal.science/hal-00685984

Submitted on 2 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation of Petri Nets Based Controller using
SFC

Abbas Dideban, Mohamed Kiani, Hassane Alla

To cite this version:
Abbas Dideban, Mohamed Kiani, Hassane Alla. Implementation of Petri Nets Based Controller using
SFC. Journal of Control Engineering and Applied Informatics, 2011, 13 (4), pp.82-92. �hal-00685984�

https://hal.science/hal-00685984
https://hal.archives-ouvertes.fr

Implementation of Petri Nets Based Controller using SFC

A. Dideban*, M. Kiani**, H. Alla***

 * Electrical and Computer Faculty, Semnan University, Semnan, Iran
 (Tel: +982313354123; e-mail: adideban@semnan.ac.ir)
 ** Electrical and Computer Faculty, Semnan University, Semnan, Iran
 (e-mail:mokiani@ Semnan.ac.ir)
 *** GIPSA lab, 38402 St Martin d'Heres Cedex, France

(e-mail :Hassane.alla@inpg.fr)

Abstract: This paper presents a method for implementing a controller synthesized by PN-based SCT
theory. Despite the great acceptance of SCT in controller design, there are problems with its practical
implementation. Sequential Function Chart, as an international standard programming language, is used
for implementing PN-based controllers. One problem in the implementation step is the occurrence of
simultaneous events in mutually exclusive transitions. In SFC standards, it is possible to define a constant
priority (e.g. left to right). A method for developing dynamic priority is presented in this research. If two
users have requests for a common resource simultaneously, priority goes to the one that did not use the
resource in the earlier turn. Existence of non-safe places in PN model is another problem in the
implementation process. In this paper an alternative for this problem is also presented. Therefore, if the
controller model becomes non-safe, it could implement using SFC. Finally the idea is demonstrated using
an example.

Keywords: Supervisory Controller, Sequential Function Chart (SFC), Controller Implementation,
Dynamic Priority

1. INTRODUCTION

Supervisory control theory (SCT), first presented by
Ramadge and Wonham (1989), is a general theory for
controlling Discrete Event Systems (DES) given a
specification describing its allowed and desired behavior. The
resulting controller, the supervisor, restricts the behavior of a
plant as much as possible that the given specifications are
fulfilled. This theory is based on languages and automata.
However, the great number of states representing the
behaviour of the system, and the lack of structure in the
model, limits the possibility of developing an effective
algorithm for the analysis and synthesis of real systems. For
solving this problem, Petri-net-based approaches to
supervisory control design have also been studied by many
authors including: Giua and Dicesare (1991), Giua (1992,
1996), Yamalidou et al. (1996), Holloway and Krogh (1990),
Kumar and Holloway (1996), Moody and Antsaklis (2000),
Uzam and Jones (2002).

In PN-based controller synthesizes using SCT framework, the
first step is the modelling of the plant and the specifications
and then in the next step, synchronized composition between
two models gets the controlled model. Generally, due to
uncontrollable and unobservable transitions, it is necessary to
change this synchronized model. There are many approaches
for resolving this problem (Guia et al. 1992, Dideban and
Alla 2005, 2008. The final model is composed of the

supervisor and the uncontrolled model of the plant. The next
step is implementing this controller.

Implementation of the controller requires an appropriate
method for developing a PLC program corresponding with
the automaton that represents the theoretical supervisor.
Therefore implementing the controller is a matter of
developing an appropriate PLC program (M.
Cantarelli(2006)).

Programmable logic controller (PLC) is a specific application
computer and has greatly been used in new automation
systems. The ISO/IEC61131 (2001) standard is defined for
PLC. Third part of this standard defines programming
languages. Sequential Function Chart (SFC) is one of these
languages, which is a graphical and high-level language. This
language is inspired from PNs and seems to be the ideal
choice for implementing controllers designed by PNs. Ladder
Diagram (LD) is another standard language for PLC, which is
greatly used by programmers. Conversion of Petri net model
into LD have been addressed by Peng and Zhou (2004),
Boucher et al. (1989), Lee G.B. and Lee J.S (1995), Jackman
et al.(1995), Uzam et al.(1996, 1998), Zhou and Twiss
(1998), Chirn and McFarlane (2000). However for complex
systems this approach is not efficient and has some
difficulties.

Some Researches have been accomplished for converting
PNs to SFC: Music and Matko (1998, 1999), Music et al.

(2000, 2005), Hellgren et al.(2001, 2005), Ferrarini and
Piroddi (2003) and Zhou et al. (1992). In Music and Matko
(1998, 1999), Music et al. (2000), Hellgren (2001),
simultaneous events in mutually exclusive (SEME)
transitions, is discussed and this problem is solved by
creating constant priority. SEME is usually used for resource
allocation. With assigning constant priority to users, in
simultaneous requesting of multiple users for a common
resource, resource always is allocated to the user that has a
higher priority. In some cases, this method is constraining
and is not efficient. In Hellgren et al. (2005) execution modes
of SFC are discussed and for solving SEME, IT/IA
(Immediate Transit/ Immediate Action) mode were proposed
but generally DT/DA (Deferred Transit/Deferred Action)
mode is considered in PLC. In this paper, a method for
dynamic priority assignment is presented. In this method, in
each turn that two users have requests for a common resource
simultaneously, priority goes to the user that did not use the
resource in earlier turn. In other words, the priority changes
dynamically between the users. The dynamic priority
presented here is applicable in all of the three modes of
execution IT/IA, IT/DA, and DT/DA, because transition
conditions are rewrote in compositional form. Dynamic
priority is not needed for all processes. So, simply transition
conditions can reform to developing the constant priority.

In previous studies, it is supposed that PNs model is safe and
therefore direct conversing of place to step is possible
(Hellegren et al. 2005). Another problem in PN-based
controller implementation is non-safe places. It is possible
that the model of the process and the specification are created
by a safe model but when resolving the problem of forbidden
states, sometimes the control places may become non safe. In
PN to LD conversion approach, a counter for each non-safe
place can be used that contains the number of tokens. But in
accomplished researches for implementation using SFC, safe
PN modelling was used.

If the conversion of none-safe PN to SFC becomes possible,
a better use of PNs potential for controller synthesizes is
realized and the control system becomes more efficient. In
this paper an alternative for this conversion is proposed as
well.

This paper is organized as following: In section 2, the
preliminary definition about PNs and SFC is given. In
Section 3, the SCT briefly is introduced. Controller
implementation, dynamic priority and non-safe place
conversion is covered in Section 4. In section 5, an example
is presented for describing the idea of the paper. Finally, the
paper is concluded in section 6.

2. PRELIMINARY DEFNITION

2.1. Petri net

PN is a powerful graphical and mathematical tool for
modeling and analyzing DESs. In this paper, it is supposed
that the reader is familiar with PN (David and Alla, 2005).

 Definition1: A Petri Net is the 5-tuple set, given by:

 PN = <P, T, F, W, M0>

Where P = {p1, p2,…, p3 } is a non-empty and finite set of
places and T = {t1, t2,…, t3 } is a nonempty and finite set of
transitions. It is assumed that P∪T≠φ and P∩T≠ φ. F is the
incident relation function which represents the set of directed
arcs connecting places to transitions and vice versa. W: F→
Z+ is the weight function which assigns an integer number as
weight to each arc. M0 is the initial marking of PN. (P×T) is
called pre(Pi×Tj) and represent the arc connected between
place (i) and transition (j) which Place(i) is the input place of
Transition(j). (T×P) is called pre(Ti×Pj) and represents the
arc connecting Transition(i) to Place(j); Place(j) is the output
place of Transition(i).

2.2. Sequential Function Chart

SFC is one of the standard programming languages for PLC
(ISO/IEC (2001)). This language is similar to GRAFCET
(David and Alla, 1995) and was inspired from PN. In this
language, a process is divided into separate parts, which
execute sequentially to execution of the whole process. By
dividing the process into multiple parts, its management
becomes easier.

Elements of an SFC are:

Step (S): Initial step, Simple step, Macro step

Transition (T): Simple, Alternative Branching (OR),
Divergence, Convergence (AND), Compositional

Action (A): Action name, Action qualifier

These elements are indicted in figure 1.

Figure 1. SFC elements.

A is a set of actions which dedicates zero, one or more actions
to each Step. Each a∈A has an action name and an action
qualifier. A step may have no action. The set of actions
belongs to s∈S denoted by AC(s). S0 is the initial step. When
running the SFC, S0 becomes active. For each SFC there is
just one initial Step.

 In SFC, if input steps or the steps before a transition
become active, this transition is enabled. If a transition has
been enabled and its conditions are true, by the occurrence of
the event associated with this transition, it fires. By firing a
transition, all the input steps would become inactive and all

the output steps would become active. By activation of a step,
its actions would be executed.

A transition in SFC might be one of the transitions depicted
in Figure 2. Figure 2a represents a simple transition. Figure
2b represents an alternative branching or “OR” transition.
Figure 2c represents a divergence transition. In this type of
transition, firing of T4 activates both the S7 and S8 steps.
Figure 2d represents a convergence transition. Both S9 and
S10 step must be activated in order to enable T5. Figure 2e
represents compositional transition which is made up of
divergence and convergence transitions.

Figure 2. Transition types: (a) Simple, (b) alternative
branching, (c) divergence transition, (d) convergence
transition and (e) compositional transition.

3. CONTROLLER SYNTHESIS

Supervisory Control Theory as a general theory for the
controller synthesizes for discrete event systems was
introduced with the aim of restricting the behaviour of the
system in desired framework in a maximally permissive
manner. This theory is based on automata and due to the
weakness of automata in modelling of complicated systems,
this approach is not effective. PN models have received
attention as alternative models for investigating the discrete
event control theory (Cassandras and Lafortune, 2008) and
many studies have been done for Petri Net based Supervisory
Control (PNBSC). In PNBSC, the first step is modelling the
uncontrolled plant with PN. Then supervisor controller is
designed based on the desired specification. Synchronized
composition between supervisor and uncontrolled model
gives the closed loop controller.

The next step after synthesizing final controller is
implementing the designed controller. Nowadays PLC has a
great use in automation systems and seems to be a good
choice for being used as the control agent. So the synthesized
controller should convert to appropriate language for PLC.
IEC1131-3 standard defines some languages for PLC
programming, which can be used for this purpose. LD is one
of the commonly used programming languages and some
studies have been accomplished for converting PN to LD. For
complex systems, this approach is not efficient. A big
drawback of LD programming is its weak structure and

therefore it cannot represent a dynamic system as good as
PNs. It causes difficulty in changing, maintaining, and
documenting of the program.

The structure of SFC language is similar to PN modelling and
is a good choice for implementation. In the next section,
controller implementation by SFC will be discussed.

4. CONTROLLER IMPLEMENTATION

As mentioned earlier, some studies are carried out for
converting PN into SFC. One of the differences between PN
and SFC is related to mutually exclusive transitions. In PN,
the order of transitions firing caused by simultaneous events
is not important but in SFC, firing order of transitions must
be defined for simultaneous event. According to the standard,
one transition has priority over the next transition.

 In Hellgren et al. (2001, 2002) and Music and Matko
(1999), the authors studied SEME transitions and as a result,
method for creating constant priority was proposed.

In the following section, converting mutual exclusion in PN
to SFC by dynamic priority assignment for transitions is
discussed.

 4.1. Mutual exclusion

One of the modelling capabilities of PN is mutual exclusion
(ME) that is usually used for resource allocation (resource
sharing) or for making constraint in PN. Figure 3a depicts
mutual exclusion. In the case that P1 has one token; both
transitions t1 and t2 are enabled. If both conditions of these
transitions become true (events allocated to those occurs),
only one of them can be fired and after firing, the second
transition is not enabled anymore. It is not important that
which one of the transitions is fired. In PN, the behaviour of
DES can be studied theoretically and both possibilities can be
considered in the analysis. Moreover, it is not possible to
have simultaneous occurring of events since they are
independent. However, when a SFC is used in practical
application, this causes a problem. Figure 3b represents a
SFC equivalent for Figure 3a.

Figure 3. (a) Mutual exclusion, (b) SFC equivalent.

In SFC model, if the conditions of both transitions t1 and t2
become true (C1 and C2) and Xc1 has been activated, just one
of t1 or t2 must fire and it should be defined which one.
According to the standard of SFC it is possible to define a

constant priority. Assume that t1 has the priority over t2. This
constant priority is not proper in some situations. For
example suppose a system with one manipulator for
transferring work-piece in two manufacturing line. After
modelling this system, one ME appears in the model for
assigning the manipulator to one of the manufacturing lines.
If the number of simultaneous requesting for manipulator was
high, only one of the manufacturing lines takes the
manipulator (the prioritized line). This strategy is not a good
and applicable method and in many applications it is better
that manipulator is shared equally among the lines. If
dynamic priority is assigned to these lines, in each turn of
simultaneous requests, manipulator allocates to one of the
lines (one left one right). So this problem can be solved with
dynamic priority.

4.2. Dynamic priority

As mentioned earlier, in SFC standard constant priority is
considered for ME, and so in requesting of multiple processes
at the same time, resource is always assigned to the
prioritized process. In this section a method to creating
dynamic priority is presented to change the priority between
the users dynamically. This mechanism must obey the
following conditions (two users and one resource):

- If just one user (process) has a request for taking the
resource, it can take it.

- If two users have requests for taking the resource at the
same time, the one which did not use the resource in the
previous simultaneous request, this turn can take the
resource.

 For creating dynamic priority for two mutual exclusive
transitions, the previous state that SEME occurred is needed
(which transition fires). It must be defined that resource is
allocated to which user, and based on this allocation, the
proper priority can be determined. Two steps and two
transitions are used for creating an auxiliary SFC that saves
the previous state. Figure 4a shows the SFC equivalent for
ME that models two users with a shared resource. Transitions
t1 and t2 are related to assigning the resource to the first and
the second users respectively. The resource is released by
firing of t3 and t4. The auxiliary SFC is depicted in figure 4b.

Figure 4. Dynamic priority assignment: (a) Mutual exclusion
and (b) auxiliary SFC

In the initial state, step SA is enabled. If SEME occurs, it
results in the firing of ta1, activation of SB and deactivation

of SA. Using this auxiliary SFC, the transition conditions for
obtaining dynamic priority is calculated. In table 1 all the
possible states for two ME transitions, considering the
previous state are represented. In the first and second
columns of table 1, fi = 1 shows that transition i is firable (i.e.
transition condition is satisfied and all its input steps are
active). In the third column S =0 means that SA is active and
S =1 means that SB is also active. Cp1 and Cp2 are new
conditions for t1 and t2. If both of f1 and f2 become true, the
transition related to the one that in the previous SEME was
not fired; this turn is fired. Simplifying of Cp1 and Cp2
columns with Karnaugh map yields final condition for two
transitions as relations (1) and (2) for the transitions t1 and t2
respectively. Note that it is considered that if S equals to one,
means that in the previous simultaneous request, the first user
with transition t1 and transition condition Cp1 is used of the
resource. So in the next simultaneous requesting, priority
goes to the second user (Cp2=1).

Cp1 = f1f’2 + f1S (1)

Cp2 = f2f’1 + f2S’ (2)

 Table 1. State table for calculating of conditions

Cp2
 Cp1

 S f2
 f1

0 0 0 0 0

0 0 1 0 0

1 0 0 1 0

1 0 1 1 0

0 1 0 0 1

0 1 1 0 1

0 1 0 1 1

1 0 1 1 1

fi=1 means transition (i) is fireable

Ci=1 means condition of ti become true

S : State of auxiliary SFC

That fi’ shows that ti is not fireable and S is true if state SB is
active and S’ is true if state SA is active. Using Cp1 and Cp2
as new transition conditions for mutually exclusive
transitions, dynamic priority is accomplished which solves
the problem of SEME. If any application needs constant
priority, transition conditions become as relation (3) and (4).
t1 has priority over t2.

Cp1 = f1 (3)

Cp2 = f2f’1 (4)

4.3. Dynamic priority assignment for three transitions

In this section, dynamic priority is developed for three
mutually exclusive transitions. For three transitions, six
priority states are possible. These states are given by
equations (5) to (10). For example, in equation (5), t1 has
priority over t2 and t3, and t2 has priority over t3. For creating
these six states of priority, six steps and some transitions as
auxiliary SFC are needed. This auxiliary SFC is depicted in
Figure 5. In this figure, Xp1 is initially active and for this
step, priority state 1 (ps1) is considered. So if Xp1 is active, t1
has priority over t2 and t2; has priority over t3. If transition t1
becomes fireable (f1=1) simultaneously with one or both of
other transitions, transition t1 must be fired and then the state
of priority goes to state 2. If only transitions t2 and t3 become
fireable simultaneously, according to the priority state 1,
transition t2 must be fired and the priority state goes to state
3. In fact, after firing of a transition that has priority, priority
of this transition changes to the lowest level. Based on the
state of auxiliary SFC and transition states, an appropriate
transition would be fired and the priority changes. Transition
condition is calculated using fi and auxiliary SFC as shown in
equations (11) to (13). In these conditions, Si is as equation
(14). Cp1, Cp2 and Cp3 are conditions for t1, t2 and t3,
respectively.

ps1= t1> t2> t3

ps2=t2> t3> t1

ps3=t1> t3> t2

ps4=t3> t1> t2

ps5=t2> t1> t3

ps6=t3> t2> t1

Cp1 = f1f’2 f’3 + f1 f2S1 + f1 f3S1+ f1 f2S3+ f1 f3S3+
f1f2f’3S4+ f1f’2f3S5

Cp2= f’1f2 f’3 + f’1 f2 f3S1 + f1 f2S2+ f2 f3S2+ f1 f2S5+
f2f3S5+ f1f2f’3S6

Cp3= f’1f’2 f3 + f1f’2f3S2 + f’1f2f3S3+ f1 f3S4+ f2 f3S4+
f1f3S6+ f2f3S6

Si = Xpi . XC1

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

Obviously, by increasing the number of transitions,
complexity of the transition conditions and the size of the
auxiliary SFC are increased. In fact, for ‘n’ transition, there
are ‘n!’ priority states. But in practice, usually, only two
transitions are mutually exclusive and, the probability of
simultaneous occurrence of more than two events is low. In
the next section, semi-dynamic priority is developed for more
than two ME transition that needs smaller auxiliary SFC and
transition conditions becomes simpler.

Figure 5. Auxiliary SFC for creating dynamic priority in
three ME transitions.

4.4 Semi-dynamic priority

For dynamic priority realization in more than two mutually
exclusive transitions, conditions become more complex and
extend exponentially by increasing the number of transitions.
In addition, for creating dynamic priority between n
transitions, n! steps and (n-1)(n!) transitions as auxiliary SFC
are necessary. Therefore, realization of dynamic priority for a
great number of transitions is not efficient. Instead of creating
dynamic priority, it is possible to create semi-dynamic
priority that is a composition of the dynamic and constant
priorities. Semi-dynamic priority can be realized in several
forms.

4.4.1. Dynamic priority between two transitions (DPTT)

In this method dynamic priority is created for one pair of
transitions. If this pair becomes fireable simultaneously
among all of transitions, then dynamic priority defines which
transition can be fired. Conditions of these two transitions
other than the satisfying dynamic priority between this pair,
also must satisfy constant priority (say left to right) of the
whole transitions in mutual exclusion.

Figure 6a represents a safe place with four output transitions
and Figure 6b represents its SFC equivalent. Figure 6c
represents SFC equivalent with dynamic priority between
second and third transitions. New conditions for transitions
are computed as equations (15), (16), (17), and (18). For
computing these conditions, a table with all possible states is
made and by using this table and some simplifications, Cp1 to
Cp4 are defined as transition conditions. In this SFC, t1 has
the highest and t4 has the lowest priority. t2 and t3 have
constant priority over t4, and dynamic priority between
themselves. For example if t1, t2, and t4 become fireable
simultaneously, t1 is authorized to be fired. If t2, t3, and t4
become fireable simultaneously, t4 is ignored; and dynamic
priority defines whether t2 or t3 should be fired.

Figure 6. Semi-dynamic priority: (a) place with four output
transition and (b) its SFC equivalent, (c) dynamic priority in
two transitions (DPTT) and (d) dynamic priority in group of
transitions (DPGT).

)(ffffCp
)(SfffffCp
)(SfffffCp
)(fCp

18
17
16
15

43214

313213

213212

11

′′′=

′′+′′=

′+′′=

=

4.4.2. Dynamic priority between groups of transitions
(DPGT)

In DPGT method, all transitions are divided into two groups.
If at least one transition of each group becomes fireable,
dynamic priority defines which group has priority. Within
each group, constant priority is assigned to transitions.

As indicated in Figure 6a and, b, four transitions can be
divided into two groups with t1 and, t2 in the first group and,
t3 and, t4 in the second group. In the first group, t1 has a
constant priority over t2 and in the second group t3 has a
constant priority over t4. For creating DPGT, a table for all
possible states is made and then appropriate conditions for
four transitions are calculated. The new conditions are shown
by equations (19) to (22). Figure 6d depicts DPGT. If one or
two transitions of the first group and one or two transitions of
the second group become fireable, the priority goes to the
group that in the previous turn did not take the priority. In
equations (19) to (22), ‘S’ defines this dynamic priority. If ‘S’
equals to zero, priority is assigned to the first group and if ‘S’
equals to one, the second group has priority. ‘S’ changes each
turn and therefore, transitions from different groups become
fireable simultaneously. For example assume that t1, t2, and t4
become fireable simultaneously and ‘S’ is zero. As a result,
priority is assigned to the first group and t1 can be fired
because it has a constant priority over t2.

)(SffffffCp
)(SffffCp
)(SffffffCp
)(SffffCp

22
21
20
19

4343214

33213

2143212

14311

′+′′′=

+′′=

′′+′′′=

′+′′=

4.4.3. Compositional semi-dynamic priority

Both DPTT and DPGT can be used in a compositional form.
In this method all transitions can be divided into two groups
and each group can contain dynamic priority between a pair
of transitions. However, by using this method, transition
conditions become complex and this method is only
applicable for special cases.

4.5. Non-safe place conversion

In this section, an alternative for converting non-safe places
(i.e. place that may contain more than one token) to SFC
equivalent is proposed. It is started with a simple place and
then is continued by places with more than one input and one
output transition.

4.5.1. Simple place

In the first step it is assumed that a non-safe place has only
one input and one output transition. Figure 7a shows such a
place that is denoted by P1. Figure 7b shows SFC equivalent
for this place that is constructed by three steps Xc1, Xc2, Xc3
and one counter C. The value of the counter represents
(simulates) the number of tokens in relevant place, P1. Step
Xc4, that here is assumed to be safe place is relevant to P2.
Initially, there are two tokens in place P1 and therefore, the
initial value of counter C must be set to two. In PN, firing of
t1 adds one token to P1 and firing of t2 removes one token
from it. In the SFC equivalent, firing of t1 forces the counter
to increment by one. This is done by an action in Xc1
(C=C+1). Firing of t2 causes counter decrements by one.
This is done by an action in Xc3 (C=C-1). As long as C is
greater than zero, the output transition must remain enabled.
For this reason intermediate step (Xc2) has a loop and after
firing the output transition and execution of decrement action
in auxiliary step, Xc3, this step becomes active again. This
step always remains active even though counter has been
equal to zero. In Figure 7b intermediate step is depicted as
the initial step because it must be active initially, if initial
marking of the relevant place has been non-zero. Conditions
for t1 and t2 are as Cn1 and Cn2 (23, 24). Ci =1 shows that the
condition of ti is satisfied and “e” represents the true
condition. Therefore, a transition with event “e” is fired
immediately after activating the precedent steps. Because the
intermediate step is always active and obviously if the
counter becomes zero, the output transition can not be fired.
Condition C ≥ 1 in output transition condition does not allow
the transition to be fired as long as counter is equal to zero.
Note that two auxiliary steps Xc1 and Xc2 cause an scan cycle
delay between firing of input transition and reactivating Xc2
as well as firing of output transition and activating Xc4. The
delay between firing of the output transition and activation of

Xc4 is equal to one scan cycle time in PLC and in most cases
can be ignored.

Figure 7. (a) simple non-safe place, (b) it’s SFC equivalent,
(c) reformed SFC.

)24()1(
)23(

22

11

≥=
=

CCCn
CCn

4.5.2. Conversion with non-simultaneous events

Usually, a non-safe place may have more than one input and
output transition (Figure 8a). This section covers converting
such places to SFC. In the first step, it is assumed that events
cannot occur simultaneously. In Figure 8a simultaneous
firing of input transitions t1 and t2 and also output transitions
t3 and t4 is not possible. Figure 8b shows the proposed SFC
equivalence for Figure 8a. Transition conditions for output
transitions are computed by using equations (25) and (26).
For example, suppose that initial value of the counter is two
(initial marking of P is two). If the events relevant to t3 or t4
occur, because C is equal to two, relevant transition
conditions (Cn3 or Cn4) become true and transition can be
fired. If the counter is equal to zero, besides that Xc2 is active,
output transitions cannot be fired until firing of input
transitions causes the counter to become greater than zero. If
C=1, because it is assumed that simultaneous events cannot
occur, the first output transition becoming fireable can be
fired and then the counter becomes zero.

Figure 8. (a) non-safe place with more than one in-out
transitions, (b) it’s SFC equivalent.

)26()1(
)25()1(

44

33

≥=
≥=

CCCn
CCCn

4.5.3. Conversion with simultaneous event: constant priority

Simultaneous events are not possible in SCT while in real
systems the occurrence of simultaneous events is possible
and a controller connected to a physical system may observe
simultaneous input changes. In this section a method for
converting a non-safe place to SFC with the possibility of
simultaneous firing is proposed. Figure 9a shows conversion
of Figure 8a to its SFC equivalent. Input transitions can be
fired simultaneously. So two input steps are needed here. For
output transitions, a constant priority is assigned which t3 has
priority over t4. Transition conditions for t3 and t4 are given
by equations (27) and, (28). If each of t3 or t4 becomes
fireable, and the counter value equals to 1, the constant
priority defines which transition should be fired but if the
counter value has been greater than one, both transitions can
be fired.

Figure 9. SFC equivalent for non-safe place and non-
simultaneous event.

)28()1()1(
)27()1(

4434

33

>+=′=

≥=

CfCffCn

CfCn

Note that in SFC, for mutual exclusion transitions, just one of
them can be fired simultaneously. In a situation that the value
of the counter is greater than one, if two transitions become
fireable simultaneously, only one of them can be fired
(according to SFC standard). But in PN, simultaneous firing
is possible. If ME is relevant to a resource, it cannot assign to
both of the users (relevant place is safe). But if in another
situation, simultaneous firing of both transitions is
admissible, one transition can be added to the output
transition. If the value of the counter is greater than one the
condition of this transition becomes true and both transitions
become fireable simultaneously. By firing this transition,
both output steps and the intermediate step must become
active.

4.5.4. Conversion with simultaneous events: dynamic priority

As mentioned earlier, constant priority method is not proper
for all situations and dynamic priority method can be used

instead that causes equal utilization of the resource in
simultaneous requests. In this section, output transition
conditions for the non-safe place depicted in Figure 8a is
defined in order to create dynamic priority.

Appropriate transition conditions for t3 and t4 are calculated
according to equations (29) and (30). If counter equals to
zero, none of the output transitions can be fired and if the
counter value is greater than one, both output transitions can
be fired simultaneously. But in the case that the counter is
equal to one and both output transitions become fireable,
dynamic priority defines which one to fire.

)30()1(.).1()1(
)29()1(.).1()1(

43444

43333

=+=+>=

=+′=+>=
′

′

CSCfCfCn

CSCfCfCn
ff

ff

4.5.5. Conversion of two complementary non-safe place

In some PN models, two complementary non-safe places
appear in the model, usually for bounding the non-safe place
(Figure 10a). For simplicity in conversion and for avoiding
confusion, the SFC equivalent for such places is presented in
this section. For these two places, two counters are needed.
Transition t1 is the input of the first place and output of the
second place and transition t2 is the output of the first place
and input of the second place. Based on the presented
method, the SFC equivalent is shown in Figure 10b.

Figure 10. SFC equivalent for two complementary non-safe
places.

5. EXAMPLE

In this section, an example of a manufacturing station is
considered and controller synthesis for this system with PN-
based SCT and implementing it using SFC is discussed. PN-
based controller can possess non-safe places and therefore,
the model is not safe but is bounded. In the first step, a model
for the process is created and then by adding a supervisor, the
model is completed as a controlled model. Then this
controller is implemented using SFC.

 5.1. Process description and controller synthesizes

The layout of the system is depicted in Figure 11. In fact,
this system is one part of a bigger manufacturing system. It is
composed of two machines named as M1 and M2, an

intermediate buffer, B, and a manipulator robot named R.
First of all, the raw material is transferred to M1 by R and
then machining operations are performed on it and the work-
piece lies in the output of M1. Then, the manipulator, R,
transfers it to the intermediate buffer. In order to produce the
final product, work-pieces are transferred from the
intermediate buffer to the input of M2 and after processing by
M2, the final product exits from the system. Note that it is
supposed that input to M1, is always available.

Figure 11. An example of a manufacturing system.

This system is modelled using PN. The uncontrolled model is
depicted in Figure 12a.

Figure 12. (a) Uncontrolled PN model, (b) controlled PN
model for the manufacturing system depicted in figure 11.

For achieving the controlled model, supervisor controller is
designed and added to the model. In the modelling procedure,
it is assumed that the capacity of the intermediate buffer is
equal to five and the capacities of the machines are one.
Therefore, in each time, a maximum of five work-pieces can
exist in the buffer and machines have the ability to process
one work-piece at a time. These three specifications can be
written as non-equality constraints according to equations
(31) to (33). Supervisor controller is designed based on these
specifications. Using the method described by Yamalidou et
al.(1996), the control places are calculated and synthesized
with the uncontrolled model that yields the final controller.
Control places are depicted with red colour in Figure 11. The
controlled model or the final controller is depicted in Figure
12b. The next step is implementing this controller and this is

done with converting the final controller to its SFC
equivalent.

m(p2)+ m(p3)<=1 (31)

m(p3)+ m(p5)<=5 (32)

m(p6)+ m(p7)<=1 (33)

p1: M1 is ready.

p2: M1 is busy.

p3: work-piece is transfer with robot to the buffer (robot is
busy)

p4: robot is ready.

p5: intermediate buffer.

p6: work-piece is transfer with robot to the M2 (robot is busy)

p7: M2 is busy.

p8: M2 is ready.

p9: output of the system.

5.2. Controller implementation

As mentioned earlier, SFC is an ideal choice in controller
implementation due to its similarities with PN. In this
section, the designed controller for the system that discussed
in the earlier section is implemented.

In the final controller, a mutual exclusion is appeared in the
model. One transition is for transferring requests from M1 to
the intermediate buffer, and another is for transferring
requests from intermediate buffer to the M2. In implementing
these ME transitions, the dynamic priority discussed in sub
section 4.2 is used.

Also, the controller has two non-safe places; one for
modelling the 5-capacity intermediate buffer and the other as
a control place for bounding the capacity of this place to five.
The method that was discussed in sub section 4.5 is used for
implementing these two places to SFC equivalent. In the first
step, each place is converted to a step in SFC. This
conversion is depicted in Figure 13. Steps with dashed line
are relevant to the non-safe places in PN controller.

In the next step, two non-safe places are converted to the SFC
equivalent (Figure 14). Also the dynamic priority is assigned
to t2 and t4 transitions. Equations (34), (35) are related to
mutually exclusive transitions, t2 and t4, for creating dynamic
priority between them.

Steps that are depicted with double line body are equivalent
in places that have non-zero initial marking. In SFC, these
steps must be activated initially. In the SFC standard, an SFC
has only one initial step. By using this initial step, all these
steps can be activate.

Figure 13. (a) Initial SFC equivalent for the uncontrolled PN
model, (b) initial SFC equivalent for the controlled PN model
for the manufacturing station.

Figure 14. Converting non-safe places in the model to SFC
equivalent.

)35(4422

)34(2421
SfffCp

SfffCp
′+′=

+′=

6. CONCLUSION

Supervisory control theory is a general framework for
controller synthesis and PN is a powerful tool for designing a
controller in supervisory frameworks. Despite the great
acceptance of SCT in controller designing, there are problems
with practical implementation. One method for
implementation is the conversion of PN controller to SFC
standard language. One of the biggest problems in this way is
the occurrence of simultaneous events in mutually exclusive
transitions or briefly SEME transitions. In previous studies,
this problem was solved by assigning constant priority to
transitions but in some cases this is not a good method. In
this paper, a dynamic priority for two and three transitions
and semi-dynamic priority for more than two transitions is
proposed. Dynamic priority reforms the resource usage of
device. In other words, in the simultaneous requesting of a
common resource, resource is shared equally between users.

Another problem in controller implementation is the
conversion of non-safe places. In this paper a method to
simulate the non-safe place in SFC is proposed as well. As a
result, by using this method, some places of the controller
like control places can be non-safe and therefore, the
controller can become more efficient. The solution of the
discussed problems could redound the usage of SCT in
practice.

REFRENCES

Boucher, T.O., Jafari, M.A., and Meredith, G. A. (1989),
‘Petri net control of an automated manufacturing cell’, In
Proc. 11th Annual Conference on Computers and Industrial
Engineering, pp. 459–463.

Cassandras, C.G., Lafortune, S. (2008), Introduction to
Discrete event systems. Second edition, Springer Science.

Chirn, J.L, McFarlane, D.C. (2000), ‘Petri nets based design
of Ladder logic diagrams’, Control 2000, Cambridge, UK,
September.

David, R. (1995), ‘Grafcet: A Powerful Tool for
Specification of Logic Controllers’, IEEE transactions on
control systems technology, VOL. 3, NO. 3, 253-268.

David, R., Alla, H. (2005), Discrete, Continuous and Hybrid
Petri Nets. Springer.

Dideban A., Alla H., (2005), “From Forbidden State to
Linear Constraints for the Optimal Supervisory Control”,
Control Engineering and applied Informatics (CEAI), 7(3),
48-55.

Dideban, A., Alla, H., (2008), Reduction of Constraints for
Controller Synthesis based on Safe Petri Nets.
Automatica,44(7): 1697-1706.

Ferrarini, L., Piroddi L. (2003), ‘Modular design and
implementation of a logic control system for a batch

processs’, Computers and Chemical Engineering, Vol. 27,
pp. 983-/996.

Giua, A., Dicesare F. (1991), ‘Supervisory Design Using
Petri Nets’, Proc. of the 30th Conf. on Decision and Control,
pp. 92 - 97, Brighton-England.

Giua, A., Dicesare F., Silva M. (1992), ‘Generalized Mutual
Exclusion Constraints on Nets with Uncontrollable
Transitions’, Proc. IEEE Int. Conf. on Systems, Man, and
Cybernetics (Chicago, USA), pp. 974-799.

Giua, A. (1992), ‘Petri nets as discrete event models for
Supervisory control’, Doctoral thesis, Rensselaer Polytechnic
Institute, (Troy, New York).

Giua, A. (1996), ‘Petri Net Techniques for Supervisory
Control of Discrete Event Systems’, Proc. of 1st Int.
Workshop on Manufacturing and Petri Nets, Osaka - JAPAN,
pp. 1 – 21.

Hellgren, A., Fabian M., and Lennartson B. (2001), ‘Modular
Implementation of Discrete Event Systems as Sequential
Function Charts applied to an assembly cell’, In Proceedings
of the 2001 IEEE Conference on control applications, Mexico
City, Mexico.

Hellgren, A., Fabian, M., and Lennartson B. (2002), ‘On the
execution of Sequential Function Charts’, Control
Engineering Practice, 13, 1283–1293.

Holloway, L.E., Krogh B.H. (1990), ‘Synthesis of Feedback
Control Logic for a Class of Controlled Petri Nets’, IEEE
Trans. on Aut. Cont., vol. 35, no. 5, pp. 514-523.

ISO/IEC. (2001), International standard IEC 61131-3 (2nded).
Programmable logic controllers-Part3. ISO/IEC (final draft).

Jackman, J., Linn, R., and Hyde, D. (1995), ‘Petri net
modeling of relay ladder logic’, Journal of Design &
Manufacturing, Vol. 5, pp. 143–151.

Kumar, R., Holloway, L.E. (1996), ‘Supervisory control of
deterministic Petri nets with regular specification languages’,
IEEE Trans. Automatic Control, 41(2):245-249.

Lee G.B., Lee J.S. (2000), ‘The state equation of Petri net for
the LD program’, In Proc. IEEE Int. Conf. Systems, Man, &
Cybernetics, pp. 3051–3056.

Cantarelli M. (2006), ‘Control system design using
Supervisory Control Theory: from theory to
implementation’Universita degli Studi di Cagliari. Master
thesis.

Moody, J.O., Antsaklis, P. (2000), ‘Petri net supervisors for
DES with uncontrollable and unobservable transition’, IEEE
Trans. Automatic Control, 45(3):462-476.

Music, G., Matko, D. (1998), ‘Petri net based supervisory
control of flexible batch plants’, Preprints of the 8th
IFAC/IFORS/IMACS/IFIP Symposium on Large Scale
Systems, Rio Patras, Greece, Vol. 2, pp. 989-994.

Music, G., Matko, D. (1999), ‘Petri Net Based Control of a
Modular Production System’, Proceedings of the IEEE
International Symposium on Industrial Electronics - ISIE '99,
Bled, Slovenia, July 12 - 16, vol. 3, pp. 1383-1388.

Music, G., Matko, D., and Zupancic, B. (2000), ‘Modeling,
Synthesis, and Simulation of Supervisory Process Control
Systems’, Mathematical and Computer Modeling of
Dynamical Systems, Vol. 6 No. 2, pp. 169-189.

Music, G., Gradisar, D., and Matko D. (2005), ‘IEC 61131-3
Compliant Control Code Generation from Discrete Event
Models’, Proceedings of the 13th Mediterranean Conference
on Control and Automation Limassol, Cyprus, 346-351.

Peng, S., Zhou, M. (2004), ‘Ladder Diagram Petri-Net-based
discrete event control design methods’, IEEE Transactions
on systems, man, and cybernetics, part c: applications and
reviews, Vol. 34, No. 4, November.

Ramadge, P.J., Wonham, W. (1989), ‘The Control of
Discrete Event Systems’, Proceedings of the IEEE, Special
issue on Dynamics of Discrete Event Systems, Vol. 77, No.
1:81-98.

Uzam, M., Jones, A., and Ajlouni, N. (1996), ‘Conversion of
Petri nets controllers for manufacturing systems into ladder
logic diagrams’, IEEE Symposium on Emerging Technology
and Factory Automation, ETFA. Vol. 2, pp. 649-655.

Uzam, M., Jones, A. (1998), ‘Discrete event control system
design using automation Petri nets and their ladder diagram
implementation’, International Journal of Advanced
Manufacturing Technology, Vol. 14, No. 10, pp. 716–728.

Uzam, M., Jones, A.H. (2002), ‘A new Petri-Net-based
synthesis technique for supervisory control of discrete event
systems’, Turk J Elec Engin, VOL.10, NO.1 pp.85-99.

Yamalidou, K., Moody, J., Lemmon, M. and Antsaklis, P.
(1996), ‘Feedback control of Petri Nets based on place
invariants’, Automatica, 32(1):15-28.

Zhou, M., Twiss, E. (1998), ‘Design of Industrial Automated
Systems via Relay Ladder Logic Programming and Petri
Nets’, IEEE transactions on Systems, Man, and Cybernetics -
part C: application and reviews, vol. 28, NO. 1, February.

Zhou, M.C., DiCesare, F., and Rudolph D. L. (1992), ‘Design
and Implementation of a Petri Net Based Supervisor for a
Flexible Manufacturing System’, Automatica, No. 28, pp.
1199-1208.

