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Abstract. � Inverse problem is a current practice in engineering where the goal is to
identify parameters from observed data through numerical models. These numerical mod-
els, also called Simulators, are built to represent the phenomenon making possible the
inference. However, such representation can include some part of variability or commonly
called uncertainty (see [4]), arising from some variables of the model. The phenomenon we
study is the fuel mass needed to link two given countries with a commercial aircraft, where
we only consider the Cruise phase .
From a data base of fuel mass consumptions during the cruise phase, we aim at identifying
the Speci�c Fuel Consumption (SFC) in a robust way, given the uncertainty of the cruise

speed V and the lift-to-drag ratio F .
In this paper, we present an estimation procedure based on Maximum-Likelihood estima-
tion, taking into account this uncertainty.

Résumé. � Le problème inverse est une pratique assez courante en ingénierie, où le
but est de déterminer les causes d'un certain phénomène à partir d'observations de ce
dernier. Le phénomène mis en jeu est représenté par un modèle numérique, dont certaines
composantes peuvent comporter une part de variabilité (voir [4]). Le phénomène étudié est
la masse de fuel nécessaire pour e�ectuer une liaison �xée avec un avion commercial, en ne
considérant que la phase de Croisière. Le but étant, à partir de données de masses de fuel
consommées en croisière, d'identi�er de manière robuste la consommation spéci�que SFC
de la motorisation en tenant compte de l'incertitude sur la vitesse de croisière V et sur la
�nesse F de l'avion.
Dans cet article, nous proposons une procédure d'estimation basée sur une méthode de
maximum de vraisemblance, prenant en compte cette incertitude.
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1. Introduction

One of engineering activities is to model real phenomena. Once a model is built (phys-
ical principles, state equations, etc.), some parameters have to be identi�ed and some
variables of the model may present some intrinsic variability. Hence, the identi�cation of
parameters should implicitly take into account the uncertainty of variables of the model.
In this paper, we present a likelihood-based method to estimate aeronautic parameters
in a Fuel mass model. We use an analytical model that can be viewed as a black-box
simulator. From a data baseM∗,1

fuel, ...,M
∗,n
fuel giving the mass of fuel consumed for n lines

between two given cities with a speci�c commercial aircraft, we aim at identifying the
Speci�c Fuel Consumption (SFC) which corresponds to a characteristic value of engines.
The model we use depends in particular on the cruise speed (V ) and on the lift-to-drag
ratio (F ). These variables present intrinsic variability: the cruise speed may depend
on atmospheric conditions and the lift-to-drag ratio is also subjected to variability po-
tentially caused by turbulent phenomena. As a matter of fact, the identi�cation of the
parameter SFC should take into account the variability of the cruise speed and the
lift-to-drag ratio.
In this paper, we propose an algorithm taken from the work of N. Rachdi et al. [7].
It allows a characterization of SFC from the observed data M∗,1

fuel, ...,M
∗,n
fuel and model

simulations when the number of observations n is small.
This article is organized as follows. In Section 2 we describe the setting of the problem.
In Section 3 we build the algorithm for the inverse problem with a Maximum-Likelihood
based method. In Section 4 we apply the algorithm given in Section 3. In Section 5 we
illustrate the e�ect of modeling conditions, particularly the random modeling on SFC
and the number of observed data. In Section 6 we establish the Theorem 6.2 providing
an upper bound of the estimation error of the proposed algorithm. Section 7 is devoted
to proving the Theorem 6.2.

2. General setting

2.1. Observations. � In our study, the data M∗,1
fuel, ...,M

∗,n
fuel were generated from an

aeronautic software which simulates gas turbine con�gurations used for power generation.
In particular, it can simulate the consumed mass of fuel at some con�guration of engines,
altitude, speed, atmospheric conditions, etc. (See Figure 1). This software is very
complex and very much time consuming. In fact only 200 outputs from this software are
available by choosing various atmospheric conditions. This sample constitutes our data
reference.
In a �rst time, we pick up a small sample of size n = 32 from this reference sample.

The data are given in Table 1.
Next, we will suppose that the observations M∗,1

fuel, ...,M
∗,n
fuel are drawn from an un-

known probability distribution Q with associated Lebesgue density f with support

I := [Minf = 7600,Msup = 8100] .
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Figure 1. Aeronautic software

Reference Fuel Masses [kg]

7918 7671 7719 7839 7912 7963 7693 7815
7872 7679 8013 7935 7794 8045 7671 7985
7755 7658 7684 7658 7690 7700 7876 7769
8058 7710 7746 7698 7666 7749 7764 7667

Table 1. Simulated mass of fuel consumptions from aeronautic software

The di�erenceMsup−Minf = 500 kg have to be thought as an overconsumption of about
7% approximatively.

2.2. A simpli�ed aeronautical model. � We recall that we are interested in iden-
tifying the speci�c fuel consumption SFC. It is a signi�cant factor determining the
fuel e�ciency of a particular engine. To handle this problem we introduce a classical
simpli�ed Fuel mass model given by the Bréguet formula:

Mfuel = (Mempty +Mpload)
(
e
SFC·g·Ra

V ·F 10−3 − 1
)
.(1)

The �xed variables are

• Mempty : Empty weight = basic weight of the aircraft (excluding fuel and passengers),
• Mpload : Payload = maximal carrying capacity of the aircraft,
• g : Gravitational constant,
• Ra : Range = distance traveled by the aircraft.

The uncertain variables mentioned in the introduction are

• V : Cruise speed = aircraft speed between ascent and descent phase,
• F : Lift-to-drag ratio = aerodynamic coe�cient.

Table 2 gives the �xed variables values and the nominal values considered for uncertain
variables.

2.3. Noise modeling. � As said in the introduction, we have to take into account
the uncertainty of the cruise speed V and the lift-to-drag ratio F . Given the nominal
value of each variable (see Table 2), an expert judgment can derive the uncertainty
bounds. (see Table 3).
The uncertainty on the cruise speed V represents a relative di�erence of arrival time

of 8 minutes.
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input value or nominal value unit

Mempty 42600 kg
Mpload 19900 kg
g 9.8 m/s2

Ra 3000 km
Vnom 231 m/s
Fnom 19 �

Table 2. Values of Fuel mass model inputs

variable nominal value min max

V 231 226 234
F 19 18.7 19.05

Table 3. Minimal and maximal values of uncertain variables

Moreover, specialists in turbine engineering propose to model the uncertainties as pre-
sented in Table 4.

variable distribution parameter

V Uniform (Vmin, Vmax)
F Beta (7, 2, Fmin, Fmax)
Table 4. Uncertainty modeling

The probability density function of a beta distribution on [a, b] with shape parameters
(α, β) is

g(α,β,a,b)(x) =
(x− a)(α−1)(b− x)β−1

(b− a)β−1B(α, β)
1 [a,b](x) ,

where B(·, ·) is the beta function.
Figure 2 shows the probability density functions of V and F .
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Figure 2. (a) Uncertainty on F . (b) Uncertainty on V .

In order to emphasize the "noisy" feature of the variables V and F , we will use the
writing



STOCHASTIC INVERSE PROBLEM IN AERONAUTICS 5

• V = Vnom + εV ,
• F = Fnom + εF ,

where εV is a centered uniform random variable on the interval [εminV , εmaxV ] with

εminV = Vmin − Vnom and εmaxV = Vmax − Vnom .

Variable εF , supposed to be independent of εV , is a beta random variable on the interval
[εminF , εmaxF ] with shape parameters (7, 2) where

εminF = Fmin − Fnom and εmaxF = Fmax − Fnom .

2.4. Robust identi�cation of SFC. � In our developments, we will not consider
parameter SFC to be deterministic but it will be supposed random. We indeed do not
only need to compute SFC. We also want to take into account its own variability in
order to have a robust characterization of this parameter.

Assumption 2.1. � Let us assume that the random variable SFC is compactly sup-
ported.

This assumption will allow to apply the theoretical framework (presented in annex)
which needs the noise to be compactly supported. Such assumption does not impact
the numerical results.

As a �rst approach, let us assume that

SFC = µSFC + σSFC εSFC , εSFC ∼ NT (0, 1) .(2)

with unknown parameters µSFC and σSFC .
We give the following ranges of variation

µSFC ∈ [15, 20] and σSFC ∈ [s, 1] ,

for a small s > 0 .
The distribution NT (0, 1) of εSFC is a symmetric truncated standard Gaussian on the
interval [−3, 3].

Now, our problem amounts to estimating the location parameter µSFC and the standard
deviation σSFC .

Remark 2.2. � All the numerical results we will present have been generated without
truncation, which will not have a signi�cant e�ect. Indeed, the truncations are set to
high quantiles (more than 99% for upper quantiles and less than 1% for lower quantiles).

2.5. Statistical modeling. � Let us denote by (E ,Pε) the probability space associ-
ated to the noise vector

ε = (εSFC , εV , εF )T ,

and denote the vector of parameters by

θ = (µSFC , σSFC)T .

Then, we consider the analytical and simpli�ed model of Mfuel the mass of consumed
fuel, as the function

Mfuel = h(ε,θ) ,
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where h : (E ,Pε)×Θ→ Ih is given by

h(ε,θ) = (Mempty +Mpload)

(
exp

(
(µSFC + σSFC εSFC) · g ·Ra
(Vnom + εV ) · (Fnom + εF )

· 10−3

)
− 1

)
(3)

with

Θ = [15, 20]× [s, 1]

and Ih is the interval

Ih = h(E ,Θ) = [Mh
inf ,M

h
sup] .(4)

We denote by |Ih| its length.

Remark 2.3. � We observe through simulations that

I ⊂ Ih ,

where I = [Minf ,Msup] is the observation interval given above.

The purpose is now to estimate parameter θ ∈ Θ from the set of data M∗,1
fuel, ...,M

∗,n
fuel.

In the next section, we propose an estimation procedure taken from [7].

3. Parameter estimation

In our previous framework it is possible to apply the procedures developed in [7].
In particular, we choose to work with the log−contrast which can be understood as a
Maximum Likelihood based estimation.

The sample M∗,1
fuel, ...,M

∗,n
fuel is drawn from an unknown distribution Q. We will use the

parametric family of distributions {Qθ , θ ∈ Θ} where Qθ is the pushforward measure of
Pε by the (measurable) application u 7→ h(u,θ) .
That means that we consider the models h(ε, θ) to be a reasonable �rst approximation
in order to obtain statistical information about Q.
Denoting ρθ the Lebesgue density associated to the measure Qθ, the maximum likelihood
procedure is given by

θ̂ = Argmin
θ∈Θ

− 1

n

n∑
i=1

log(ρθ(M∗,i
fuel)) .(5)

However, the above procedure is unfeasible because the density ρθ is not analytically
tractable. As suggested in [7], we replace ρθ by an estimator denoted ρmθ . There are
many ways to estimate a density. We choose the simplest one, which is commonly used
in industrial modeling.

Let ε1, ..., εm be m random variables i.i.d from Pε, we consider the kernel estimate of our
density

ρmθ (·) =
1

m

m∑
j=1

Kbmθ
(· − h(εj,θ)) ,(6)
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where Kbmθ
is the Gaussian kernel

Kbmθ
(x) =

1√
2π bmθ

e
− x2

2 (bm
θ

)2 ,

and bmθ is computed from the sample h(εj,θ), j = 1, ...,m for θ ∈ Θ, by Silverman's
rule-of-thumb :

bmθ =

(
4

3

)1/5

m−1/5 σ̂θ .(7)

The quantity σ̂θ is the empirical standard deviation of the sample h(εj,θ), j = 1, ...,m

σ̂θ =
1

m

m∑
j=1

(
h(εj,θ)− 1

m

m∑
j=1

h(εj,θ)

)2

.

Other popular estimates are truncated projections on a suitable basis of functions
(sine, cosine, wavelets, etc.). Here we do not discuss the optimization of the density
estimation, but all what follows could be applied in the same way. The numerical results
may be slightly di�erent, but qualitatively the same.
Replacing ρθ by ρmθ in (5) and simplifying by the multiplying constant 1/n yields the
estimation procedure

θ̂ = Argmin
θ∈Θ

−
n∑
i=1

log

(
1

m

m∑
j=1

Kbmθ

(
h(εj,θ)−M∗,i

fuel

))
.(8)

Hence, our problem is an inverse problem. More precisely, it is an inverse problem in
presence of uncertainties, also called probabilistic inverse problem or stochastic inverse
problem. This topic is often treated in the �eld of uncertainty management: the goal
may for instance be to identify the intrinsic uncertainty of a system, see for instance
the PhD works [1] and [5]. Another reference is the paper of E. de Rocquigny and S.
Cambier [3], where the purpose is to identify a parameter of interest which controls
the vibration ampli�cation of stream turbines. Our framework is di�erent. The main
di�erence lies in the absence of assumptions, in the present paper, on the distribution
of the error between observation data and reference data. Thus, it di�erentiates the
estimation procedures we propose from the ones developed in [3].

In the following section, we provide a numerical analysis using the algorithm given by
(8). Theoretical aspects will be addressed in Section 6.

4. Numerical study : �rst approach

4.1. Estimation. � Setting

J(θ) = −
n∑
i=1

log

(
1

m

m∑
j=1

Kbmθ

(
h(εj,θ)−M∗,i

fuel

))
with θ = (µSFC , σSFC)T ,

our problem is a minimization problem where we want to compute

θ̂ = Argmin
θ∈Θ

J(θ) .
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We recall that n = 32. The data (M∗,i
fuel)i=1,...,n are provided by Table 1. We choose

m = 10000 (the number of calls to the model given by (3)), and for j = 1, ...,m, εj ∼ Pε

where

Pε(du, dv, dw) =
1√

2π L
e−u

2/2 g(7,2,εminF ,εmaxF )(v)
1

εmaxV − εminV

1 [εminV ,εmaxV ](w) du dv dw ,

with L = Φ(3)−Φ(−3) (Φ is the cumulative distribution function of a standard Gaussian
random variable).
This optimization procedure can be solved by Quasi-Newton methods. We present the
results in Table 5. In Figure 3 we show the resulting probability density function of SFC

estimator value of J(θ̂) estimated SFC location estimated SFC dispersion

θ̂ J(θ̂) = 199.465 µ̂SFC = 17.397 σ̂SFC = 0.201
Table 5. SFC characterization parameters

given by NT (µ̂SFC , σ̂SFC) .

Figure 3. Estimated Speci�c Fuel Consumption distribution.

Figure 4 provides pro�le views of the criterion function θ = (µSFC , σSFC) 7→ J(θ),
�rst at σSFC = σ̂SFC (Figure 4(a), we show log(J(θ))) and then at µSFC = µ̂SFC (Figure
4(b)).

We notice that the minimum θ̂ = (µ̂SFC , σ̂SFC) is correctly located.

4.2. Comparison with reference sample. � In order to analyse the results ob-
tained in the previous subsection, we need some reference sample of SFC values at the
same simulation conditions. We take for reference the sample of SFC values of size 200
described in the introduction, provided by the aeronautic software. The characteristics
of this sample are given in Table 6.

Mean Stand. dev.

Reference sample 17.49 0.57
Table 6. Reference sample characteristics
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(a) (b)

Figure 4. (a) Pro�le view of log(J) at σSFC = σ̂SFC . (b) Pro�le view of J at
µSFC = µ̂SFC .

The data in Table 6 have to be compared with those in Table 5 where the mean and
standard deviation are µ̂SFC = 17.397 and σ̂SFC = 0.201, respectively. Table 7 provides
the associated relative errors. Figure 5 shows the histogram of the reference sample and
the estimated distribution of SFC obtained in Figure 3.

Reference sample Estimated SFC (3) Relative error

Mean 17.49 17.397 0.5 %
Stand. dev. 0.57 0.201 60.6 %

Table 7. Relative errors of the mean and deviation between reference SFC
sample and the estimated model (3)

It appears that the location of the variable of interest SFC is well reached whereas the
standard deviation estimation provides an error of 60%. The "error" has roughly two
origins:

Statistical error : this error is mainly due to the limited number (n = 32) of data
from the observed masses of fuel M∗,i

fuel. It is also due to the error induced by the
kernel approximation of ρθ.Yet the choice ofm = 10000 calls to the analytical model
garantees that the error on ρθ is small .

Model error : this error is relative to the use of Fuel mass model (1) with uncertain
variables V and F (Figure 2), and includes the Gaussian hypothesis for SFC (2).
Thus, the model error can be separated into 2 parts: physical model error and
uncertainty modeling error.

We observe on Figure 5 that the SFC parameter does not behave like a Gaussian
variable. This can be quali�ed as model error.
However, if one just wants to estimate the mean value of SFC, the Gaussian hypothesis
does not have a signi�cative impact (0.5% of error). On the other hand, if one wants
more information about SFC, other modeling tools are needed to allow a robust
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Figure 5. Reference and estimated SFC distributions.

characterization approach.

In the next subsection, we will discuss the uncertainty modeling, more precisely, the
Gaussian hypothesis for SFC given by (2).

5. On the probabilistic modeling of SFC

5.1. Considering Wiener-Hermite representation in the previous analysis. �
The characterization of a random variable by the mean and the standard deviation only
could be too approximative in order to study the whole behavior of the variable. In this
study, we have made an a priori (a model) on the variable of interest SFC. In (2) we
supposed that

SFC ∼ NT (µSFC , σ
2
SFC) ,

which we now rewrite

SFC = µSFC + σSFC ξT , ξT ∼ NT (0, 1) .(9)

We will see that this (truncated) Gaussian hypothesis on SFC is a particular case of a
more general representation.

The so called Wiener Chaos Expansion, developed in the 30's by Wiener [11], gives a
representation of any second-order random variable Z:

Z =
∞∑
l=0

zlΥl((ξk)k≥1) , (with convergence in L2(P) )(10)
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where (ξk)k≥1 is a (in�nite) sequence of independent standard normal random variables
and the Υl's are the multivariate Hermite polynomials. This expansion is also called
Wiener-Hermite expansion.
In practice, we have to consider a �nite sequence (ξ1, ..., ξM) where M is called the
order of the expansion, and the sum in (10) is truncated at p which is the degree of the
expansion.
Hence, considering all M -dimensional Hermite polynomials of degree lower than p, the
representation (10) is approximated by

Z ' Zp,M =
P−1∑
l=0

zlΥl(ξ) , ξ = (ξ1, ..., ξM) ,(11)

where

P =
(M + p)!

M ! p!
.

The integer P corresponds to the number of coe�cients to be estimated.
For our purpose, by Assumption 2.1, we will consider the following approximation

Z ' Zp,M =
P−1∑
l=0

zlΥl(ξT ) , ξT = (ξ1
T , ..., ξ

M
T ) ,(12)

where ξT is a vector of truncated standard Gaussian variables.
Moreover, one can notice that by orthogonality arguments in (12), we have without
truncation

E(Zp,M) = z0 = E(Z)(13)

and

Var(Zp,M) =
P−1∑
l=1

z2
l .(14)

Let us notice that by the decomposition

Zp,M = Z +
(
Zp,M − Z

)
,

each choice of p and M will induce a model error

moderr := Zp,M − Z .
We illustrate this aspect concerning SFC in the next subsection.

5.2. Application to the Speci�c Fuel Consumption. � In our purpose, if we sup-
pose that E(SFC2) <∞ (it is implicitly supposed in the Gaussian hypothesis), we can
set the following modeling

SFCp,M =
P−1∑
l=0

zlΥl(ξT ) , ξT = (ξ1
T , ..., ξ

M
T ) , M, p ≥ 1

which we rewrite by (13)

SFCp,M = µSFC +
P−1∑
l=1

zlΥl(ξT ) , ξT = (ξ1
T , ..., ξ

M
T ) , M, p ≥ 1 .(15)

It appears now that the Gaussian representation (9) is the particular case of (15) with
p = 1 andM = 1. Moreover, in view of the Wiener representation (10), the Gaussian one
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(9) may lead to a rough approximation (if SFC is not Gaussian) and thus contributes
to a non negligible model error. It is clearly observed in Figure 5 where the reference
data does not seem to be drawn from a Gaussian distribution.
As a matter of fact, one can hope to reduce the model error (described in the previous
subsection), at least the error corresponding to SFC modeling, by considering a less
restrictive representation (15) with some appropriate order M ≥ 1 and degree p ≥ 1 .
Let us consider the Wiener-Hermite expansion of order M = 2 and degree p = 2

SFC2,2 = µSFC +
5∑
l=1

θlΥl(ξT ) , ξT = (ξ1
T , ξ

2
T )

or

SFC2,2 = µSFC + θ1ξ
1
T + θ2ξ

2
T + θ3ξ

1
T ξ

2
T + θ4((ξ1

T )2 − 1) + θ5((ξ2
T )2 − 1) ,(16)

that leads to estimate P = (2+2)!
2!2!

= 6 coe�cients. Table 8 shows the result obtained by
the algorithm developed in the previous section where we change the function h(ε,θ) in
(3) replacing σSFCεSFC by θ1ξ

1
T + θ2ξ

2
T + θ3ξ

1
T ξ

2
T + θ4((ξ1

T )2 − 1) + θ5((ξ2
T )2 − 1) , with

ε = (ξ1
T , ξ

2
T , εV , εF ) and θ = (µSFC , θ1, ..., θ5) .

θ0 θ1 θ2 θ3 θ4 θ5

SFC2,2 17.470 0.047 0.054 0.182 0.103 0.063
Table 8. SFC characterization parameters

Reference sample from SFC2,2 Relative error

Mean 17.49 17.470 0.11 %
Stand. dev. 0.57 0.230 59.65 %

Table 9. Relative errors of the mean and standard deviation with SFC2,2

Let us compare the relative errors of the �rst two statistical moments by considering
SFC1,1 (i.e the Gaussian hypothesis Table 7) and SFC2,2 (Table 9).
The Wiener-Hermite modeling seems to improve the mean estimation of SFC whereas
the standard deviation is poorly estimated in the two cases with an error of about
60%. There is no signi�cative di�erence between the two methods regarding the �rst
two moments. However, the behavior of density functions corresponding to SFC1,1 (see
Figure 5) and SFC2,2 is clearly not the same. We present in Figure 6 the result obtained
when SFC is modeled by a Wiener expansion of order M = 2 and degree p = 2.
The distribution of SFC given by the Wiener expansion in Figure 6 seems to have

a behavior close to the reference sample one, despite the fact that there is a non
negligible bias. As mentioned in the previous subsection, this is due to the statistical
and model errors. Indeed, let us recall that we have at disposal n = 32 reference fuel
masses from which we characterize the SFC parameter. It would be interesting to
see what happens when adding reference fuel masses, i.e by reducing the statistical error.
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Figure 6. Estimations of SFC probability density with a Wiener Expansion
p =M = 2 .

5.3. Wiener-Hermite analysis with augmented reference fuel mass sample.
� We present here numerical results obtained by adding 50 new samples from the data
basis built with the complex software with the same initial conditions. Figure 7 shows
the characterization of SFC obtained by a Wiener expansion of orderM = 2 and degree
p = 2 from the augmented reference fuel mass sample of size n = 82.
The Table 10 gives the coe�cients corresponding to this simulation.

θ0 θ1 θ2 θ3 θ4 θ5

SFC2,2 17.50 0.281 0.008 0.012 0.191 0.219
Table 10. SFC characterization parameters from augmented fuel mass sample

Reference sample from SFC2,2 Relative error

Mean 17.49 17.50 0.06 %
Stand. dev. 0.57 0.404 29.12 %

Table 11. Relative errors of the mean and standard deviation with SFC2,2

from augmented fuel mass sample

Hence, by adding reference data we improve signi�catively the characterization of
SFC on the �rst two statistical moments as well as on the whole probability density
function of SFC.
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Figure 7. Characterization of SFC with an augmented sample of fuel mass

In the next section we introduce some knowledge on the SFC modeling through an
expert judgment inducing a new and statistical modeling that will improve to be better.

5.4. Analysis with a "good" a priori knowledge. � In the previous analyses, we
only consider truncated Wiener-Hermite expansions. This is more of a mathematical
hypothesis than a knowledge brought to the modeling. Suppose now that an expert
judgment says that the distribution of the SFC is of exponential form. Mathematically,
it is equivalent to supposing that the probability density of SFC belongs to the family{

p(u;θ) = θ2 e
−θ2(u−θ1) 1 [θ1,+∞[ , θ = (θ1, θ2) ∈ R+ × R∗+

}
.

One can check that this suggestion induces the modeling

SFCexp = θ1 −
1

θ2

log(ξ) , ξ ∼ U([0, 1]) ,(17)

where U([0, 1]) is the uniform distribution on the interval [0, 1] .
In order to satisfy Assumption 2.1, we consider the truncated version

SFCexp = θ1 −
1

θ2

log(ξT ) , ξT ∼ U([c, 1]) ,(18)

for some small c > 0.

Remark 5.1. � Representation (18) seems quite di�erent from the one provided by
the Wiener-Hermite expansions (see (9) and (16)). Yet, as the random variable SFCexp
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has �nite variance, the modeling (18) could be seen as a practical alternative to a Wiener
expansion (10). Such a Wiener expansion would be given by choosing a high order M exp

and a high degree pexp in (12).

In what follows, we present the results of the numerical analysis corresponding to
n = 32 and n = 82.

θ1 θ2

SFCexp 17.23 3.45
Table 12. Estimation of θ = (θ1, θ2) when n = 32

Reference sample from SFCexp (n = 32) Relative error

Mean 17.49 17.52 0.17 %
Stand. dev. 0.57 0.29 49.12 %

Table 13. Relative errors of the mean and standard deviation between reference
SFC sample and SFCexp when n = 32.

θ1 θ2

SFCexp 16.95 2
Table 14. Estimation of θ = (θ1, θ2) when n = 82

Reference sample from SFCexp (n = 82) Relative error

Mean 17.49 17.45 0.23 %
Stand. dev. 0.57 0.501 12.1 %

Table 15. Relative errors of the mean and standard deviation between reference
SFC sample and SFCexp when n = 82.

We clearly see that the informative knowledge contributes to improving signi�catively
the characterization of the Speci�c Fuel Consumption. With n = 82 fuel mass data, the
results are satisfying as shown in Figure 8 and Table 15.

5.5. Conclusion. � Section 5 was dedicated to illustrating the e�ect of the modeling
conditions for SFC characterization. In particular, we showed the impact of a "model
error" through the modeling of the random variable SFC. We also illustrated how the
statistical error, through the number of fuel mass data, appears in the performance of
the estimation.
In all cases, we computed a parameter θ̂. If we supposed that there is no model error,
that is Q ∈ {Qθ, θ ∈ Θ} (where Q is the "true" distribution of M∗

fuel), the error is
only due to the limited number of data. So it makes sense to investigate the di�erence

‖θ̂ − θ∗‖, where θ∗ is de�ned as Q = Qθ∗ . If this is not the case it gives an insight on
the statistical error part.
It is the topic of the following section.
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Figure 8. Characterization of SFC with an exponential hypothesis

6. Theoretical result

In this paper, the study of the procedure performance (8) will be non-asymptotic, i.e
for a �xed number of observations M∗,i

fuel (n) and a �xed number of variables εj (m).
The asymptotic study is let to a forthcoming work.

The quality of such estimation procedure can be investigated by giving an upper bound

of the distance between the reachable parameter θ̂ and the best parameter θ∗ (unknown).
The latter can be seen as the parameter obtained if one has an in�nite number of obser-
vations M∗,i

fuel and variables εj. More precisely,

θ∗ = Argmin
θ∈Θ

EQ log
(
ρθ(M∗

fuel)
)
,(19)

where EQ log
(
ρθ(M∗

fuel)
)
can be seen as the "limit" of the quantity

1

n

n∑
i=1

log

(
1

m

m∑
j=1

Kbmθ

(
h(εj,θ)−M∗,i

fuel

))
(20)

in (8) when n and m go to in�nity.
The Maximum Likelihood equation (19) turns out to be the minimization of the
Kullback-Leibler divergence between Q and the family {Qθ, θ ∈ Θ}, while equation (20)
is a smoothed empirical counterpart.
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We consider the model h(ε,θ) given in (3), but what follows can be generalized to any
other one.
Then, denoting by ‖ · ‖ the Euclidian norm in R2, it makes sense to bound the quantity

‖θ̂ − θ∗‖2 .

Let us denote by
R(θ) := EQ log

(
ρθ(M∗

fuel)
)
,

and by f the Lebesgue density associated to the measure Q .

Assumptions 6.1. � Let us consider the following assumptions.
- A1 The map θ 7→ R(θ) is twice di�erentiable with

∇R(θ∗) = 0

and has a symmetric positive de�nite Hessian matrix ∇2R . Let us denote by λmin >
0 the smallest eigenvalue of the set of matrices {∇2R(θ), θ ∈ Θ} .

- A2 It exists η > 0 such that for all θ ∈ Θ, the density probability of h(ε,θ) we
noted ρθ, satis�es

ρθ > η .

- A3 For all θ ∈ Θ, the second derivative of ρθ, we note ρ
′′

θ, exists and

C := sup
θ∈Θ
‖ρ′′θ‖2 < +∞ .

- A4 We suppose that

0 < δ < inf
θ∈Θ

σ̂θ and sup
θ∈Θ

σ̂θ < σ < +∞ ,

where σ̂θ is de�ned in (7).

We prove the following consistency theorem:

Theorem 6.2. � Let us consider the estimator θ̂ in (8) and the Assumptions (6.1).
Then, for all 0 < τ < 1/2, with probability at least 1− 2 τ

‖θ̂ − θ∗‖2 ≤ c1

√
log(a1τ−1)

n
+
c2

√
log(a2τ−1) + c3m

1/10

√
m

,

for some constants c1, c2, c3, a1 and a2 .

The risk bound of this theorem seems surprising since we obtain a rate of n1/4, whereas
one expects a rate close to

√
n for the treated parametric problem. This theorem is a

consistency result. Consequently, it does not give information about the rate of conver-
gence. The obtained bound can be explained by the fact that, by Assumption A1, we
have

R(θ̂)−R(θ∗) ≈ ‖θ̂ − θ∗‖2 .

Indeed, if R(θ̂)−R(θ∗) ≈ 1/
√
n (bound given in [7]) then obviously ‖θ̂− θ∗‖ ≈ n−1/4 .

However, the
√
n-rate can be reached by considering the approach of Corollary 5.53 (pp.

77) in [9] where an additional assumption is made on the risk function θ 7→ R(θ). More
precisely, this assumption relies on the function θ 7→ log(ρθ) which is supposed to satisfy
a Lipschitz condition. This work is let to a forthcoming paper which will deal with

a central limit theorem for the parameter θ̂ (the rate of convergence will therefore be
reachable).
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7. Proof of Theorem 6.2

We give a general proof of Theorem 6.2.

By Assumption A1, we have the Taylor-Lagrange formula

R(θ̂) = R(θ∗) +
1

2
(θ̂ − θ∗)T ∇2R(ξ) (θ̂ − θ∗) ,(21)

for some ξ ∈ Θ .
Then, we will use the following lemma

Lemma 7.1 (Rayleigh's quotient). � Let H be a real symmetric matrix p × p and
denote by λ1 < ... < λp the ordered eigenvalues of H.
It holds that for all x ∈ Rp − {0}

λ1 ≤
xT H x

xT x
≤ λp .

Now, applying this lemma with H = ∇2R(ξ) and x = (θ̂ − θ∗) yields

λmin ‖θ̂ − θ∗‖2 ≤ (θ̂ − θ∗)T ∇2R(ξ) (θ̂ − θ∗) ,

where λmin > 0 is the smallest eigenvalue of the set of matrices {∇2R(θ), θ ∈ Θ} .
Then, using this last inequality with equality (21) gives

‖θ̂ − θ∗‖2 ≤ 2

λmin

(
R(θ̂)−R(θ∗)

)
.(22)

The problem turns to bound the positive quantity R(θ̂)−R(θ∗), where θ̂ is given by
(8). Such bound can be investigated by applying Theorem 4.1 in [7], which is a general
result. We will aim at computing constants Kτ

1 and Kτ
2 such that, with high probability

(23)

R(θ̂)−R(θ∗) ≤ 2 ‖f‖2

η

(
1√
n

η

2 δ2 ‖f‖2

γ Kτ
1 +

1√
m

1√
2π δ

Kτ
2 +

1

m2/5

C (1.06σ)2

√
3

)
.

In our framework, the main work is to compute the concentration constants Kτ
1 and Kτ

2

derived from [7] in the following particular case.

7.1. On concentration constants Kτ
1 and Kτ

2 . � Since we apply Theorem 4.1 in
[7], one has to guarantee that the constants Kτ

1 and Kτ
2 are �nite.

For this, let us �rst recall some de�nitions and notations relative to empirical processes.

De�nition 7.2. � Empirical process. Let W be some probability measure on some
space T and let us suppose given a k i.i.d sample ξ1, ..., ξk drawn from W . Let us denote
by Wk the empirical measure

Wk :=
1

k

k∑
i=1

δξi
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and G some class of real valued functions g : T → R .
We call W -empirical process indexed by G the following application

Gk : G −→ R

g 7−→ Gk :=
√
k

∫
T

g(t) (Wk −W ) (dt) ,

also written

Gk g :=
1√
k

k∑
i=1

(g(ξk)− EW (g(ξ))) .

We denote the supremum of an empirical process by

‖Gk‖G := sup
g∈G
|Gk g| .

Following the proof lines of Theorem 2.1, Table 2 p.11 in [7] (giving classes of functions)
and considering the inequality (23), it is easy to verify that Kτ

1 is de�ned as

for all n ≥ 1 , P(‖Un‖A ≤ Kτ
1 ) ≥ 1− τ(24)

where Un is the Q-empirical process (Qn = 1
n

∑n
i=1 δM∗,ifuel

) indexed by the class of func-

tions

A = {y ∈ I 7−→ (y − λ)2, λ ∈ Ih}(25)

where we recall

I = [Minf ,Msup] and Ih = h(E ,Θ) .

Similarly, the constant Kτ
2 is de�ned as follows

for all m ≥ 1 , P(‖Vm‖B ≤ Kτ
2 ) ≥ 1− τ(26)

where Vm is the P ε-empirical process (P ε
m = 1

m

∑m
j=1 δεj) indexed by the class of functions

B = {x ∈ E 7−→ e−(h(x,θ)−λ)2/2 b2 , (θ, λ, b) ∈ Θ× Ih × [δ, σ]} .(27)

By the writings (24) and (26), the constants Kτ
1 and Kτ

2 arise from the "concentration of
the measure phenomenon" (see [6], [2]). More precisely, these constants characterize the
tightness of the sequences of random variables ‖Un‖A (which is (M∗,i

fuel)i=1,...,n dependent)
and ‖Vm‖B (which is (εj)j=1,...,m dependent).

Now, we aim at computing (upper bound) these constants using concentration inequali-
ties where the classes of functions A and B will play a crucial role. In particular, we will
apply the following theorem which is Theorem 2.14.9 in [10].
Before, let us recall the de�nition of the bracketing numbers (taken from [10] p. 83-85).

De�nition 7.3. � Bracketing numbers. Let G be some class of functions on T and
denote by W a probability measure on T .
Given two functions l, u, the bracket [l, u] is the set of all functions g with l ≤ g ≤ u. An
ε-bracket is a bracket [l, u] with ||u−l||2,W < ε. The bracketing number N[ ](ε, G, L2(W ))
is the minimum number of ε-brackets needed to cover the class of functions G.
The entropy with bracketing is the logarithm of the bracketing number.

Remark 7.4. � The bracketing numbers measure the "size", the complexity of a class
of functions.
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Theorem 7.5. � Let G be a uniformly bounded class of (measurable) functions g :
T → [0, 1] and denote by W a probability measure on T . If the class G satis�es, for some
constants K and L

N[ ](ε,G, L2(W )) ≤
(
K

ε

)L
for every 0 < ε < K .(28)

Then, for every t > 0,

P(‖Gk‖G > t) ≤
(
D t√
L

)L
e−2t2 ,

for a constant D that only depends on K.

The proof of this theorem can be found in [8].

Now, let Kτ be a constant (to determine) which satis�es

P(‖Gk‖G ≤ Kτ ) ≥ 1− τ .
This is equivalent to

P(‖Gk‖G > Kτ ) ≤ τ .(29)

By Theorem 7.5, applied with t = Kτ , we have

P(‖Gk‖G > Kτ ) ≤
(
DKτ

√
L

)L
e−2(Kτ )2

.(30)

Hence, the constant Kτ can be taken such that(
DKτ

√
L

)L
e−2(Kτ )2 ≤ τ ,

which is similar to

(Kτ )2 − L

2
log(Kτ ) ≥ log(aL,D τ

−1)

2
, with aL,D =

(
D√
L

)L
.(31)

Then, for small enough τ > 0, let us consider the constant

Kτ =

√
log(aL,D τ−1)

2
(32)

which satis�es (31).

Finally, we see that the constant Kτ can be characterized (only) by the class of functions
G through the constants D and L provided by Theorem 7.5.

In our purpose, the classes of interest areA and B de�ned in (25) and (27), respectively.
Next, one can easily check that these classes are uniformly bounded and it is suitable to
work with normalized classes

Ā = αA +
1

βA
A ,(33)

B̄ = αB +
1

βB
B ,(34)

such that all the functions take values in [0, 1] .



STOCHASTIC INVERSE PROBLEM IN AERONAUTICS 21

Now, we have to prove that the classes Ā and B̄ have polynomial bracketing numbers
following (28). This will give the constants LĀ, DĀ and LB̄, DB̄ needed to identify the
key constants Kτ

1 and Kτ
2 de�ned in (24) and (26), respectively.

7.2. Characterization of LĀ, DĀ, LB̄, DB̄. � We consider the Theorem 2.7.11 in
[10] (p. 164) which deals with classes that are Lipschitz in a parameter. It reads:

Theorem 7.6. � Let G = {t ∈ T 7→ gs(t) , s ∈ S} be a class of functions satisfying

for all t ∈ T , s, s′ ∈ S , |gs(t)− gs′(t)| ≤ d(s, s′)G(t) ,

for some metric d on S and some function G : t 7→ G(t).
Then, for any norm

N[ ](2ε ‖G‖,G, ‖ · ‖) ≤ N(ε, S, d) ,

where N(ε, S, d) is the minimal number of balls {r , d(r, s) < ε} of radius ε needed to
cover the set S .

In what follows, we detail the case of the class Ā. The case of the class B̄ is exactly
in the same spirit.

Let us recall that Q is the probability measure considered on I (observation space) and
that we have

Ā = {fλ : y ∈ I 7−→ αB +
1

βA
(y − λ)2, λ ∈ Ih} ,

where I = [Minf ,Msup] and Ih = [Mh
inf ,M

h
sup] (with I ⊂ Ih).

So

|fλ(y)− fλ(y)| = 1

βA
|(y − λ1)2 − (y − λ2)2| ≤ |λ1 − λ2|F (y) ,

with F (y) = 2
βA

(y+Mh
sup), and by Theorem 7.6 applied with ‖ · ‖ = ‖ · ‖2,Q, it holds that

N[ ](ε, Ā, L2(Q)) ≤ N

(
ε

2 ‖F‖2,Q

, Ih, | · |
)
.

Moreover, since
‖F‖2,Q ≤ sup

y∈I
F (y) ‖f‖2

where f is the density associated to the measure Q, and using the fact that I ⊂ Ih, we
obtain that

‖F‖2,Q ≤
4

βA
Mh

sup ‖f‖2 .

This last inequality yields

N

(
ε

2 ‖F‖2,Q

, Ih, | · |
)
≤ N

(
βA ε

8Mh
sup ‖f‖2

, Ih, | · |
)
.

Since Ih = [Mh
inf ,M

h
sup], the quantity (covering number) in the right member is bounded

by
8 |Ih|Mh

sup ‖f‖2

βA ε
, |Ih| = Mh

sup −Mh
inf .

We �nally get

N[ ](ε, Ā, L2(Q)) ≤
8 |Ih|Mh

sup ‖f‖2

βA ε
,
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that is

N[ ](ε, Ā, L2(Q)) ≤
(
KĀ
ε

)LĀ
,

with

LĀ = 1

and

KĀ =
8 |Ih|Mh

sup ‖f‖2

βA
that determines DĀ by [8] .

A similar work gives the constant LB̄ = 1 and a constant DB̄ .

7.3. End of the proof. � By the previous subsection, we get the constants Kτ
Ā and

Kτ
B̄ given by (32) with associated constants L and D:

Kτ
Ā =

√
log(a1 τ−1)

2
, a1 = aLĀ,DĀ = DĀ(35)

Kτ
B̄ =

√
log(a2 τ−1)

2
, a2 = aLB̄,DB̄ = DB̄(36)

where initially aL,D =
(

D√
L

)L
(by (31)).

But, the constants of interest Kτ
1 and Kτ

2 de�ned in (24) and (26) are relative to non
normalized classes A and B. Let us remark that if Ḡ = α + 1

β
G, then

‖Gk‖Ḡ =
1

β
‖Gk‖G .(37)

Now, let us denote by Kτ
Ḡ the constant that satis�es

P(‖Gk‖Ḡ ≤ Kτ
Ḡ) ≥ 1− τ ,

and denote by Kτ
G the constant that satis�es

P(‖Gk‖G ≤ Kτ
G) ≥ 1− τ .

By (37), it is easy to check that we can take

Kτ
G = β Kτ

Ḡ .

We deduce that

Kτ
1 = βAK

τ
Ā

and

Kτ
2 = βBK

τ
B̄ .

Finally, by (22) and (23) we have with probability 1− 2τ

‖θ̂ − θ∗‖2 ≤ 4 ‖f‖2

λmin η

(
1√
n

η

2 δ2 ‖f‖2

γ Kτ
1 +

1√
m

1√
2 π δ

Kτ
2 +

1

m2/5

C (1.06σ)2

√
3

)
which we rewrite

‖θ̂ − θ∗‖2 ≤
√

2 c1√
n
Kτ
Ā +

√
2 c2√
m
Kτ
B̄ +

c3

m1/5

with corresponding constants c1, c2 and c3 and Kτ
Ā, K

τ
B̄ are given by (35) and (36).

That concludes the proof of Theorem 6.2.
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