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), arising from some variables of the model. The phenomenon we study is the fuel mass needed to link two given countries with a commercial aircraft, where we only consider the Cruise phase . From a data base of fuel mass consumptions during the cruise phase, we aim at identifying the Specic Fuel Consumption (SF C) in a robust way, given the uncertainty of the cruise speed V and the lift-to-drag ratio F . In this paper, we present an estimation procedure based on Maximum-Likelihood estimation, taking into account this uncertainty.

Résumé. Le problème inverse est une pratique assez courante en ingénierie, où le but est de déterminer les causes d'un certain phénomène à partir d'observations de ce dernier. Le phénomène mis en jeu est représenté par un modèle numérique, dont certaines composantes peuvent comporter une part de variabilité (voir [4]). Le phénomène étudié est la masse de fuel nécessaire pour eectuer une liaison xée avec un avion commercial, en ne considérant que la phase de Croisière. Le but étant, à partir de données de masses de fuel consommées en croisière, d'identier de manière robuste la consommation spécique SF C de la motorisation en tenant compte de l'incertitude sur la vitesse de croisière V et sur la nesse F de l'avion. Dans cet article, nous proposons une procédure d'estimation basée sur une méthode de maximum de vraisemblance, prenant en compte cette incertitude.

Introduction

One of engineering activities is to model real phenomena. Once a model is built (physical principles, state equations, etc.), some parameters have to be identied and some variables of the model may present some intrinsic variability. Hence, the identication of parameters should implicitly take into account the uncertainty of variables of the model. In this paper, we present a likelihood-based method to estimate aeronautic parameters in a Fuel mass model. We use an analytical model that can be viewed as a black-box simulator. From a data base M * ,1 f uel , ..., M * ,n f uel giving the mass of fuel consumed for n lines between two given cities with a specic commercial aircraft, we aim at identifying the Specic Fuel Consumption (SF C) which corresponds to a characteristic value of engines. The model we use depends in particular on the cruise speed (V ) and on the lift-to-drag ratio (F ). These variables present intrinsic variability: the cruise speed may depend on atmospheric conditions and the lift-to-drag ratio is also subjected to variability potentially caused by turbulent phenomena. As a matter of fact, the identication of the parameter SF C should take into account the variability of the cruise speed and the lift-to-drag ratio.

In this paper, we propose an algorithm taken from the work of N. Rachdi et al. [START_REF] Rachdi | Risk bounds for new M-estimation problems[END_REF].

It allows a characterization of SF C from the observed data M * ,1 f uel , ..., M * ,n f uel and model simulations when the number of observations n is small. This article is organized as follows. In Section 2 we describe the setting of the problem. In Section 3 we build the algorithm for the inverse problem with a Maximum-Likelihood based method. In Section 4 we apply the algorithm given in Section 3. In Section 5 we illustrate the eect of modeling conditions, particularly the random modeling on SF C and the number of observed data. In Section 6 we establish the Theorem 6.2 providing an upper bound of the estimation error of the proposed algorithm. Section 7 is devoted to proving the Theorem 6.2.

2. General setting 2.1. Observations. In our study, the data M * ,1 f uel , ..., M * ,n f uel were generated from an aeronautic software which simulates gas turbine congurations used for power generation. In particular, it can simulate the consumed mass of fuel at some conguration of engines, altitude, speed, atmospheric conditions, etc. (See Figure 1). This software is very complex and very much time consuming. In fact only 200 outputs from this software are available by choosing various atmospheric conditions. This sample constitutes our data reference.

In a rst time, we pick up a small sample of size n = 32 from this reference sample. The data are given in Table 1.

Next, we will suppose that the observations M * ,1 f uel , ..., M * ,n f uel are drawn from an unknown probability distribution Q with associated Lebesgue density f with support The dierence M sup -M inf = 500 kg have to be thought as an overconsumption of about 7% approximatively.

I := [M inf = 7600, M sup = 8100] .

2.2.

A simplied aeronautical model. We recall that we are interested in identifying the specic fuel consumption SF C. It is a signicant factor determining the fuel eciency of a particular engine. To handle this problem we introduce a classical simplied Fuel mass model given by the Bréguet formula:

M f uel = (M empty + M pload ) e SF C•g•Ra V •F 10 -3 -1 . (1) 
The xed variables are • M empty : Empty weight = basic weight of the aircraft (excluding fuel and passengers),

• M pload : Payload = maximal carrying capacity of the aircraft,

• g : Gravitational constant,

• Ra : Range = distance traveled by the aircraft.

The uncertain variables mentioned in the introduction are • V : Cruise speed = aircraft speed between ascent and descent phase, • F : Lift-to-drag ratio = aerodynamic coecient. 

Noise modeling.

As said in the introduction, we have to take into account the uncertainty of the cruise speed V and the lift-to-drag ratio F . Given the nominal value of each variable (see Table 2), an expert judgment can derive the uncertainty bounds. (see Table 3).

The uncertainty on the cruise speed V represents a relative dierence of arrival time of 8 minutes. 4. The probability density function of a beta distribution on [a, b] with shape parameters (α, β) is

variable distribution parameter V Uniform (V min , V max ) F Beta (7, 2, F min , F max )
g (α,β,a,b) (x) = (x -a) (α-1) (b -x) β-1 (b -a) β-1 B(α, β) 1 [a,b](x) ,
where B(•, •) is the beta function.

Figure 2 shows the probability density functions of V and F . In order to emphasize the "noisy" feature of the variables V and F , we will use the writing

• V = V nom + V , • F = F nom + F , where V is a centered uniform random variable on the interval [ min V , max V ] with min V = V min -V nom and max V = V max -V nom .
Variable F , supposed to be independent of V , is a beta random variable on the interval [ min F , max F ] with shape parameters [START_REF] Rachdi | Risk bounds for new M-estimation problems[END_REF][START_REF] Billingsley | Convergence of probability measures[END_REF] where

min F = F min -F nom and max F = F max -F nom .
2.4. Robust identication of SF C. In our developments, we will not consider parameter SF C to be deterministic but it will be supposed random. We indeed do not only need to compute SF C. We also want to take into account its own variability in order to have a robust characterization of this parameter.

Assumption 2.1. Let us assume that the random variable SF C is compactly supported.

This assumption will allow to apply the theoretical framework (presented in annex) which needs the noise to be compactly supported. Such assumption does not impact the numerical results.

As a rst approach, let us assume that

SF C = µ SF C + σ SF C SF C , SF C ∼ N T (0, 1) . (2) 
with unknown parameters µ SF C and σ SF C . We give the following ranges of variation Remark 2.2. All the numerical results we will present have been generated without truncation, which will not have a signicant eect. Indeed, the truncations are set to high quantiles (more than 99% for upper quantiles and less than 1% for lower quantiles).

Statistical modeling.

Let us denote by (E, P ) the probability space associated to the noise vector = ( SF C , V , F ) T , and denote the vector of parameters by

θ = (µ SF C , σ SF C ) T .
Then, we consider the analytical and simplied model of M f uel the mass of consumed fuel, as the function

M f uel = h( , θ) ,
where h : (E, P ) × Θ → I h is given by

h( , θ) = (M empty + M pload ) exp (µ SF C + σ SF C SF C ) • g • Ra (V nom + V ) • (F nom + F ) • 10 -3 -1 (3) with Θ = [15, 20] × [s, 1]
and I h is the interval

I h = h(E, Θ) = [M h inf , M h sup ] . (4) 
We denote by |I h | its length.

Remark 2.3. We observe through simulations that

I ⊂ I h , where I = [M inf , M sup ] is the observation interval given above.
The purpose is now to estimate parameter θ ∈ Θ from the set of data M * ,1 f uel , ..., M * ,n f uel . In the next section, we propose an estimation procedure taken from [START_REF] Rachdi | Risk bounds for new M-estimation problems[END_REF].

Parameter estimation

In our previous framework it is possible to apply the procedures developed in [START_REF] Rachdi | Risk bounds for new M-estimation problems[END_REF].

In particular, we choose to work with the log -contrast which can be understood as a Maximum Likelihood based estimation.

The sample M * ,1 f uel , ..., M * ,n f uel is drawn from an unknown distribution Q. We will use the parametric family of distributions {Q θ , θ ∈ Θ} where Q θ is the pushforward measure of P by the (measurable) application u → h(u, θ) .

That means that we consider the models h( , θ) to be a reasonable rst approximation in order to obtain statistical information about Q.

Denoting ρ θ the Lebesgue density associated to the measure Q θ , the maximum likelihood procedure is given by

θ = Argmin θ∈Θ - 1 n n i=1 log(ρ θ (M * ,i f uel )) . (5) 
However, the above procedure is unfeasible because the density ρ θ is not analytically tractable. As suggested in [START_REF] Rachdi | Risk bounds for new M-estimation problems[END_REF], we replace ρ θ by an estimator denoted ρ m θ . There are many ways to estimate a density. We choose the simplest one, which is commonly used in industrial modeling. Let 1 , ..., m be m random variables i.i.d from P , we consider the kernel estimate of our density

ρ m θ (•) = 1 m m j=1 K b m θ (• -h( j , θ)) , (6) 
where K b m θ is the Gaussian kernel

K b m θ (x) = 1 √ 2 π b m θ e -x 2 2 (b m θ ) 2 ,
and b m θ is computed from the sample h( j , θ), j = 1, ..., m for θ ∈ Θ, by Silverman's rule-of-thumb :

b m θ = 4 3 1/5 m -1/5 σθ . (7)
The quantity σθ is the empirical standard deviation of the sample h( j , θ), j = 1, ..., m

σθ = 1 m m j=1 h( j , θ) - 1 m m j=1 h( j , θ) 2 .
Other popular estimates are truncated projections on a suitable basis of functions (sine, cosine, wavelets, etc.). Here we do not discuss the optimization of the density estimation, but all what follows could be applied in the same way. The numerical results may be slightly dierent, but qualitatively the same. Replacing ρ θ by ρ m θ in ( 5) and simplifying by the multiplying constant 1/n yields the estimation procedure

θ = Argmin θ∈Θ - n i=1 log 1 m m j=1 K b m θ h( j , θ) -M * ,i f uel . (8) 
Hence, our problem is an inverse problem. More precisely, it is an inverse problem in presence of uncertainties, also called probabilistic inverse problem or stochastic inverse problem. This topic is often treated in the eld of uncertainty management: the goal may for instance be to identify the intrinsic uncertainty of a system, see for instance the PhD works [START_REF] Barbillon | méthodes d'interpolation à noyaux pour l'approximation de fonctions type boîte noire coûteuses[END_REF] and [START_REF] Kuhn | [END_REF]. Another reference is the paper of E. de Rocquigny and S. Cambier [START_REF] De Rocquigny | Inverse probabilistic modelling of the sources of uncertainty: a non-parametric simulated-likelihood method with application to an industrial turbine vibration assessment[END_REF], where the purpose is to identify a parameter of interest which controls the vibration amplication of stream turbines. Our framework is dierent. The main dierence lies in the absence of assumptions, in the present paper, on the distribution of the error between observation data and reference data. Thus, it dierentiates the estimation procedures we propose from the ones developed in [START_REF] De Rocquigny | Inverse probabilistic modelling of the sources of uncertainty: a non-parametric simulated-likelihood method with application to an industrial turbine vibration assessment[END_REF].

In the following section, we provide a numerical analysis using the algorithm given by [START_REF] Talagrand | Sharper bounds for Gaussian and empirical processes[END_REF]. Theoretical aspects will be addressed in Section 6.

4. Numerical study : rst approach 4.1. Estimation. Setting

J(θ) = - n i=1 log 1 m m j=1 K b m θ h( j , θ) -M * ,i f uel with θ = (µ SF C , σ SF C ) T ,
our problem is a minimization problem where we want to compute

θ = Argmin θ∈Θ J(θ) .
We recall that n = 32. The data (M * ,i f uel ) i=1,...,n are provided by Table 1. We choose m = 10000 (the number of calls to the model given by ( 3)), and for j = 1, ..., m, j ∼ P where

P (du, dv, dw) = 1 √ 2π L e -u 2 /2 g (7,2, min F , max F ) (v) 1 max V -min V 1 [ min V , max V ] (w) du dv dw ,
with L = Φ(3)-Φ(-3) (Φ is the cumulative distribution function of a standard Gaussian random variable). This optimization procedure can be solved by Quasi-Newton methods. We present the results in Table 5. In Figure 3 given by N T ( µ SF C , σ SF C ) . We notice that the minimum θ = ( µ SF C , σ SF C ) is correctly located.

Comparison with reference sample.

In order to analyse the results obtained in the previous subsection, we need some reference sample of SF C values at the same simulation conditions. We take for reference the sample of SF C values of size 200 described in the introduction, provided by the aeronautic software. The characteristics of this sample are given in Table 6 The data in Table 6 have to be compared with those in Table 5 where the mean and standard deviation are µ SF C = 17.397 and σ SF C = 0.201, respectively. Table 7 provides the associated relative errors. Figure 5 shows the histogram of the reference sample and the estimated distribution of SF C obtained in Figure 3. It appears that the location of the variable of interest SF C is well reached whereas the standard deviation estimation provides an error of 60%. The "error" has roughly two origins:

Reference sample Estimated

Statistical error : this error is mainly due to the limited number (n = 32) of data from the observed masses of fuel M * ,i f uel . It is also due to the error induced by the kernel approximation of ρ θ .Yet the choice of m = 10000 calls to the analytical model garantees that the error on ρ θ is small . Model error : this error is relative to the use of Fuel mass model (1) with uncertain variables V and F (Figure 2), and includes the Gaussian hypothesis for SF C (2).

Thus, the model error can be separated into 2 parts: physical model error and uncertainty modeling error. We observe on Figure 5 that the SF C parameter does not behave like a Gaussian variable. This can be qualied as model error.

However, if one just wants to estimate the mean value of SF C, the Gaussian hypothesis does not have a signicative impact (0.5% of error). On the other hand, if one wants more information about SF C, other modeling tools are needed to allow a robust In the next subsection, we will discuss the uncertainty modeling, more precisely, the Gaussian hypothesis for SF C given by (2).

5. On the probabilistic modeling of SF C 5.1. Considering Wiener-Hermite representation in the previous analysis.

The characterization of a random variable by the mean and the standard deviation only could be too approximative in order to study the whole behavior of the variable. In this study, we have made an a priori (a model) on the variable of interest SF C. In (2) we supposed that

SF C ∼ N T (µ SF C , σ 2 SF C
) , which we now rewrite

SF C = µ SF C + σ SF C ξ T , ξ T ∼ N T (0, 1) . ( 9 
)
We will see that this (truncated) Gaussian hypothesis on SF C is a particular case of a more general representation.

The so called Wiener Chaos Expansion, developed in the 30's by Wiener [START_REF] Wiener | The homogeneous chaos[END_REF], gives a representation of any second-order random variable Z:

Z = ∞ l=0 z l Υ l ((ξ k ) k≥1
) , (with convergence in L 2 (P) ) [START_REF] Van Der Vaart | Weak Convergence and Empirical Processes[END_REF] where (ξ k ) k≥1 is a (innite) sequence of independent standard normal random variables and the Υ l 's are the multivariate Hermite polynomials. This expansion is also called Wiener-Hermite expansion.

In practice, we have to consider a nite sequence (ξ 1 , ..., ξ M ) where M is called the order of the expansion, and the sum in ( 10) is truncated at p which is the degree of the expansion. Hence, considering all M -dimensional Hermite polynomials of degree lower than p, the representation ( 10) is approximated by

Z Z p,M = P -1 l=0 z l Υ l (ξ) , ξ = (ξ 1 , ..., ξ M ) , (11) 
where

P = (M + p)! M ! p! .
The integer P corresponds to the number of coecients to be estimated. For our purpose, by Assumption 2.1, we will consider the following approximation

Z Z p,M = P -1 l=0 z l Υ l (ξ T ) , ξ T = (ξ 1 T , ..., ξ M T ) , (12) 
where ξ T is a vector of truncated standard Gaussian variables. Moreover, one can notice that by orthogonality arguments in (12), we have without truncation We illustrate this aspect concerning SFC in the next subsection.

E(Z p,M ) = z 0 = E(Z) (13) 
5.2. Application to the Specic Fuel Consumption. In our purpose, if we suppose that E(SF C 2 ) < ∞ (it is implicitly supposed in the Gaussian hypothesis), we can set the following modeling

SF C p,M = P -1 l=0 z l Υ l (ξ T ) , ξ T = (ξ 1 T , ..., ξ M T ) , M, p ≥ 1
which we rewrite by (13)

SF C p,M = µ SF C + P -1 l=1 z l Υ l (ξ T ) , ξ T = (ξ 1 T , ..., ξ M T ) , M, p ≥ 1 . ( 15 
)
It appears now that the Gaussian representation ( 9) is the particular case of (15) with p = 1 and M = 1. Moreover, in view of the Wiener representation [START_REF] Van Der Vaart | Weak Convergence and Empirical Processes[END_REF], the Gaussian one (9) may lead to a rough approximation (if SF C is not Gaussian) and thus contributes to a non negligible model error. It is clearly observed in Figure 5 where the reference data does not seem to be drawn from a Gaussian distribution. As a matter of fact, one can hope to reduce the model error (described in the previous subsection), at least the error corresponding to SF C modeling, by considering a less restrictive representation (15) with some appropriate order M ≥ 1 and degree p ≥ 1 . Let us consider the Wiener-Hermite expansion of order M = 2 and degree p = 2

SF C 2,2 = µ SF C + 5 l=1 θ l Υ l (ξ T ) , ξ T = (ξ 1 T , ξ 2 T ) or SF C 2,2 = µ SF C + θ 1 ξ 1 T + θ 2 ξ 2 T + θ 3 ξ 1 T ξ 2 T + θ 4 ((ξ 1 T ) 2 -1) + θ 5 ((ξ 2 T ) 2 -1) , (16) 
that leads to estimate P = (2+2)! 2!2! = 6 coecients. Table 8 shows the result obtained by the algorithm developed in the previous section where we change the function h( , θ) in Let us compare the relative errors of the rst two statistical moments by considering SF C 1,1 (i.e the Gaussian hypothesis Table 7) and SF C 2,2 (Table 9). The Wiener-Hermite modeling seems to improve the mean estimation of SF C whereas the standard deviation is poorly estimated in the two cases with an error of about 60%. There is no signicative dierence between the two methods regarding the rst two moments. However, the behavior of density functions corresponding to SF C 1,1 (see Figure 5) and SF C 2,2 is clearly not the same. We present in Figure 6 the result obtained when SF C is modeled by a Wiener expansion of order M = 2 and degree p = 2.

(3) replacing σ SF C SF C by θ 1 ξ 1 T + θ 2 ξ 2 T + θ 3 ξ 1 T ξ 2 T + θ 4 ((ξ 1 T ) 2 -1) + θ 5 ((ξ 2 T ) 2 -1) , with = (ξ 1 T , ξ 2 T , V , F ) and θ = (µ SF C , θ 1 , ..., θ 5 ) . θ 0 θ 1 θ 2 θ 3 θ 4 θ 5 SF C 2,
The distribution of SF C given by the Wiener expansion in Figure 6 seems to have a behavior close to the reference sample one, despite the fact that there is a non negligible bias. As mentioned in the previous subsection, this is due to the statistical and model errors. Indeed, let us recall that we have at disposal n = 32 reference fuel masses from which we characterize the SF C parameter. It would be interesting to see what happens when adding reference fuel masses, i.e by reducing the statistical error. 

Wiener-Hermite analysis with augmented reference fuel mass sample.

We present here numerical results obtained by adding 50 new samples from the data basis built with the complex software with the same initial conditions. Figure 7 shows the characterization of SF C obtained by a Wiener expansion of order M = 2 and degree p = 2 from the augmented reference fuel mass sample of size n = 82. The Table 10 gives the coecients corresponding to this simulation. Hence, by adding reference data we improve signicatively the characterization of SF C on the rst two statistical moments as well as on the whole probability density function of SF C. In the next section we introduce some knowledge on the SF C modeling through an expert judgment inducing a new and statistical modeling that will improve to be better. 5.4. Analysis with a "good" a priori knowledge. In the previous analyses, we only consider truncated Wiener-Hermite expansions. This is more of a mathematical hypothesis than a knowledge brought to the modeling. Suppose now that an expert judgment says that the distribution of the SF C is of exponential form. Mathematically, it is equivalent to supposing that the probability density of SF C belongs to the family

θ 0 θ 1 θ 2 θ 3 θ 4 θ 5 SF C
p(u; θ) = θ 2 e -θ 2 (u-θ 1 ) 1 [θ 1 ,+∞[ , θ = (θ 1 , θ 2 ) ∈ R + × R * + .

One can check that this suggestion induces the modeling

SF C exp = θ 1 - 1 θ 2 log(ξ) , ξ ∼ U([0, 1]) , ( 17 
)
where U([0, 1]) is the uniform distribution on the interval [0, 1] . In order to satisfy Assumption 2.1, we consider the truncated version

SF C exp = θ 1 - 1 θ 2 log(ξ T ) , ξ T ∼ U([c, 1]) , (18) 
for some small c > 0.

Remark 5.1. Representation (18) seems quite dierent from the one provided by the Wiener-Hermite expansions (see ( 9) and ( 16)). Yet, as the random variable SF C exp has nite variance, the modeling (18) could be seen as a practical alternative to a Wiener expansion [START_REF] Van Der Vaart | Weak Convergence and Empirical Processes[END_REF]. Such a Wiener expansion would be given by choosing a high order M exp and a high degree p exp in (12).

In what follows, we present the results of the numerical analysis corresponding to n = 32 and n = 82. We clearly see that the informative knowledge contributes to improving signicatively the characterization of the Specic Fuel Consumption. With n = 82 fuel mass data, the results are satisfying as shown in Figure 8 and Table 15. 5.5. Conclusion. Section 5 was dedicated to illustrating the eect of the modeling conditions for SF C characterization. In particular, we showed the impact of a "model error" through the modeling of the random variable SF C. We also illustrated how the statistical error, through the number of fuel mass data, appears in the performance of the estimation. In all cases, we computed a parameter θ. If we supposed that there is no model error, that is Q ∈ {Q θ , θ ∈ Θ} (where Q is the "true" distribution of M * f uel ), the error is only due to the limited number of data. So it makes sense to investigate the dierence θθ * , where θ * is dened as Q = Q θ * . If this is not the case it gives an insight on the statistical error part. It is the topic of the following section. 

Theoretical result

In this paper, the study of the procedure performance (8) will be non-asymptotic, i.e for a xed number of observations M * ,i f uel (n) and a xed number of variables j (m). The asymptotic study is let to a forthcoming work.

The quality of such estimation procedure can be investigated by giving an upper bound of the distance between the reachable parameter θ and the best parameter θ * (unknown).

The latter can be seen as the parameter obtained if one has an innite number of observations M * ,i f uel and variables j . More precisely,

θ * = Argmin θ∈Θ E Q log ρ θ (M * f uel ) , (19) 
where E Q log ρ θ (M * f uel ) can be seen as the "limit" of the quantity

1 n n i=1 log 1 m m j=1 K b m θ h( j , θ) -M * ,i f uel (20) 
in [START_REF] Talagrand | Sharper bounds for Gaussian and empirical processes[END_REF] when n and m go to innity. The Maximum Likelihood equation ( 19) turns out to be the minimization of the Kullback-Leibler divergence between Q and the family {Q θ , θ ∈ Θ}, while equation ( 20) is a smoothed empirical counterpart.

We consider the model h( , θ) given in [START_REF] De Rocquigny | Inverse probabilistic modelling of the sources of uncertainty: a non-parametric simulated-likelihood method with application to an industrial turbine vibration assessment[END_REF], but what follows can be generalized to any other one. Then, denoting by • the Euclidian norm in R 2 , it makes sense to bound the quantity

θ -θ * 2 .
Let us denote by R(θ) := E Q log ρ θ (M * f uel ) , and by f the Lebesgue density associated to the measure Q . -A2 It exists η > 0 such that for all θ ∈ Θ, the density probability of h( , θ) we noted ρ θ , satises

ρ θ > η .
-A3 For all θ ∈ Θ, the second derivative of ρ θ , we note ρ θ , exists and

C := sup θ∈Θ ρ θ 2 < +∞ .
-A4 We suppose that

0 < δ < inf θ∈Θ σθ and sup θ∈Θ σθ < σ < +∞ ,
where σθ is dened in [START_REF] Rachdi | Risk bounds for new M-estimation problems[END_REF].

We prove the following consistency theorem: Theorem 6.2. Let us consider the estimator θ in (8) and the Assumptions (6.1).

Then, for all 0 < τ < 1/2, with probability at least

1 -2 τ θ -θ * 2 ≤ c 1 log(a 1 τ -1 ) n + c 2 log(a 2 τ -1 ) + c 3 m 1/10 √ m ,
for some constants c 1 , c 2 , c 3 , a 1 and a 2 .

The risk bound of this theorem seems surprising since we obtain a rate of n 1/4 , whereas one expects a rate close to √ n for the treated parametric problem. This theorem is a consistency result. Consequently, it does not give information about the rate of convergence. The obtained bound can be explained by the fact that, by Assumption A1, we have [START_REF] Rachdi | Risk bounds for new M-estimation problems[END_REF]) then obviously θθ * ≈ n -1/4 . However, the √ n-rate can be reached by considering the approach of Corollary 5.53 (pp. 77) in [START_REF] Van Der | Asymptotic statistics[END_REF] where an additional assumption is made on the risk function θ → R(θ). More precisely, this assumption relies on the function θ → log(ρ θ ) which is supposed to satisfy a Lipschitz condition. This work is let to a forthcoming paper which will deal with a central limit theorem for the parameter θ (the rate of convergence will therefore be reachable).

R( θ) -R(θ * ) ≈ θ -θ * 2 . Indeed, if R( θ) -R(θ * ) ≈ 1/ √ n (bound given in

Proof of Theorem 6.2

We give a general proof of Theorem 6.2.

By Assumption A1, we have the Taylor-Lagrange formula

R( θ) = R(θ * ) + 1 2 ( θ -θ * ) T ∇ 2 R(ξ) ( θ -θ * ) , (21) 
for some ξ ∈ Θ . Then, we will use the following lemma Lemma 7.1 (Rayleigh's quotient). Let H be a real symmetric matrix p × p and denote by λ 1 < ... < λ p the ordered eigenvalues of H. It holds that for all x ∈ R p -{0}

λ 1 ≤ x T H x x T x ≤ λ p .
Now, applying this lemma with H = ∇ 2 R(ξ) and x = ( θθ * ) yields

λ min θ -θ * 2 ≤ ( θ -θ * ) T ∇ 2 R(ξ) ( θ -θ * ) ,
where λ min > 0 is the smallest eigenvalue of the set of matrices {∇ 2 R(θ), θ ∈ Θ} . Then, using this last inequality with equality (21) gives

θ -θ * 2 ≤ 2 λ min R( θ) -R(θ * ) . ( 22 
)
The problem turns to bound the positive quantity R( θ) -R(θ * ), where θ is given by [START_REF] Talagrand | Sharper bounds for Gaussian and empirical processes[END_REF]. Such bound can be investigated by applying Theorem 4.1 in [START_REF] Rachdi | Risk bounds for new M-estimation problems[END_REF], which is a general result. We will aim at computing constants K τ 1 and K τ 2 such that, with high probability (23)

R( θ) -R(θ * ) ≤ 2 f 2 η 1 √ n η 2 δ 2 f 2 γ K τ 1 + 1 √ m 1 √ 2 π δ K τ 2 + 1 m 2/5 C (1.06 σ) 2 √ 3 .
In our framework, the main work is to compute the concentration constants K τ 1 and K τ 2 derived from [START_REF] Rachdi | Risk bounds for new M-estimation problems[END_REF] in the following particular case.

7.1. On concentration constants K τ 1 and K τ 2 . Since we apply Theorem 4.1 in [START_REF] Rachdi | Risk bounds for new M-estimation problems[END_REF], one has to guarantee that the constants K τ 1 and K τ 2 are nite. For this, let us rst recall some denitions and notations relative to empirical processes. Denition 7.2. Empirical process. Let W be some probability measure on some space T and let us suppose given a k i.i.d sample ξ 1 , ..., ξ k drawn from W . Let us denote by W k the empirical measure

W k := 1 k k i=1 δ ξ i
and G some class of real valued functions g : T → R . We call W -empirical process indexed by G the following application

G k : G -→ R g -→ G k := √ k T g(t) (W k -W ) (dt) ,
also written

G k g := 1 √ k k i=1 (g(ξ k ) -E W (g(ξ))) .
We denote the supremum of an empirical process by

G k G := sup g∈G |G k g| .
Following the proof lines of Theorem 2.1, Table 2 p.11 in [START_REF] Rachdi | Risk bounds for new M-estimation problems[END_REF] (giving classes of functions) and considering the inequality (23), it is easy to verify that K τ 1 is dened as for all n ≥ 1 ,

P( U n A ≤ K τ 1 ) ≥ 1 -τ (24) where U n is the Q-empirical process (Q n = 1 n n i=1 δ M * ,i f uel
) indexed by the class of functions

A = {y ∈ I -→ (y -λ) 2 , λ ∈ I h } (25)
where we recall

I = [M inf , M sup ] and I h = h(E, Θ) . Similarly, the constant K τ 2 is dened as follows for all m ≥ 1 , P( V m B ≤ K τ 2 ) ≥ 1 -τ (26)
where V m is the P -empirical process (P m = 1 m m j=1 δ j ) indexed by the class of functions

B = {x ∈ E -→ e -(h(x,θ)-λ) 2 /2 b 2 , (θ, λ, b) ∈ Θ × I h × [δ, σ]} . ( 27 
)
By the writings (24) and (26), the constants K τ 1 and K τ 2 arise from the "concentration of the measure phenomenon" (see [START_REF] Ledoux | The concentration of measure phenomenon[END_REF], [START_REF] Billingsley | Convergence of probability measures[END_REF]). More precisely, these constants characterize the tightness of the sequences of random variables U n A (which is (M * ,i f uel ) i=1,...,n dependent) and V m B (which is ( j ) j=1,...,m dependent). Now, we aim at computing (upper bound) these constants using concentration inequalities where the classes of functions A and B will play a crucial role. In particular, we will apply the following theorem which is Theorem 2.14.9 in [START_REF] Van Der Vaart | Weak Convergence and Empirical Processes[END_REF].

Before, let us recall the denition of the bracketing numbers (taken from [START_REF] Van Der Vaart | Weak Convergence and Empirical Processes[END_REF] p. 83-85). Denition 7.3. Bracketing numbers. Let G be some class of functions on T and denote by W a probability measure on T . Given two functions l, u, the bracket [l, u] is the set of all functions g with l ≤ g ≤ u. An

ε-bracket is a bracket [l, u] with ||u-l|| 2,W < ε. The bracketing number N [ ] (ε, G, L 2 (W ))
is the minimum number of ε-brackets needed to cover the class of functions G.

The entropy with bracketing is the logarithm of the bracketing number.

Remark 7.4. The bracketing numbers measure the "size", the complexity of a class of functions. Theorem 7.5. Let G be a uniformly bounded class of (measurable) functions g : T → [0, 1] and denote by W a probability measure on T . If the class G satises, for some constants K and L

N [ ] (ε, G, L 2 (W )) ≤ K ε L for every 0 < ε < K . (28) 
Then, for every t > 0,

P( G k G > t) ≤ D t √ L L e -2t 2 ,
for a constant D that only depends on K.

The proof of this theorem can be found in [START_REF] Talagrand | Sharper bounds for Gaussian and empirical processes[END_REF]. Now, let K τ be a constant (to determine) which satises

P( G k G ≤ K τ ) ≥ 1 -τ . This is equivalent to P( G k G > K τ ) ≤ τ . (29) 
By Theorem 7.5, applied with t = K τ , we have

P( G k G > K τ ) ≤ D K τ √ L L e -2(K τ ) 2 . (30)
Hence, the constant K τ can be taken such that

D K τ √ L L e -2(K τ ) 2 ≤ τ ,
which is similar to

(K τ ) 2 - L 2 log(K τ ) ≥ log(a L,D τ -1 ) 2 , with a L,D = D √ L L . (31) 
Then, for small enough τ > 0, let us consider the constant

K τ = log(a L,D τ -1 ) 2 (32)
which satises (31).

Finally, we see that the constant K τ can be characterized (only) by the class of functions G through the constants D and L provided by Theorem 7.5.

In our purpose, the classes of interest are A and B dened in (25) and (27), respectively. Next, one can easily check that these classes are uniformly bounded and it is suitable to work with normalized classes

Ā = α A + 1 β A A , (33) 
B = α B + 1 β B B , (34) 
such that all the functions take values in [0, 1] . Now, we have to prove that the classes Ā and B have polynomial bracketing numbers following (28). This will give the constants L Ā, D Ā and L B, D B needed to identify the key constants K τ 1 and K τ 2 dened in (24) and (26), respectively. where f is the density associated to the measure Q, and using the fact that I ⊂ I h , we obtain that

F 2,Q ≤ 4 β A M h sup f 2 . This last inequality yields N ε 2 F 2,Q , I h , | • | ≤ N β A ε 8 M h sup f 2 , I h , | • | .
Since I h = [M h inf , M h sup ], the quantity (covering number) in the right member is bounded by

8 |I h | M h sup f 2 β A ε , |I h | = M h sup -M h inf . We nally get N [ ] (ε, Ā, L 2 (Q)) ≤ 8 |I h | M h sup f 2 β A ε , that is N [ ] (ε, Ā, L 2 (Q)) ≤ K Ā ε L Ā ,
with L Ā = 1 and

K Ā = 8 |I h | M h sup f 2 β A
that determines D Ā by [START_REF] Talagrand | Sharper bounds for Gaussian and empirical processes[END_REF] .

A similar work gives the constant L B = 1 and a constant D B . But, the constants of interest K τ 1 and K τ 2 dened in (24) and ( 26) are relative to non normalized classes A and B. Let us remark that if Ḡ = α + 1 β G, then

G k Ḡ = 1 β G k G . (37) 
Now, let us denote by K τ Ḡ the constant that satises P( G k Ḡ ≤ K τ Ḡ ) ≥ 1 -τ , and denote by K τ G the constant that satises P( G k G ≤ K τ G ) ≥ 1 -τ . By (37), it is easy to check that we can take

K τ G = β K τ Ḡ . We deduce that K τ 1 = β A K τ Ā and K τ 2 = β B K τ B .
Finally, by ( 22) and (23) we have with probability 1 -2τ

θ -θ * 2 ≤ 4 f 2 λ min η 1 √ n η 2 δ 2 f 2 γ K τ 1 + 1 √ m 1 √ 2 π δ K τ 2 + 1 m 2/5
C (1.06 σ) 2 √ 3 which we rewrite

θ -θ * 2 ≤ √ 2 c 1 √ n K τ Ā + √ 2 c 2 √ m K τ B +
c 3 m 1/5 with corresponding constants c 1 , c 2 and c 3 and K τ Ā, K τ B are given by ( 35) and (36).

That concludes the proof of Theorem 6.2.
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 2 Figure 2. (a) Uncertainty on F . (b) Uncertainty on V .

µ

  SF C ∈ [15, 20] and σ SF C ∈ [s, 1] , for a small s > 0 . The distribution N T (0, 1) of SF C is a symmetric truncated standard Gaussian on the interval [-3, 3]. Now, our problem amounts to estimating the location parameter µ SF C and the standard deviation σ SF C .

  we show the resulting probability density function of SF C estimator value of J( θ) estimated SF C location estimated SF C dispersion θ J( θ) = 199.465 µ SFC = 17.397 σ SFC = 0.201

Figure 3 .

 3 Figure 3. Estimated Specic Fuel Consumption distribution.

Figure 4

 4 Figure 4 provides prole views of the criterion function θ = (µ SF C , σ SF C ) → J(θ), rst at σ SF C = σ SF C (Figure 4(a), we show log(J(θ))) and then at µ SF C = µ SF C (Figure 4(b)).We notice that the minimum θ = ( µ SF C , σ SF C ) is correctly located.
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 4 Figure 4. (a) Prole view of log(J) at σ SF C = σ SF C . (b) Prole view of J at µ SF C = µ SF C .
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 5 Figure 5. Reference and estimated SF C distributions.

  that by the decompositionZ p,M = Z + Z p,M -Z ,each choice of p and M will induce a model error mod err := Z p,M -Z .
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 6 Figure 6. Estimations of SF C probability density with a Wiener Expansion p = M = 2 .
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 7 Figure 7. Characterization of SF C with an augmented sample of fuel mass

θ 1 θ 2 SFC
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 8 Figure 8. Characterization of SFC with an exponential hypothesis

Assumptions 6 . 1 .

 61 Let us consider the following assumptions.-A1 The map θ → R(θ) is twice dierentiable with∇R(θ * ) = 0and has a symmetric positive denite Hessian matrix ∇ 2 R . Let us denote by λ min > 0 the smallest eigenvalue of the set of matrices {∇ 2 R(θ), θ ∈ Θ} .

7. 2 .

 2 Characterization of L Ā, D Ā, L B, D B. We consider the Theorem 2.7.11 in[START_REF] Van Der Vaart | Weak Convergence and Empirical Processes[END_REF] (p. 164) which deals with classes that are Lipschitz in a parameter. It reads: Theorem 7.6. Let G = {t ∈ T → g s (t) , s ∈ S} be a class of functions satisfying for all t ∈ T , s, s ∈ S , |g s (t) -g s (t)| ≤ d(s, s ) G(t) , for some metric d on S and some functionG : t → G(t).Then, for any normN [ ] (2ε G , G, • ) ≤ N (ε, S, d) ,where N (ε, S, d) is the minimal number of balls {r , d(r, s) < ε} of radius ε needed to cover the set S .In what follows, we detail the case of the class Ā. The case of the class B is exactly in the same spirit.Let us recall that Q is the probability measure considered on I (observation space) and that we haveĀ = {f λ : y ∈ I -→ α B + 1 β A (y -λ) 2 , λ ∈ I h } , where I = [M inf , M sup ] and I h = [M h inf , M h sup ] (with I ⊂ I h ). So |f λ (y) -f λ (y)| = 1 β A |(y -λ 1 ) 2 -(y -λ 2 ) 2 | ≤ |λ 1 -λ 2 | F (y) ,with F (y) = 2 β A (y + M h sup ), and by Theorem 7.6 applied with • = • 2,Q , it holds that N [ ] ( , Ā, L 2 (Q)) ≤ N 2 F 2,Q , I h , | • | . Moreover, since F 2,Q ≤ sup y∈I F (y) f 2

7. 3 .

 3 End of the proof. By the previous subsection, we get the constants K τ Ā and K τ B given by (32) with associated constants L and D:K τ Ā = log(a 1 τ -1 ) 2 , a 1 = a L Ā,D Ā = D Ā (35) K τ B = log(a 2 τ -1 ) 2 , a 2 = a L B ,D B = D B (36)where initially a L,D = D √ L L (by (31)).

Table 1 .

 1 Simulated mass of fuel consumptions from aeronautic software

Table 2

 2 gives the xed variables values and the nominal values considered for uncertain variables.

Table 2 .

 2 Values of Fuel mass model inputs

	input value or nominal value unit
	M empty	42600	kg
	M pload	19900	kg
	g	9.8	m/s 2
	Ra	3000	km
	V nom	231	m/s
	F nom	19	
	variable nominal value min max V 231 226 234 F 19 18.7 19.05

Table 3 .

 3 Minimal and maximal values of uncertain variables

Moreover, specialists in turbine engineering propose to model the uncertainties as presented in Table

Table 4 .

 4 Uncertainty modeling

Uncertainty on the lift-to-drag ratio
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Table 5 .

 5 SF C characterization parameters

Table 6 .

 6 . Reference sample characteristics

	Mean Stand. dev. Reference sample 17.49 0.57

Table 7 .

 7 

	SF C (3) Relative error

Relative errors of the mean and deviation between reference SF C sample and the estimated model

[START_REF] De Rocquigny | Inverse probabilistic modelling of the sources of uncertainty: a non-parametric simulated-likelihood method with application to an industrial turbine vibration assessment[END_REF] 

Table 8 .

 8 SF C characterization parameters

	Mean Stand. dev.	Reference sample from SF C 2,2 Relative error 17.49 17.470 0.11 % 0.57 0.230 59.65 %

2 

17.470 0.047 0.054 0.182 0.103 0.063

Table 9 .

 9 Relative errors of the mean and standard deviation with SF C2,2 

Table 10 .

 10 SF C characterization parameters from augmented fuel mass sample

	2,2 17.50 0.281 0.008 0.012 0.191 0.219
	Mean Stand. dev.	Reference sample from SF C 2,2 Relative error 17.49 17.50 0.06 % 0.57 0.404 29.12 %

Table 11 .

 11 Relative errors of the mean and standard deviation with SF C 2,2 from augmented fuel mass sample

Table 12 .

 12 Estimation of θ = (θ 1 , θ 2 ) when n = 32

	Mean Stand. dev.	Reference sample from SF C exp (n = 32) Relative error 17.49 17.52 0.17 % 0.57 0.29 49.12 %

Table 13 .

 13 Relative errors of the mean and standard deviation between reference SF C sample and SF C exp when n = 32.

	θ 1 SF C exp 16.95 2 θ 2

Table 14 .

 14 Estimation of θ = (θ 1 , θ 2 ) when n = 82

	Mean Stand. dev.	Reference sample from SF C exp (n = 82) Relative error 17.49 17.45 0.23 % 0.57 0.501 12.1 %

Table 15 .

 15 Relative errors of the mean and standard deviation between reference SF C sample and SF C exp when n = 82.