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Abstract When setting up a computer experiment, it
has become a standard practice to select the inputs
spread out uniformly across the available space. These
so-called space-filling designs are now ubiquitous in cor-
responding publications and conferences. The statisti-
cal folklore is that such designs have superior properties
when it comes to prediction and estimation of emula-
tor functions. In this paper we want to review the cir-
cumstances under which this superiority holds, provide
some new arguments and clarify the motives to go be-
yond space-filling. An overview over the state of the art
of space-filling is introducing and complementing these
results.
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1 Introduction

Computer simulation experiments (see, e.g., Santner
et al (2003); Fang et al (2005); Kleijnen (2009)) have
now become a popular substitute for real experiments
when the latter are infeasible or too costly. In these
experiments, a deterministic computer code, the sim-
ulator, replaces the real (stochastic) data generating
process. This practice has generated a wealth of statis-
tical questions, such as how well the simulator is able
to mimic reality or which estimators are most suitable
to adequately represent a system.

However, the foremost issue presents itself even be-
fore the experiment is started, namely how to deter-
mine the inputs for which the simulator is run? It has
become standard practice to select these inputs such as
to cover the available space as uniformly as possible,
thus generating so called space-filling experimental de-
signs. Naturally, in dimensions greater than one there
are alternative ways to produce such designs. We will
therefore in the next sections (2,3) briefly review the
most common approaches to space-filling design, tak-
ing a purely model-free stance. We will then (Sect. 4)
investigate how these designs can be motivated from
a statistical modelers point of view and relate them to
each other in a meaningful way. Eventually we will show
that taking statistical modeling seriously will lead us
to designs that go beyond space-filling (Sect. 5 and 6).
Special attention is devoted to Gaussian process models
and kriging. The only design objective considered corre-
sponds to reproducing the behavior of a computer code
over a given domain for its input variables. Some basic
principles about algorithmic constructions are exposed
in Sect. 7 and Sect. 8 briefly concludes.

The present paper can be understood as a survey
focussing on the special role of space-filling designs and
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at the same time providing new illuminative aspects.
It intends to bring the respective sections of Koehler
and Owen (1996) up to date and to provide a more
statistical point of view than Chen et al (2006).

2 State of the art on space-filling design

2.1 Geometric criteria

There is little ambiguity on what constitutes a space-
filling design in one dimension. If we define an exact
design ξ = (x1, . . . , xn) as a collection of n points and
consider a section of the real line as the design space,
say X = [0, 1] after suitable renormalization, then, de-
pending upon whether we are willing to exploit the
edges or not, we have either xi = (i − 1)/(n − 1) or
xi = (2i− 1)/(2n) respectively.

The distinction between those two basic cases comes
from the fact that one may consider distances only
amongst points in the design ξ or to all points in the set
X. We can carry over this notion to the less straight-
forward higher dimensional case d > 1, with now ξ =
(x1, . . . ,xn). Initially we need to define a proper norm
‖.‖ on X = [0, 1]d, Euclidean distances and normaliza-
tion of the design space will not impede generality for
our purposes. We shall denote

dij = ‖xi − xj‖
the distance between the two design points xi and xj

of ξ. We shall not consider the case where there exist
constraints that make only a subset of [0, 1]d admissi-
ble for design, see for instance Stinstra et al (2003) for
possible remedies; the construction of Latin hypercube
designs (see Sect. 2.2) with constraints is considered in
(Petelet et al, 2010).

Let us first seek for a design that wants to achieve a
high spread solely amongst its support points within
the design region. One must then attempt to make
the smallest distance between neighboring points in ξ

as large as possible. That is ensured by the maximin-
distance criterion (to be maximized)

φMm(ξ) = min
i 6=j

dij .

We call a design that maximizes φMm(·) a maximin-
distance design, see Johnson et al (1990). An example
is given in Fig. 1–left. This design can be motivated
by setting up the tables in a restaurant such that one
wants to minimize the chances to eavesdrop on another
party’s dinner talk.

In other terms, one wishes to maximize the radius
of n non-intersecting balls with centers in X. When X is
a d-dimensional cube, this is equivalent to packing rigid

Fig. 1 Maximin (left, see http://www.packomania.com/ and
minimax (right, see Johnson et al (1990)) distance designs for
n=7 points in [0, 1]2. The circles have radius φMm(ξ)/2 on the
left panel and radius φmM (ξ) on the right one.

spheres X, see Melissen (1997, p. 78). The literature on
sphere packing is rather abundant. In dimension d = 2,
the best known results up to n = 10 000 for finding
the maximum common radius of n circles which can
be packed in a square are presented on http://www.
packomania.com/ (the example on Fig. 1–left is taken
from there, with φMm(ξ) ' 0.5359, indicating that the
7-point design in (Johnson et al, 1990) is not a maximin-
distance design); one may refer to (Gensane, 2004) for
best-known results up to n = 32 for d = 3.

Among the set of maximin-distance designs (when
there exist several), a maximin-optimal design ξ∗Mm is
such that the number of pairs of points (xi,xj) at the
distance dij = φMm(ξ∗Mm) is minimum (several such
designs can exist, and measures can be taken to remove
draws, see Morris and Mitchell (1995), but this is not
important for our purpose).

Consider now designs ξ that attempt to make the
maximum distance from all the points in X to their
closest point in ξ as small as possible. This is achieved
by minimizing the minimax-distance criterion

φmM (ξ) = max
x∈X

min
xi

‖x− xi‖ .

We call a design that minimizes φmM (·) a minimax-
distance design, see Johnson et al (1990) and Fig. 1–
right for an example. (Note the slight confusion in ter-
minology as it is actually minimaximin.) These designs
can be motivated by a table allocation problem in a
restaurant, such that a waiter is as close as possible to
a table wherever he is in the restaurant.

In other terms, one wishes to cover X with n balls
of minimum radius. Among the set of minimax-distance
designs (in case several exist), a minimax-optimal de-
sign ξ∗mM maximizes the minimum number of xi’s such
that mini ‖x−xi‖ = φmM (ξ∗mM ) over all points x hav-
ing this property.
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2.2 Latin hypercubes

Note that pure space-filling designs such as ξ∗mM and
ξ∗Mm may have very poor projectional properties; that
is, they may be not space-filling on any of their mean-
ingful subspaces, see Fig. 1. The opposite is desirable for
computer experiments, particularly when some inputs
are of no influence in the experiment, and this property
was called noncollapsingness by some authors (cf. Stin-
stra et al (2003)). This requirement about projections
is one of the reasons that researches have started to
restrict the search for designs to the class of so-called
Latin-hypercube (Lh) designs, see McKay et al (1979),
which have the property that any of their one-dimensio-
nal projections yields the maximin distance sequence
xi = (i− 1)/(n− 1). An additional advantage is that
since the generation of Lh-designs as a finite class is
computationally rather simple, it has become custom-
ary to apply a secondary, e.g. space-filling, criterion
to them, sometimes by a mere brute-force enumera-
tion as in (van Dam, 2007). An example of minimax
and simultaneously maximin Lh design is presented in
Fig. 2 (note that there is a slight inconsistency about
minimax-Lh designs in that they are maximin rather
than minimax on their one-dimensional projections).

Other distances than Euclidean could be considered;
when working within the class of Lh designs the situa-
tion is easier with the L1 or L∞ norms than with the
L2 norm, at least for d = 2, see van Dam et al (2007);
van Dam (2007). The class of Lh designs is finite but
large. It contains (n!)d−1 different designs (not (n!)d

since the order of the points is arbitrary and the first co-
ordinates can be fixed to {xi}1 = (i− 1)/(n− 1)), and
still (n!)d−1/(d−1)! if we consider designs as equivalent
when they differ by a permutation of coordinates. An
exhaustive search is thus quickly prohibitive even for
moderate values of n and d. Most algorithmic methods
are of the exchange type, see Sect. 7. In order to re-
main in the class of Lh designs, one exchange-step corre-
sponds to swapping the j-th coordinates of two points,
which gives (d− 1)n(n− 1)/2 possibilities at each step
(the first coordinates being fixed). Another approach
that takes projectional properties into account but is
not restricted to the class of Lh designs will be pre-
sented in Sect. 3.3. Note that originally McKay et al
(1979) have introduced Lh designs as random sampling
procedures rather than candidates for providing fixed
designs, those random designs being not guaranteed to
have good space-filling properties. Tang (1993) has in-
troduced orthogonal-array-based Latin hypercubes to
improve projections on higher dimensional subspaces,
the space-filling properties of which were improved by
Leary et al (2003). The usefulness of Lh designs in

Fig. 2 Minimax-Lh and simultaneously maximin-Lh dis-
tance design for n=7 points in [0, 1]2, see http://www.

spacefillingdesigns.nl/. The circles have radius φMm(ξ)/2 on
the left panel and radius φmM (ξ) on the right one.

model-based (as discussed in Sect. 4) examples was
demonstrated in (Pebesma and Heuvelink, 1999). The
algorithmic construction of Lh designs that optimize
a discrepancy criterion (see Sect. 2.3) or an entropy
based criterion (see Sect. 3.3) is considered respectively
in (Iooss et al, 2010) and (Jourdan and Franco, 2010);
the algebraic construction of Lh designs that minimize
the integrated kriging variance for the particular cor-
relation structure C(u,v; ν) = exp(−ν‖u − v‖1) (see
Sect. 4.1) is considered in (Pistone and Vicario, 2010).

2.3 Other approaches to space-filling

There appear a number of alternative approaches to
space-filling in the literature, most of which can be sim-
ilarly distinguished by the stochastic nature of the in-
puts, i.e. whether ξ is to be considered random or fixed.

For the latter, natural simple designs are regular
grids. Such designs are well suited for determining ap-
propriate model responses and for checking whether as-
sumptions about the errors are reasonably well satis-
fied. There seems little by which to choose between e.g.
a square grid or a triangular grid; it is worth noting,
however, that the former may be slightly more conve-
nient from a practical standpoint (easier input determi-
nation) but that the latter seems marginally more effi-
cient for purposes of model based prediction (cf. Yfantis
et al (1987)).

Bellhouse and Herzberg (1984) have compared op-
timum designs and uniform grids (in a one-dimensional
model based setup) and they come to the conclusion
that (depending upon the model) predictions for cer-
tain output regions can actually be improved by reg-
ular grids. A comparison in a multi-dimensional setup
including correlations can be found in (Herzberg and
Huda, 1981).

For higher dimensional problems, Bates et al (1996)
recommend the use of (non-rectangular) lattices rather
than grids (they also reveal connections to model-based
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approaches). In the two-dimensional setup (on the unit
square [−1, 1]2) the Fibonacci lattice (see Koehler and
Owen (1996)) proved to be useful. The advantage of lat-
tices is that their projection on lower dimensions covers
the design region more or less uniformly. Adaptations
to irregular design regions may not be straightforward,
but good enough approximations will suffice. This is
not the case for many other systematic designs that are
frequently proposed in the literature, such as central
composite designs, the construction of which relies on
the symmetry of the design region.

It is evident that randomization can be helpful for
making designs more robust. On a finite grid X with
N candidate points we can think of randomization as
drawing a single design ξ according to a pre-specified
probability distribution π(·). The uniform distribution
then corresponds to simple random sampling and more
refined schemes (e.g., stratified random sampling, see
Fedorov and Hackl (1997)), can be devised by altering
π(·). A comparison between deterministic selection and
random sampling is hard to make, since for a finite sam-
ple it is evident that for any single purpose it is possible
to find a deterministic design that outperforms random
sampling. Performance benchmarking for various space-
filling designs can be found in (Johnson et al, 2008) and
(Bursztyn and Steinberg, 2006).

All of the methods presented above seem to ensure
a reasonable degree of overall coverage of the study
area. However, there have been claims (see e.g. Fang
and Wang (1993)), that the efficiency (with respect to
coverage) of these methods may be poor when the num-
ber of design points is small. To allow for comparisons
between designs in the above respect Fang (1980) (see
also Fang et al (2000)) introduced some formal criteria,
amongst them the so-called discrepancy

D(ξ) = max
x∈X

|Fn(x)− U(x)| . (1)

Here U(·) is the c.d.f. of the uniform distribution on
X and Fn(·) denotes the empirical c.d.f. for ξ. The
discrepancy by this definition is just the Kolmogorov-
Smirnov test statistic for the goodness-of-fit test for a
uniform distribution. Based upon this definition, Fang
and Wang (1993) suggest to find ‘optimum’ designs of
given size n that minimize D(ξ), which they term the
U-criterion. For d = 1 and X = [0, 1], the minimax-
optimal design ξ∗mM with xi = (2i− 1)/(2n) is optimal
for (1), with D(ξ∗mM ) = 1/(2n). Note, however, that
D(ξ) ≥ 0.06 log(n)/n for any sequence of n points, see
Niederreiter (1992, p. 24). It turns out that for cer-
tain choices of n lattice designs are U-optimum. Those
lattice designs are also D-optimum for some specific
Fourier regressions and this and other connections are
explored by Riccomagno et al (1997). An example in

(Santner et al, 2003, Chap. 5) shows that the measure
of uniformity expressed by D(ξ) is not always in agree-
ment with common intuition.

Niederreiter (1992) has used similar concepts for
the generation of so called low discrepancy sequences.
Originately devised for the use in Quasi Monte Carlo
sampling, due to the Koksma-Hlawka inequality in nu-
merical integration, their elaborate versions, like Faure,
Halton and Sobol sequences, are increasingly used in
computer experiments (see, e.g., Fang and Li (2006)).
Santner et al (2003, Chap. 5) and Fang et al (2005,
Chap. 3) provide a good overview of the various types
of the above discussed designs and their relations. Other
norms than ‖ · ‖∞ can be used in the definition of dis-
crepancy, yielding Dp(ξ) =

(∫
X
|Fn(x)− U(x)|p dx

)1/p,
and other types of discrepancy (centered, wrap-around)
may also be considered. Low discrepancy sequences pre-
sent the advantage that they can be constructed se-
quentially (which is not the case for Lh designs), al-
though one should take care of the irregularity of dis-
tributions, see Niederreiter (1992, Chap. 3) and Fang
et al (2000) (a conjecture in number theory states that
D(ξn) ≥ cd[log(n)]d−1/n for any sequence ξn with cd a
constant depending on d). It seems, however, that de-
signs obtained by optimizing a geometric space-filling
criterion are preferable for moderate values of n and
that, for n large and d > 1, the space-filling properties
of designs corresponding to low-discrepancy sequences
may not be satisfactory (the points presenting some-
times alignments along subspaces). Note that (Bischoff
and Miller, 2006) and related work reveal (in the one-
dimensional setup) relationships between uniform de-
signs and designs that reserve a portion of the observa-
tions for detecting lack-of-fit for various classical design
criteria.

2.4 Some properties of maximin and minimax optimal
designs

Notice that for any design ξ, X ⊂ ∪n
i=1B(xi, φmM (ξ)),

with B(x, R) the ball with center x and radius R. There-
fore, φmM (ξ) > [vol(X)/(nVd)]1/d = (nVd)−1/d , with
Vd = πd/2/Γ (d/2 + 1) the volume of the d-dimensional
unit ball. One may also notice that for any ξ, n ≥ 2,
φmM (ξ) > φMm(ξ)/2 since X cannot be covered with
non-overlapping balls. A sort of reverse inequality holds
for maximin-optimal designs. Indeed, take a maximin-
optimal design ξ∗Mm and suppose that φmM (ξ∗Mm) >

φMm(ξ∗Mm). It means that there exists a x∗ ∈ X such
that mini ‖x∗ − xi‖ > φMm(ξ∗Mm). By substituting x∗

for a xi in ξ∗Mm such that dij = φMm(ξ∗Mm) for some j,
one can then either increase the value of φMm(·), or de-
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crease the number of pairs of design points at distance
φMm(ξ∗Mm), which contradicts the optimality of ξ∗Mm.
Therefore, φmM (ξ∗Mm) ≤ φMm(ξ∗Mm).

Both φMm(ξ∗Mm) and φmM (ξ∗mM ) are non-increasing
functions of n when X = [0, 1]d (there may be equality
for different values of n, for instance, φMm(ξ∗Mm) =

√
2

for n = 3, 4 and d = 3, see Gensane (2004)). This is
no longer true, however, when working in the class of
Lh designs (see e.g. van Dam (2007) who shows that
φmM (ξ∗mM ) is larger for n = 11 than for n = 12 when
d = 2 for Lh designs).

The value of φMm(·) is easily computed for any de-
sign ξ, even when n and the dimension d get large, since
we only need to calculate distances between n(n− 1)/2
points in Rd.

The evaluation of the criterion φmM (·) is more dif-
ficult, which explains why a discretization of X is of-
ten used in the literature. It amounts at approximating
φmM (ξ) by φ̃mM,N (ξ) = maxx∈XN

mini ‖x − xi‖, with
XN a finite grid of N points in X. Even so, the calcula-
tion of φ̃mM,N (ξ) quickly becomes cumbersome when N

increases (and N should increase fast with d to have a
fine enough grid). It happens, however, that basic tools
from computational geometry permit to reduce the cal-
culation of maxx∈X mini ‖x − xi‖ to the evaluation of
mini ‖zj − xi‖ for a finite collection of points zj ∈ X,
provided that X is the d-dimensional cube [0, 1]d. This
does not seem to be much used and we detail the idea
hereafter.

Consider the Delaunay tessellation of the points of
ξ, see, e.g., Okabe et al (1992); Boissonnat and Yvinec
(1998). Each simplex has its d + 1 vertices at design
points in the tessellation and has the property that its
circumscribed sphere does not contain any design point
in its interior. We shall call those circumscribed spheres
Delaunay spheres. When a solution x∗ of the problem
maxx∈X mini ‖x−xi‖ is in the interior of [0, 1]d, it must
be the center of some Delaunay sphere.

There a slight difficulty when x∗ is on the boundary
of X, since the tessellation directly constructed from
the xi does not suffice. However, x∗ is still the center of
a Delaunay sphere if we construct the tessellation not
only from the points in ξ but also from their symmetric
with respect to all (d − 1)-dimensional faces of X, see
Appendix A.

The Delaunay tessellation is thus constructed on a
set of (2d + 1)n points. (One may notice that X is not
necessarily included in the convex hull of these points
for d ≥ 3, but this is not an issue.) Once the tessellation
is calculated, we collect the radii of Delaunay spheres
having their center in X (boundary included); the value
of φmM (ξ) is given by the maximum of these radii (see

−1 −0.5 0 0.5 1 1.5 2
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−0.5
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Fig. 3 Delaunay triangulation for a 5-point Lh design (squares),
the 8 candidate points for being solution of maxx∈X mini ‖x−xi‖
are indicated by dots.

Appendix A for the computation of the radius of the
circumscribed sphere to a simplex).

Efficient algorithms exist for the computation of De-
launay tessellations, see Okabe et al (1992); Boissonnat
and Yvinec (1998); Cignoni et al (1998) and the refer-
ences therein, which make the computation of φmM (ξ)
affordable for reasonable values of d and n (the number
of simplices in the Delaunay tessellation of M points
in dimension d is bounded by O(Mdd/2e)). Clearly, not
all 2dn symmetric points are useful in the construction,
leaving open the possibility to reduce the complexity of
calculations by using less than (2d + 1)n points.

Fig. 3 presents the construction obtained for a 5-
point Latin-hypercube design in dimension 2: 33 trian-
gles are constructed, 11 centers of circumscribed circles
belong to X, with some redundancy so that only 8 dis-
tinct points are candidate for being solution of the max-
imization problem maxx∈X mini ‖x− xi‖. The solution
is at the origin and gives φmM (ξ) = mini ‖xi‖ ' 0.5590.

3 Model-free design

We continue for the moment to consider the situation
when we are not able, or do no want, to make an as-
sumption about a suitable model for the emulator. We
investigate the properties of some geometric and other
model-free design criteria more closely and make con-
nections between them.

3.1 Lq-regularization of the maximin-distance criterion

Following the approach in Appendix B, one can de-
fine regularized forms of the maximin-distance crite-
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rion, valid when q > 0 for any ξ such that φMm(ξ) > 0:

φ
[q]

(ξ) =


∑

i<j

d−q
ij



−1/q

, φ[q](ξ) =


∑

i<j

µij d−q
ij



−1/q

,

with µij > 0 for all i and
∑

i<j µij = 1, see (33, 34). The
criterion φ

[q]
(·) satisfies φ

[q]
(ξ) ≤ φMm(ξ) ≤ φ[q](ξ) ≤

µ−1/q φ
[q]

(ξ) , q > 0 , with µ = mini<j µij , and the
convergence to φMm(ξ) is monotonic in q from both
sides as q → ∞. Taking µ as the uniform measure,
i.e., µij = µ =

(
n
2

)−1 for all i < j, gives φ[q](·) =
µ−1/q φ

[q]
(·) and

φ
[q]

(ξ) ≤ φMm(ξ) ≤
(

n

2

)1/q

φ
[q]

(ξ) . (2)

It also yields the best lower bound on the maximin ef-
ficiency of an optimal design ξ∗

[q]
for φ

[q]
(·),

φMm(ξ∗
[q]

)

φMm(ξ∗Mm)
≥

(
n

2

)−1/q

, (3)

where ξ∗Mm denotes any maximin-distance design, see
Appendix B. One may define φ[NN,0](ξ) as

φ[0](ξ) = exp





(
n

2

)−1

∑

i<j

log(dij)






 (4)

and φ
[2]

(·) corresponds to a criterion initially proposed
by Audze and Eglais (1977). Morris and Mitchell (1995)
use φ

[q]
(·) with different values of q and make the ob-

servation that for moderate values of q (say, q - 5)
the criterion is easier to optimize than φMm(·) in the
class of Lh designs. They also note that, depending on
the problem, one needs to take q in the range 20-50 to
make the two criteria φ

[q]
(·) and φMm(·) agree about

the designs considered best. Their observation is con-
sistent with the efficiency bounds given above. Accord-
ing to the inequality (3), to ensure that the maximin
efficiency of an optimal design for φ

[q]
(·) is larger than

1− ε one should take approximately q > 2 log(n)/ε (in-
dependently of the dimension d). Note that the use of
φ

[q]
(ξ) = [

∑
i 6=j d−q

ij ]−1/q would worsen the maximin ef-

ficiency bounds by a factor 2−1/q < 1 (but leaves φ[q](·)
unchanged when the uniform measure µij = [n(n −
1)]−1 is used).

We may alternatively write φMm(ξ) as

φMm(ξ) = min
i

d∗i , (5)

where d∗i = minj 6=i dij denotes the nearest-neighbor
(NN) distance from xi to another design point in ξ. Fol-
lowing the same technique as above, a Lq-regularization
applied to the min function in (5) then gives

φ
[NN,q]

(ξ) ≤ φMm(ξ) ≤ n1/q φ
[NN,q]

(ξ) = φ[NN,q](ξ)

(6)

with

φ
[NN,q]

(ξ) =

[
n∑

i=1

(d∗i )
−q

]−1/q

. (7)

The reason for not constructing φ
[NN,q]

(ξ) from the de-
composition φMm(ξ) = mini minj>i dij is that the re-
sulting criterion [

∑n
i=1(minj>i dij)−q]−1/q depends on

the ordering of the design points. One may also define
φ[NN,0](ξ) as

φ[NN,0](ξ) = exp

{
1
n

[
n∑

i=1

log(d∗i )

]}
, (8)

see Appendix B. One can readily check that using the
generalization (36) with φ(t) = log(t) and q = −1
also gives φ[NN,−1,log](ξ) = φ[NN,0](ξ). Not surprisingly,
φ

[NN,q]
(·) gives a better approximation of φMm(·) than

φ
[q]

(ξ): an optimal design ξ∗
[NN,q]

for φ
[NN,q]

(·) satisfies

φMm(ξ∗
[NN,q]

)

φMm(ξ∗Mm)
≥ n−1/q

which is larger than 1− ε when q > log(n)/ε, compare
with (3). Exploiting the property that, for a given i,


∑

j 6=i

d−q
ij



−1/q

≤ d∗i ≤ (n− 1)1/q


∑

j 6=i

d−q
ij



−1/q

,

see (35), we obtain that

2−1/q φ
[q]

(ξ) ≤ φ
[NN,q]

(ξ) ≤ φMm(ξ)

φMm(ξ) ≤ n1/q φ
[NN,q]

(ξ) ≤
(

n

2

)1/q

φ
[q]

(ξ) .

Note that the upper bounds on φMm(·) are sharp (think
of a design with n = d + 1 points, all at equal distance
from each other, i.e., such that dij = d∗i is constant).

Fig. 4 presents the bounds (2) (dashed lines, top)
and (6) (dashed lines, bottom) on the value φMm(ξ)
(solid line) for the 7-point maximin-distance design of
Fig. 1–left. Notice the accuracy of the upper bound
n1/q φ

[NN,q]
(ξ) (note the different scales between the

top and bottom panels); the situation is similar for
other maximin-distance designs since d∗i = φMm(ξ∗Mm)
for many i.
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Fig. 4 Upper and lower bounds (dashed lines) on the value
φMm(ξ) for the 7-point maximin-distance design of Fig. 1–left:
(2) on the top, (6) on the bottom; the value of φMm(ξ) is indi-
cated by a solid line, φ[0](ξ) (4) and φ[NN,0](ξ) (8) are in dotted
lines, respectively on the top and bottom panels.

Oler (1961) indicates that for d = 2 φMm(ξ∗Mm) ≤
[1+

√
1 + 2 (n− 1) /

√
3]/(n− 1). The equivalence with

sphere-packing gives φMm(ξ∗Mm) < [(nVd)1/d/2− 1]−1

with Vd the volume of the d-dimensional unit ball; this
bound becomes quite loose for large d and can be im-
proved by using results on packing densities of dens-
est known packings (which may be irregular for some
d > 3), yielding φMm(ξ∗Mm) ≤ (31/4

√
n/2 − 1)−1 for

d = 2 and φMm(ξ∗Mm) ≤ [(n/
√

2)1/3 − 1)−1 for d = 3.
Bounds for maximin Lh designs in dimension d can be
found in (van Dam et al, 2009).

3.2 Lq-regularization of the minimax-distance criterion

The same type of relaxation can be applied to the cri-
terion φmM (ξ). First, φ(x) = minxi ‖x−xi‖ is approx-
imated by φq(x) = (

∑
i ‖x − xi‖−q)−1/q with q > 0.

Second, when X is discretized into a finite grid XN =
{x(1), . . . ,x(N)}, maxx∈XN φq(x) = [minx∈XN φ−1

q (x)]−1

can be approximated by [
∑N

j=1 φp
q(x

(j))]1/p with p > 0.
This gives following substitute for φmM (ξ),

φ[p,q](ξ) =





N∑

j=1

[
n∑

i=1

‖x(j) − xi‖−q

]−p/q




1/p

with p, q > 0, see Royle and Nychka (1998). Note that
the xi are usually elements of XN . When X is not dis-
cretized, the sum over x(j) ∈ XN should be replaced
by an integral over X, which makes the evaluation of
φ[p,q](ξ) rather cumbersome.

3.3 From maximin-distance to entropy maximization

Suppose that the n points xi in ξ form n i.i.d. samples
of a probability measure with density ϕ with respect
to the Lebesgue measure on X. A natural statistical
approach to measure of the quality of ξ in terms of its
space-filling properties is to compare it in some way
with samples from the uniform measure on X. Using
discrepancy is a possibility, see Sect. 2.3. Another one
relies on the property that the uniform distribution has
maximum entropy among all distributions with finite
support. This is the approach followed in this section.

The Rényi (1961) entropy of a random vector of Rd

having the p.d.f. ϕ (that we shall call the Rényi entropy
of ϕ) is defined by

H∗
α(ϕ) =

1
1− α

log
∫

Rd

ϕα(x) dx , α 6= 1 . (9)

The Havrda-Charvát (1967) entropy (also called Tsallis
(1988) entropy) of ϕ is defined by

Hα(ϕ) =
1

α− 1

(
1−

∫

Rd

ϕα(x) dx
)

, α 6= 1 . (10)

When α tends to 1, both Hα and H∗
α tend to the (Boltz-

mann-Gibbs-) Shannon entropy

H1(ϕ) = −
∫

Rd

ϕ(x) log[ϕ(x)] dx . (11)

Note that H∗
α = log[1− (α− 1)Hα]/(1−α) so that, for

any α, d(H∗
α)/d(Hα) > 0 and the maximizations of H∗

α

and Hα are equivalent; we can thus speak indifferently
of α-entropy maximizing distributions.

The entropy Hα is a concave function of the den-
sity ϕ for α > 0 (and convex for α < 0). Hence, α-
entropy maximizing distributions, under some specific
constraints, are uniquely defined for α > 0. In particu-
lar, the α-entropy maximizing distribution is uniform
under the constraint that the distribution is finitely
supported. The idea, suggested by Franco (2008), is
thus to construct an estimator of the entropy of the
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design points xi in ξ, considering them as if indepen-
dently drawn with some probability distribution, and
use this entropy estimator as a design criterion to be
maximized. Note that this use of entropy (for a dis-
tribution in the space of input factors) is not directly
connected Maximum-Entropy Sampling of Sect. 4.3 (for
a distribution in the space of responses).

Many methods exist for the estimation of the en-
tropy of a distribution from i.i.d. samples, and one may
refer for instance to the survey papers (Hall and Mor-
ton, 1993; Beirlant et al, 1997) for an overview. We
shall consider three, because they have either already
been used in the context of experimental design or are
directly connected with other space-filling criteria. In
a fourth paragraph, entropy decomposition is used to
avoid the collapsing of design points when considering
lower dimensional subspaces.

Plug-in method based on kernel density estimation The
approach is in two steps. First, one construct an esti-
mator of the p.d.f. ϕ by a kernel method as

ϕ̂n(x) =
1

n hd
n

n∑

i=1

K

(
x− xi

hn

)
, (12)

where K(·) denotes the kernel and hn the window width.
The choices of K(·) and hn are important issues when
the objective is to obtain an accurate estimation of ϕ

and there exists a vast literature on that topic. How-
ever, this should not be too critical here since we only
need to get an entropy estimator that yields a reason-
able space-filling criterion. A common practice in den-
sity estimation is to take hn decreasing with n, e.g. as
n−1/(d+4), see Scott (1992, p. 152), and to use a p.d.f.
for K(·), e.g. that of the standard normal distribution
in Rd. A kernel with bounded support could be more
indicated since X is bounded, but the choice of the win-
dow width might then gain importance. When a kernel-
based prediction method is to be used, it seems natural
to relate K(·) and hn to the kernel used for prediction
(to the correlation function in the case of kriging); this
will be considered in Sect. 4.3.

In a second step, the entropy H∗
α or Hα is estimated

by replacing the unknown ϕ by the estimate ϕ̂n in the
definition. In order to avoid the evaluation of multi-
dimensional integrals, a Monte-Carlo estimator can be
used, namely Ĥn

1 = −∑n
i=1 log[ϕ̂n(xi)] for Shannon

entropy, and

Ĥn
α =

1
α− 1

[
1−

n∑

i=1

ϕ̂α−1
n (xi)

]
(13)

for Hα with α 6= 1. A surprising result about normal
densities is that when K(·) is the p.d.f. of the normal

N (0, I), then
∫

Rd

ϕ̂2
n(x) dx =

1
2dπd/2n2hd

n

∑

i,j

exp
[
−‖xi − xj‖2

4h2
n

]
;

that is, a Monte-Carlo evaluation gives the exact value
of the integral in (9, 10) for ϕ = ϕ̂n when α = 2.
This is exploited in (Bettinger et al, 2008, 2009) for
the sequential construction of an experiment with the
objective of inverting an unknown system.

Nearest-neighbor (NN) distances The following estima-
tor of Hα(ϕ) is considered in (Leonenko et al, 2008)

Ĥn,k,α =
1− [(n−1) Ck Vd]1−α

n

∑n
i=1 (d∗k,i)

d(1−α)

α− 1
(14)

where Vd = πd/2/Γ (d/2 + 1) is the volume of the unit
ball B(0, 1) in Rd, Ck = [Γ (k)/Γ (k + 1− α)]1/(1−α)

and d∗k,i is the k-th nearest-neighbor distance from xi

to some other xj in the sample (that is, from the n− 1
distances dij , j 6= i, we form the order statistics d∗1,i =
d∗i ≤ d∗2,i ≤ · · · ≤ d∗n−1,i). The L2-consistency of this es-
timator is proved in (Leonenko et al, 2008) for any α ∈
(1, (k+1)/2) when k ≥ 2 (respectively α ∈ (1, 1+1/[2d])
when k = 1) if f is bounded. For α < 1, one may refer to
(Penrose and Yukich, 2011) for the a.s. and L2 conver-
gence of Ĥn,k,α to Hα(ϕ); see also the results of Yukich
(1998) on the subadditivity of Euclidean functionals.

For α = 1 (Shannon entropy), the following estima-
tor is considered in (Kozachenko and Leonenko, 1987;
Leonenko et al, 2008)

ĤN,k,1 =
d

n

N∑

i=1

log d∗k,i + log(n− 1) + log(Vd)− Ψ(k) ,

where Ψ(z) = Γ ′(z)/Γ (z) is the digamma function.
Maximizing Ĥn,1,α for α > 1 thus corresponds to

maximizing φ
[NN,q]

(ξ) with q = d(α − 1), see (7). For

1 − 1/d ≤ α ≤ 1, the criterion Ĥn,1,α, is still eligible
for space-filling, its maximization is equivalent to that
of φ

[NN,q]
(ξ) with q ∈ [−1, 0]; for instance, the maxi-

mization of ĤN,1,1 is equivalent to the maximization of
φ[NN,0](ξ), see (8).

Several comments should be made, however, that
will temper the feeling that Lq-regularization of maxi-
min-distance design and maximization of NN-estimates
of entropy are equivalent.

First, these estimators rely on the assumption that
the xi are i.i.d. with some p.d.f. ϕ. However, optimiz-
ing the locations of points with respect to some de-
sign criterion makes the corresponding sample com-
pletely atypical. The associated value of the estima-
tor is therefore atypical too. Consider for instance the
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maximin-distance design ξ∗Mm on [0, 1], defined by xi =
(i − 1)/(n − 1), i = 1, . . . , n. Direct calculation gives
Ĥn,1,α(ξ∗Mm) = [1 − 21−α/Γ (2 − α)]/(α − 1), which
is greater than 1 for 0 < α < 2, with a maximum
γ + log(2) ' 1.2704 when α tends to 1. On the other
hand, the maximum value of H(ϕ) for ϕ a p.d.f. on
[0, 1] is obtained for the uniform distribution ϕ∗(x) = 1
for all x, with H(ϕ∗) = 0.

Second, even if the design points in ξ are generated
randomly, using k-th NN distances with k > 1 does not
make much sense in terms of measuring the space-filling
performance. Indeed, when using Ĥn,k,α with k > 1, a
design obtained by fusing sets of k points will show a
higher entropy than a design with all points separated.
This is illustrated by the simple example of a maximin-
distance design on the real line. For the design ξ∗Mm

with n points we have

Ĥn,2,α(ξ∗Mm) =
1− 21−α

Γ (3−α)

[
1 + 2(21−α−1)

n

]

α− 1
.

Suppose that n = 2m and consider the design ξ̃∗Mm

obtained by duplicating the maximin-distance design
with m points; that is, xi = (i−1)/(m−1), i = 1, . . . , m,
and xi = (i −m − 1)/(m − 1), i = m + 1, . . . , 2m. We
get

Ĥn,2,α(ξ̃∗Mm) =
1− 21−α

Γ (3−α)

[
2 + 1

m−1

]1−α

α− 1

and Ĥn,2,α(ξ̃∗Mm) > Ĥn,2,α(ξ∗Mm) for α ∈ (0, 3). We
should thus restrict our attention to Ĥn,k,α with k = 1.
The range of values of α for which the strong consis-
tency of the estimator is ensured is then restricted to
α < 1 + 1/[2d]. Strictly speaking, it means that the
maximization of φ

[NN,q]
(ξ) can be considered as the

maximization of a NN entropy estimator for q < 1/2
only.

Minimum-spanning-tree Redmond and Yukich (1996);
Yukich (1998) use the subadditivity of some Euclidean
functionals on graphs to construct strongly consistent
estimators of H∗

α(ϕ) (9) for 0 < q < 1, up to some
bias term independent of ϕ and related to the graph
properties. Their approach covers the case of the graph
of k-th NN (where the bias constant depends on the
value of k through Ck, see (14)), but also the graphs
corresponding to the solution of a travelling salesman
problem, or the minimum spanning tree (MST). In each
case, the entropy estimate is based on

∑M
i=1 d

d(1−α)
i ,

where the di denote the lengthes of the M edges of the
graph, with M = n−1 for the MST and M = n for the
traveling-salesman tour and NN graphs.

The MST constructed from the xi has already been
advocated as a useful tool to assess the quality of de-
signs in terms of their space-filling properties: in (Franco
et al, 2009), the empirical mean and variance of the
lengthes of edges di of the MST are used to character-
ize classes of designs (such as random, low discrepancy
sequences, maximin-distance and minimax-distance de-
signs); designs with large empirical means are consid-
ered preferable. With the same precautions as above for
NN entropy estimation, the maximization of the func-
tion (

∑n−1
i=1 d−q

i )−1/q in the MST constructed from the
xi is related to the maximization of an entropy estima-
tor of the distribution of the xi; in particular, the max-
imization of the empirical mean of the edge lengthes
(q = −1) forms a reasonable objective.

Entropy decomposition to avoid collapsing on projec-
tions Let u and v be two independent random vectors
respectively in Rd1 and Rd2 . Define x = (u>,v>)> and
let ϕ(u,v) denote the joint density for x. Let ϕ1(u)
and ϕ2(v) be the marginal densities for u and v respec-
tively, so that ϕ(u,v) = ϕ1(u)ϕ2(v). It is well known
that the Shannon and Rényi entropies (11) and (9) sat-
isfy the additive property H∗

α(ϕ) = H∗
α(ϕ1) + H∗

α(ϕ2),
α ∈ R (extensivity property of Shannon and Rényi
entropies) while for the Tsallis entropy (10) one has
Hα(ϕ) = Hα(ϕ1) + Hα(ϕ2) + (1 − α)Hα(ϕ1)Hα(ϕ2)
(non-extensivity Tsallis entropy, with α the parameter
of non-extensivity).

Now, when ϕ is the p.d.f. of the uniform distribu-
tion on the unit cube X = [0, 1]d, one can consider
all one-dimensional projections {x}i, i = 1, . . . , d, and
H∗

α(ϕ) =
∑d

i=1 H∗
α(ϕi) with ϕi the density of the i-th

projection {x}i. This can be used to combine a cri-
terion related to space-filling in X with criteria related
to space-filling along one-dimensional projections. Con-
sider for instance the NN estimator of H∗

α(ϕ) of Leo-
nenko et al (2008) (for α 6= 0),

Ĥ∗
n,k,α =

log
{

[(n−1) Ck Vd]1−α

n

∑n
i=1 (d∗k,i)

d(1−α)
}

1− α
.

(15)

For k = 1 (k > 1 does not fit with the space-filling
requirement, see the discussion above), we have

Ĥ∗
n,1,α =

1
1− α

log

[
n∑

i=1

(d∗i )
d(1−α)

]
+ A(α, d, n) ,

where A(α, d, n) is a constant that does not depend on
ξ. A suitable criterion (to be maximized) that simulta-
neously takes into account the space-filling objectives
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in X and along all one-dimensional projections is thus

1
1− α

{
(1− γ) log

[
n∑

i=1

(d∗i )
d(1−α)

]

+γ

d∑

j=1

log

[
n∑

i=1

(dj
∗
i )

(1−α)

]



with γ ∈ (0, 1) and dj
∗
i = mink 6=i |{xi}j − {xk}j |, or

equivalently, setting q = d(α− 1),

φq,1P (ξ) = (1− γ) log[φ
[NN,q]

(ξ)]

+
γ

d

d∑

j=1

log[φ
[NN,q/d,j]

(ξ)]

where φ
[NN,q]

(ξ) is given by (7) and φ
[NN,q,j]

(ξ) =

[
∑n

i=1(dj
∗
i )
−q]−1/q . Letting q tend to infinity, we get

the following compromise between maximin-distance de-
signs on X and on its one-dimensional projections

φ∞,1P (ξ) = (1− γ) log[φMm(ξ)]+
γ

d

d∑

j=1

log[φMmj(ξ)] ,

with φMmj(ξ) = mini dj
∗
i = mink 6=i |{xi}j − {xk}j |.

One should note that there exists a threshold γ∗ =
γ∗(d, n) such that the optimal design associated with
any γ ≥ γ∗ is a maximin Lh design.

When α = 1 (Shannon entropy), identical develop-
ments lead to the same criterion φq,1P (ξ) as above with
q set to zero, φ

[NN,0]
(ξ) defined by (8) and φ[NN,0,j](ξ) =

exp{[∑n
i=1 log(dj

∗
i )]/n}.

Other combinations of criteria are possible; one may
for instance maximize a space-filling criterion in X un-
der constraints on the space-filling properties along one-
dimensional projections. Also, projections on higher di-
mensional subspaces can be taken into account in a
similar way using the appropriate decomposition of the
entropy of joint densities.

4 Model-based design: the case of kriging

In the following we assume that we have a reasonable
simplified model (the so called emulator) for the un-
known function f(·), whose evaluation at a given point
x relies on a computer code (evaluations at the design
points in ξ form a computer experiment).

4.1 Gaussian-process model and kriging

In particular, consider the following spatial random field

Y (x) = f(x) = η(x, β) + Z(x), (16)

where β is an unknown vector of parameters in Rp and
the random term Z(x) has zero mean, (unknown) vari-
ance σ2

Z and a parameterized spatial error correlation
structure such that E{Z(u)Z(v)} = σ2

Z C(u,v; ν). It is
often assumed that the deterministic term has a linear
structure, that is, η(x, β) = r>(x)β, and that the ran-
dom field Z(x) is Gaussian, allowing the estimation of
β, σZ and ν by Maximum Likelihood. This setup is used
in such diverse areas of spatial data analysis (see Cressie
(1993)) as mining, hydrogeology, natural resource mon-
itoring and environmental science, etc., and has become
the standard modeling paradigm in computer simula-
tion experiments, following the seminal paper of Sacks
et al (1989). Here, limv→u C(u,v; ν) = C(u,u; ν) = 1
for all u ∈ X.

Denote by Ŷ (x|ξ) the Best Linear Unbiased Predic-
tor (BLUP) of Y (x) based on the design points in ξ and
associated observations y(ξ) = [Y (x1), · · · , Y (xn)]>.
Optimal design in this context is usually performed by
minimizing a functional of var[Ŷ (x|ξ)] = E[(Ŷ (x|ξ) −
Y (x))2] at x, the unconditional Mean-Squared Predic-
tion Error (MSPE), also called the kriging variance.
Keeping ν fixed, then in the linear setting (universal
kriging, with η(x, β) = r>(x)β, generally a polynomial
in x), the BLUP takes the form

Ŷ (x|ξ) = r>(x)β̂ + c>ν (x)C−1
ν [y(ξ)−Rβ̂] , (17)

where {cν(x)}i = C(x,xi; ν), {Cν}ij = C(xi,xj ; ν),
i, j = 1, . . . , n, and β̂ = β̂ν is the weighted least-squares
estimator of β in the linear regression model, that is,

β̂ν = [R>C−1
ν R]−1R>C−1

ν y(ξ) ,

with R = [r(x1), . . . , r(xn)]>. Notice that Ŷ (x|ξ) does
not depend on σZ and that Ŷ (xi|ξ) = Y (xi) for all i

(the predictor is a perfect interpolator). We can write

Ŷ (x|ξ) = v>ν (x)y(ξ)

where

vν(x) = C−1
ν [In −R(R>C−1

ν R)−1R>C−1
ν ]cν(x)

+C−1
ν R(R>C−1

ν R)−1r(x) (18)

with In the n-dimensional identity matrix. The MSPE
is given by

MSPEξ(x, σ2
Z , ν) = σ2

Z

{
1− c>ν (x)C−1

ν cν(x)

+g>ν (x)[R>C−1
ν R]−1gν(x)

}

with gν(x) = r(x)−R>C−1
ν cν(x). Note that the MSPE

depends on (σ2
Z , ν), with σ2

Z intervening only as a mul-
tiplicative factor. We shall denote by ρ2(x) = ρ2

ξ(x, ν)
the normalized kriging variance,

ρ2
ξ(x, ν) = MSPEξ(x, σ2

Z , ν)/σ2
Z (19)
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and omit the dependence in ξ and ν when it does not
lead to ambiguities. Note that ρ2

ξ(xi, ν) = 0 for all i.
We suppose for the moment that ν is known (the

investigation of the (more realistic) situation where ν

is unknown is postponed to Sect. 5) and omit the de-
pendence on ν in the notations. It is sufficient in many
circumstances to take η(x, β) = β, that is, to model
the unknown function as the realization of a stochas-
tic process with unknown mean value. In that case, the
normalized kriging variance is simply

ρ2(x) = 1− c>(x)C−1c(x) +
[1− c>(x)C−11]2

1>C−11
, (20)

with 1 the n-dimensional vector of ones.
A natural approach for designing an experiment is

to choose ξ that minimizes a functional of the krig-
ing variance, for instance its integrated value φA(ξ) =∫

X
ρ2(x) dx , (generally evaluated by a discrete sum over

a finite grid) or the G-optimality criterion (by analogy
with G-optimal design for regression models, see Kiefer
and Wolfowitz (1960))

φG(ξ) = max
x∈X

ρ2(x) . (21)

Johnson et al (1990) show that a minimax-optimal de-
sign is asymptotically G-optimal when the correlation
function has the form Ck(·) with k tending to infinity
(i.e., it tends to be G-optimal for weak correlations). See
also Joseph (2006) who motivates the use of minimax-
optimal designs for his limit-kriging approach. The eval-
uation of φG(ξ) at any given ξ requires the solution of
a maximization problem over X, which makes the opti-
mization of φG(·) a rather exhausting task. Replacing
the optimization over X by a grid search over a finite
subset XN ⊂ X is often used; another option is to per-
form a Delaunay tessellation of the points in ξ plus the
vertices of X = [0, 1]d and initialize a local search for
the maximum of ρ2(x) at the center of each Delaunay
simplex (see Sect. 2.4). A third option, considered be-
low, consists in using an upper bound on φG(ξ).

4.2 Upper bounds on the kriging variance

We only consider isotropic processes, with correlation
depending on the Euclidean distance between points,
i.e. satisfying E{Z(u)Z(v)} = σ2

Z C(‖u−v‖; ν), (u,v) ∈
X2. The extension to the non-isotropic case should not
raise major difficulties through an appropriate change
of metric in X. We suppose that the radial correlation
function C(·; ν) is non-increasing and non-negative on
R+. Denote CMm = C(φMm), CmM = C(φmM ) (we
omit the dependence in ξ where there is no ambiguity)
and

ρ2
0(x) = 1− c>(x)C−1c(x)

the (normalized) kriging variance when β is known. The
objective of this section is to construct upper bounds
on maxx∈X ρ2

0(x) and maxx∈X ρ2(x), see (20).
From the developments given in Appendix C, we

obtain the bound

ρ2
0(x) ≤ 1− C2

mM

λmax(C)
,

for the case where β is known and, for a weak enough
correlation, the approximate bound

ρ2(x) ≤ 1− C2
mM

λmax(C)
+

(1− CmM u)2

1>C−11

where u = mini{C−11}i when β is unknown.
Using further approximations, one can obtain bounds

that depend on CmM and CMm but not on C, see Ap-
pendix C. We obtain

ρ2
0(x) ≤ ρ̄2

0(x) = 1− c̄(x)2

1 + (n− 1)CMm
, (22)

where c̄(x) = maxi{c(x)}i, and thus

max
x∈X

ρ2
0(x) ≤ ρ̄2

0 = 1− C2
mM

1 + (n− 1)CMm
. (23)

Also, when the correlation is weak enough,

ρ2(x) ≤ ρ̄2(x) = ρ̄2
0(x) +

1 + (n− 1)CMm

n
R2(x) (24)

with ρ̄2
0(x) given by (22) and

R2(x) =
[
1− c̄(x)

1− (n− 1)CMm

1− (n− 1)C2
Mm

]2

,

which gives

max
x∈X

ρ2(x) ≤ ρ̄2 = ρ̄2
0 +

[
1− CmM

1− (n− 1)CMm

1− (n− 1)C2
Mm

]2

×1 + (n− 1)CMm

n
(25)

with ρ̄2
0 given by (23). More accurate bounds are given

in (Griffith, 2003) when the points in ξ follow a regu-
lar pattern. Similar ideas could be applied to the limit
kriging predictor of Joseph (2006).

Example 1 We consider a two-dimensional example with
four design points, three at the corners (1, 0), (1, 1),
(0, 1) and one in the center (1/2, 1/2) of X = [0, 1]2. Pre-
diction is considered along the diagonal going from the
origin to the corner (1, 1), with x = (0 , 0)>+γ(1 , 1)>,
γ ∈ [0, 1]. The correlation function is C(t) = (1−t)4 (1+
4t) with C(t) = 0 for t ≥ 1, see Wendland (2005). No-
tice that C has the form (41) with CMm = C(

√
2/2) '
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Fig. 5 Kriging variance (normalized) and bounds with, in solid
lines from top to bottom, ρ̄2(x) given by (24) and the exact
(normalized) kriging variance ρ2(x); the values of ρ2

0(x) and
of its upper bound ρ̄2

0(x) (22) are indicated in dotted lines;
x = (0 , 0)> + γ(1 , 1)>.

0.0282. Fig. 5 presents the (normalized) kriging vari-
ances ρ2

0(x) and ρ2(x) together with the bounds con-
structed above. We have ρ2(x) = ρ2

0(x) = 0 at the de-
sign points (1/2, 1/2) and (1, 1). Note that the bounds
ρ̄2(x) and ρ̄2

0(x) although not tight everywhere (in par-
ticular, they are pessimistic at the design points) give a
reasonable approximation of the behavior of ρ2(x) and
ρ2
0(x) respectively. Also note that the global bounds

(23) and (25) (reached at x = (0, 0)) are rather tight.

Example 2 We consider a one-dimensional example with
the 5-point minimax-optimal design ξ∗mM = (0.1, 0.3,
0.5, 0.7, 0.9) in X = [0, 1] for the correlation C(t) =
exp(−10 t). Fig. 6 presents the (normalized) kriging vari-
ances ρ2

0(x) and ρ2(x) together with the bounds con-
structed above as x varies in X. The bounds ρ̄0(x) given
by (22) and ρ̄(x) given by (24) are nowhere tight (nei-
ther are the global bounds ρ̄2 and ρ̄0 given by (23) and
(25)), but the behavior of the kriging variance as a func-
tion of x is satisfactorily reproduced. Fig. 7 presents the
same information for the 5-point maximin-optimal de-
sign ξ∗Mm = (0, 0.25, 0.5, 0.75, 1).

For a small enough correlation, a minimax-optimal
design ensures a smaller value for maxx∈X ρ2(x) than a
maximin-optimal design, see Johnson et al (1990). One
might hope that this tendency will also be observed
when using the upper bound ρ̄2 given by (25). This
seems to be the case, as the following continuation of
Example 2 illustrates.

Example 2 (continued) We consider the following fam-
ily of 5-point designs: ξ(α) = (α, α+(1−2α)/4, α+(1−

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6
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1
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ρ2 (x
)

Fig. 6 Kriging variance (normalized) and bounds for the 5-point
minimax-optimal design with, in solid lines from top to bottom,
ρ̄(x) given by (24) and the exact (normalized) kriging variance
ρ2(x); the values of ρ2

0(x) and of its upper bound ρ̄0(x) (22) are
indicated in dotted lines.
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Fig. 7 Kriging variance (normalized) and bounds for the 5-point
maximin-optimal design with, in solid lines from top to bottom,
ρ̄(x) given by (24) and the exact (normalized) kriging variance
ρ2(x); the values of ρ2

0(x) and of its upper bound ρ̄0(x) (22) are
indicated in dotted lines.

2α)/2, α+3(1− 2α)/4, 1−α), which includes ξ∗Mm (for
α = 0) and ξ∗mM (for α = 0.1). The correlation function
is C(t) = exp(−ν t). Fig. 8 presents maxx∈X ρ2(x) and
ρ̄2 given by (25) as functions of α in the strong (left,
ν = 7) and weak (right, ν = 40) correlation cases. Al-
though the curves do not reach their minimum value for
the same α, they indicate the same preference between
ξ∗Mm and ξ∗mM .
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Fig. 8 maxx∈X ρ2(x) (solid line) and ρ̄2 (25) (dashed line) as
functions of α for the design ξ(α) when ν = 7 (left) and ν = 40
(right); the maximin-optimal design corresponds to α = 0, the
minimax-optimal design to α = 0.1 (dotted vertical line).

4.3 Maximum-Entropy Sampling

Suppose that X is discretized into the finite set XN

with N points. Consider yN , the vector formed by Y (x)
for x ∈ XN , and y(ξ), the vector obtained for x ∈ ξ.
For any random y with p.d.f. ϕ(·) denote ent(y) the
(Shannon) entropy of ϕ, see (11). Then, from a classical
theorem in information theory (see, e.g., Ash (1965, p.
239)),

ent(yN ) = ent(yξ) + ent(yN\ξ|yξ) (26)

where yN\ξ denotes the vector formed by Y (x) for x ∈
XN \ ξ and ent(y|w), the conditional entropy, is the
expectation with respect to w of the entropy of the
conditional p.d.f. ϕ(y|w), that is,

ent(y|w) = −
∫

ϕ(w)
(∫

ϕ(y|w) log[ϕ(y|w)] dy
)

dw .

The argumentation in (Shewry and Wynn, 1987) is as
follows: since ent(yN ) in (26) is fixed, the natural ob-
jective of minimizing ent(yN\ξ|yξ) can be fulfilled by
maximizing ent(yξ). When Z(x) in (16) is Gaussian,
ent(yξ) = (1/2) log det(C) + (n/2)[1 + log(2π)], and
Maximum-Entropy-Sampling corresponds to maximiz-
ing det(C), which is called D-optimal design (by anal-
ogy with optimum design in a parametric setting). One
can refer to (Wynn, 2004) for further developments.

Johnson et al (1990) show that a maximin-optimal
design is asymptotically D-optimal when the correla-
tion function has the form Ck(·) with k tending to infin-
ity (i.e., it tends to be D-optimal for weak correlations).
We have considered in Sect. 3.3 the design criterion (to
be maximized) given by a plug-in kernel estimator Ĥn

α

of the distribution of the xi, see (13) and (12). When
α = 2, the maximization of Ĥn

α is equivalent to the
minimization of

φ(ξ) =
∑

i,j

K

(
xi − xj

hn

)
.

A natural choice in the case of prediction by kriging
is K[(u − v)/hn] = C(‖u − v‖), which yields φ(ξ) =∑

i,j{C}ij . Since C has all its diagonal elements equal
to 1, its determinant is maximum when the off-diagonal
elements are zero, that is when φ(ξ) = n. Also note that

1− (n− 1)CMm ≤ λmin(C) ≤ φ(ξ)
n

=
1>C1

n
≤ λmax(C) ≤ 1 + (n− 1)CMm .

The upper bound on λmax(C) is derived in Appendix
C. The lower bound is obtained from λmin(C) ≥ t −
s
√

n− 1 with t = tr(C)/n and s2 = tr(C2)/n− t2, see
Wolkowicz and Styan (1980). Since {C}ij = {C}ji ≤
CMm for all i 6= j, we get tr(C) = n and tr(C2) ≤
n[1 + (n− 1)C2

Mm] which gives the lower bound above.
Note that bounds on λmin(C) have been derived in
the framework of interpolation with radial basis func-
tions, see Narcowich (1991); Ball (1992); Sun (1992) for
lower bounds and Schaback (1994) for upper bounds.
A maximin-distance design minimizes CMm and thus
minimizes the upper bound above on φ(ξ).

5 Design for estimating covariance parameters

We now consider the case where the covariance C used
for kriging (Sect. 4.1) depends upon unknown parame-
ters ν that need to be estimated (by Maximum Likeli-
hood) from the dataset y(ξ).

5.1 The Fisher Information matrix

Under this assumption, a first step towards good pre-
diction of the spatial random field may be the pre-
cise estimation of both sets of parameters β and ν.
The information on them is contained in the so-called
Fisher information matrix, which can be derived ex-
plicitly when the process Z(·) is Gaussian. In this case
the (un-normalized) information matrix for β and θ =
(σ2

Z , ν>)> is block diagonal. Denoting Cθ = σ2
ZCν , we

get

Mβ,θ(ξ;β, θ) =
(

Mβ(ξ; θ) O
O Mθ(ξ; θ)

)
, (27)

where, for the model (16) with η(x, β) = r>(x)β,

Mβ(ξ; θ) =
1

σ2
Z

R>C−1R
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with R = [r(x1), . . . , r(xn)]> and

{Mθ(ξ; θ)}ij =
1
2

tr
{
C−1

θ

∂Cθ

∂θi
C−1

θ

∂Cθ

∂θj

}
.

Since Ŷ (x|ξ) does not depend on σZ and σ2
Z only in-

tervenes as a multiplicative factor in the MSPE, see
Sect. 4.1, we are only interested in the precision of the
estimation of β and ν. Note that

Mθ(ξ; θ) =
(

n/(2σ4
Z) z>ν (ξ; θ)

zν(ξ; θ) Mν(ξ; ν)

)

with

{zν(ξ; θ)}i =
1

2σ2
Z

tr
(
C−1

ν

∂Cν

∂νi

)

{Mν(ξ; ν)}ij =
1
2

tr
{
C−1

ν

∂Cν

∂νi
C−1

ν

∂Cν

∂νj

}
.

Denote

M−1
θ (ξ; θ) =

(
a(ξ; θ) b>ν (ξ; θ)
bν(ξ; θ) Aν(ξ; ν)

)
.

The block of Aν(ξ; ν) then characterizes the precision
of the estimation of ν (note that Aν(ξ; ν) = [Mν(ξ; ν)−
2σ4

Z zν(ξ; θ)z>ν (ξ; θ)/n]−1 does not depend on σZ). The
matrix Aν(ξ; ν) is often replaced by M−1

ν (ξ; ν) and
Mβ,θ(ξ;β, θ) by

Mβ,ν(ξ; β, θ) =
(

Mβ(ξ; θ) O
O Mν(ξ; ν)

)
,

which corresponds to the case when σZ is known. This
can sometimes be justified from estimability consider-
ations concerning the random-field parameters σZ and
ν. Indeed, under the infill design framework (i.e., when
the design space is compact) typically not all parame-
ters are estimable, only some of them, or suitable func-
tions of them, being micro-ergodic, see e.g. Stein (1999);
Zhang and Zimmerman (2005). In that case, a reparame-
trization can be used, see e.g. Zhu and Zhang (2006),
and one may sometimes set σZ to an arbitrary value.
When both σZ and ν are estimable, there is usually no
big difference between Aν(ξ; ν) and M−1

ν (ξ; ν).
Following traditional optimal design theory, see, e.g.,

Fedorov (1972), it is common to choose designs that
maximize a scalar function of Mβ,ν(ξ; β, θ), such as its
determinant (D-optimality). Müller and Stehĺık (2010)
have suggested to maximize a compound criterion with
weighing factor α,

ΦD[ξ|α] = (det[Mβ(ξ; θ)])α (det[Mν(ξ; ν)])1−α
. (28)

Some theoretical results for special situations showing
that α → 1 leads to space-filling have been recently
given in (Kisělák and Stehĺık, 2008), (Zagoraiou and
Antognini, 2009) and (Dette et al, 2008); Irvine et al
(2007) motivate the use of designs with clusters of points.

5.2 The modified kriging variance

G-optimal designs based on the (normalized) kriging
variance (19) are space filling (see, e.g., van Groeni-
gen (2000)); however, they do not reflect the resulting
additional uncertainty due to the estimation of the co-
variance parameters. We thus require an updated de-
sign criterion that takes that uncertainty into account.
Even if this effect is asymptotically negligible, see Put-
ter and Young (2001), its impact in finite samples may
be decisive, see Müller et al (2010).

Various proposals have been made to correct the
kriging variance for the additional uncertainty due to
the estimation of ν. One approach, based on Monte-
Carlo sampling from the asymptotic distribution of the
estimated parameters ν̂n, is proposed in (Nagy et al,
2007). Similarly, Sjöstedt-De-Luna and Young (2003)
and den Hertog et al (2006) have employed bootstrap-
ping techniques for assessing the effect. Harville and
Jeske (1992) use a first-order expansion of the krig-
ing variance for ν̂n around its true value, see also Abt
(1999) for more precise developments and Zimmerman
and Cressie (1992) for a discussion and examples. This
has the advantage that we can obtain an explicit correc-
tion term to augment the (normalized) kriging variance,
which gives the approximation

ρ̃2
ξ(x, ν) = ρ2

ξ(x, ν)

+tr
{
M−1

ν (ξ; ν)
∂v>ν (x)

∂ν
Cν(ν)

∂vν(x)
∂ν>

}
, (29)

with vν(x) given by (18) (note that ρ̃2
ξ(xi, ν) = 0 for all

i). Consequently, Zimmerman (2006) constructs designs
by minimizing

φ̃G(ξ) = max
x∈X

ρ̃2
ξ(x, ν) (30)

for some nominal ν, which he terms EK-(empirical kri-
ging-)optimality (see also Zhu and Stein (2005) for a
similar criterion). The objective here is to take the
dual effect of the design into account (obtaining ac-
curate predictions at unsampled sites and improving
the accuracy of the estimation of the covariance pa-
rameters, those two objectives being generally conflict-
ing) through the formulation of a single criterion. One
should notice that ρ̃2

ξ(x, ν) may seriously overestimate
the MSPE at x when the correlation is excessively weak.
Indeed, for very weak correlation the BLUP (17) ap-
proximately equals r>(x)β̂ excepted in the neighbor-
hood of the xi due to the interpolating property Ŷ (xi|ξ)
= Y (xi) for all i; v(x) then shows rapide variations in
the neighborhood of the xi and ‖∂v(x)/∂ν‖ may be-
come very large. In that case, one may add a nugget ef-
fect to the model and replace (16) by Y (x) = η(x, β) +
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Z(x) + ε(x) where the ε(xi) are i.i.d. errors, also inde-
pendent from the random process Z(x), with zero mean
and constant variance σ2

ε . The BLUP then no longer
interpolates the data which renders v(x) more stable;
see e.g. Gramacy and Lee (2010) for other motivations
concerning the introduction of a nugget effect.

The minimization of (30) is a difficult task, even for
moderate d, due to the required maximizations of ρ̃2(x).
Similarly to Sect. 4.2, the derivation of an upper bound
on ρ̃2(x) could be used to form a simpler criterion.
(Notice that in the case considered in Sect. 4.2 where
η(x, β) = β we have vν(x) = C−1

ν Pνcν(x)+wν with Pν

the projector Pν = In−11>C−1
ν /(1>C−1

ν 1) and wν =
C−1

ν 1/(1>C−1
ν 1) not depending on x.) An alternative

approach that also takes the effect of the unknown ν on
predictions into account would be to place Maximum-
Entropy-Sampling of Sect. 4.3 into a Bayesian frame-
work, setting a prior distribution on β and ν. Also, the
relationship between the criteria (28) and (30) is ex-
plored by Müller et al (2010) who show that, although
a complete equivalence can not be reached by a mere
selection of α in general, respective efficiencies are usu-
ally quite high.

The strategy proposed in the next section tries to
combine space-filling model-free design, to be used in a
first stage, with estimation-oriented design, based on a
model, to be used in a second stage. The objective is to
reach good performance in terms of the modified kriging
variance (29) but keep the computational burden as low
as possible.

6 Combining space-filling and estimation
designs

A rather straightforward method for combining esti-
mation and prediction-based designs is suggested in
(Müller, 2007). First a design consisting of a certain
number of points n0 is selected to maximize a criterion
for the estimation of β, e.g. det[Mβ(ξ, θ)]; it is then
optimally augmented by n1 points for a criterion re-
lated to the estimation of ν, e.g. det[Mν(ξ, ν)], to yield
a complete design with n = n0 + n1 points.

A similar idea can be exploited here and we suggest
the following strategy.

– 1) Choose a space-filling, model-free, criterion φ0(·),
e.g., φmM (·), φMm(·) or a criterion from Sect. 3.

– 2) Determine a n-point optimal design ξ∗n,0 for φ0(·),
compute φ̃G(ξ∗n,0). Set n1 = 1.

– 3) Determine a n0-point optimal design ξ∗n0
for φ0(·),

with n0 = n− n1; augment ξ∗n0
to a n-point design

ξ∗n0,n1
by choosing n1 points optimally for the crite-

rion det[Mν(ξn0,n1 ; ν)], compute φ̃G(ξ∗n0,n1
) (30).
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Fig. 9 Contour plot for φ̃G(ξ) on the 7-point minimax and max-
imin Lh-design of Fig. 2 (left) and with the central point shifted
(right).

– 4) If φ̃G(ξ∗n0,n1
) ≥ φ̃G(ξ∗n0+1,n1−1), select the design

ξ∗n0+1,n1−1, stop; otherwise, increment n1 by 1 and
return to step 3).

Asymptotically, EK-optimal designs approach the typi-
cally space-filling G-optimal designs since the correcting
term in (29) vanishes, see Putter and Young (2001). For
n large and φ0(·) in good agreement with G-optimality
(e.g., φ0 = φmM ) we can thus expect the value of n1

in ξ∗n0+1,n1−1 selected by the strategy above to be rela-
tively small.

Example 3 That step 3) of the above procedure makes
sense can be demonstrated on a simple example. Take
the 7 point Lh design from Fig. 2, which is simultane-
ously minimax and maximin optimal. Setting ν = 7, we
get φ̃G(ξ) ' 1.913, obtained for x ' (0.049, 0.951) or
(0.951, 0.049), see Fig. 9-left, with Mν(ξ; ν) ' 2.41 10−3

(and A−1
ν (ξ; ν) ' 2.40 10−3). If we now shift the central

point away from the center towards the upper right (or
lower left) corner, say to the coordinate (3/4, 3/4) as
in the right panel of Fig. 9, the criterion is improved
to a value of φ̃G(ξ) ' 1.511, attained for x at the op-
posite corner, and Mν(ξ; ν) is increased to 4.79 10−3

(and A−1
ν (ξ; ν) to 4.71 10−3). This effect is enhanced

as we move the central point closer to one of the non-
central points and as we increase the value of ν and
clearly shows the need to go beyond space-filling in this
scenario.

7 Algorithms

Sequential and adaptive design In the sequential con-
struction of a design, points can be introduced one-at-
a-time (full sequential design) or by batches of given
size m > 1. At each stage, all points introduced previ-
ously are fixed, which means in particular that the as-
sociated observations can be used to better select new
points. The design is called adaptive when this infor-
mation is used. This is especially useful in model-based
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design, when the criterion depends on some unknown
parameters, for instance ν in the kriging variance (19)
or (29). Suppose that φ(·) is a criterion to be minimized.
At stage k of a full-sequential design one constructs
ξk+1 = (ξk,xk+1), with ξk = (x1, . . . ,xk) already de-
termined, by choosing

xk+1 = arg min
x∈X

φ[(ξk,x)] . (31)

It should be noticed that such a construction is not
always suitable. In particular, for G-optimality (21) a
xk+1 chosen in this way will usually be in the close
vicinity of a point already present in ξk, due to the
fact that φG(ξ) only depends on a local characteristic
(the value of ρ2(x) at its maximizer). The much simpler
construction

xk+1 = arg max
x∈X

ρ2
ξk

(x) (32)

is often used for that reason. Note that when the cor-
relation tends to zero, this xk+1 tends to be as far
as possible from the points already present, similarly
to the greedy algorithm for maximin-optimal design
for which xk+1 = arg maxx∈X minxi∈ξk

‖x − xi‖. The
design obtained by (32) will thus tend to be of the
maximin-distance rather than minimax-distance type,
and thus different from a G-optimal design (in partic-
ular, (32) tends to push points to the boundary of X).
When φ(ξ) = φ(ξ; ν) depends on some unknown pa-
rameters ν, the construction (31) is easily made adap-
tive by using a forced-certainty-equivalence adaptation
rule (see, e.g., Pronzato (2008)) that replaces at stage
k the unknown ν by ν̂k estimated from ξk and the as-
sociated observations y(ξk). One then chooses xk+1 =
arg minx∈X φ[(ξk,x; ν̂k)]; the adaptive version of (32) is
simply xk+1 = arg maxx∈X ρ2

ξk
(x, ν̂k).

Non-sequential design The direct minimization of a func-
tion φ(·) with respect to ξ = (x1, . . . ,xn) is a rather
formidable task even for moderate values of n and d

when φ(·) is not convex and local minimizers exist,
which is always the case for the criteria considered here.
Instead of performing a direct optimization with re-
spect to ξ ∈ Rnd (or over a finite class in the case
of Lh designs, see Sect. 2.2), most approaches com-
bine heuristics with an exchange algorithm. The meth-
ods are abundant, ranging from genetic algorithms and
tabu search (see e.g., Glover et al (1995)) to simulated
annealing (Morris and Mitchell, 1995). Some are more
adapted to combinatorial search (and thus useful when
working in the class of Lh designs, see van Dam et al
(2007) for a branch-and-bound algorithm for maximin
Lh designs and Jin et al (2005) for a stochastic evo-
lutionary method). One may refer to (Husslage et al,

2006) for a recent survey on optimization methods, in-
cluding numerical constructions of Lh maximin designs
(up to d = 10 and n = 300). Recent methods suggested
for purely geometric problems, see, e.g., Cortés and
Bullo (2009), could be transferred to more statistically-
based space-filling criteria. Software can be obtained
for instance from (Royle and Nychka, 1998; Walvoort
et al, 2010), see also the packages DiceDesign (http:
//www.dice-consortium.fr/) by Franco, Dupuy and
Roustant or lhs by Carnell (2009). We simply indicate
below a prototype algorithm and mention its main in-
gredients.

One of the simplest, but not very efficient, algorithm
is as follows: generate a random sequence of designs ξk,
select the best one among them in terms of φ(·). Note
that one does not need to store all designs, only the best
one found so far, say ξ∗k after k designs have been gen-
erated, and its associated criterion value φ(ξ∗k) have to
be remembered. This procedure is often used for Lh de-
signs, for instance to generate good designs in terms of
minimax or maximin distance. Note that it may help to
generate the random sequence {ξk} according to a par-
ticular process, see Franco (2008); Franco et al (2008)
who use the Strauss point process, accounting for re-
pulsion between points and thus favorising maximin-
distance designs. Also note that each ξk generated can
be used as starting point for a local search algorithm
(using generalized gradients when φ(·) is not differen-
tiable). A more sophisticated version of this idea is as
follows.

Let ξk denote the design at iteration k and φ(·) be
a criterion to be minimized. Consider an algorithm for
which at iteration k one exchanges one point xi of ξk

with a new one x∗, see Fedorov (1972); Mitchell (1974)
for exchange algorithms originally proposed for optimal
design in a parametric setting. Three elements must
then be defined: (i) how to select xi? (ii) how to con-
struct x∗? (iii) what to do if the substitution of x∗ for
xi in ξk, possibly followed by a local search, does not
improve the value of φ(·)?

Typically, the answer to (i) involves some random-
ness, possibly combined with some heuristics (for in-
stance, for maximin-optimal design, it seems reason-
able to select xi among the pairs of points at respec-
tive distance φMm(ξ)). For (ii), the choice of x∗ can be
purely random (e.g., a random walk in X originated at
xi), or based on a deterministic construction, or a mix-
ture of both. Finally, for (iii), a simulated-annealing
method is appropriate: denote ξ+

k the design obtained
by substituting x∗ for xi in ξk, set ξk+1 = ξ+

k when
φ(ξ+

k ) < φ(ξk) (improvement) but also accept this move
with probability Pk = exp{−[φ(ξ+

k )− φ(ξk)/Tk]} when
φ(ξ+

k ) > φ(ξk). Here Tk denotes a ‘temperature’ that
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should decrease with k. Note that keeping trace of the
best design encountered, ξ∗k at step k, facilitates the
proof of convergence to an optimal design: indeed, lim
supk→∞ φ(ξk) may not converge to its minimal value
φ∗ = minξ φ(ξ) (and there might not be a reversible
measure for the transition kernel from ξk to ξk+1), but
it is easy to prove that limk→∞ φ(ξ∗k) = φ∗ when there
is enough randomness in (i) and (ii). One may refer to
(Morris and Mitchell, 1995) for indications on how to
choose the initial temperature T0 and make it decrease
with k. See e.g. Schilling (1992) and Angelis et al (2001)
for the use of a similar algorithm in a related framework.

8 Concluding remarks

The design of computer experiments has been a rapidly
growing field in the last few years, with special empha-
sis put on the construction of criteria quantifying how
spread out a design is: geometric measures, related to
sphere covering and sphere packing (minimax and max-
imin distance designs), statistical measures of unifor-
mity (discrepancy and more recently entropy). Much
work remains to be done to determine which approaches
are more suitable for computer experiments and to con-
struct efficient algorithms tailored to specific criteria
(some being easier to optimize than the others).

The paper has also drawn attention on the impor-
tance of going beyond space filling. The estimation of
parameters in a model-based approach calls for designs
that are not uniformly spread out. A simple procedure
has been proposed (Sect. 6), but here also much remains
to be done. We conclude the presentation by mentioning
some recent results that might help reconciliating the
space-filling and non-space-filling points of view. When
a model selection strategy using a spatial information
criterion is employed, Hoeting et al (2006) note that
clustered designs perform the best. When different lev-
els of accuracy are required, nested space-filling designs
have shown to be useful (cf. Qian et al (2009); Ren-
nen et al (2010)) and non-space fillingness arises nat-
urally in some sequentially designed experiments (see
Gramacy and Lee (2009)). Picheny et al (2010) induce
it by focussing their attention towards particular target
regions.

More generally, Dette and Pepelyshev (2010) ob-
serve that the kriging variance for a uniform design on
[0, 1] is (in general) larger near the boundaries than
near the center, so that a G-optimal design tends to
put more points near the boundaries (note, however,
that this is not true for the exponential covariance func-
tion, see Fig. 6 and 7, due to the particular Markovian
structure of the Ornstein-Uhlenbeck process on the real
line). Similarly, an optimal experiment for polynomial

regression (D-optimal for instance) puts more points
near the boundary of the domain as the degree of the
polynomial increases; in the limit, the design points are
distributed with the arc-sine distribution. These obser-
vations speak for space-filling designs that do not fill
the space uniformly, but rather put more points near its
boundaries. Since such designs will place some points
close together, they may help the estimation of covari-
ance parameters in kriging, and thus perhaps kill two
birds with one stone.
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Appendix A: Computation of the minimax dis-
tance criterion via Delaunay tesselation

Let x∗ be a point of X satisfying mini ‖x − xi‖ =
φ(ξ∗mM ). If x∗ is in the interior of X, it is at equal dis-
tance of d + 1 points of X that form a non-degenerate
simplex; it is therefore the center of a circumscribed
sphere to a simplex in the Delaunay tessellation of the
points of ξ (which we call a Delaunay sphere).

Suppose now that x∗ lies on the boundary of X. It
then belongs to some (d− q)-dimensional face Hq of X,
1 ≤ q ≤ d (a 0-dimensional face being a vertex of X, a
1-dimensional face an edge, etc., a (d− 1)-dimensional
face is a (d− 1)-dimensional hyperplane). Also, it must
be at equal distance D∗ from m = d + 1− q points of ξ

and no other point from ξ can be closer. Consider now
the symmetric points of those m points with respect
to the q different (d − 1)-dimensional faces of X that
define Hq; we obtain in this way m(q + 1) points that
are all at distance D∗ from x∗. No other point from
ξ, or any symmetric of a point of ξ with respect to a
(d − 1)-face of X, is at distance from x∗ less than D∗.
Since m(q + 1) = (d + 1 − q)(q + 1) ≥ d + 1 (with
equality when q = d, that is when x∗ if one of the 2d

vertices of X), x∗ is always at the center of a Delaunay
sphere obtained from the tessellation of the points in
ξ and their 2d + 1 symmetric points with respect to
the (d − 1)-dimensional faces of X. (The tessellation
obtained is not unique in general due to the enforced
symmetry among the set of points constructed, but this
is not an issue.)

The center z∗ and radius R of the circumscribed
sphere to a simplex defined by d+1 vectors z1, . . . , zd+1

of Rd is easily computed as follows. Since (z∗−zi)>(z∗−
zi) = R2 for all i, 2 z>i z∗ − z>i zi = z>∗ z∗ − R2 is a
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constant. Denote this constant by γ and the vector
formed by the squared norm of the zi by w, so that
{w}i = z>i zi for all i. We thus have, in matrix form,[
2Z> −1

]
(z>∗ γ)> = w with Z the d× (d + 1) matrix

(z1, . . . , zd+1) and 1 the (d + 1)-dimensional vector of
ones. Note that the singularity of the matrix [2Z> −1]
would imply that all zi lie in a (d− 1)-dimensional hy-
perplane; the matrix is thus of full rank when the zi

form a non-degenerate simplex. The values of z∗ and γ

are directly obtained from the equation above and R is
then given by

√
z>∗ z∗ − γ.

Appendix B: regularization through Lq norms

Consider a design criterion φ(·) which can be written
as the minimum of a set of criteria, φ(ξ) = mini φi(ξ) .

Suppose that this set of criteria φi(·) is finite (exten-
sions to infinite sets and generalized classes of criteria
indexed by a continuous parameters are possible but
useless here for our purpose), so that i ∈ {1, . . . ,M}
for some finite M . The min function makes φ(·) non
smooth even when the φi(·) are. Different regulariza-
tion methods can be used in that case to construct a
smooth approximation of φ(·).

Suppose that φ(ξ) > 0 and define

φ
[q]

(ξ) =

[
M∑

i=1

φ−q
i (ξ)

]−1/q

. (33)

From a property of Lq norms, φ
[q2]

(ξ) ≤ φ
[q1]

(ξ) for
any q1 > q2 > 0, so that φ

[q]
(ξ) with q > 0 forms a

lower bound on φ(ξ) which tends to φ(ξ) as q → ∞.
φ

[q]
(ξ) is also an increasing function of q for q < 0

but is not defined at q = 0 (with limq→0− φ
[q]

(ξ) =
+∞ and limq→0+ φ

[q]
(ξ) = 0). Note that φ

[−1]
(ξ) =

∑M
i=1 φi(ξ) ≥ φ(ξ).
Consider now the criterion

φ[q](ξ) =

[
M∑

i=1

µi φ−q
i (ξ)

]−1/q

, (34)

where µi > 0 for all i and
∑M

i=1 µi = 1 (the µi define
a probability measure on the index set {1, . . . ,M}).
Again, for any ξ such that φ(ξ) > 0, φ[q](ξ) → φ(ξ)
as q tends to ∞. The computation of the derivative

∂φ[q](ξ)/∂q gives

∂φ[q](ξ)
∂q

=
φ[q](ξ)

q2
∑M

i=1 µi φ−q
i (ξ)

×
{[

M∑

i=1

µi φ−q
i (ξ)

]
log

[
M∑

i=1

µi φ−q
i (ξ)

]

−
M∑

i=1

µi φ−q
i (ξ) log[φ−q

i (ξ)]

}
≤ 0 for any q ,

where the inequality follows from Jensen’s inequality
(the function x → x log x being convex). The inequality
is strict when the φi(ξ) take at least two different values
and φ[q](ξ) then decreases monotonically to φ(ξ) as q →
∞. Similarly to the case of φ

[q]
(·), we have φ[−1](ξ) =

∑M
i=1 µi φi(ξ) ≥ φ(ξ). Moreover,

lim
q→0

φ[q](ξ) = exp

{
M∑

i=1

µi log[φi(ξ)]

}
,

which, by continuity can be defined as being φ[0](ξ).
Define µ = min{µi , i = 1, . . . ,M}. We have, for

any ξ such that φ(ξ) > 0 and any q > 0,

φ
[q]

(ξ) ≤ φ(ξ) ≤ φ[q](ξ) ≤ µ−1/qφ
[q]

(ξ) , (35)

so that

0 ≤ φ(ξ)− φ
[q]

(ξ) ≤ (µ−1/q − 1)φ(ξ∗) ,

0 ≤ φ[q](ξ)− φ(ξ) ≤ (µ−1/q − 1)φ(ξ∗) ,

where ξ∗ is optimal for φ(·) and µ−1/q tends to 1 as
q → ∞. The convergence of φ

[q]
(·) and φ[q](·) to φ(·),

respectively from below and from above, is thus uni-
form over any set of designs such that φ(ξ) is bounded
away from zero. Moreover, we can directly deduce from
(35) that the φ-efficiency of optimal designs optimal for
φ[q](·) or φ[q](·) is at least µ1/q. Indeed, let ξ∗, ξ∗

[q]
and

ξ
∗
[q] respectively denote an optimal design for φ, φ

[q]
(·)

and φ[q](·); (35) implies that

φ(ξ∗
[q]

) ≥ φ
[q]

(ξ∗
[q]

) ≥ φ
[q]

(ξ∗) ≥ µ1/qφ(ξ∗)

φ(ξ
∗
[q]) ≥ µ1/qφ[q](ξ

∗
[q]) ≥ µ1/qφ[q](ξ

∗) ≥ µ1/qφ(ξ∗) .

The best efficiency bounds are obtained when µ is max-
imal, that is, when µ is the uniform measure and µ =
1/M . In that case, φ[q](ξ) = M1/qφ

[q]
(ξ) and φ[0](ξ) =

[
∏M

i=1 φi(ξ)]1/M .
An obvious generalization of the regularization by

Lq norm is as follows. Let ψ(·) be a strictly increasing
function and ψ←(·) denote its inverse. Then, φ(ξ) =
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ψ←{mini ψ[φi(ξ)]} , and, applying the Lq regulariza-
tions above to the min function, we can define

φ[q,ψ](ξ) = ψ←





[
M∑

i=1

µi {ψ[φi(ξ)]}−q

]−1/q


 , (36)

φ
[q,ψ]

(ξ) = ψ←





[
M∑

i=1

{ψ[φi(ξ)]}−q

]−1/q


 . (37)

A case of special interest is ψ(t) = exp(t), which gives

φ
[q,exp]

(ξ) = −1
q

log

{
M∑

i=1

exp[−qφi(ξ)]

}
,

and is appealing in situations where one may have φi(ξ)
≤ 0, see Li and Fang (1997).

Appendix C: derivation of bounds on the kriging
variance

β is known We have ρ2
0(x) ≤ 1−maxi{c(x)}2i /λmax(C),

with λmax(C) the maximum eigenvalue of C. Since C(·)
is non-increasing, {C}ij ≤ CMm for all i 6= j. We de-
note by C the set of matrices C satisfying 0 ≤ {C}ij =
{C}ji ≤ CMm for i 6= j. A classical inequality on ma-
trix norms gives λmax(C) = ‖C‖2 ≤ (‖C‖1 ‖C‖∞)1/2,
where ‖C‖1 = maxj

∑
i |{C}ij | = ‖C‖∞. Therefore,

any C ∈ C satisfies λmax(C) ≤ 1 + (n− 1)CMm and

ρ2
0(x) ≤ ρ̄2

0(x) = 1− c̄(x)2

1 + (n− 1)CMm
, (38)

where c̄(x) = maxi{c(x)}i. Since mini ‖x−xi‖ ≤ φmM

for all x ∈ X, we have c̄(x) ≥ CmM for all x and

max
x∈X

ρ2
0(x) ≤ ρ̄2

0 = 1− C2
mM

1 + (n− 1)CMm
. (39)

Note that the bound (39) will become worse as n in-
creases since the bound 1 + (n − 1)CMm on λmax(C)
becomes more and more pessimistic. Also, (38) can be
tight only for those x such that c(x) corresponds to the
direction of an eigenvector associated with λmax(C).

β is unknown We need to bound the second term in
ρ2(x) given by (20). Our first step is to enclose the
feasible set for c(x) into a set C of simple description.
Notice that ‖x− xi‖ < φMm/2 for some i implies that
‖x− xj‖ > φMm/2 for all i 6= j. Therefore,

C ⊂ [0, 1]n \P(φMm)

with P(φMm) = {c ∈ [0, 1]n : ∃i 6= j with {c}i >

C̄Mm and {c}j > C̄Mm}, where C̄Mm = C(φMm/2),
see Fig. 10 for an illustration when n = 3. Notice that

-

ª

6

c1

c2

c3

1

1

1

C̄Mm

C̄Mm

Fig. 10 The set [0, 1]3 \P(φMm).

φmM > φMm/2 implies that C̄Mm = C(φMm/2) ≥
CmM (with also C̄Mm ≥ CMm). Next, since c̄(x) =
maxi{c(x)}i ≥ CmM , we have

C ⊂ [0, 1]n \ [0, c̄(x)]n ⊂ [0, 1]n \ [0, CmM ]n . (40)

Consider T (x) = c>(x)C−11. Notice that {c(x)}i =
1 for some i implies that x = xi, and that C−1c(xi) =
ei, the i-th basis vector, so that T (xi) = 1. Also, if
{c(x)}i = 1 for some i, then ‖x − xj‖ ≥ φMm and
thus {c(x)}j ≤ CMm for all j 6= i. When the cor-
relation is weak enough, 0 < {C−11}i ≤ 1 for all
i (which is true for some processes whatever the im-
portance of the correlation, it is the case for instance
for the one-dimensional Ornstein-Uhlenbeck process).
This gives T (x) ≤ c>(x)1 ≤ 1 + (n − 1)C̄Mm . Also,
(40) implies that the minimum of T (x) is larger than
c̄(x) e>1 C−1

∗ 1 with

C∗ =
(

1 CMm1>n−1

CMm1n−1 In−1

)
(41)

where In−1 and 1n−1 respectively denote the (n − 1)-
dimensional identity matrix and vector of ones, which
gives

T (x) ≥ c̄(x)
1− (n− 1)CMm

1− (n− 1)C2
Mm

.

Since 1>C−11 ≥ n/λmax(C) ≥ n/[1+(n−1)CMm], we
finally obtain

ρ2(x) ≤ ρ̄2(x) = ρ̄2
0(x) +

1 + (n− 1)CMm

n
R2(x) (42)

with ρ̄2
0(x) given by (38) and R2(x) = max[R2

a(x), R2
b ]

where

R2
a(x) =

[
1− c̄(x)

1− (n− 1)CMm

1− (n− 1)C2
Mm

]2
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and R2
b = (n − 1)2C̄2

Mm. It should be noticed that the
upper bound R2

b is very pessimistic. In fact, maxx T (x)
seldom exceeds one (it may do so marginally when C(t)
is concave at t = 0), see for instance Joseph (2006), and
for that reason it is sufficient to use R2(x) = R2

a(x).
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21

tir du processus ponctuel de Strauss. Pre-
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