
HAL Id: hal-00685875
https://hal.science/hal-00685875v1

Submitted on 3 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Joint Optimization of Low-power DCT Architecture and
Effcient Quantization Technique for Embedded Image

Compression
Maher Jridi, Ayman Alfalou

To cite this version:
Maher Jridi, Ayman Alfalou. Joint Optimization of Low-power DCT Architecture and Effcient Quan-
tization Technique for Embedded Image Compression. 18th International Conference on Very Large
Scale Integration (VLSISOC), Sep 2010, Madrid, Spain. pp.155-181, �10.1007/978-3-642-28566-0_7�.
�hal-00685875�

https://hal.science/hal-00685875v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Joint Optimization of Low-power DCT
Architecture and Efficient Quantization

Technique for Embedded Image Compression

Maher Jridi and Ayman Alfalou

L@bISen Laboratory, Equipe Vision
ISEN-Brest CS 42807 Brest, France

http://www.isen.fr/brest

Abstract. The Discrete Cosine Transform (DCT)-based image com-
pression is widely used in today’s communication systems. Significant
research devoted to this domain has demonstrated that the optical com-
pression methods can offer a higher speed but suffer from bad image
quality and a growing complexity. To meet the challenges of higher im-
age quality and high speed processing, in this chapter, we present a joint
system for DCT-based image compression by combining a VLSI archi-
tecture of the DCT algorithm and an efficient quantization technique.
Our approach is, firstly, based on a new granularity method in order to
take advantage of the adjacent pixel correlation of the input blocks and
to improve the visual quality of the reconstructed image. Second, a new
architecture based on the Canonical Signed Digit and a novel Common
Subexpression Elimination technique is proposed to replace the constant
multipliers. Finally, a reconfigurable quantization method is presented
to effectively save the computational complexity. Experimental results
obtained with a prototype based on FPGA implementation and com-
parisons with existing works corroborate the validity of the proposed
optimizations in terms of power reduction, speed increase, silicon area
saving and PSNR improvement.

Key words: Embedded Image and video compression, Digital hard-
ware implementation, VLSI, Granularity analysis, Multiplierless DCT,
Canonical Signed Digit.

1 Introduction

Today, the needs for new processing, transmissions and communications tools
have increased significantly to support the extraordinary development of mod-
ern telecommunications systems. For fast multimedia communication systems it
becomes urgent to compress the target images. At source, as the image is in opti-
cal form, many researchers and groups have proposed and validated new optical
compression methods [1]. The use of optics is also motivated by the very fast
computing time with which the optic allows to process an image. In addition,
it is possible to combine the optical compression step with the encryption step

2 Maher Jridi and Ayman Alfalou

needed to keep the intellectual and/or private property for a target image [2].
One possibility to achieve these optical methods consists in the processing in the
frequency domain [1]. To obtain this frequency domain a transformation of the
image plane is needed; one of these used transformations is the Discrete Cosine
Transform DCT.
We have implemented optically and validated some image compression methods
based on the DCT algorithm [3]. But this solution suffers from bad reconstructed
image quality and higher material complexity due to the use of Spatial Light
Modulator (SLM), optical components. After this optical implementation of an
adapted JPEG model, we are interested in the implementation of a simultaneous
compression and encryption system [3] and [4].
With all these optical set-ups implementing several architectures, we have con-
cluded that an all optical implementation is not easily possible to replace all
the potential of digital processing. In addition, for complex applications, an all
optical processing is not enough to have a reliable system. Therefore, an optical
processing should be only a part of the system.
On the other hand, reconfigurable hardware, such us FPGAs, are considered as
an attractive solution for signal and image processing implementation due to
their high-speed I/Os, embedded memories and to their capability to efficiently
implement highly parallelized architecture. In 2011, FPGAs under industrializa-
tion (Xilinx Series 7) use the 28 nm technology, 2 million logic cells with clock
speeds of up to 600 MHz. The new trends on the manufacturing process consists
in using Intellectual Properties (IP). And, the goal behind this is to reduce dra-
matically the Time To Market. However, the dedicated architecture of IP hard
cores constitutes a limitation for the implementation of image coding algorithms
such as JPEG, MPEG and H26x. In fact, these standards only normalize the
algorithm and the decoding format. The method of encoding is left free to com-
petition, as long as the image produced is decoded by a standard decoder [5].
Consequently, flexibility and adaptive computing capabilities are needed to en-
hance the encoding efficiency and to meet the real-time requirement. It becomes
contradictory to design flexible and computational intensive systems with fixed
architecture of IP hard cores without an increase in consumed power and silicon
area. According to this point of view, we are interested in this chapter on the
gate level description of an optimized digital realization of an image compression
scheme.
Indeed, one of the most popular image compression scheme is the JPEG coding
system largely used in World-Wide-Web and in digital cameras. More recent
video encoders such as H.263 [7] and MPEG-4 Part 2 [8] use the same JPEG
structure for compression with additional algorithms such as Motion Estimator
(ME). This means that the proposed architectures in this chapter may be easily
adapted for video encoding.
A simplified block diagram of the JPEG encoder is presented in Fig.1. The first
operation consists in dividing the input image into several 8x8 pixel blocks.
Then, the 2D-DCT algorithm is applied to decorrelate each block of input pix-
els. The calculated DCT coefficients are quantized to represent them in a re-

Joint optimization of DCT and quantization 3

Input image
Cutting in

blocks of 8x8

2D-DCT

Quantization

Quantization

matrix

Entropy

encoding

Fig. 1: Simplified block diagram of the JPEG encoder [6]

duced range of values using a quantization matrix. Finally, the JPEG standard
arranges the quantized components in a zigzag order and then employs the Run-
Length Encoding (RLE) algorithm that groups similar frequencies together and
then uses Huffman coding or arithmetic coding as entropy encoders. Since the
DCT algorithm and quantization process are computation-intensive, several im-
provements are proposed in literature for computing them efficiently. Significant
research work has been devoted to the problems of DCT and quantization com-
plexity. These works (analyzed in section II) can be classified into three parts.
The first part is the earliest and concerns the reduction of the number of re-
quired arithmetic operators of the DCT algorithm [9–15]. The second research
thematic is related to the complexity reduction of the constant multipliers used
in the DCT. Typically, ROM-based design [16], Distributed Arithmetic (DA)
architecture [17–22], the New Distributed Arithmetic (NEDA) [23], the LUT-
based design [24] and CORDIC-based design [25, 26] are the most interesting
improvements for the multiplierless DCT. Finally, the third part is about the
joint optimization of the DCT and the quantization for scalable and reconfig-
urable image and video encoder [28–31].
In this chapter, we propose three contributions.

1. First, we present an efficient granularity of input pixels to take advantage of
the adjacent pixel correlation and to reduce the word length of the multiplier
input and consequently the roundoff error. However, we have to underline
that the proposed granularity needs a small changes in standard decoders to
reorder the generated code stream.

2. Then, we propose a novel architecture of the DCT based on the Canonical
Signed Digit (CSD) encoding based on our recent work of [32]. In fact, the
use of subtractor with adders and shift operators allows an efficient imple-
mentation [33, 34]. Hartley in [35] identify common elements in CSD constant
coefficients of FIR filter and share required resources. The latter is named
Common Subexpression Elimination (CSE). The use of this technique, with
the same manner as in FIR filter, is studied in this paper but the results
are not satisfying. To overcome this problem we propose to identify multiple
subexpression occurrences in intermediate signals (but not in constant coef-

4 Maher Jridi and Ayman Alfalou

ficients as in [35]) in order to compute DCT outputs. Since the calculation
of multiple identical subexpression needs to be implemented only once, the
resources necessary for these operations can be shared. The total number of
required adders and subtractors can be reduced.

3. Finally, we introduce a simple reconfigurable scheme of image compression
based on the joint optimization between the DCT computation and the
quantization process. We demonstrate by computing some specific DCT co-
efficients that the visual quality of reconstructed images is very close to the
quality obtained with encoder standard which use matrix multiplications. A
tradeoffs between image visual quality, power, silicon area and computing
time is made.

This paper is organized as follows: an overview of fundamental design issues
is given in section 2. Analysis of granularity of input pixel is presented in Section
3. DCT optimization based on CSD and subexpression sharing is described in
section 4. Then, a joint optimization of quantization and DCT algorithm is
proposed in section 5 along with experimental results before the conclusion.

2 DCT Optimization Techniques

2.1 Choice of the Algorithm

In this section the DCT algorithm is reviewed. Given an input sequence x (n),
n ∈ [0, N − 1], the N -point DCT is defined as:

X (n) =

√
2

N
C (n)

N−1∑
k=0

x (k) cos
(2k + 1)nπ

2N
(1)

where C (0) = 1/
√

2 and C (n) = 1 if n 6= 0.
As stated in the introduction, DCT optimization has focused first on reducing
the number of required arithmetic operators. In literature, many fast DCT al-
gorithms are reported. All of them use the symmetry of the cosine function to
reduce the number of multipliers. In [36] a summary of these algorithms was
presented. Table 1 sums up these results.
In [15], the authors have showed that the theoretical lower limit of 8-point DCT

algorithm is 11 multiplications. Since the number of multiplications of Loeffler’s
algorithm [14] reaches the theoretical limit, our work is based on this algorithm.

Table 1: Complexity of different DCT algorithms

Reference Chen [9] Lee [10] Vitterli [11] Suehiro [12] Hou [13] Loeffler [14]

Multipliers 16 12 12 12 12 11

Adders 26 29 29 29 29 29

Joint optimization of DCT and quantization 5

MultAddSub

16
3π

x(0)

-

-

-

-
E12

E14

E16

E18

-

-

-
-

-

E25

E27

E28

E26

E35

E37

E36

E38

-

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(0)

X(4)

X(2)

X(6)

X(5)

X(1)

X(7)

X(3)

Stage1 Stage2 Stage3

Stage4

Mult 2

Mult 2

()
16

6sin2 π

()
16

6cos2 π

()
16

6cos2 π

MultAddSub

16
62 π

MultAddSub

16
π

Fig. 2: Loeffler architecture of 8-point DCT algorithm

Loeffler in [14] has proposed to compute DCT by using four stages as shown in
Fig. 2. The first stage is performed by 4 adders and 4 subtractors while the sec-
ond one is composed of 2 adders, 2 subtractors and 2 MultAddSub (Multiplier,
Adder and subtractor) blocks. Each MultAddSub block uses 4 multiplications
and can be reduced to 3 multiplications by constant arrangements. The fourth
stage uses 2 Mult blocks to compute the multiplication by

√
2.

2.2 Multiplierless DCT Architecture

The multipliers are used in DCT to solve the equation of inner product detailed
in (2):

Y =
N−1∑
k=0

x (k) .c(k) (2)

where c (k) are fixed coefficients and equal to cos (2k+1)π
2N and x (k) are the input

image pixels.
One possible implementation of the inner product consists in using embedded
multipliers of the FPGA. However, embedded multipliers are not designed for
constant multipliers. Consequently, they are not power efficient and consume a
large silicon area. Moreover, the obtained design is not portable to all FPGA
families and ASICs since we use specified IP hard cores. Many multiplierless
architectures have, therefore, been introduced for efficient computation of the
inner product in DSP applications. The ROM-based design [16], the Distributed

6 Maher Jridi and Ayman Alfalou

Arithmetic (DA) [17, 19], the LUT-based computing [24], the New Distributed
Arithmetic (NEDA) [23] and the CORDIC [25] are the most popular architec-
tures.

ROM-based multiplier The ROM-based multiplier computing is close to
human-like computing. This solution is presented in [16] to design a special-
purpose VLSI processors of 8x8 2-D DCT/IDCT chip that can be used for high
rate image and video coding. In the case of DCT, the coefficient matrix is con-
stant; hence the authors of [16] precomputed all the multiplier outputs and store
them in a ROM rather than compute these values on line. As the dynamic range
of input pixels is 28 for gray scale images, the number of stored values in the
ROM is equal to N.28. Each value is encoded using 16 bits. For example, for an
8-point inner product, the ROM size is about 8 ∗ 28 ∗ 16 bits which is equivalent
to 32.768 kbits. To obtain 8-point DCT, 8 8-point inner products are required
and consequently, the ROM size becomes exorbitant especially for image com-
pression.

Distributed Arithmetic (DA) Authors of [19] use the recursive DCT al-
gorithm and their design requires less area than conventional algorithms. The
design of [19] consider the same inner product in (2) and rewrite the variable
x (k) as follows:

x (k) =

B−1∑
b=0

xb (k) .2b xb (k) = {0, 1} (3)

where xb (k) is the bth bit of x (k) and B is the resolution of the input vector.
Finally, the inner product can be rewritten as follows:

Y =

N−1∑
k=0

c (k)

B−1∑
b=0

xb (k) .2b (4)

The equation (4) can be rearranged as follows:

Y =
B−1∑
b=0

[
N−1∑
k=0

c (k) .xb (k)

]
.2b (5)

Equation (5) defines distributed arithmetic computation. In fact, the bracketed
term in (5) may have only 2N possible values since xb (k) may take on values of 0
and 1 only. Since c (k) are fixed coefficient values, we can compute the bracketed
term in (5) by storing 2N possible combinations in a ROM. Input data can be
used to address the ROM. Now, for the computation of the inner product, we
can use an accumulator with a shift operator as mentioned in the Fig. 3. The
result of the inner product is available after N clock cycles. By precomputing all
the possible values and storing these values in a ROM, the DA method speeds

Joint optimization of DCT and quantization 7

Serial to

parallel

converter

256

Word

ROM

<<

Yx(k)

x (k)0

x (k)1

x (k)2

x (k)3

x (k)4

x (k)5

x (k)6

x (k)7

Fig. 3: Distributed Arithmetic principle

up the multiply process. Unfortunately, the size of ROM grows exponentially
when the number of inputs and internal precision increase. This is inherent to
the DA mechanism where a great amount of redundancy is introduced into the
ROM to accommodate all possible combinations of bit patterns exhibited by the
input signal.

New Distributed Arithmetic (NEDA) The New Distributed Arithmetic
(NEDA) is based on the optimization of DA architecture. The bits of the con-
stant DCT coefficients are distributed to perform the DCT operation with just
addition operations. The NEDA architecture is without ROMs and multipliers.
This results in a low power, high throughput architecture for the DCT. Never-
theless, the implementation of NEDA has two main disadvantages, [23]:

– the parallel data input leads to higher scanning rate which will severely limit
the operating frequency of the architecture;

– the assumption of serial data input leads to lower hardware utilization.

LUT-based multiplier A recent work on LUT-based multiplier computing
[24] employs three optimization techniques for inner-product calculation used in
many DSP applications such as FIR filters, convolutions and sinusoidal trans-
forms. The first technique is the Odd-Multiple Storage (OMS) scheme which con-
sists on storing only the odd multiple of the constant, the even multiples could
be derived from the stored words. The second technique is the Anti-symmetric
Product Coding (APC) scheme which involves only half the number of product
words are to be saved. The last technique is the Input Coding (IC) scheme where
the input word x is decomposed into certain number of segments or sub-words
x = (x1, x2, ..., xT) and fed to separate LUTs.
Obtained performances with the LUT-based multiplier are at least similar to
DA approach for the same throughput.

CORDIC COordinate Rotation DIgital Computer (CORDIC) is a very inter-
esting technique for phase to sine amplitude conversion. This algorithm proposed

8 Maher Jridi and Ayman Alfalou

in [25] utilizes dynamic transformation rather than static ROM addressing. The
CORDIC method can be employed in two different modes: the rotation mode
and the vectoring mode. In the rotation mode, the algorithm basic idea consists
in decomposing rotation operation into successive basic rotations. Each basic ro-
tation can be realized by shifting and adding arithmetic operations to compute
the sine and cosine functions. A detailed architecture of the CORDIC algorithm
applied to digital synthesizer can be found in [27].
C.-C. Sun et al. in [26] presented an efficient Loeffler DCT architecture based
on the CORDIC algorithm. However, the use of dynamic computation of cosine
function in iterative way is time consuming (long latency), power consuming and
requires a complicated compensation method.
To implement the constant multiplication a new solution is proposed in section
IV. Comparison results with NEDA and CORDIC are provided.

2.3 Joint Optimization

One way of optimizing DCT computation consists in computing DCT coeffi-
cients jointly with other algorithms used in the compression scheme. Many work
about the DCT joint optimization adapt the implementation of the DCT to the
compression standards and reduce the material requirement and the power con-
sumption. Some of them use the statistic behavior of DCT input signals to yield
with the DCT coefficients and the others simplify the DCT architecture by in-
troducing the quantization operation, the motion estimation and compensation
algorithms or also the entropy encoding algorithm.
Xanthopoulos and Chandraksan in [28] exploited the signal correlation to design
a DCT core. They used an MSB rejection module to reduce the number of arith-
metic operations. Their chip allows the user to program statically the maximum
desired precision due to quantization.
Huang and Lee in [30] proposed an efficient video transcoder architecture. To
design the motion estimation and compensation, they used the DCT statistical
properties.
Yang and Wang investigated in [5] the joint optimization of the Huffman tables,
quantization and DCT. They tried to find the performance limit of the JPEG
encoder by presenting an iterative algorithm to find the optimal DCT coefficients
for a given Huffman tables and quantization step sizes.
A prediction algorithm is developed in [31] by Hsu and Cheng to reduce the
computation complexity of the DCT and the quantization process of the H264
standard. They built a mathematical model based on the offset of the DCT al-
gorithm to develop a prediction algorithm to save the computational complexity
of the video encoder components.

3 Granularity Analysis

3.1 Principle

The most common way to implement the 2D-DCT algorithm is the row/column
decomposition. The row/column approach consists of two 1D-DCTs algorithm

Joint optimization of DCT and quantization 9

x(1) x(2) x(3) x(4) x(5) x(6) x(8)

x(1) x(2) x(3) x(4)

x(5) x(6) x(7) x(8)

1R8C

2R4C

x(7)

Fig. 4: Granularities distribution

and one transposed memory to realize a 2D-DCT chip. All the realizations of
1D-DCT use 8 pixels which constitute a good compromise between the consumed
material resources and the operating frequency. In this section we are interested
to the 1D-DCT optimization which may be used in our dedicated image com-
pression scheme based on 1D-DCT or 2D-DCT algorithms. This means that the
proposed design of 1D-DCT can be easily extended for 2D algorithm.
For a given 8x8 pixel block, the 8 input pixels for the DCT are always taken in
the same row and on 8 consecutive columns. We give the name of 1R8C for this
configuration. Therefore, we propose to study a non-standard-compliant granu-
larity using 2 consecutive rows and 4 consecutive columns to form the 8 input
pixels. We give the name of 2R4C for this proposed granularity. These granular-
ities are presented in Fig. 4.
The advantage of the second granularity compared to the first one relies on

the fact that the input pixels have a strong dependency since the image used
are often natural and highly structured images. Thus, the pixels of 2R4C gran-
ularity are, in general, more correlated than those of 1R8C granularity. This
remark is very interesting in the case of signals at the output of subtractors in
the first stage of the 1D-DCT algorithm in Fig. 2. In fact, in the case of 2R4C,
signals E12, E14 and E16 use more correlated inputs and consequently the dy-
namic ranges of these signal are reduced. Hence, two solutions are possible. The
first one consists in encoding these signals with fewer bits and consequently the
multiplier requirements of the stage 2 of the 1D-DCT are reduced. The second
solution consists in keeping constant the length of these signals in order to mini-
mize the roundoff error of arithmetic operators in the following stages (the signal
truncating is done in the last stage). This second solution is adopted in this pa-
per in order to obtain a high image quality. For the multiplier requirements, a
solution will be given in the section 4.

3.2 Verification

To verify the advantage of the proposed granularity compared to the 1R8C, we
define for a given row of 8 pixels (in the case of 1R8C), dxk (j) as the difference

10 Maher Jridi and Ayman Alfalou

Table 2: Intensity distributions of th first stage subtraction outputs

Signal Expression 1R8C 2R4C

E12 x(1)− x(8) dx7 dx3 + dy

E14 x(2)− x(7) dx5 dx1 + dy

E16 x(3)− x(6) dx3 dx1 + dy

E18 x(4)− x(5) dx1 dx3 + dy

between the intensities of two pixels spaced by k − 1 pixels as:

dxk (j) = |x (j)− x (j + k)| (6)

where k ∈ [1, 7] and j is the pixel index, j ∈ [1, 8− k]. For example, if k = 7,
j = 1 and dx7 (1) calculates the absolute difference between the intensities of the
first and the eighth pixel. For the 2R4C granularity, we define the same dxk (j)
where k ∈ [1, 3] and j ∈ [1, 4− k]. Furthermore, we define dy (i) as the absolute
difference between two adjacent vertical pixels as:

dy (i) = |x (i)− x (i+ 4)| (7)

with i ∈ [1, 4].
Without loss of generality, we assume that absolute difference between two ad-
jacent vertical pixels do not depend on the position of the pixels in the block.
Consequently, we suppose that dy (i), for i ∈ [1, 4], have the same distribution
in terms of standard deviation and dynamic range. Hereafter, we use dy for the
absolute difference between two adjacent vertical pixels. In the same manner, we
use dxk for the absolute difference between the intensities of two pixels spaced
by k − 1 pixels. Table 2 uses dy and dxk to determine the intensity distribution
of the DCT first stage subtraction outputs using 1R8C and 2R4C granularities.
For E12, E14 and E16 signals, the dynamic range of the absolute difference of

pixel intensity is reduced in the case of 2R4C.

3.3 Validation

To show the advantage of the 2R4C granularity, a statistical study is performed.
The Table 3 shows the standard deviations of intermediate signals E12, E14,
E16, E18 using six 256x256 standard gray scaled images. We can notice for the
first five images that the granularity 2R4C is more interesting than 1R8C since
the standard deviation is smaller for the E12, E14, E16 signals. Moreover, the
dynamic range of these signals is smaller in the case of 2R4C. This has a great
impact on the visual quality of the reconstructed image. In fact, all arithmetic
operators have a fixed-point arithmetic because it is not possible to keep an in-
finite resolution of operators. Consequently, a roundoff noise due to arithmetic
rounding operation is created. It is obvious that, for a fixed point operation,
the magnitude of the roundoff noise is proportional to the input dynamic range.

Joint optimization of DCT and quantization 11

Table 3: Standard deviations of intermediate signals

Image E12 E14 E16 E18

2R4C 1R8C 2R4C 1R8C 2R4C 1R8C 2R4C 1R8C

Lena 33.46 46.67 21.73 40.81 19.02 32.30 31.89 19.88

Barbara 28.02 53.22 16.80 50.26 15.36 40.27 26.55 21.84

Mandrill 40.81 44.75 37.31 43.37 38.46 40.50 40.89 32.26

Peppers 46.88 65.38 28.91 51.68 27.74 39.26 46.11 19.24

Finger-point 85.83 95.23 67.7804 107.18 75.22 112.43 86.55 59.86

Horizontal texture 8.48 0.18 8.48 0.17 8.47 0.15 8.47 0.11

Consequently, the 2R4C granularity is more interesting than 1R8C one in terms
of reconstructed image quality.
To emphasize this effect, two compression and decompression models are pro-
posed using the 1R8C and the 2R4C granularities to form 8 input pixels for
the 1D-DCT. For these two configurations, a 1D-DCT fixed point (FxP) Loef-
fler algorithm is used. To reconstruct the images, 1D-Inverse DCT (1D-IDCT)
floating point (FlP) function of Matlab tool is employed. In these models the
quantization step is bypassed in order to evaluate the difference between the
granularities for any given bit rate. A synoptic diagram of these models is shown
in Fig. 5 and used to compare the two configurations.
The Peak Signal to Noise Ratio (PSNR) is used as criteria to compare the visual
quality of the reconstructed images compared with original images. The evalua-
tion of the PSNR is illustrated in Fig. 6. According to these results, for a given
DCT output length, an effective gain of PSNR is achieved with the proposed
granularity. For a DCT output length of 10 bits, the 2R4C granularity presents
about 7 dB and 4 dB more than the 1R8C granularity respectively for Lena and
Mandrill 256x256 gray scale images.
According to these results, for a given DCT output length, an effective gain of
PSNR is achieved with the proposed granularity. For a DCT output length of 10
bits, the 2R4C granularity presents about 7 dB and 4 dB more than the 1R8C
granularity respectively for Lena and Mandrill 256x256 gray scale images.

3.4 Critical Analysis

As stated before, the proposed 2R4C granularity presents more correlation be-
tween input pixels and consequently the intermediate signals E12, E14 and E16
have a smaller standard deviation and dynamic range. Conversely, signal E18
presents a different behavior. Despite this, we still have gain in PSNR because
signal E18 contributes equally with E12, E14 and E16 to compute the DCT
outputs.
On the other side, there is a second critical point needing more details. In fact,
we can see in Table 3 that the image called horizontal texture presents a smaller

12 Maher Jridi and Ayman Alfalou

D
C
T
 &
 Q

ID
C
T

ID
C
T

ID
C
T

ID
C
T

ID
C
T

ID
C
T

D
C
T
 &
 Q

D
C
T
 &
 Q

D
C
T
 &
 Q

D
C
T
 &
 Q

D
C
T
 &
 Q

8
 p
ix
e
ls

8
 p
ix
e
ls

8
 p
ix
e
ls

8
 p
ix
e
ls

8
 p
ix
e
ls

8
 p
ix
e
ls

8
 p
ix
e
ls

8
 p
ix
e
ls

8
 p
ix
e
ls

8
 p
ix
e
ls

8
 p
ix
e
ls

8
 p
ix
e
ls

8
 p
ix
e
ls

8
 p
ix
e
ls

8
 p
ix
e
ls

Fig. 5: Synoptic diagram of the compression model based on 1D-DCT and 1D-
IDCT

Joint optimization of DCT and quantization 13

1 2 3 4 5 6 7 8 9 10
15

20

25

30

35

40

45

50

55

60

DCT output length

P
S

N
R

 (
dB

)

Lena with 1R8C granularity
Lena with 2R4C granularity
Mandrill with 1R8C granularity
Mandrill with 2R4C granularity

Fig. 6: Simulation results of the compression models

standard deviation in the case of 1R8C. Hence, for these kind of images the 1R8C
is better. But, we have to notice that for this image the standard deviation of
2R4C granularity is small compared to other standard images. Consequently,
the size of arithmetic operators in stage 2 of 1D-DCT in Fig. 2 stills small.

4 A New Power-Efficient DCT

In this section a new multiplierless and romless low-power DCT based in the
CSD encoding is presented.

4.1 Principle

The CSD representation was first introduced by Avizienis in [33] as a signed
representation. This data representation was created originally to eliminate the
carry propagation chains in arithmetic operations. The CSD representation is a
unique signed data representation containing the fewest number of nonzero bits.
Consequently, for constant multipliers, the number of additions and subtractions
will be minimum.

14 Maher Jridi and Ayman Alfalou

Table 4: Cosine coefficients representation of 8-point DCT

Real value Decimal Natural binary Partial products CSD Partial products

cos 3π
16

106 01101010 4 +0-0+0+0 4

sin 3π
16

71 01000111 4 0+00+00- 3

cos π
16

126 01111110 6 +00000-0 2

sin π
16

25 00011001 3 00+0-00+ 3

cos 6π
16

49 00110001 3 0+0-000+ 3

sin 6π
16

118 01110110 5 +000-0-0 3
√

2 181 10110101 5 +0-0-0+0+ 5

Total Partial products 30 23

In fact, for a constant coefficient c, the CSD representation is expressed as fol-
lows:

c =
N−1∑
i=0

ci.2
i ci = {−1, 0, 1} (8)

CSD numbers have essentially two properties:

– No 2 consecutive bits in a CSD number are nonzero;
– The CSD representation of a number contains the minimum possible number

of nonzero bits, thus the name canonic.

Examples of conversion between natural binary representation and CSD repre-
sentation are given in Tables 4 and 5 where the converted values are the constants
used in 8-point and 16-point DCT Loeffler algorithm respectively. Symbols 1,-1
are respectively represented by +,-. For high order DCT such as 16-point DCT,
the CSD representation of cosine coefficients is mentioned in Table 5. In the line
4 of Table 4, 128 ∗ cos (π/16) ≈ 126 contains 6 partial products since its binary
representation is 01111110. In CSD convention, 126 is represented by +00000-
0 which is +27 − 21. An extended study of CSD encoding applied to 16-point
DCT algorithm is made. The number of partial products is 71 for binary rep-
resentation and 52 for CSD representation (26% saving). Finally, a generalized
statistical study about the average of nonzero elements in N-bit CSD numbers
is presented in [33] and prove that this number tends asymptotically to N/3 +
1/9. Hence, on average, CSD numbers contain about 33% fewer nonzero bits
than two complement numbers. Therefore, for constant multipliers, the numbers
of partial products are reduced and consequently the speed and power could be
enhanced.

4.2 New CSE Technique for DCT Algorithm

To enhance the use of adders, subtractors and shift operators we propose to
employ the Common Subexpression Elimination (CSE) technique. CSE was in-
troduced in [35] and applied to digital filters. For FIR filters, this technique uses

Joint optimization of DCT and quantization 15

Table 5: Cosine coefficients representation of 16-point DCT

Real value Decimal Natural binary Partial products CSD Partial products

cos−15π
32

13 00001101 3 000+0-0+ 3

sin−15π
32

-127 01111111 7 +000000- 2

cos 3π
32

122 01111010 5 +000-0+0 3

sin 3π
32

37 00100101 3 00+00+0+ 3

cos−11π
32

60 00111100 4 0+000-00 2

sin−11π
32

-113 01110001 4 +00-000+ 3

cos 7π
32

99 01100011 4 +0-00+0- 4

sin 7π
32

81 01010001 3 0+0+000+ 3

cos 10π
32

71 01000111 4 0+00+00- 3

sin 10π
32

106 01101010 4 +0-0+0+0 4

cos 14π
32

25 00011001 3 00+0-00+ 3

sin 14π
32

126 01111110 6 +00000-0 2

cos 12π
32

49 00110001 3 0+0-000+ 3

sin 12π
32

118 01110110 5 +000-0-0 3

cos−12π
32

49 00110001 3 0+0-000+ 3

sin−12π
32

-118 01110110 5 +000-0-0 3
√

2 181 10110101 5 +0-0-0+0+ 5

Total Partial products 71 52

bit pattern occurrence in filter coefficients. Identification of occurrences permits
to create subexpression and after that economize hardware resources. Bit pat-
tern occurrence can be detected between two or more different filter coefficients
or in the same filter coefficient. Since several constant coefficients multiply only
one output data (signal to be filtered), CSE of filter coefficients implies less com-
putation and less power consumption.
Contrary to FIR filters, constant coefficients of DCT in Table 4 multiply 8 differ-
ent input data since the DCT consists in transforming 8 points in the input to 8
points in the output. From this observation, we can not exploit the redundancy
between different constants. Moreover, for bit patterns in the same constant,
Table 4 shows that only the constant

√
2 presents one common subexpression

which is +0- repeated once with an opposite sign. Consequently, we cannot use
the CSE technique in the same manner as in the FIR filters.
In order to take advantage of CSE technique, we adapt the CSE for DCT opti-
mization. Proceeding towards this goal, we do not consider occurrences in CSD
coefficients but we consider the interaction of these codes. On the other hand,
according to our compression method (detailed in the subsection 5.1) we will
use only some DCT outputs (1 to 8 among 8). Hence, it is necessary to compute

16 Maher Jridi and Ayman Alfalou

specific outputs separately. To emphasize the CSE effect, we take the example
of X (2) and X (4) calculation. In fact, the computation of X (8) and X (6) may
be determined from X (2) and X (4) respectively by using the same computa-
tion techniques detailed in this subsection. The computations of X (3) and X (7)
require multiplication but we can apply only the CSD encoding rather that the
binary encoding. And, the computation of X (1) and X (5) coefficients do not
need multiplications.

X (2) calculation According to Fig. 2, we can express X (2) as follows:

X(2) = (E35 + E37) (9)

And, E35 is expressed by

E35 = (E25 + E28)

= (E18 ∗ cos (3π/16) + E12 ∗ sin (3π/16))

+ (E14 ∗ cos (π/16)− E16 ∗ sin (π/16))

(10)

Using CSD encoding of Table 4, (10) is equivalent to:

E35 = E18
(
27 − 25 + 23 + 21

)
+ E12

(
26 + 23 − 20

)
− E16

(
25 − 23 + 20

)
+ E14

(
27 − 21

) (11)

After rearrangement (11) is equivalent to:

E35 = 27(E18 + E14) + 26E12− 25(E16 + E18)

+ 23(E12 + E16 + E18) + 21(E18− E14)− 20(E12 + E16)
(12)

In the same way, we can determine E37:

E37 = (E26 + E27)

= (E18 ∗ cos (3π/16)− E12 ∗ sin (3π/16))

+ (E16 ∗ cos (π/16) + E14 ∗ sin (π/16))

(13)

After CSD encoding (13) gives

E37 = 27(E12 + E16)− 26E18 + 25(E14− E12)

+ 23(E12− E14− E18) + 21(E12− E16) + 20(E14 + E18)
(14)

Equations (12) and (14) give:

X(2) = 27(

CS1︷ ︸︸ ︷
(E16 + E18) +E12 + E14) + 26(E12− E18)

− 25(

CS2︷ ︸︸ ︷
(E12− E14) +

CS1︷ ︸︸ ︷
(E16 + E18)) + 23(

CS2︷ ︸︸ ︷
(E12− E14) +E12 + E16)

+ 21(

CS3︷ ︸︸ ︷
(E18− E16) +

CS2︷ ︸︸ ︷
(E12− E14)) + 20(

CS2︷ ︸︸ ︷
(E14− E12) +

CS3︷ ︸︸ ︷
(E18− E16))

(15)

Joint optimization of DCT and quantization 17

16

3
cos

E14

E16
16

cos

E12

E18

16

3
sin

16
sin

X(2)

+

+

(a)

<< 1

+

<< 3

E12+E16

<< 5

+ +

<< 7

E16-E14

<< 6

X(2)

E16E18 E12E14

+

+

E12+E14

<< 0

CS2
CS3CS1

Common

Subexpressions

Elimination

(b)

Fig. 7: X(2) calculation (a): Conventional method, (b): Shared subexpression
using CSD encoding [32]

where CS1, CS2 and CS3 denote 3 common subexpressions. In fact, the identi-
fication of common subexpressions can give an important hardware and power
consumption reductions. For example, CS2 appears 4 times in X(2). This subex-
pression is implemented only once and resources needed to compute CS2 are
shared. An illustration of resources sharing is given in Fig. 7.
Symbols << n denote right shift operators by n positions. It is important to

notice that non-overbraced terms in (15) are a potential common subexpressions
with other DCT coefficients such us X(4), X(6) and X(8).
According to this analysis, X(2) is computed by using 11 adders and 4 embedded

18 Maher Jridi and Ayman Alfalou

Table 6: Macro Statistics of X(2) calculation

Multiplier CSD CSD&CSE

Adders/Subtractors 11 23 16

Registers 125 188 119

MULT18X18SIOs 4 0 0

Maximum Frequency (MHz) 143.451 121.734 165.888

multipliers or 23 adders and subtractors if the CSD encoding is applied to the
constant cosine values. The proposed contribution enables to compute X(2) by
using only 16 adders and subtractors. This improvement allows to save silicon
area and reduces the power consumption without any decrease in the operating
frequency.
To emphasize the common element sharing, a VHDL model of X(2) calculation
is developed using three techniques: embedded multipliers, CSD encoding and
CSE of CSD encoding. Results in terms of number arithmetic operators and
maximum operating frequency are illustrated in Table 6. It is shown in column
3 that the CSD encoding uses more adders, subtractors and registers to replace
the 4 embedded multipliers MULT18x18SIOs (Xilinx’s embedded multipliers for
Spartan3 family). This substitution between embedded multipliers and arith-
metic operators is paid by a loss in the maximum operating frequency. On the
other side, column 4 shows that the sharing of arithmetic operators permits to
increase the maximum operating frequency and reduce the number of required
adders, subtractors and registers.

X (4) calculation According to the Fig. 2, one can determine X (4) by

X (4) =
√

2 (E26− E27) (16)

Equation (16) is equivalent to

X (4) =
√

2 (E12 ∗ cos (3π/16)− E18 ∗ sin (3π/16))

−
√

2 (E16 ∗ cos (π/16)− E14 ∗ sin (π/16)) (17)

Using CSD encoding of the constant coefficient, (17) is equivalent to:

X (4) = E12
(
27 + 25 − 23 − 20

)
− E18

(
27 − 25 + 22 + 20

)
− E16

(
28 − 26 − 24 + 21

)
+ E14

(
25 + 22 − 20

)
(18)

Joint optimization of DCT and quantization 19

Input

image

Serial to

parallel

8-point

DCT

8-point

IDCT

 Parallel

to serial

Compressed

image

CR CR

Fig. 8: Model of the image compression technique

After rearrangement (18) is equivalent to:

X (4) = 27(−
CS1︷ ︸︸ ︷

(E16 + E18) +

CS4︷ ︸︸ ︷
(E12− E16)) + 25(−

CS1︷ ︸︸ ︷
(E16 + E18)

+

CS5︷ ︸︸ ︷
(E12 + E14) +E14)− 23(

CS4︷ ︸︸ ︷
(E12− E16)) + 22(E16 + E14

−
CS3︷ ︸︸ ︷

(E18− E16))− 20(

CS1︷ ︸︸ ︷
(E16 + E18) +

CS5︷ ︸︸ ︷
(E12 + E14) +E16) (19)

Hence, for X (4) calculation, the common subexpression CS1 and CS3 defined for
X (2) calculation are used. Two new subexpressions CS4 and CS5 are introduced
to economize more arithmetic operators. It is important to mention that the
equations listed before are expressed to create several occurrences of common
subexpression such as CS1, CS3 and also CS4 which is used for X (2) calculation.

5 Validation for Image Compression

The compression technique used in this work is inspired from [3] and the asso-
ciated model is illustrated in Fig. 8. This compression was realized using optical
components to take benefits of speed. Indeed, this kind of architecture can be a
good compromise between computing time and quality of reconstructed images
at the output system. The principle of all optically architecture implementing
the DCT is based on the use of similarity between the Fourier transform (FT)
and the DCT and then the use of a converging lens to achieve an optical FT.
To achieve this architecture, we begin by duplicating the target image (image to
compress) four times in the input plane using a special way [3]. Then, we perform
the FT of the obtained plane using a converging lens. After that, we multiply the
obtained spectrum with a series of well-defined filters to have the DCT result in
the spectral domain. Finally we apply a low pass filter to select only a part of
the spectrum (were c denotes the DCT needed size to reconstruct the image, N
is the size of the target image). It can be observed in Fig. 9 the different results

obtained with different compression ratio defined by: Cr = 100
(

1− c×c
N×N

)
. We

20 Maher Jridi and Ayman Alfalou

Fig. 9: Optical reconstruction using various compression ratios [3]

can easily see the poor quality of the reconstructed image. This is mainly due
to the use of different optical components.

5.1 Image Compression Principle and Simulation

A fixed point Matlab Simulink model has been established to validate the pro-
posed method. This step is very important to validate the algorithm structure
before the material implementation. This model is very useful for debugging in-
termediate signals of the hardware description language (HDL).
According to the model of Fig. 8, each image is parallelized into 8-point blocks.
This operation can be done by a serial to parallel block composed by 8 flip-flops.
After that, the DCT coefficient calculation is performed jointly with a specific
quantization process. The basic idea of the quantization consists in considering
the DCT low frequencies more than the DCT high frequencies.
The first DCT coefficient can be implemented using an addition tree of 8 input
pixels. This coefficient is always considered in all quantization modes without
truncation. This means that the word-length of the DC coefficient is equal to 11

Joint optimization of DCT and quantization 21

bits. A second quantization mode may be defined by considering the first X (1)
and the second DCT coefficientsX (2). The associated word-length to X (1) and
X (2) are respectively 11 and 7 bits. Therefore, we can compute two DCT out-
puts among 8 and we obtain an acceptable compressed image quality. For the
decompression process, the 8-point IDCT takes X(1) and X(2) followed by 6
zeros to obtain a sequence of 8 inputs.
Six quantization mode are defined with the same manner by considering higher
frequencies using 7 bits for word-length. It can be found that the minimum com-
pression rate is obtained when we take all DCT outputs (from X (1) to X (8))
and the maximum is reached when we take only the first DCT output as low
frequency output.
To validate the compression model a 256x256 Lena gray scale image is used,
Fig. 10a. Each input block is composed by 8 pixels encoded using 8 bits for each
pixel. On the other hand, as stated before, the first DCT coefficient, X (1), is
encoded without loss using 11 bits. X (2) to X (8) outputs are encoded using
7 bits. The compression ratio (defined before by Cr depends on the considered
number of DCT outputs and may be expressed by the following equation :

Cri =

(
1− (11 + 7 ∗ i)

8 ∗ 8

)
∗ 100 (20)

where i is an integer ∈ [0, 7]. According to the last equation, i equal to zero means
that we take only the first DCT output and for i equal to 7, all DCT outputs are
considered. Finally, PSNR is evaluated and results are summarized in Fig. 10. It
can be found that the PSNR decreases with a low values of compression ratio Cri.
This observation is verified in Fig. 10b to Fig. 10i. According to these images,

a compression ratio of 6.25% is equal to (1− (11+7∗7)
64) ∗ 100 and means that we

take all DCT coefficients (8 points). The PSNR associated to this compression
ratio is about 38.2 dB, Fig. 10a. Conversly, a compression ratio of 82.81% is
equal to (1 − 11

64) ∗ 100 and means that we take only one DCT outputs X (1).
The associated PSNR to this compression ratio is about 18 dB, Fig. 10i.

5.2 Design Considerations

We use the standard language VHDL for coding which gives the choice of im-
plementing target devices (FPGA family, CPLD, ASIC) at the end of the im-
plementation flow. It means that the image compression model reported here is
synthesized and may be implemented on arbitrary technologies.
Moreover, some design considerations are taken into account. In fact, as in [27],
we use registered adder and subtractor to perform the high speed implementa-
tion. The critical path is minimized by insertion of pipeline registers and is equal
to the propagation delay of an adder or a subtractor. It should be outlined that
the use of registered outputs comes at no extra cost of an FPGA if an unused
D flip-flop is available at the output of each logic cell. For example, to realize
an addition of two vectors, the bitstream of the addition adapts the structure
of the FPGA to connect slices to each other. These slices are composed of two

22 Maher Jridi and Ayman Alfalou

(a) Original (b) (17.18%, 38.2 dB) (c) (28.12%, 35.02 dB)

(d) (39.06%, 33.15 dB) (e) (50%, 31.42 dB) (f) (60.93%, 28.42 dB)

(g) (71.87%, 24.22 dB) (h) (82.81%, 22.65 dB) (i) (93.75%, 18.31 dB)

Fig. 10: Simulation of image compression using the VHDL model

Joint optimization of DCT and quantization 23

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

900

Number of DCT coefficients

U
ni

ts
 o

f S
lic

es
 a

nd
 L

U
T

Slices
LUT

Fig. 11: Slice and LUT resources versus selected number of DCT coefficients

4-input LUT and two D flip-flop (four 6-input LUT and 4 D flip-flop for recent
Xilinx target). Consequently, for used slices all D flip-flop are free. The registered
operator can use these flip-flop to reduce the critical path.
With these considerations, we can confirm that the proposed model is able to
be implemented in all digital targets but there are optimized for FPGA devices
since they take into account the FPGA structure.

5.3 Synthesis Results

In this section, VHDL programs of different DCT architectures are synthesized
using ISE software of Xilinx and the Spartan3E XC3S500 target. In order to il-
lustrate the differences in hardware consumption, the FPGA synthesis results are
presented in Table 7. The second column presents required logic and arithmetic
elements for the implementation of DCT based on Xilinx embedded multipliers.
Column 3 substitutes embedded multipliers MULT18x18 by 4-input LUTs: the
total number of required LUTs reaches 1424. Columns 4 and 5 detail the re-
quired resources for DCT implementation using respectively CSD encoding and
CSD with the proposed CSE technique. Thanks to element sharing, required

24 Maher Jridi and Ayman Alfalou

Table 7: FPGA resources estimation of different DCT design

Embedded Mult LUT Mult CSD Proposed CSD CSE

Slices 356 - 581 510

Flip-Flop 512 512 454 516

4 input LUTs 404 1424 1012 900

MULT18x18 11 0 0 0

Maximum Frequency (MHz) 119.748 - 118.032 137.678

resources decrease from column 4 to column 5.
Furthermore, the use of the proposed technique involves less computation and
consequently high maximum operating frequency. This throughput allows eas-
ily the processing of more than 30 frames per second. Finally, note that an old
FPGA (Spartan 3E) is used in this work. The offered throughput exceeds 300
MS/s with Virtex 6 target.
Another study related to the joint optimization between DCT computation and

quantization process is mentioned in Fig. 11. It can be observed that the num-
ber of required LUTs and Slices grows exponentially with the number of selected
DCT coefficients. 47 LUTs and 68 Slices are required for the first quantization
mode while 450 LUT and 844 Slices are needed to perform the last quantization
mode. There is only one case where the required resources present a slight in-
crease. This case corresponds with the selection of 4 or 5 DCT coefficients. In
fact, according to Loeffler algorithm, X (5) requires only one more subtractor
compared to the X (4) calculation.
Hence, the image quality can be handled with the required silicon area. Indeed,
for available FPGA or ASIC resources a quantization mode can be chosen which
involves a certain quality of the reconstructed images. The image quality criteria
which is the PSNR and the utilization of FPGA resources are shown in Fig. 10
and Fig. 11 respectively.

5.4 Power Analysis

To have an idea of the estimated power consumption, comparison of the dynamic
power between three DCT architectures is made. We used the XPower tool of
Xilinx to estimate the dynamic power consumption. It can be found in Fig.
12 and for clock frequency of 110 MHz, the share subexpressions reduces the
dynamic power by 22% compared to the CSD-based DCT architecture and by 9%
compared to the Xilinx’s embedded multipliers-based DCT design . Furthermore,
these values are compared favorably with other works as for example 11.5 mW
at 2V design and 40 MHz in [37] or 3.94 mw at 1.6 V design and 40 MHz in [28].

Joint optimization of DCT and quantization 25

20 30 40 50 60 70 80 90 100 110
1

2

3

4

5

6

7

8

9

Clock frequency (MHz)

D
yn

am
ic

 p
ow

er
 fo

r
D

C
T

 d
es

ig
n

(m
W

)

Xilinx’s embedded multiplier
CSD−based multiplier design
Proposed CSD and CSE techniques

Fig. 12: Dynamic power consumption estimation per sample with 1.6 V design

6 Conclusion

We have combined three optimization techniques for specific image compression
based on the 1D-DCT algorithm. The first one is about the granularity analysis
where the 2R4C granularity has been introduced to perform higher image qual-
ity. The second optimization concerns the constant coefficient multiplier. The
theoretical formulas of DCT coefficients have been derived by applying the CSD
encoding and the sharing of common subexpressions. It has been shown that the
CSD-based design implies an area and energy economies. Finally, these tech-
niques have been used jointly with a simple and efficient quantization process.
Hence, the image quality of compressed image may be handled with the silicon
area and power consumptions.

References

1. Alfalou, A., Brosseau, C.: Optical image compression and encryption methods, Adv.
Opt. Photon. 1, pp. 589-636, 2009.

2. Alfalou, A., Brosseau, C.: Exploiting root-mean-square time-frequency structure for
multiple-image optical compression and encryption, Opt. Lett. 35, pp. 1914-1916,
2010.

3. Alkholidi, A., Alfalou, A., Hamam, H.: A new approach for optical colored image
compression using the JPEG standards, Journal of Signal Processing, Vol. 87, No.
4, pp. 5699-583, 2007.

26 Maher Jridi and Ayman Alfalou

4. Jridi, M., AlFalou, A.: A VLSI implementation of a new simultaneous images com-
pression and encryption method, IEEE Int. Conf. Imaging Systems and Techniques
(IST), pp 75-79, Jul. 2010.

5. Yang, E., Wang, L.: Joint Optimization of Run-Length Coding, Huffman Coding, and
Quantization Table With Complete Baseline JPEG Decoder Compatibility, IEEE
Trans. Image Process., vol. 18, no. 1, pp. 63-74, Jan. 2009.

6. Jridi, M., Alfalou, A., Meher, P.K.: Adaptation of Canonical Signed Digit and Com-
mon Subexpression Elimination Techniques for 2D-DCT-Based Image Compression,
IEEE Trans. Circuit and Syst, Submitted.

7. Video coding for low bit rate communication (ITU-T Rec. H.263), Feb. 1998.
8. ISO/IEC DIS 10 918-1, Coding of audio visual objects: part 2. visual, ISO/IEC

14496-2 (MPEG-4 Part2), Jan. 1999.
9. Chen, W.A., Harrison, C., Fralick, S.C.: A fast computational algorithm for the

discrete cosine transform, IEEE Trans. Commun., COM-25, pp. 1004-1011, 1977.
10. Lee, B.: A new algorithm to compute the discrete cosine transform, IEEE Trans.

Acoust. Speech Signal Process., ASSP-32, pp. 1243-1245, 1984.
11. Vitterli, M., Nussbaumer, H.: Simple FFT and DCT algorithms with reduced num-

ber of operation, Signal Process., vol. 6, pp. 264-278, 1984.
12. Suehiro, N., M. Hatori, M.: Fast algorithms for DFT and other sinusoidal trans-

forms, IEEE Trans. Acoust. Speech Signal Process., ASSP-34, pp. 642-664, 1986.
13. Hou, H. A fast recursive algorithm for computing the discrete cosine transform,

IEEE Trans. Acoust. Speech Signal Process., ASSP-35, pp. 1455-1461, 1987.
14. Loeffler, C., Lightenberg,A. and Moschytz, G.S.: Practical fast 1-D DCT algorithm

with 11 multiplications, Proc. ICAPSS, pp. 988-991, May. 1989.
15. Duhamel, P., H’mida, H.: New 2n DCT algorithm suitable for VLSI implementa-

tion, IEEE ICAPSS, pp. 1805-1808, Nov. 1987.
16. Slawecki, D., Li, W.; DCT/IDCT processor design for high data rate image coding,

IEEE Trans. Circuits Syst. Video Technol., vol. 2, no.2, pp. 135-146, Jun. 1992.
17. White, S.A.: Application of distributed arithmetic to digital signal processing: a

tutorial review, IEEE ASSP Magazine, pp. 4-19, Jul. 1989.
18. Madisetti, A., Willson, A.N.: A 100 MHz 2-D 8x8 DCT/IDCT processor for HDTV

applications, IEEE Trans. Circuit Syst. Video Technol., vol. 5, no. 2, pp. 158-165,
Apr. 1995.

19. Yu, S., Swartzlander, E.E.: DCT implementation with distributed arithmetic, IEEE
Trans. Computers, vol. 50, no.9, pp. 985-991, Sep. 2001.

20. Kim, D.W, Kwon, T.W, Seo, J.M., Yu, J.K., Lee, S.K., Suk, J.H., Choi, J.R.: A
compatible DCT/IDCT architecture using hardwired distributed arithmetic, IEEE
Int. Symp. Circuit Syst (ISCAS’01), vol. 2, pp. 457-460, May. 2001.

21. Shams, A., Pan, W., Chidanandan, A., Bayoumi, M.: A Low Power High Perfor-
mance Distributed DCT Architecture, IEEE Computer Society Annu. Symp. VLSI
(ISVLSI’02), pp. 21-27, 2002.

22. Meher, P.K.: Unified Systolic-Like Architecture for DCT and DST Using Dis-
tributed Arithmetic, IEEE Trans. Circuits Sys I: Regular Papers., vol.53, no.12,
pp.2656-2663, Dec. 2006.

23. Alam, M, Badawy, W., Julien, G.: A new Time distributed architecture for MPEG-
4 hardware reference model, IEEE Trans. Circuit Syst. Video Technol., vol. 15, no.
5 pp. 726-730, May. 2005.

24. Meher, P.K.: LUT Optimization for Memory-Based Computation, IEEE Trans.
Circuits Sys-II, pp.285-289, Apr. 2010.

25. Yu, S., Swartzlander, E.E.: A scaled DCT architecture with the CORDIC algorithm,
IEEE Trans. Signal Process., vol. 50, no. 1, pp. 160-167, Jan. 2002.

Joint optimization of DCT and quantization 27

26. Sun, C.C, Ruan, S.J, Heyne, B., Goetze, J.: Low-power and high quality Cordic-
based Loeffler DCT for signal processing, Circuits, Devices. Syst., vol. 1, no. 6, pp.
453-461, Dec. 2007.

27. Jridi, M, AlFalou, A.: Direct digital frequency synthesizer with CORDIC algorithm
and Taylor series approximation for digital receivers, European Journal of Scientific
Research, vol. 30, no. 4, pp. 542-553, Aug. 2009.

28. Xanthopoulos, T., Chandrakasan, A.P.: A low-power DCT core using adaptive
bitwidth and arithmetic activity exploiting signal correlations and quantization,
IEEE Jour. Solid-State Circuits., vol. 35, no. 5, pp. 740-750, May. 2000.

29. Huang, J., Lee, J.: A Self-Reconfigurable Platform for Scalable DCT Computation
Using Compressed Partial Bitstreams and BlockRAM Prefetching, IEEE Trans. Cir-
cuit Syst. Video Technol., vol. 19, no. 11, pp. 1623-1632 , Nov. 2009.

30. Huang, J., Lee, J.: Efficient VLSI architecture for video transcoding, IEEE Trans.
Consumer Electron., vol. 55, no. 3, pp. 1462-1470, Aug. 2009.

31. Hsu, C.L., Cheng, D.H.: Reduction of discrete cosine transform/ quantiza-
tion/inverse quantization/inverse discrete cosine transform computational complex-
ity in H.264 video encoding by using an efficient prediction algorithm, IET. Image
Process., vol. 3, no. 4, pp. 177-187, Aug. 2009.

32. Jridi, M., AlFalou, A.: A low-power, high-speed DCT architecture for image com-
pression: Principle and implementation, VLSI System on Chip Conference (VLSI-
SoC), pp 304-309, Sept. 2010.

33. Avizienis, A.: Signed-Digit Number Representations for Fast Parallel Arithmetic,
IRE Transaction on Electron. Computer., vol. EC-10, pp. 389-400, 1961.

34. Seegal, R.: The canonical signed digit code structure for FIR filters,IEEE Trans.
Acoustics Speech Signal Process., vol. 28, no. 5, pp. 590-592, 1980.

35. Hartley, R.I.: Subexpression sharing in filters using canonic signed digit multipli-
ers,IEEE Trans. Circuits Syst. II: Analog and Digital Signal Processing., vol. 43,
no. 10, pp. 677-688, Oct. 1996.

36. Pai, C.Y., Lynch, W.E., Al-Khalili, A.J.: Low-Power data-dependant 8x8
DCT/IDCT for video compression, IEE, Proc. Vision Image Signal Process., vol.
150, pp. 245-254, Aug. 2003.

37. Matsui, M., Hara, H., Seta, K., Uetani, Y., Klim, L.S., Nagamatsu, T., Sakura, T.:
200 MHz video compression macrocelles using low-swing differential logic, Proceed-
ings of ISSCC, pp. 76-77, 1994.

38. Kim, B., Ziavras, S.G.: Low-power multiplierless DCT for image/video coders,
IEEE Int. Symp. on Cons. Electronics (ISCE2009), pp 133-136, May. 2009.

39. Song, H.S., Cho, N.I.: DCT-based embedded image compression with a new coeffi-
cient sorting method, IEEE Sig. Process. Letters., vol. 16, no. 5, pp 410-413, May.
2009.

