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We investigate experimentally the number statistics of a mesoscopic ensemble of cold atoms in a microscopic

dipole trap loaded from a magneto-optical trap and find that the atom-number fluctuations are reduced with respect

to a Poisson distribution due to light-assisted two-body collisions. For numbers of atoms N � 2, we measure a

reduction factor (Fano factor) of 0.72 ± 0.07, which differs from 1 by more than four standard deviations. We

analyze this fact by a general stochastic model describing the competition between the loading of the trap from a

reservoir of cold atoms and multiatom losses, leading to a master equation. Applied to our experimental regime,

this model indicates an asymptotic value of 3/4 for the Fano factor at large N and in the steady state. We thus

show that we have reached the ultimate level of reduction in number fluctuations in our system.
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There is a growing interest in the study of mesoscopic

systems containing between 10–100 particles. For example,

mesoscopic ensembles of ultracold atoms could be a useful

tool for quantum-information processing (e.g., Refs. [1,2])

and for precision measurements beyond the standard quantum

limit [3,4]. They are also a test bed for the investigation of

many-body correlated quantum systems [5] and for the study

of collective effects such as super-radiance (e.g., Ref. [6]).

All these applications require precise knowledge of the

distribution of the number of atoms as the properties of

these finite-size samples are governed by their statistical

nature. In particular, the knowledge of the variance of the

number distribution is important. In this paper we show

experimentally and theoretically that one of the conceptually

simplest mesoscopic systems, namely, a few cold atoms in a

tight dipole trap being loaded from a cold atomic cloud [7–9],

already exhibits nontrivial sub-Poissonian statistics.

The preparation of an atomic sample with a non-Poissonian

atom-number distribution requires a nonlinear mechanism

usually provided by interactions between ultracold atoms. For

example, the dispersive s-wave interaction was used to reduce

the relative atom-number fluctuations between the sites of a

two-well potential [10,11] and of an optical lattice [12]. This

led in particular to the study of the Mott transition [13,14]. This

interaction was also used to demonstrate reduced atom-number

fluctuations in a single tight dipole trap [15]. Recently, the

production of a sample with definite atom numbers was

demonstrated using the Pauli blockade [16].

Inelastic collisions between ultracold atoms can also pro-

vide the nonlinearity required to modify the atom-number

statistics as shown recently [17,18]. In those experiments,

three-body inelastic collisions induce losses in an initially

trapped sample of 50–300 atoms at or close to quantum

degeneracy, and the ever decreasing fraction of remaining

atoms exhibits reduced number fluctuations with respect to

a Poisson distribution. Here, we consider theoretically a

different and yet more general regime in which the trap con-

tinuously experiences the interplay between a loading process

from a reservoir of laser-cooled atoms and strong inelastic

ρ-body losses (ρ � 1), and we investigate experimentally

the case ρ = 2 in which the losses are due to light-assisted

collisions. This situation is used elsewhere to, e.g., produce

a single-atom source [19,20]. There, one operates in the

“collisional-blockade” regime where the loading rate is such

that the microscopic trap contains one or zero atoms with equal

probabilities (〈N〉 = 0.5) and the atom-number distribution is

maximally sub-Poissonian with variance �N2 = 0.5〈N〉 [21].

Here, we explore the regime where 〈N〉 goes beyond

0.5 in the steady state as we increase the loading rate. In

practice, we prepare a thermal ensemble of up to 10 cold

atoms at a temperature of ∼100 μK in a microscopic dipole

trap. We observe that the atom-number distribution remains

sub-Poissonian and that the reduction in number fluctuations

with respect to the Poisson distribution �N2/〈N〉 is locked

to a constant value of 0.75 for 〈N〉 � 2, a fact that has been

overlooked so far. To explain this fact, we use a microscopic

approach that takes into account the stochastic nature of the

competing loading and loss processes, and we calculate the

atom-number distribution at any time of the system evolution.

We do so by solving a master equation both numerically and

analytically and find good agreement with the average result

of a Monte Carlo approach with which we study the individual

behavior of atoms. Using this general theoretical approach, we

analyze our data and find that we have reached experimentally

the ultimate level of reduction in atom-number fluctuations

that one can expect in a dipole trap operating in our regime

(ρ = 2). The formalism presented in this paper is applicable

to any system in which a random-loading process competes

with a ρ-body-loss process, whatever its nature and whatever

the number of atoms.

To study the number statistics of a few atoms in the

presence of competing random processes, we implemented

the following experiment (details can be found in Ref. [9]).

First, we produced a microscopic optical-dipole trap at

850 nm by sharply focusing a laser beam [22]. We then

loaded this trap from a magneto-optical trap (MOT) of 87Rb

atoms surrounding the region of the dipole trap. Atoms enter

the dipole trap randomly, are trapped thanks to the cooling

effect of the MOT beams, and are expelled from the trap

due mainly to inelastic two-body collisions assisted by the

near-resonant light of the cooling beams and, to a minor extent,

to collisions with the residual background gas in the chamber

(one-body losses). We measured elsewhere the two-body-

and one-body-loss constants to be β ′ ∼ 500 (at.s)−1 and
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FIG. 1. (Color online) Fano factor F versus the average number

of atoms 〈N〉st in the microscopic dipole trap in the steady state.

The square and triangles are the experimental data collected in the

collisional-blockade regime (〈N〉st = 0.5) and beyond (〈N〉st > 0.5),

respectively. The solid line is the model based on a stochastic process

(see text) with β ′ = 500 (at.s)−1 and γ = 0.2 s−1. The dashed line is

the theoretical limit F = 3/4 for 〈N〉st ≫ 1. σ is the rms dispersion

of the data collected beyond the collisional-blockade regime.

γ ∼ 0.2 s−1, respectively [23]. The actual value of the loading

rate R is proportional to the MOT local density in the vicinity

of the microscopic trap, which is the parameter that we vary.

For values of R ≫ β ′, the mean number of trapped atoms in

the steady state exceeds unity and is 〈N〉st =
√

R/β ′ while

for R ≪ γ it goes to zero as 〈N〉st = R/γ . The intermediate

regime corresponds to the collisional-blockade regime where

〈N〉st = 0.5. Experimentally, we operate at 〈N〉st � 2 in

the following.

To get information on the number distribution of atoms in

the dipole trap in the steady state, we release the atoms from

the trap and probe them with a pulse of resonant light. Using an

intensifier to amplify single-photon events above the noise of

our CCD camera, we count the detected fluorescence photons

individually [9]. This number is proportional, on average, to

the number of atoms N in the trap before release. We build

up the number distribution of counted photons by repeating

this loading and probing experiment about 100 to 1000 times.

Knowing the response of our imaging system to one atom

exactly, we extract from the photon distribution the mean 〈N〉st

and the variance �N2 of the atom-number distribution in the

steady state and calculate the corresponding Fano factor F =
�N2/〈N〉st. The data shown in Fig. 1 indicate a clear reduction

of the atom-number fluctuations with respect to a Poisson

distribution for 〈N〉st � 2 with a mean F = 0.72 and a total

uncertainty (one standard deviation) of 0.07. This uncertainty

is obtained by adding quadratically the statistical (type A)

uncertainty of 0.05 (deduced from the rms dispersion of the

data) and the systematic (type B) uncertainty of 0.04, which

we estimated in a previous work [9].

Qualitatively, this reduction can be understood as follows.

If the losses were governed by random one-body events, e.g.,

background gas collisions, the trade-off between the random

loading of the trap and the losses would result in a Poisson

distribution with a mean atom number 〈N〉st in the steady

state. If the losses now involve higher-body processes (ρ �
2), the loss rate varies as the number of ρ uplets in the N -

atom ensemble, i.e., increases nonlinearly with N . For a given

mean atom number, this leads to the number distribution being

narrower than a Poisson distribution as the losses are more

efficient on the high-N side of the distribution.

To explain quantitatively the sub-Poissonian behavior of

the atom-number distribution, we use the following stochastic

model that takes into account the three random processes in-

volved, i.e., the loading, the two-body losses, and the one-body

losses. We consider the evolution in time of the probability

pN (t) to have N atoms in the dipole trap. To calculate

the probability pN (t + dt), we sum the contributions of all

channels associated with the random processes mentioned

above that lead to having N atoms in the trap at t + dt , given

that the trap could possibly be filled with either N − 1, N ,

N + 1, or N + 2 atoms at time t . The probability that a loading

event occurs in the time interval dt when there are already N

atoms in the trap is R dt pN (t). Similarly, the probability that

a loss event occurs during dt is γN dt pN (t) for one-body

events and β ′ N(N−1)

2
dt pN (t) for two-body events. We obtain

eventually the following equation:

pN (t + dt) = pN (t)

{

1 −
[

R + γN + β ′ N (N − 1)

2

]

dt

}

+pN−1(t)Rdt + pN+1(t)γ (N + 1)dt

+pN+2(t)β ′ (N + 2)(N + 1)

2
dt. (1)

Taking the limit dt → 0, Eq. (1) yields the following master

equation that rules the evolution of pN (t) in time:

dpN

dt
= R(E−1 − 1)[pN ] + γ (E − 1)[NpN ]

+β ′(E2 − 1)

[

N (N − 1)

2
pN

]

, (2)

where E is the “step operator” defined by its effect on an

arbitrary function f (N )

E[f (N )] = f (N + 1), E
−1[f (N )] = f (N − 1), (3)

and 1 is the identity operator. Using Eq. (2), we obtain the

equation of evolution of the mean number of atoms 〈N〉 =
∑∞

N=0 NpN :

d〈N〉
dt

= R − γ 〈N〉 − β ′〈N〉(〈N〉 − 1) − β ′�N2. (4)

When �N2 = 0, we recover the phenomenological equation

sometimes used to describe the loading of a trap containing

a small number of atoms [21,24], i.e., dN/dt = R − γN −
β ′N (N − 1). When �N2 = 〈N〉 (i.e., assuming a Poisson

distribution), Eq. (4) also yields the widely used equation

d〈N〉/dt = R − γ 〈N〉 − β ′〈N〉2. However, without any a
priori relation between �N2 and 〈N〉, Eq. (4) cannot be solved

analytically.

To calculate the first moments of the number distribu-

tion, we used three different approaches. First, we solved

numerically Eq. (2) using the boundary conditions pN (0) =
δN,0 and, for N ≫ 〈N〉st, pN (t) = 0. As an example, Fig. 2

illustrates the time evolution of the probabilities pN (t) for

parameters leading to 〈N〉st = 3.6. The number distribution

is found to be sub-Poissonian with F = 0.74. By varying the

loading rate, the same approach yields the distribution for

any value of 〈N〉st. We analyze the case where γ ≪ β ′ in

the following. When 〈N〉st ≪ 0.5, we find, as expected, that
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FIG. 2. (Color online) Set of numerical solutions {pN (t)} of

Eq. (2), labeled by N . The parameters R = 6000 s−1, γ = 0.2 s−1,

and β ′ = 500 (at.s)−1 lead to 〈N〉st = 3.6 ∼
√

R/β ′. Inset: The set

of solutions in the steady state {pN (t = 3 ms)} (filled bars) is clearly

sub-Poisson, and the sticks indicate the Poisson distribution with the

same mean value.

the distribution is close to a Poisson law as one-body losses

then dominate two-body losses [see Fig. 3(a)].1 The presence

of two-body-processes-induced losses of atom pairs leads to

a sub-Poissonian behavior that is maximal for 〈N〉st = 0.5,

corresponding to p0 = p1 = 0.5. While this regime has been

described before (see Ref. [21]), the numerical approach pre-

dicts that atom-number fluctuations do not become Poissonian

for larger numbers of atoms. In fact, the Fano factor reaches an

asymptotic value of 0.75 as soon as 〈N〉st � 2, corresponding

to a reduction of −1.25 dB with respect to the Poisson case.

The numerical prediction reproduces well our data as shown in

Fig. 1.

The second approach to solve Eq. (2) is analytical. It is

valid for 〈N〉st ≫ 1 only and follows closely the approach

of Ref. [25]. We first rewrite the master equation into a

dimensionless rate equation

dpN

dτ
= 〈N〉st(E

−1 − 1)[pN ]

+
1

〈N〉st

(E2 − 1)

[

N (N − 1)

2
pN

]

, (5)

where the one-body-loss term of Eq. (2) has been neglected

(following R ≫ β ′ ≫ γ ) and τ = t
√

Rβ ′ is a dimensionless

time variable. Since the number distribution in the steady state

is expected to peak around 〈N〉st with a width on the order of√
〈N〉st, we consider the number of trapped atoms at time τ as

a stochastic quantity of the form

N (τ ) = 〈N〉stφ(τ ) +
√

〈N〉stξ (τ ), (6)

where ξ (τ ) is a stochastic variable with mean 〈ξ 〉(τ ) = 0

and an amplitude of ∼1 and φ(τ ), also on the order of

1, is a deterministic and slowly varying function of time

[φ(τ ) = 〈N〉(τ )/〈N〉st]. We then consider the probability

1The distribution would remain Poissonian for any values of 〈N〉st in

the absence of two-body losses (β ′ = 0) as can be derived analytically

from Eq. (2).

F
a

n
o

 f
a

c
to

r

< N>st

8x10
-2

6

4

2

0

P
ro

b
a
b
ili

ty

50403020
N

(b)

1.00

0.75

0.50

0.25

0.00

0.01 0.1 1 10

(a)

FIG. 3. (Color online) Theoretical results obtained by different

approaches. The solid line is the numerical solution of Eq. (2) for

our experimental parameters [γ = 0.2 s−1, β ′ ∼ 500 (at.s)−1], and

the squares are the Monte Carlo simulation. (a) Dependence of the

Fano factor on 〈N〉st. (b) Example of the calculated atom-number

distribution in the steady state with R = 5 × 105 s−1, yielding 〈N〉st =
32. The numerical solution is indistinguishable from the Gaussian

solution of Eq. (8). We find a Fano factor F = 3/4. The dotted line is

the Poisson distribution with the same mean value. The dashed line

in (a) is the numerical solution of Eq. (2) when two-body processes

induce the loss of one atom only from the trap [the parameters are

γ = 5 × 10−3 s−1 and β ′ ∼ 500 (at.s)−1]. In the limit γ /β ′ → 0,

〈N〉st can be locked to 1 in a fully deterministic way (�N2 = 0).

P (ξ,τ ) = pN (τ ) that N atoms are in the trap at time τ .

Since pN+k(τ ) = P (ξ + k√
〈N〉st

,τ ) and 〈N〉st ≫ 1, we replace

pN+k(τ ) in Eq. (5) with a Taylor expansion of P (ξ,τ ) in powers

of 1/
√

〈N〉st. Replacing pN (τ ) with P (ξ,τ ), the time derivative

dpN/dτ becomes ∂τP −
√

Nstφ̇∂ξP .2 Identification of the

power terms in the expanded master equation then yields the

following equations that rule the evolution of φ and P in

time:

φ̇ = 1 − φ2, (7)

∂τP = 2φ∂ξ (ξP ) + 1
2
(2φ2 + 1)∂2

ξ P. (8)

Equation (8) is a linear Fokker-Planck equation with time-

dependent coefficients, the steady-state solution of which is

Gaussian [25]. Finally, using Eq. (8), we find that 〈ξ 2〉 evolves

in time according to

d〈ξ 2〉
dτ

= −4φ〈ξ 2〉 + (1 + 2φ2). (9)

2Care must be taken when calculating the total derivative of

P (ξ,τ ) with respect to time as Eq. (5) was established with N

being held constant during an infinitesimal time interval dτ so that

ξ̇ (τ ) = −
√

〈N〉stφ̇(τ ).
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Equations (7) and (9) allow us to calculate the evolution of the

Fano factor in time, F (τ ) = 〈ξ 2〉(τ )/φ(τ ). In particular, in the

steady state, φ = 1, and F = 3/4. This analytical finding is in

excellent agreement with our numerical solution (see Fig. 3).

Besides, we find that the analytical result is valid for atom

numbers as small as ∼2.

Finally, we cross-checked our theoretical results with a

Monte Carlo simulation in which we calculated at each time

increment the survival probabilities of individual atoms to

the various random events involved in the problem [23].

By averaging over many atomic histories, we reconstructed

atom-number distributions and found Fano factors in very

good agreement with those presented above [see Fig. (3)],

validating the master-equation approach.

In conclusion, we discuss our experimental findings and

theoretical approaches from a more general perspective. First,

the observed reduction in number fluctuations is due to loss

terms that vary nonlinearly as Nρ and is thus intrinsically

robust to losses (provided ρ and the loading rate remain

constant). In our case, we reached experimentally the ultimate

level of reduction (−1.25 dB) predicted by theory when a

loading mechanism competes with a two-body nonlinearity,

leading to the loss of atom pairs no matter the underlying mech-

anism (light-assisted collisions, hyperfine-changing collisions,

etc.). More generally, the exact level of reduction achievable

depends on ρ, on the number of atoms being lost after a ρ-body

process, and on the presence (or the absence) of a loading

mechanism. When R �= 0, the analytical approach explained

above can be generalized and yields a Gaussian atom-number

distribution in the steady state [P (ξ,τ ) evolves according to

a Fokker-Planck equation similar to Eq. (8)]. For ρ-body

processes leading to losses of ρ uplets, one finds an equation

similar to Eq. (9) and F = 1
2
(1 + 1

ρ
) in the steady state. When

R = 0, slightly better levels of reduction can be achieved as

F = ρ/(2ρ − 1). This was recently demonstrated in the case

of three-body losses [18]. Finally, we extended our approach

to the case in which two-body collisions lead to the loss of one

atom only from the trap3 as is the case for elastic-collision-

induced evaporative losses and for some light-assisted-loss

mechanisms. Such mechanisms have been used recently to pro-

duce near-deterministically a single-atom source for quantum-

information processing [26]. Taking these mechanisms into

account, our theoretical approach predicts that fluctuations

fully vanish when only one atom is left in the trap in the absence

of one-body decay [see Fig. 3(a)], i.e., that a robust and fully

deterministic preparation of single trapped atoms is in principle

possible.
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3We replaced (E2 − 1) with (E − 1) in Eq. (2).
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