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General introduction

In this article, we study the convergence as ε approaches 0 of w ε , solution to the following rescaled Helmholtz equation

iεα ε w ε (x) + ∆ x 2 w ε (x) + n 2 (εx)w ε (x) = S(x), x ∈ R d (d ≥ 3). (1) 
Here α ε is an absorption parameter, n2 (x) is a space-dependent refraction index 1 and S(x) is a given and smooth source term. In the sequel, we assume the following:

• The absorption parameter α ε satisfies 2 α ε > 0, α ε -→ ε→0 0.

• The smooth refraction index n 2 (x) ∈ C ∞ (R d ) is a possibly long-range perturbation of a positive constant n 2 ∞ > 0 at infinity, namely, for some ρ > 0, we have

∀ α ∈ N d , ∃C α , ∀ x ∈ R d , ∂ α x n 2 (x) -n 2 ∞ ≤ C α x -ρ-α , (2) 
where we denote as usual x := (1 + |x| 2 ) 1/2 .

• The source term S(x) belongs to the Schwartz class3 S(R d ).

The question we raise is the following. Thanks to the absorption parameter α ε > 0 in (1), the sequence of solutions w ε is uniquely defined (see below for the limiting case α ε = 0 + ). On top of that, and as a consequence of specific homogeneous bounds obtained by Perthame and Vega in [START_REF] Perthame | Morrey-Campanato estimates for Helmholtz equations[END_REF] (see [START_REF] Castella | Besov estimates in the high-frequency Helmholtz equation, for a non-trapping and C 2 potential[END_REF] for extensions by Jecko and the first author, as well as [START_REF] Castella | Semiclassical resolvent estimates for schrödinger operators with coulomb singularities[END_REF]), it is clear that the sequence w ε is bounded in some weighted L 2 space, uniformly in ε. Hence the sequence w ε possesses a limit (up to subsequences), say in the distribution sense, and the limit w = lim w ε satisifies in the distribution sense the Helmholtz equation

∆ x 2 w + n 2 (0) w = S, (3) 
where the variable coefficients refraction index n 2 (εx) in ( 1) has now coefficients frozen at the origin x = 0. Now, the difficulty is, the Helmholtz equation ( 3) does not have a uniquely defined solution. At least two distinct solutions exist, namely the outgoing solution, defined as

w out (x) : = lim δ→0 + iδ + ∆ x 2 + n 2 (0) -1 S(x), (4) 
and the incoming solution, defined similarly as w in = lim

δ→0 + -iδ + ∆ x 2 + n 2 (0) -1
S. Equivalently, the outgoing solution may be defined as the unique solution to the Helmholtz equation ( 3) which satisfies the so-called Sommerfeld radiation condition at infinity, namely

x |x| .∇ x w out (x) + i √ 2 n(0) w out (x) = O 1 |x| 2 , as |x| -→ +∞. (5) 
This formulation means that w out is required to oscillate like w out ∼ exp -i √ 2 n(0)|x| /|x| as |x| → ∞. Similarly, the incoming solution satisfies the following radiation condition at infinity, namely (x/|x|) .∇ x w in -i √ 2 n(0) w in = O 1/|x| 2 , meaning that w in ∼ exp +i √ 2 n(0)|x| /|x| as x → ∞.

In that perspective, and due to the positive absorption parameter α ε > 0 in [START_REF] Benamou | High frequency limit of the Helmholtz equations[END_REF], it is natural to expect that the previously defined sequence w ε goes to the outgoing solution w out to [START_REF] Castella | High frequency limit of the Helmholtz equation. II. Source on a general smooth manifold[END_REF]. This is the question we address here.

It turns out that delicate analytical tools are needed to provide a clean understanding of the phenomena at hand, and to establish whether w ε ∼ w out as ε → 0. The basic difficulty is a conflict between a local and a global phenomenon. On the one hand, the obvious fact that w ε goes to a solution to (3) is local: locally in x, i.e. in the distribution sense, the variable refraction index n 2 (εx) goes to the value n 2 (0) at the origin. On the other hand, the positive absorption parameter α ε > 0 in (1) somehow asserts that w ε is an outgoing solution to ∆ x w ε /2 + n 2 (εx) w ε = S, hence introducing the value at infinity n ∞ = lim x→∞ n(εx) = lim x→∞ n(x), the solution w ε should roughly oscillate like w ε ∼ exp -i √ 2 n ∞ |x| /|x| at infinity. This is a global phenomenon. Now, all this is to be compared with the fact that w out oscillates like w out ∼ exp -i √ 2 n(0)|x| /|x| at infinity. Due to the fact that n ∞ = n(0), the radiation condition at infinity satisfied by w ε for any positive value ε > 0 is a priori incompatible with the radiation condition at infinity satisfied by the expected limit w out : the radiation condition at infinity cannot be followed at once uniformly in ε, in any direct fashion (this is not in contradiction with the expected local convergence of w ε towards w out .) Before going further, let us mention that the above question stems from a series of articles [START_REF] Benamou | High frequency limit of the Helmholtz equations[END_REF], [START_REF] Castella | High frequency limit of the Helmholtz equation. II. Source on a general smooth manifold[END_REF] about the high-frequency Helmholtz equation (Equation ( 1) is a low-frequency equation) (see also [START_REF] Fouassier | High frequency analysis of Helmholtz equations: case of two point sources[END_REF] and [START_REF] Fouassier | High frequency limit of Helmholtz equations: refraction by sharp interfaces[END_REF] for similar considerations, in the case of a discontinuous refraction index, as well as [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF] and [START_REF] Royer | Semiclassical measure for the solution of the dissipative Helmholtz equation[END_REF] for the case of a variable absorption coefficient). These two papers investigate the high-frequency behaviour, in terms of semi-classical measures, of high-frequency Helmholtz equations of the form

iεα ε u ε (x) + ε 2 2 ∆ x u ε (x) + n 2 (x)u ε (x) = 1 ε d/2 S x ε (x ∈ R d ). (6) 
The link between the low-frequency equation ( 1) that is the purpose of this article, and the high-frequency equation ( 6) is provided by the following basic observation: the function w ε satisfies [START_REF] Benamou | High frequency limit of the Helmholtz equations[END_REF] if and only if the rescaled function

u ε (x) = 1 ε d/2 w ε x ε (7) 
satisfies [START_REF] Castella | Semiclassical resolvent estimates for schrödinger operators with coulomb singularities[END_REF]. In that picture, the main phenomenon to be described in [START_REF] Castella | Semiclassical resolvent estimates for schrödinger operators with coulomb singularities[END_REF] is the possibility of resonances between the high-frequency waves selected by the Helmholtz operator ε 2 ∆ x /2+n 2 (x), and the high-frequency waves carried by the rescaled source term ε -d/2 S(x/ε), both having the same wavelength ε. Amongst others, it is established in [START_REF] Benamou | High frequency limit of the Helmholtz equations[END_REF], [START_REF] Castella | High frequency limit of the Helmholtz equation. II. Source on a general smooth manifold[END_REF] that the semiclassical measure associated with u ε can be completely computed provided w ε indeed converges towards w out , this latter requirement being left as a conjecture in the cited papers. This is the motivation for the question we address here.

In [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF], the first positive convergence result w ε → w out is established. This results requires, amongst others, a specific and original non-refocusing condition on the refraction index n 2 (x) (called "transversality condition" in the original paper). This condition (see below for details) roughly asserts that the rays of geometric optics associated with the the semi-classical Helmholtz operator ε 2 ∆ x /2 + n 2 (x) cannot focus at some positive time t > 0 near the origin x = 0 when issued from the origin at time t = 0. Later, X.-P. Wang and P. Zhang [START_REF] Xue | High-frequency limit of the Helmholtz equation with variable refraction index[END_REF] proved a similar, positive result, using a so-called virial assumption which is stronger than the above non-refocusing condition. J.-F. Bony in [START_REF] Bony | Mesures limites pour l'équation de Helmholtz dans le cas non captif[END_REF] establishes along quite different lines a positive result that is similar in spirit, requiring a weaker non-refocusing condition.

The goal of the present text is to prove in some sense the optimality of the non-refocusing condition pointed out in [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF].

We construct a refraction index n 2 (x) which violates the non-refocusing condition (rays of geometric optics issued from the origin do refocus close to the origin at some later time), and, by explicitly computing the asymptotic behaviour of w ε thanks to an appropriate amplitude/phase representation developped in [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF], we prove that

w ε ∼ ε→0 w out + perturbation =0 ,
where the perturbation is computed as well. It explicitly involves the contribution of the rays issued from the origin which go back to the origin at some positive time, modulated by a phase factor that is the action, along these rays, of the hamiltonian associated with the high-frequency Helmholtz operator.

The non-refocusing condition

As already mentionned, the asymptotic behaviour of w ε is dictated by that of the rescaled function u ε (x) = ε -d/2 w ε (x/ε). The function u ε is w ε rescaled at the semi-classical scale, see ( 6) and [START_REF] Combescure | Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow[END_REF]. This is translated by the following identity, valid for any smooth test function

φ ∈ S(R d ), namely ∀ φ ∈ S(R d ), w ε , φ = u ε , 1 ε d/2 φ x ε .
where we denote as usual w ε , φ := R d w ε (x) φ * (x) dx, and * denotes complex conjugation. In other words, the weak limit w ε , φ of w ε can be computed as the weak limit at the semi-classical scale of u ε , namely the limit of u ε , ε -d/2 φ(x/ε) . This first observation is the main reason why semi-classical tools play a key role in our analysis.

Besides, the asymptotic study of (1) is done here by transforming the problem into a timedependent problem. This approach, introduced in [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF], has been used since by J.F.-Bony ( [START_REF] Bony | Mesures limites pour l'équation de Helmholtz dans le cas non captif[END_REF]) to study the Wigner measure associated to [START_REF] Castella | Semiclassical resolvent estimates for schrödinger operators with coulomb singularities[END_REF], or by J. Royer ([16]) when the absorption α ε depends on x. It consists in writing the solution w ε as the integral over the whole time of the propagator associated with

iεα ε + ∆ x /2 + n 2 (ε x), namely w ε (x) = i +∞ 0 e -αεt e it( ∆x 2 +n 2 (ε x)) S(x) dt. (8) 
In the same way the outgoing solution can be written as

w out (x) : = i +∞ 0 e it( ∆x 2 +n 2 (0)) S(x) dt.
In that picture, proving or disproving the convergence w ε ∼ w out reduces to passing to the limit in the above time integral. Combining the two above observations, the basic first step of our analysis consists in writing, for any given test function φ, an in [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF],

w ε , φ = u ε , ε -d/2 φ(x/ε) = i ε +∞ 0 e -αε t U ε (t) S ε , φ ε dt, (9) 
where we use the notation

S ε (x) := 1 ε d/2 S x ε
, and similarly

φ ε (x) := 1 ε d/2 φ x ε , (10) 
where the semi-classical propagator associated with the semi-classical Hamiltonian

ε 2 ∆ x /2 + n 2 (x) is U ε (t) = exp i t ε ε 2 2 ∆ x + n 2 (x) (11) 
It is fairly clear on formula (9) that the asymptotics ε → 0 in w ε , φ is dominated on the one hand by the concentration of the rescaled test function φ ε close to the origin at the semi-classical scale ε, and on the other hand by the oscillations induced by the semi-classical propagator U ε (t) at the semi-classical scale ε as well. The point is to measure the possible constructive intereference between both waves.

As standard in semiclassical analysis we define the semiclassical symbol

h(x, ξ) = |ξ| 2 2 -n 2 (x), (12) 
associated with the semiclassical Schrödinger operatorε 2 2 ∆ x -n 2 (x). The semi-classical propagator U ε (t) is known to roughly propagate the information along the rays of geometric optics, defined as the solutions to the Hamiltonian ODE associated with h, namely (see e.g. [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF], [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF], or [START_REF] Robert | Autour de l'approximation semi-classique[END_REF])

       ∂ ∂t X(t, x, ξ) = Ξ(t, x, ξ), X(0, x, ξ) = x, ∂ ∂t Ξ(t, x, ξ) = ∇ x n 2 (X(t, x, ξ)), Ξ(0, x, ξ) = ξ. (13) 
It is clear as well that the integral +∞ 0

. . . in (9) carries most of its energy, semi-classically, over the zero energy level of h, defined as

H 0 := (x, ξ) ∈ R 2d , s.t. h(x, ξ) = 0 . ( 14 
)
In view of the integral (9) and of the above considerations, the following definitions are natural. The first definition is standard.

Definition 1.1. [non-trapping condition]

The refraction index n 2 is said non-trapping on the zero energy level whenever for each (x, ξ) ∈ H 0 , the associated trajectory (X(t, x, ξ), Ξ(t, x, ξ)) satisfies

lim t→+∞ |X(t, x, ξ)| = +∞.
When the refraction index is non-trapping, the rough idea is that any trajectory X(t, x, ξ) on the zero energy level leaves any given neighbourhood of the origin x = 0 in finite time, making the above integral +∞ 0 . . . in [START_REF] Fouassier | High frequency analysis of Helmholtz equations: case of two point sources[END_REF] converge with respect to the bound t = +∞. The second definition comes from [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF] (this assumption is called "transversality condition" in the original text).

Definition 1.2. [non-refocusing condition]

We say that n 2 satisfies the non-refocusing condition if the refocusing set, defined as

M := (t, ξ, η) ∈]0, +∞[×R 2d s.t. |η| 2 2 = n 2 (0), X(t, 0, ξ) = 0, Ξ(t, 0, ξ) = η (15) 
is such that M is a submanifold of ]0, +∞[×R 2d and M satisfies dim M < d -1.

When the non-refocusing condition is satisfied, the rough idea is that the trajectories X(t, 0, ξ) on the zero energy level issued from the origin x = 0 at time t = 0 cannot accumulate in any given neighbourhood of the origin x = 0 at later times t > 0 (this is encoded in the requirement on dim M ). Technically speaking, an appropriate stationary phase argument in formula [START_REF] Fouassier | High frequency analysis of Helmholtz equations: case of two point sources[END_REF] allows to exploit in [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF] the non-refocusing condition and to prove the weak convergence of w ε towards w out under this assumption. The main result in [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF] is the following: when the refraction index is both non-trapping and satisfies the above non-refocusing condition, then w ε ∼ w out as ε → 0 weakly. Recently, J.F. Bony in [START_REF] Bony | Mesures limites pour l'équation de Helmholtz dans le cas non captif[END_REF] shows the convergence of the Wigner measure associated with w ε . He requires a geometrical assumption on the index of refraction that is in the similar spirit, yet weaker, than the above non-refocusing condition, namely

meas n-1 ξ ∈ 2n 2 (0) S d-1 ; ∃ t > 0 X(t, 0, ξ) = 0 = 0, (16) 
where meas n-1 is the Euclidian surface measure on 2n 2 (0) S d-1 and S d-1 denotes the unit sphere in dimension d. Besides, inspired by [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF], he constructs a refraction index which is both non-trapping and does not satisfy condition [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF], and in that case he proves the non-uniqueness of the limiting of the Wigner measure.

The goal of this paper is to construct a refraction index that is both non-trapping and violates the non-refocusing condition, and to establish in that case that w ε goes weakly to a function of the form "w out +perturbation", for some explicitly computed and non-zero perturbation. To be more accurate, we construct below a refraction index for which the above refocusing manifold

M = (t, ξ, η) s.t. |η| 2 2 = n 2 (0), X(t, 0, ξ) = 0, Ξ(t, 0, ξ) = η is smooth, yet has dimension dim M = d -1,
a critical case, and we prove w ε ∼ "w out +perturbation" in that situation.

Construction of the refraction index and statement of our main result

Let us first examine the case of dimension d = 2. Let M s be a circular mirror centered at the origin. Any standard ray issued from the origin x = 0 hits the mirror and goes back to the origin at some later time: refocusing occurs in a strong fashion. However all rays are trapped inside the circular mirror, leading to a trapping situation, in the sense of definition 1.1. To recover a non-trapping and refocusing situation, it is necessary to consider an angular aperture of the circular mirror, with total aperture < π. This is shown in figure 1: the circular mirror with total aperture < π provides a (non-smooth) non-trapping and refocusing refraction index. To transform the above paradigm into a smooth one, some regularizations need to be performed.

The construction needs to be done in any dimension d ≥ 2 as well.

Let us first introduce the hyperspherical coordinates (r, θ 1 , . . . , θ d-1 ) in dimension d ≥ 2

x 1 = r cos(θ 1 ),

x 2 = r sin(θ 1 ) cos(θ 2 ),

x 3 = r sin(θ 1 ) sin(θ 2 ) cos(θ 3 ), . . .

x d-1 = r sin(θ 1 ) . . . sin(θ d-2 ) cos(θ d-1 ),

x d = r sin(θ 1 ) . . . sin(θ d-2 ) sin(θ d-1 ), with θ 1 ∈ [0, π], θ j ∈ [0, 2π] whenever j ≥ 2 when d ≥ 3, and 
θ 1 ∈ [-π, π] when d = 2.
Next, we choose a fixed, smooth cut-off function χ on R such that

χ(t) = 1, ∀ |t| ≤ 1, χ(t) = 0, ∀ |t| ≥ 2, χ(t) ≥ 0, ∀ t ∈ R. (17) 
We choose a radius R > 0 and define the radial function

f (x) ≡ f (r) := χ (2(r -R)) , ∀ x = (r, θ 1 , . . . , θ d-1 ). (18) 
We choose an angle (aperture) θ 0 ∈ [0, π/4[, and define the angular function

g(x) ≡ g(θ 1 ) := χ θ 1 θ 0 , ∀ x = (r, θ 1 , . . . , θ d-1 ). (19) 
a smooth version of the angular aperture |θ 1 | ≤ θ 0 . Finally, we choose two parameters n 2 ∞ > 0 and λ > 0 such that

n 2 ∞ < λ. ( 20 
)
We introduce the following Definition 1.

[refraction index]

We define the refraction index, retained in the whole subsequent analysis, as the following smooth version of the circular mirror with total aperture θ 0 < π/4, namely4 

n 2 (x) := n 2 ∞ -λf (x)g(x) ≡ n 2 ∞ -λf (r)g(θ 1 ), ∀ x ∈ R. (21) 
We are now in position to state our main result. Let (e 1 , . . . , e d ) be the canonical basis of R d . Since the direction e 1 is a symmetry axis for our refraction index, we introduce for later purposes the space M d (R) of square matrices of dimension d, we denote by O d (R) the space of orthogonal matrices, and we introduce the notation

O d,1 (R) := {A ∈ O d (R), s.t. Ae 1 = e 1 } . (22) 
The refraction index n 2 (x) in ( 21) is invariant under the action of O d,1 (R). We last introduce a particular set of speeds, namely the set of initial speeds ξ such that the zero energy trajectory X(t, 0, ξ) issued from the origin at time t = 0 is reflected towards the origin at some later time t > 0. With the retained value of n 2 (x), we arrive at the definition The reflection set I θ0 is defined as

I θ0 = ξ := (|ξ|, θ 1 , . . . , θ d-1 ) ∈ R d s.t. θ 1 ∈ [-θ 0 , +θ 0 ] and |ξ| = 2 n 2 (0) .
Note that the (intuitive) fact that a velocity ξ is such that X(t, 0, ξ) hits the origin at some time t > 0 if and only if ξ ∈ I θ0 , is proved later (see section 2.2).

Our main result in this text is the Theorem 1.5. [Main Result] Let n 2 be the refraction index defined in (21). Assume the aperture θ 0 < π/4 and the radius R > 0 satisfy the smallness condition

1 -cos(2θ 0 ) < 1 2R . ( 23 
)
Assume d ≥ 3. Then, the following holds:

i) The index n 2 is non-trapping on the zero-energy level

H 0 = {(x, ξ) s.t. |ξ| 2 /2 -n 2 (x) = 0}. ii) The refocusing set M = {(t, ξ, η) s.t. |η| 2 = 2n 2 (0), X(t, 0, ξ) = 0, Ξ(t, 0, ξ) = η} (see (15)) is a smooth submanifold of ]0, +∞[×R 2d
, with boundary, and its dimension has the critical value

dim(M ) = d -1.
iii) Assume the source term S satisfies S ∈ S(R d ). Then, we have

∀ φ ∈ S(R d ), w ε -(w out + L ε ) , φ -→ ε→0 0,
where the distribution L ε is defined for any φ ∈ S(R d ) through

L ε , φ = C n 2 ,d I θ 0 exp i ε T R 0 |Ξ(s, 0, ξ)| 2 2 + n 2 (X(s, 0, ξ)) ds S(ξ) φ * (-ξ) dσ θ0 (ξ). ( 24 
)
Here dσ θ0 denote the natural Euclidean surface measure on I θ0 (see definition 1.4), the return time T R > 0 is the unique time5 such that for any ξ ∈ I θ0 we have X(T R , 0, ξ) = 0, and the constant C n 2 ,d = 0 can be explicitly computed and depends only on the index n 2 and on the dimension d.

Remark. The condition (23) is technical, and requires the aperture θ 0 to be small: it ensures the trajectories cannot be trapped by the refraction index.

Remark. Note in passing that the constraint d ≥ 3, which is also needed in reference [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF], comes from a stationary phase argument. This constraint on the dimension is standard in the analysis of Schrödinger-like operators. It comes from the fact that the dispersion induced by the free Schrödinger operator acts like t -d/2 , a factor that is integrable close to t = +∞ whenever d ≥ 3.

Remark. Let ξ 0 := ( √ 2 n(0), 0, . . . , 0). The distribution L ε can as well be written as

L ε , φ = C n 2 ,d exp i ε T R 0 |Ξ(s, 0, ξ 0 )| 2 2 + n 2 (X(s, 0, ξ 0 )) ds I θ 0 S(ξ) φ * (-ξ) dσ θ0 (ξ) .
This formulation illustrates in a clearer way the fact that if the source S radiates towards the mirror, then w ε converges towards a non-trivial perturbation of w out . Note in passing that in the present counter-example, as in the paper by J.-F. Bony [START_REF] Bony | Mesures limites pour l'équation de Helmholtz dans le cas non captif[END_REF] , only subsequences of w ε converge, due to the above oscillatory factor exp(i const./ε).

Remark. In the chosen hyperspherical coordinates, the Euclidean measure dσ θ0 (ξ) coincides with dσ θ0 (ξ) = n(0) d-1 dσ(θ 1 , . . . , θ d-1 ), where dσ(θ 1 , . . . , θ d-1 ) denotes the standard euclidean surface measure on the unit sphere S d-1 .

Preliminary reduction of the proof

Our main result contains three distinct statements. Items (i) and (ii) are of geometric nature, and merely concern the behavious of the classical trajectories associated with the retained refraction index. Their proof is performed in sections 2.1 and 2.2, respectively. Item (iii) is the main item, and concerns the asymptotic analysis of w ε . Since our analysis heavily relies on tools previously developped in [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF], we briefly recall here some of these tools and indicate how the analysis of w ε can be reduced to a simpler sub-problem. We postpone the analysis of the reduced subproblem, hence of item (iii) of our main result, to section 3 below.

As already indicated, given a smooth test function φ, we start from the formulation

w ε , φ = i ε +∞ 0 e -αεt U ε (t)S ε , φ ε dt.
(See above for the notation). The next step consists in splitting the above time integral into four time scales, namely very small, small, moderate, and large time scales. To do so, we take one small parameter θ > 0 and two large parameters T 0 > 0 and T 1 > 0, and split the above time integral into the four zones

0 ≤ t ≤ T 0 ε, T 0 ε ≤ t ≤ θ, θ ≤ t ≤ T 1 , T 1 ≤ t ≤ +∞ (θ 1, T 0 , T 1 1) 
.

Technically, we use a smooth splitting, based on the already used cut-off function χ (see [START_REF] Royer | Semiclassical measure for the solution of the dissipative Helmholtz equation[END_REF]).

Besides, we also distinguish between the contribution of zero and non-zero energies, namely taking a small parameter δ > 0, we write, in the sense of functional caculus for self-adjoint operators, the identity

1 = χ δ (H ε ) + (1 -χ δ )(H ε ), where H ε := ε 2 2 ∆ x + n 2 (x), and χ δ (s) := χ s δ (s ∈ R, δ 1).
The main intermediate result of the present subsection is the following

Proposition 1.6. [Main intermediate result] Take a test function φ ∈ S(R d ). Define w ε as w ε , φ := i ε T1 θ (1 -χ) t θ e -αεt U ε (t) χ δ (H ε ) S ε , φ ε dt.
Then, there is a large T 1 > 0 such that for any small δ > 0, and any small θ > 0, there exists a constant C θ,δ > 0 such that for any small ε > 0, we have

(w ε -(w out + w ε )) , φ ≤ C θ,δ 1 
T d/2-1 0 + 1 T 0 + α 2 ε + ε .
This result roughly asserts that w ε is asymptotic to w out + w ε as ε → 0, up to carefully choosing the various parameters T 0 , T 1 , etc. Hence the proof of item (iii) of our main result essentially reduces to proving that w ε ∼ L ε as ε → 0.

Proof of Proposition 1.6.

The proof is obtained by gathering the statements of Proposition 1.7, Proposition 1.8, Proposition 1.9, Proposition 1.10 below.

The remainder part of this paragraph is devoted to a brief idea of proof of the above auxiliary Propositions that lead to Proposition 1.6.

• Contribution of very small times 0 ≤ t ≤ T 0 ε.

The contribution of very small times to w

ε , φ = i ε -1 +∞ 0 e -αεt U ε (t)S ε , φ ε dt, is i ε 2T0ε 0 χ t T 0 ε e -αεt U ε (t)S ε , φ ε dt.
It is the main contribution to w ε , provided T 0 is large enough. Indeed, we have the following fact, whose proof is based on a simple weak convergence argument.

Proposition 1.7. (See [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF]). Let n 2 (x) be any bounded and continuous refraction index. Then, if S and φ belong to S(R d ), we have

(i) For all time T 0 > 0, i ε 2T0ε 0 χ t T 0 ε e -αεt U ε (t)S ε , φ ε dt -→ ε→0 i 2T0 0 χ t T 0 exp it ∆ x 2 + n 2 (0) S, φ dt.
(ii) There exists C d > 0 which only depends on the dimension such that

i ε 2T0ε 0 χ t T 0 exp(it(∆ x /2 + n 2 (0)))S, φ dt -w out , φ ≤ C d T d/2-1 0
.

• Contribution of small, up to large times, away from the zero-energy level.

The contribution to w ε , φ = i ε -1 +∞ 0 e -αεt U ε (t)S ε , φ ε dt that is associated with small, up to large times, away from the zero-energy level, is

i ε +∞ T0ε e -αεt (1 -χ) t T 0 ε (1 -χ δ )(H ε )U ε (t)S ε , φ ε dt.
It is seen to be small, using a non-stationary phase argument in time, see [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF] (this is the reason for the previous cut-off close to the initial time t = 0, where integrations by parts in time are forbidden). Indeed, we have the Proposition 1.8. (See [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF]). Let n 2 be any long-range refraction index. Let S and φ belong to L 2 (R d ). Then there exists a constant C δ > 0, which only depends on δ > 0, such that for any small ε > 0 and any T 0 > 0, we have

1 ε +∞ T0ε (1 -χ) t T 0 ε (1 -χ δ (H ε )) U ε (t)S ε , φ ε (t) dt ≤ C δ 1 T 0 + α 2 ε .
• Contribution of large times, near the zero-energy level.

The contribution to w ε , φ = i ε -1 +∞ 0 e -αεt U ε (t)S ε , φ ε dt that is associated with large times, close to the zero-energy level, is

i ε +∞ T1 e -αεt χ δ (H ε )U ε (t)S ε , φ ε dt.
It is seen to be of order O(ε N ), for all N ∈ N, see [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF]. Indeed, the semiclassical support of χ δ (H ε )U ε (t)S ε goes to infinity in the x direction at speed of the order 1 (i.e. the semi-classical support lies in a region that is at distance of order t from the origin -this uses an argument due to Wang, see [START_REF] Xue | Time-decay of scattering solutions and resolvent estimates for semiclassical Schrödinger operators[END_REF]), while the semi-classical support of φ ε remains close to the origin. This argument relies on the fact that for T 1 large enough, the semiclassical supports of the two functions are disconnected, which in turn uses the non-trapping behaviour of the refraction index. We arrive at Proposition 1.9. (See [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF]). Let n 2 be any long-range refraction index that is non-trapping. Let S and φ be in S(R d ). Then there exist δ 0 > 0 and T 1 (δ 0 ) > 0 such that for all time T 1 ≥ T 1 (δ 0 ) and any 0 < δ < δ 0 , there exists a constant C δ such that

1 ε +∞ T1 e -αεt χ δ (H ε )U ε (t)S ε , φ ε dt ≤ C δ ε.
• Contribution of small times near the zero-energy level

The contribution to

w ε , φ = i ε -1 +∞ 0 e -αεt U ε (t)S ε , φ ε dt that is associated with small times, close to the zero-energy level, is i ε θ T0ε e -αεt (1 -χ) t T 0 ε χ t θ U ε (t)χ δ (H ε )S ε , φ ε dt.
Unlike in the previous case, the semiclassical supports of U ε (t)χ δ (H ε )S ε and φ ε may intersect for these values of time t. The whole point in [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF] lies, roughly speaking, in proving a dispersion estimate. The key is to prove that the variable coefficients Schrödinger propagator U ε (t) has the same dispersive properties than the free Schrödinger propagator, corresponding to the case when n 2 ≡ 0, at least for small values of t such that 0 ≤ t ≤ θ (for later times, the semiclassical support of U ε (t) S ε is close to the classical trajectories (X(t), Ξ(t)), trajectories which in turn may come back close to the origin and contradict any dispersion effect). Indeed, for small times, the trajectory (X(t), Ξ(t)) is close to its first order expansion in time, which is the key to obtaining dispersive effects similar to the one at hand in the free case. Technically speaking, the proof relies on establishing that the propagator U ε (t) behaves like the free Schrödinger propagator for small times, a propagator whose symbol is exp(it|ξ| 2 /ε), and which in turn has size (ε/t) d/2 thanks to a stationary phase argument.

To obtain the desired statement, a wave packet approach is actually introduced, which strongly uses the work by Combescure and Robert ([7]). It allows to compute explicitly the propagator U ε (t) S ε , using the Hamiltonian flow and related, linearized, quantities, to obtain a representation of the form

i ε θ T0ε e -αεt (1 -χ) t T 0 ε χ t θ U ε (t)χ δ (H ε )S ε , φ ε dt = 1 ε (5d+2)/2 θ T0ε R 6d e i ε ψ(t,X) a N (t, X) dt dX + O θ,δ ε N , (25) 
where X = (q, p, x, y, ξ, η) ∈ R 6d , where N is a possibly large integer, and the remainder term O θ,δ ε N is upper bounded by C θ,δ ε N for some C θ,δ > 0 independent of ε, which depends on the chosen θ > 0 and δ > 0. Note that the amplitude a N is defined in (38) below, while the complex phase function ψ is defined in (37) below. We refer to section 3 for details about the representation formula (25), which is a key ingredient in our proof of the main theorem.

With this representation at hand, we arrive at the Proposition 1.10. (See [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF]). Let n 2 be any long-range potential which is non-trapping. For θ and δ small enough, there exists C θ > 0 and C θ,δ > 0 such that for all ε ≤ 1 we have

1 ε θ T0ε χ t θ 1 -χ t T 0 ε e -αεt U ε (t)χ δ (H ε )S ε , φ ε dt ≤ C θ T d/2-1 0 + C θ,δ ε. ( 26 
)
2 Properties of the refraction index

Non-trapping behaviour

The goal of this subsection is to prove item (i) of our main Theorem 1.5. We prove that the chosen refraction index n 2 (x) = n 2 ∞ -λf (r)g(θ 1 ) in ( 21) is non-trapping on the zero-energy level

H 0 = (x, ξ) ∈ R 2d , s.t. ξ 2 /2 = n 2 (x) .
We first observe that the zero energy level has the more explicit value

H 0 = (x, ξ) ∈ R 2d , s.t. x = (r, θ 1 , . . . , θ d-1 ), ξ 2 2 = n 2 ∞ -λf (r)g(θ 1
) .

We readily define the following two regions. The first one is usually called the classically forbidden region: any trajectory living on the zero-energy level cannot reach the set B ∅ . The second one is sometimes called here the bump of the refraction index: it is the region where the refraction index actually varies with x. Outside this region, the refraction index is constant and the Hamiltonian trajectories associated with h(x, ξ) = |ξ| 2 /2 + n 2 (x) are straight lines.

Definition 2.1. (i) We denote by B ∅ the set (classically forbidden region)

B ∅ := x ∈ R d , s.t. n 2 (x) < 0 = x = (r, θ 1 , . . . , θ d-1 ), s.t. n 2 ∞ < λf (r)g(θ 1
) .

(ii) We denote by B p the set (bump)

B p := {x = (r, θ 1 , , . . . , θ d-1 ), s.t. R -1 ≤ r ≤ R + 1, |θ 1 | ≤ 2θ 0 } .
Remark. From the definition of B ∅ and the two functions

f (r) = χ(2(r -R)) and g(θ 1 ) = χ(θ 1 /θ 0 ) it is clear that there exists µ ∈]1, 2[ such that B ∅ ⊂ R - µ 2 ≤ r ≤ R + µ 2 , |θ 1 | ≤ µθ 0 . ( 27 
)
It suffices to take µ such that

0 < χ(µ) < n ∞ √ λ (hence µ ∈]1, 2[). ( 28 
)
Our main step lies in proving the following escape estimate Lemma 2.2. Select the refraction index n 2 (x) as in (21) and assume condition (23) is fulfilled, namely 1 -cos(2θ 0 ) < 1/(2R). Take a Hamiltonian trajectory X(t, x, ξ) ≡ X(t) living on the zero-energy level and define x 0 := (R, 0, . . . , 0) in Cartesian coordinates. Then, there exists α > 0, as well as β ∈ R and γ ∈ R, such that

∀ t ≥ 0, |X(t) -x 0 | 2 ≥ α t 2 + β t + γ.
An immediate corollary of the above Lemma is

Corollary 2.3. Assume condition (23) is fulfilled, namely 1 -cos(2θ 0 ) < 1/(2R).
Then the refraction index n 2 (x) in ( 21) is non-trapping on the zero-energy level.

Proof of Corollary 2.3.

Apply the preceding lemma and let t → +∞.

Proof of Lemma 2.2. 

O (e2,...,ed) e1 R R-1 R-1/2 R+1/2 R+1 B p B ∅ 2ϴ 0 ϴ 0
d 2 dt 2 |X(t) -x 0 | 2 = d 2 dt 2 X(t), X(t) -x 0 + dX dt (t) 2 , = ∇n 2 (X(t)), X(t) -x 0 + dX dt (t) 2 , = ∇n 2 (X(t)), X(t) -x 0 + n 2 (X(t)), (29) 
where we have used the fact that the Hamiltonian trajectory (X(t), Ξ(t)) belongs to H 0 . Letting X(t) = r u r in hyperspherical coordinates and x 0 = (R, 0, . . . , 0) in Cartesian coordinates, we obtain on the other hand

∇n 2 (X(t)), X(t) -x 0 = -λf (r)g(θ 1 ) u r -λ f (r) r g (θ 1 ) u θ1 , r u r -R e 1 , = F r (r, θ 1 ) + F θ (r, θ 1 ),
where

F r (r, θ 1 ) = -λf (r)g(θ 1 ) (r -R cos(θ 1 )) , F θ (r, θ 1 ) = -λ R r f (r)g (θ 1 ) sin(θ 1 ). ( 30 
)
Eventually we have

1 2 d 2 dt 2 |X(t) -x 0 | 2 = F r (r, θ 1 ) + F θ (r, θ 1 ) + n 2 (X(t)). (31) 
Therefore, the lemma is proved once we establish the existence of α > 0 such that

F r (x) + F θ (x) + n 2 (x) ≥ α > 0 whenever x ∈ Π x H 0 = R d \ B ∅ (where Π x denotes the projection (x, ξ) → x from R 2d to R d ).
We readily notice that n 2 and F θ are clearly non-negative function on the whole of R d .

•

Step two: non-negativity of F r . First, on R d \ B p , the function F r is zero, hence nonnegative. In the same way on B p ∩ {R -1/2 ≤ r ≤ R + 1/2}, we have f ≡ 0, hence F r ≡ 0 ≥ 0.

There remains to study the non-negativity of F r on the two sets {R -

1 ≤ r ≤ R -1/2, |θ 1 | ≤ 2θ 0 } and {R + 1/2 ≤ r ≤ R + 1, |θ 1 | ≤ 2θ 0 }. On {R -1 ≤ r ≤ R -1/2, |θ 1 | ≤ 2θ 0 }, we have r -R cos(θ 1 ) ≤ R - 1 2 -R cos(2θ 0 ) = R(1 -cos(2θ 0 )) - 1 2 < 0, thanks to our assumption (23). Since f ≥ 0 on {R -1 ≤ r ≤ R -1/2}, we get F r ≥ 0 on {R -1 ≤ r ≤ R -1/2, |θ 1 | ≤ 2θ 0 }. A similar computation proves that F r ≥ 0 on the set {R + 1/2 ≤ r ≤ R + 1, |θ 1 | ≤ 2θ 0 }.
We have obtained that F r ≥ 0 on the whole of R d .

•

Step three: decomposition of R d . We have just proved that F r (x) + F θ (x) + n 2 (x) ≥ 0 for all x ∈ R d . We now wish to obtain a positive lower bound for x / ∈ B ∅ . The argument relies on the fact that the refraction index n 2 is positive away from the boundary ∂B ∅ , where

∂B ∅ := {(r, θ 1 , . . . , θ d-1 ), f (r)g(θ 1 ) = n 2
∞ /λ}, while the term F r + F θ stemming from the gradient of the refraction index in (31) is positive close to the boundary ∂B ∅ . This is the reason for the decomposition we now introduce.

We define the set (piece of ring)

C α,β := {R -α ≤ r ≤ R + α, -β ≤ θ 1 ≤ β} .
We know from the remark after Definition 2.1 that there exist µ ∈]1, 2[ such that

B ∅ ⊂ C R+µ/2,µθ0 .
We therefore decompose

R d \ B ∅ = R d \ C R+µ/2,µθ0 ∪ C R+µ/2,µθ0 \ B ∅ .
We readily observe that, by construction of µ (namely χ(µ) 2 ∈]0, n 2 ∞ /λ[ -see (28)), for any x ∈ R d \ C R+µ/2,µθ0 , we have the lower bound

n 2 (x) = n 2 ∞ -λf (r)g(θ 1 ) ≥ n 2 ∞ -λχ(µ) 2 =: c n 2 > 0,
There only remains to prove the existence of c ∇ > 0 such that

F r + F θ ≥ c ∇ on C R+µ/2,µθ0 \ B ∅ .
•

Step four: positive lower bound for

F r + F θ on C R+µ/2,µθ0 \ B ∅ . Take ν ∈]1, 2[ such that n ∞ √ λ < χ(ν) < 1.
where χ is the truncation function defined in [START_REF] Royer | Semiclassical measure for the solution of the dissipative Helmholtz equation[END_REF]. With this choice of ν, we clearly have, whenever x ∈ C R+ν/2,νθ0 , the relation

n 2 (x) = n 2 ∞ -λχ(2(r -R))χ(θ 1 /θ 0 ) ≤ n 2 ∞ -λχ(ν) 2 < 0, hence C R+ν/2,νθ0 ⊂ B ∅ ⊂ C R+µ/2,µθ0 .
Therefore, it is enough to obtain a lower bound on F r + F θ on the set C R+µ/2,µθ0 \ C R+ν/2,νθ0 .

To this end, we decompose (see Figure 4)

C R+µ/2,µθ0 \ C R+ν/2,νθ0 ⊂ Z 1 r ∪ Z 2 r ∪ Z 1 θ ∪ Z 2 θ , with Z 1 r := {R -µ/2 ≤ r ≤ R -ν/2, |θ 1 | ≤ νθ 0 } , Z 2 r := {R + ν/2 ≤ r ≤ R + µ/2, |θ 1 | ≤ νθ 0 } , Z 1 θ := {R -µ/2 ≤ r ≤ R + µ/2, -µθ 0 ≤ θ 1 ≤ -νθ 0 } , Z 2 θ := {R -µ/2 ≤ r ≤ R + µ/2, νθ 0 ≤ θ 1 ≤ µθ 0 } . e1 R R-1 R-1/2 R+1/2 R+1 B p ϴ B Ø ∂C ∂C 0 νϴ 0 μϴ 0 2ϴ 0 μϴ 0 νϴ 0 R+μ/2 R-μ/2 R-ν/2 R+μ/2, R+ν/2, R-ν/2
Figure 4: Zone of study On Z 1 r . We use the structural hypothesis (23) to get

F r (x) = -λf (r)g(θ 1 )(r -R cos(θ 1 )) ≥ -λf (r)g(θ 1 )(R - ν 2 -R cos(2θ 0 )) ≥ λf (r)g(θ 1 ) ν -1 2 ≥ λ(ν -1) min s∈[-µ,-ν] χ (s) min |s|≤ν χ(s) =: c 1 > 0. (32) 
A similar proof establishes that, whenever x ∈ Z 2 r we have

F r (x) ≥ λ(ν -1) min s∈[ν,µ] [-χ (s)] min |s|≤ν χ(s) =: c 2 > 0.
On Z 1 θ . The important term is now F θ . We have

F θ (x) = -λ R r f (r)g (θ 1 ) sin(θ 1 ) ≥ λ R r f (r)g (θ 1 ) sin(νθ 0 ) ≥ λ R θ 0 (R + µ/2) min |s|≤µ χ(s) min s∈[-µ,-ν] χ (s) =: c 3 > 0.
A similar argument establishes that, whenever x ∈ Z 2 θ we have

F θ (x) ≥ λ R θ 0 (R + µ/2) min |s|≤µ χ(s) min s∈[ν,µ] [-χ (s)] =: c 4 > 0.
Gathering all estimates, there exists a positive constant c ∇ > 0 such that

∀ x ∈ C R+µ/2,µθ0 \ C R+ν/2,νθ0 , F r (x) + F θ (x) ≥ c ∇ > 0.
• Step five: end of the proof. Putting all estimates together, we obtain

∀ x ∈ Π x H 0 = R d \ B ∅ , F r (x) + F θ (x) + n 2 (x) ≥ min(c n 2 , c ∇ ) =: α > 0.
The lemma is proved.

Refocusing Set

The goal of this subsection is to establish part (ii) of our main Theorem 1.5.

Our main result is

Proposition 2.4. Let n 2 be the potential defined in (21). Assume the structural hypothesis (23) is fulfilled, namely 1 -cos(2θ 0 ) < 1/(2R). Then, the refocusing set defined in Definition 1.2 as

M = (t, ξ, η) ∈]0, +∞[×R 2d s.t. |η| 2 2 = n 2 (0), X(t, 0, ξ) = 0, Ξ(t, 0, ξ) = η satisfies M = (T R , ξ, η), s.t. ξ = -η = (r, θ 1 , . . . , θ d-1 ), r = 2n 2 (0), |θ 1 | ≤ θ 0 ,
where T R > 0 is the unique positive time such that X(T R , 0, ( 2n 2 (0), 0 . . . , 0)) = 0.

Proof of Proposition 2.4. Consider a trajectory X(t, 0, ξ) ≡ X(t) on the zero energy level, with ξ = (r, θ 1 , . . . , θ d-1 ) in hyperspherical coordinates.

If |θ 1 | ≥ 2θ 0 , it is clear that X(t) is a straight line which never enters B p , and the equation X(t, 0, ξ) = 0 with t > 0 has no solution.

We need to understand the geometry when the trajectory reaches B p , i.e. when |θ 1 | < 2θ 0 . We prove below that two cases occur. If |θ 1 | ≤ θ 0 , the trajectory remains along a line, and it is reflected by the refraction index towards the origin. If θ 0 < |θ 1 | < 2θ 0 , the force acting on the trajectory has a non-vanishing component in the orthoradial direction, which prevents the trajectory to go back to the origin. The proposition follows.

Let us come to a proof.

• First case:

|θ 1 | ≤ θ 0 .
Consider the trajectory Y (t) defined in hyperspherical coordinates as

Y (t) = (r(t), θ 1 , . . . , θ d-1 ) ,
with r(t) solution to the ordinary equation r = -λf (r) with initial data

r(0) = 0, r (0) = 2n 2 (0).
Then, (Y (t), Y (t)) satisfies the Hamiltonian ODE (13) associated with h(x, ξ) = |ξ| 2 /2 + n 2 (x).

Since Y (0) = X(0) = 0, and Y (0) = X (0) = ξ, uniqueness provides X(t) = Y (t) for all t. The trajectory X(t) is radial. It is clear that the radial trajectory t → r(t) reaches the region {R -1 ≤ r ≤ R + 1} at time t e = (R -1)/|ξ| = (R -1)/ 2 n 2 (0) > 0, where t e = inf {t > 0, X(t) ∈ B p } . Now, according to Corollary 2.3, the trajectory r(t) necessarily leaves the region {R -1 ≤ r ≤ R + 1} at some later time t s > t e , where t s = inf {t > t e , X(t) / ∈ B p } . The trajectory can either leave the bump at r = R-1 or at r = R+1. The case r = R+1 is forbidden, for in the contrary case, using continuity, there would exist a time t c such that r(t c ) = R, hence X(t c ) ∈ B ∅ , which is not allowed. Therefore, the trajectory leaves the bump B p at X(t s ) where |X(t s )| = r(t s ) = R -1. Energy conservation, together with the fact that the trajectory is radial, implies that X (t s ) = -ξ. Therefore, the trajectory for later times t ≥ t s is a straight line with constant speed -ξ. We deduce that there exists a unique T R > t s such that X(T R , 0, ξ) = 0, and we have as desired Ξ(T R , 0, ξ) = -ξ.

• Second case:

θ 0 < |θ 1 | < 2θ 0 .
We first assume that d = 2, and next generalize the argument to d ≥ 3 using the symmetries of the system. To fix the ideas, we assume in the following that θ 0 < θ 1 < 2θ 0 , the proof being the same when θ 1 has the opposite sign.

* In dimension d = 2. Let t e = (R -1)/|ξ| be the time when the trajectory enters B p , as in the preceding case. On the one hand, since the velocity Ξ(t e ) is radial and satisfies Ξ(t e ) = |ξ| u r , there is an ε > 0 such that R -1 < |X(t)| < R + 1 whenever t ∈]t e , t e + ε]. On the other hand, by assumption we have θ 1 (t e ) = θ 1 ∈]θ 0 , 2θ 0 [, and continuity implies there is an ε > 0 such that θ 0 < θ 1 (t) < 2θ 0 whenever t ∈ [t e , t e + ε]. Hence we may define 13) can be written in polar coordinates as r -r(θ 1 ) 2 = -λf (r)g(θ 1 ), 2r θ 1 + rθ 1 = -λ f (r) r g (θ 1 ).

t s := sup{t ≥ t e , s.t. ∀t ∈ [t e , t], θ 1 (t ) ∈]θ 0 , 2θ 0 [ and X(t ) = 0.}.

Now, Hamilton's equations of motion (

Examining the second equation, we have (r 2 θ 1 ) = 2rr θ 1 + r 2 θ 1 = -λf (r)g(θ 1 ), and we get whenever r(t) = 0,

θ 1 (t) = - λ r 2 (t) t te f (r(s))g (θ 1 (s))ds. (33) 
Therefore, since f (r) ≥ 0 for any r ≥ 0 while f (r) > 0 whenever R -1 < r < R + 1, and since g (θ 1 ) ≤ 0 when θ 0 ≤ θ 1 ≤ 2θ 0 , while g (θ 1 ) < 0 when θ 0 < θ 1 < 2θ 0 we get, with the above definitions and observations,

θ 1 (t) > 0 ∀t ∈]t e , t s ].
With this observation at hand, two cases may occur.

If t s = +∞, there is nothing to prove, for by definition of t s , we have X(t) = 0 whenever 0 < t ≤ t s = +∞.

In the case t s < +∞, we already know X(t) = 0 whenever 0 < t ≤ t s . Besides, since θ 1 (t) > 0 whenever 0 < t ≤ t s , it is clear that the case X(t s ) = 0 is impossible (for in that case the trajectory would be a straight line passing through the origin on some interval [t * , t s ], in contradiction with θ 1 (t) > 0 on [t * , t s ]), hence θ 1 (t s ) = 2θ 0 and θ 1 (t s ) > 0. For that reason, the trajectory X(t) for times t > t s is a straight line with constant velocity, which lies entirely in the set 2θ 0 < θ 1 < 2θ 0 + π. In particular, since θ 1 (t s ) > 0, the trajectory cannot be radial and we have X(t) = 0 whenever t > t s in that case. This concludes the proof. * In dimension d ≥ 3.

We use the invariance of n 2 under the action of O d,1 (R). Take ξ ∈ R d such that |ξ| = 2n 2 (0). Write ξ = ( 2n 2 (0), θ 1 , . . . , θ d-1 ) in hyperspherical coordinates. There exists a matrix A ξ ∈ O d,1 (R) such that A ξ ξ = ( 2n 2 (0), θ 1 , 0, . . . , 0). On the other hand, denote by (r(t), θ 1 (t)) the solution of Hamilton's equations of motion [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF] with initial data ( 2n 2 (0), θ 1 ) in dimension 2. We set Y (t) = A -1 ξ (r(t), θ 1 (t), 0 . . . , 0). Then Y (t) satisfies Hamilton's equations of motion [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF], with initial data Y (0) = 0, Y (0) = ξ. Uniqueness provides Y (t) = X(t) for any t > 0. This, combined with the previous step, provides X(t) = 0 for any t > 0.

Convergence proof

The goal of this section is to prove item (iii) of our main Theorem 1.5.

The proof is performed in a number of steps. We begin by defining some necessary notation.

The linearized hamiltonian flow

Let ϕ(t, x, ξ) = (X(t, x, ξ), Ξ(t, x, ξ)) denote the flow associated with Hamilton's equations of motion [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF]. The linearized flow, written F (t, x, ξ) below, is The linearisation of (13) leads to

F (t, x, ξ) = Dϕ(t, x, ξ) D(x, ξ) := A(t, x, ξ) B(t, x, ξ) C(t, x, ξ) D(t,
     ∂ ∂t A(t, x, ξ) = C(t, x, ξ), A(0, x, ξ) = Id, ∂ ∂t C(t, x, ξ) = D 2 n 2 Dx 2 (X(t, x, ξ))A(t, x, ξ), C(0, x, ξ) = 0, (34) 
as well as

     ∂ ∂t B(t, x, ξ) = D(t, x, ξ), B(0, x, ξ) = Id, ∂ ∂t D(t, x, ξ) = D 2 n 2 Dx 2 (X(t, x, ξ))B(t, x, ξ), D(0, x, ξ) = 0. (35) 
Finally, we define for later purposes the matrix Γ(t, x, ξ) as

Γ(t, x, ξ) = (C(t, x, ξ) + i D(t, x, ξ)) . (A(t, x, ξ) + iB(t, x, ξ)) -1 . ( 36 
)

A wave packet approach: preparing for a stationary phase argument

The intermediate result in Proposition 1.6 establishes roughly that w ε , φ ∼ w out + w ε , φ as ε → 0. Therefore, item (iii) of our main Theorem reduces to proving w ε , φ ∼ L ε , φ as ε → 0. Therefore, this preliminary paragraph is devoted to express the quantity

w ε , φ = 1 ε T1 θ 1 -χ t θ e -αεt U ε (t)χ δ (H ε )S ε , φ ε dt.
as an appropriate oscillatory integral. Our approach uses the technique developped in [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF], which in turn strongly uses a wave packet theorem due to M. Combescure and D. Robert (see [START_REF] Combescure | Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow[END_REF]). We skip here the details of the proof, referring to [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF].

The main result in this paragraph is the following Proposition 3.1. (See [START_REF] Combescure | Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow[END_REF]) Whenever X = (q, p, x, ξ, y, η) ∈ R 6d and t ∈ R, define the complex phase

ψ(t, X) := t 0 p 2 s 2 + n 2 (q s ) ds -p.(x -q) + p t .(y -q t ) + x.ξ -y.η + i (x -q) 2 2 + 1 2 Γ t (y -q t ).(y -q t ), ( 37 
)
where q t := X(t, q, p), p t := Ξ(t, q, p), and Γ t := Γ(t, q, p). Select an integer N ∈ N. Select two truncation functions χ 0 (q, p) and χ 1 (x, y) both lying in C ∞ 0 (R 2d ), and such that

supp χ 0 (q, p) ⊂ {|q| ≤ 2δ} ∪ ||p| 2 /2 -n 2 (q)| ≤ 2δ , χ 0 (q, p) ≡ 1 on {|q| ≤ 3δ/2} ∪ ||p| 2 /2 -n 2 (q)| ≤ 3δ/2 , χ 1 (x, y) ≡ 1 close to (0, 0).
Define the amplitude a N (t, X) := e -αεt (1 -χ) t θ S(ξ) φ * (η)χ 0 (q, p)χ 1 (x, y)P N t, q, p, y -

q t √ ε , ( 38 
)
where P N (t, q, p, z) satisfies

P N (t, q, p, x) := 1 π d/4 det(A(t, q, p) + iB(t, q, p)) -1/2 c Q N (t, q, p, x), (39) 
and the square root det(A(t, q, p) + iB(t, q, p))

-1/2 c
is defined by continuously following the argument of the relevant complex number, starting from the value det(A(0, q, p) + iB(0, q, p) = 1 at time t = 0, while Q N (t, q, p, x) is a polynomial in the variable x ∈ R d , whose coefficients vary smoothly with (t, q, p), and ε, and which satisfies

Q N (t, q, p, x) = 1 + O( √ ε)
in the relevant topology. More precisely, we have

     Q N (t, q, p, x) = 1 + (k,j)∈I N ε k 2 -j p k,j (t, q, p, x), I N = {1 ≤ j ≤ 2N -1, 1 ≤ k -2j ≤ 2N -1, k ≥ 3j} , (40) 
where each p k,j has at most degree k in the variable x.

Then, the following holds

w ε , φ = 1 ε (5d+2)/2 T1 θ R 6d e i ε ψ(t,X) a N (t, X)dtdX + O T1,δ (ε N ). ( 41 
)
Sketch of proof of Proposition 3.1.

Using the short-hand notation χ δ (t) := e -αεt (1 -χ) (t/θ), we have

w ε , φ = i/ε T1 θ χ δ (t) χ δ (H ε )S ε , U ε (-t)φ ε dt. ( 42 
)
To compute the term U ε (-t)φ ε accurately, we use a projection over the overcomplete basis of L 2 (R d ) obtained by using the so-called gaussian wave-packets, namely the family of functions indexed by (q, p) ∈ R 2d defined by

ϕ ε q,p (x, ξ) := 1 (πε) d/4 exp i ε p. x - q 2 exp - (x -q) 2 2ε .
The point indeed is that, as proved by Combescure and Robert in [START_REF] Combescure | Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow[END_REF], we have

U ε (-t) ϕ ε q,p (x, ξ) = O T1,δ (ε N )+ 1 ε d/4 exp i ε p t . x - q t 2 exp - |x -q t | 2 2ε exp i ε t 0 p 2 s 2 + n 2 (q s ) ds - q t • p t -q • p 2 P N t, q, p, x -q t √ ε (43) in L ∞ ([0, T 1 ]; L 2 (R d )).
In other words, we have a quite explicit complex-phase/amplitude representation of the Schrödinger propagator when acting on the gaussian wave packets. This observation leads to writing, successively, in (42)

χ δ (H ε )S ε , U ε (-t)φ ε = 1 (2πε) d R 2d χ δ (H ε )S ε , ϕ ε q,p ϕ ε q,p , U ε (-t)φ ε dq dp , = 1 (2πε) d R 2d χ δ (H ε )S ε , ϕ ε q,p U ε (t)ϕ ε q,p , φ ε dq dp .
Now, the idea is to replace the factor U ε (t)ϕ ε q,p by its approximation derived above. Yet a few preliminary steps are in order. The first one uses the truncation in energy χ δ (H ε ), together with the functional calculus for pseudo-differential operators of Helffer and Robert (see [START_REF] Helffer | Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles[END_REF] ), to replace this truncation by an explicit truncation near the set p 2 /2 + n 2 (q) = 0, up to small error terms. The second step consists in using the Parseval formula to write (we want to exploit the source term S ε on the Fourier side)

S ε , φ ε q,p = 1 (2πε) d/2 e i x•ξ ε S(ξ) φ ε q,p (x) dx dξ = 1 (2πε) d/2 χ(x) e i x•ξ ε S(ξ) φ ε q,p (x) dx dξ,
for some function χ(x) that truncates close to x = 0, and similarly

U ε (t)ϕ ε q,p , φ ε = 1 (2πε) d/2 χ(y) e i y•η ε φ(η) U ε (t)ϕ ε q,p (y) dy dη,
These two steps explain the truncation factors χ 0 and χ 1 in the Proposition, which act close to the zero energy-level in phase-space (this is where functional calculus is used) and close to the origin in physical space. The last step consists in exploiting formula (43) in the obtained representation.

Eventually, one obtains the desired formula.

Preparing for a stationary phase argument

This slightly technical paragraph is devoted to proving that the obtained phase ψ in Proposition 3.1 satisfies the assumptions of the stationary phase Theorem.

Our main result in this paragraph is the Proposition after the following Lemma.

Lemma 3.2. Let n 2 be any smooth refraction index. Then, the following holds (i) The stationary set associated with the phase ψ in (37), defined as

M X := (t, X) = (t, q, p, x, ξ, y, η) ∈ [θ, T 1 ] × R 6d s.t. ∇ t,X ψ(t, X) = 0 and Im ψ(t, X) = 0 satisfies M X = {(t, q, p, x, ξ, y, η) s.t. x = y = q = 0, ξ = p, (t, p, η) ∈ M }, (44) 
where we recall that M = {(t, p, η), X(t, 0, p) = 0, Ξ(t, 0, p) = η, η 2 /2 = n 2 (0)} by definition.

(ii) We have, whenever m = (t, X) ∈ M X , the relation

Ker(D 2 ψ |m ) = (T, Q, P, X, Ξ, Y, H) ∈]0, +∞[×R 6d , X = Y = Q = 0, (45) 
Ξ = P, η T H = 0, B t (0, p) P + T η = 0, -H + D t (0, p) P + T ∇n 2 (0) = 0 .
Note that this Lemma does not use the particular structure of our index.

Proof of Lemma 3.2. A mere computation of Im ψ and ∇ ψ allows to write (44). Differentiating ∇ ψ once allows to write (45). For more details, the reader may check [START_REF] Castella | The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach[END_REF].

With this Lemma at hand, our key result in this section is the following Proposition 3.3. Let n 2 be the refraction index defined in (21). We recall that the refocusing set M is computed in Lemma 2.4 and satisfies

M = (T R , ξ, η) s.t. ξ = -η = (r, θ 1 , . . . , θ d-1 ), r = 2n 2 (0), |θ 1 | ≤ θ 0 . Now, take any m ∈ • M X = (t, q, p, x, ξ, y, η) s.t. x = y = q = 0, ξ = p, (t, p, η) ∈ M, with p = (r, θ 1 , . . . , θ d-1 ), and |θ 1 | < θ 0 Then, we have Ker D 2 ψ| m = T m M X ,
where T m M X denotes the space tangent to M x at point m.

The remainder part of this subsection is devoted to the proof of Proposition 3.3. We begin by proving the Proposition in the case m = m 0 := (T R , 0, p 0 , 0, p 0 , 0, -p 0 ), where p 0 := ( 2n 2 (0), 0, . . . , 0) .

We next generalize the result to other values of m, using the symmetries of the problem.

Proof of Proposition 3.3 when m = m 0

The computation of T m0 M X on the one hand is rather easy Lemma 3.4. The space T m0 M X is given by

T m0 M X = {(T, Q, P, X, Ξ, Y, H) s.t. X = Y = Q = T = 0, Ξ = P = -H, P.p 0 = 0}.
Proof of Lemma 3.4. This is a mere computation starting from the definition of the refocusing set M , as M = {(t, p, η), X(t, 0, p) = 0, Ξ(t, 0, p) = η, η 2 /2 = n 2 (0)}.

In order to determine Ker D 2 ψ |m 0 the first step it to compute the matrices B t and D t involved in the linearized flow, see (3.3.2). Lemma 3.5. Let n 2 be the potential defined in (21). Then, we have

D(T R , 0, p 0 ) := ∂Ξ ∂ξ (T R , 0, p 0 ) = -I d , B(T R , 0, p 0 ) := ∂X ∂ξ (T R , 0, p 0 ) = b 11 0 0 O d-1 , (46) 
where

I d is the identity matrix, b 11 ∈ R and O d-1 is a square matrix of dimension d -1 equal to 0.
Proof of Lemma 3.5.

We consider x 0 (t, 0, p) = (x 1 0 (t, 0, p), . . . , x d 0 (t, 0, p)) the solution to [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF] with initial data x 0 (0, 0, p) = 0 and x 0 (0, 0, p) = p.

We recall that the index n 2 is invariant under the action of O d,1 (R d ). Thus we first compute the components of D and B that are invariant under O d,1 (R d ), namely their first column. We next compute the other columns by using the symmetries again, in conjunction with a perturbation argument.

• Computation of ∂Ξ ∂ξ1 (T R , 0, p 0 ) and ∂X ∂ξ1 (T R , 0, p 0 ) We start with ∂Ξj ∂ξ1 (T R , 0, p 0 ) for j ≥ 2. We have

∂Ξ j ∂ξ 1 (T R , 0, p 0 ) = lim ε→0 Ξ j T R , 0, ( 2n 2 (0) + ε, 0 . . . , 0) -Ξ j T R , 0, ( 2n 2 (0), 0 . . . , 0) ε .
Since the trajectory is radial we have

Ξ j T R , 0, ( 2n 2 (0) + ε, 0 . . . , 0) = Ξ j T R , 0, ( 2n 2 (0), 0 . . . , 0) = 0, ∀ j ≥ 2.
Hence, ∂Ξj ∂ξ1 (T R , 0, p 0 ) = 0, ∀ j ≥ 2. A similar argument provides ∂Xj ∂ξ1 (T R , 0, p 0 ) = 0, ∀ j ≥ 2. There remains to determine the first coefficient of D, namely ∂Ξ1 ∂ξ1 (T R , 0, p 0 ). Since the trajectory is radial, and by conservation of the energy, we have for ε small enough

Ξ 1 T R , 0, ( 2n 2 (0) + ε, 0, . . . , 0) = - 2n 2 (0) + ε , Ξ 1 T R , 0, ( 2n 2 (0), 0, . . . , 0) = -2n 2 (0).
Thus,

d 11 := lim ε→0 + Ξ T R , 0, ( 2n 2 (0) + ε, 0, . . . , 0) -Ξ T R , 0, ( 2n 2 (0), 0, . . . , 0) ε = -1.
• Computation of ∂Ξ(T R ,0,p0) ∂ξj and ∂X(T R ,0,p0) ∂ξj (j ≥ 2) Considering the symmetries of the problem, it is enough to consider the case j = 2: the other components may be determined using the same argument.

We perturb the initial speed along the direction e 2 , by a factor ε (see Figure 5). Let X ε (t) be the solution of the perturbed problem

X ε (t) = ∇n 2 (X ε (t)), X ε (0) = 0, X ε (0) = p 0 + ε e 2 .
We expand X ε (t) with respect to ε and obtain X ε (t) = X 0 (t) + εX 1 (t) + . . .. With this notation we have X 1 (t) = ∂X ∂ξ2 (t) and X 1 (t) = ∂Ξ ∂ξ2 (t). To obtain the expansion in ε, we go back to the previous case (j = 1) using a change of variables. Indeed, for ε small enough, the trajectory is radial along the direction X ε (0). Let ( e 1 , . . . , e d ) be a new basis defined by e j := O ε e j , with

O ε :=        cos(θ ε ) -sin(θ ε ) 0 . . . 0 sin(θ ε ) cos(θ ε ) 0 . . . 0 0 0 . . . . . . I d-2 0 0        , cos(θ ε ) = p 0 p 2 0 + ε 2 , sin(θ ε ) = ε p 2 0 + ε 2 .
Let X ε be the coordinates of X ε in ( e 1 , . . . , e d ). Since O -1 ε ∇n 2 (X ε ) = ∇n 2 ( X ε ), we clearly have

X ε (t) = ∇n 2 ( X ε (t)), X ε (0) = 0, X ε (0) = ( ε 2 + p 2 0 , 0, . . . , 0) = p 0 + O(ε 2 ).
Hence it is clear that X ε (t) = X 0 (t) + O(ε 2 ). Therefore, we recover

X 0 (t) + εX 1 (t) = O ε X 0 (t) + O(ε 2 ) = (I d + εE + O(ε 2 ))( X 0 (t) + O(ε 2 )), with 
E :=        0 -1 p0 0 . . . 0 1 p0 0 0 . . . 0 0 0 . . . . . . I d-2 0 0       
.

In other words, we have

∀ t ∈ R, X 0 (t) = X 0 (t) and X 1 (t) = E X 0 (t).
Since the Hamiltonian trajectory goes back to the origin at time T R , we deduce

∂X ∂ξ 2 (T R , 0, p 0 ) = X 1 (T R ) = E X 0 (T R , 0, p 0 ) = E × 0 = 0.
In the same way, we have

∂Ξ ∂ξ 2 (T R , 0, p 0 ) = X 1 (T R ) = E X 0 (T R ) = t - x 2 0,R (T R ) p 0 , x 1 0,R (T R ) p 0 , x 3 0,R (T R ), . . . , x d 0,R (T R ) ,
= t (0, 1, 0, . . . , 0).

The columns of B and D (for j ≥ 3) are determined in the similar way. This leads to (46).

At this stage, we deduce the Corollary 3.6. Ker D 2 ψ |m 0 = T m0 M X .

Proof of Corollary 3.6.

According to (45), we have

Ker(D 2 ψ |m ) = {(T, Q, P, X, Ξ, Y, H), X = Y = Q = 0, Ξ = P, η T H = 0, B T R (0, p) P + T η = 0, -H + D T R (0, p) P + T ∇n 2 (0) = 0 .
Since η = -p 0 , we recover H = (0, H 2 , . . . , H d ) (in Cartesian coordinates). Since ∇n 2 (0) = 0, we deduce that D T R (0, p) P = H. According to Lemma 3.5, we deduce that H = -P . Finally, B T R (0,p) P = 0 hence T = 0. Thus, Ker D 2 ψ |m 0 = {(T, Q, P, X, Ξ, Y, H), X = Y = Q = T = 0, P = Ξ = -H, P.p 0 = 0} .

Using Lemma 3.4, the proof is complete.

Proof of Proposition 3.3 for any m

In this subsection, we prove the

Lemma 3.7. ∀ m ∈ • M X , we have T m M X = Ker D 2 ψ |m .
Proof of Lemma 3.7.

The idea is to use a family of transformations which leave

• M X and n 2 invariant (in a sense we define later), next to transport the equality Ker

D 2 ψ |m 0 = T m0 M X to any m ∈ • M X .
Family of transformations. Let m = (t, q, p, x, ξ, y, η) ∈

• M X . We write m = (T R , 0, p, 0, p, 0, -p) for some p ∈ 2n 2 (0) S d-1 Thus, there exists R p ∈ O(R d ) such that R p (p) = p 0 . We define the map R m : R 6d+1 -→ R 6d+1 by R m (t, q, p, x, ξ, y, η) = (t, R p (q), R p (y), R p (x), R p (ξ), R p (y), R p (η)) .

(47)

By construction we have R m (m) = m 0 .

Action on the tangent place. We have identified that the set M X satisfies M X = {(t, q, p, x, ξ, y, η), s.t. t = T R , q = x = y = 0, p = ξ = -η, p 2 /2 = n 2 (0)}

:= M X ∩ {p = (r, θ 1 , . . . , θ d-1 ) with |θ 1 | ≤ θ 0 }.
The set M X is clearly invariant under the action of R m . Therefore, by restricting the domain in the variable θ 1 , it is clear that whenever m ∈ • M X , there exists a neighbourhood U of m in

• M X such that U 0 := R m U ⊂ • M X . Since the application R m is a linear map from U to U 0 which satisfies R m (m) = m 0 , we deduce R m (T m M X ) = T m0 M X .
Action on the kernel. We now compute the set R m (Ker(D 2 ψ |m )), as follows

R m (Ker(D 2 ψ |m )) = {(T, R p Q, R p P, R p X, R p Ξ, R p Y, R p H), s.t. X = Y = Q = 0, p.H = 0, B T R (0, p) P + T p = 0, D T R (0, p) P = H}, = {(T, Q, P, X, Ξ, Y, H), s.t. X = Y = Q = 0, p.R -1 p H = 0, B T R (0, p) R -1 p P + T p = 0, D T R (0, p) R -1 p P = R -1 p H}. = {(T, Q, P, X, Ξ, Y, H), s.t. X = Y = Q = 0, p 0 .H = 0, R p B T R (0, p) R -1 p P + T p 0 = 0, R p D T R (0, p) R -1 p P = H}.
On the other hand, we claim that

R p B T R (0, p)R -1 p = B T R (0, p 0 ), R p D T R (0, p)R -1 p = B T R (0, p 0 ). (48) 
Assuming the above identity is proved, we immediately deduce

R m (Ker(D 2 ψ |m )) = Ker D 2 ψ |m 0 .
We conclude by writing

R m (Ker(D 2 ψ |m )) = KerD 2 ψ |m 0 = T m0 M X = R m (T m M X ).
Thus, there only remains to prove (48). By construction of the potential we clearly have R p X(t, 0, p) = X(t, 0, p 0 ), as well as n 2 (R p x)) = n 2 (x) , whenever x/|x| lies in the angular sector |θ 1 | ≤ θ 0 . This provides

D 2 n 2 Dx 2 (X(t, 0, p 0 )) = D 2 n 2 Dx 2 (R p X(t, 0, p)) = R p D 2 n 2 Dx 2 (X(t, 0, p)) R -1 p .
Therefore, using the differential equation (3.3.2) relating the time evolution of B t and D t , we recover the following system

                     ∂ ∂t R p B(t, 0, p)R -1 p = R p D(t, 0, p)R -1 p , R p B(0, 0, p)R -1 p = Id, ∂ ∂t R p D(t, 0, p)R -1 p = R p D 2 n 2 Dx 2 (X(t, 0, p))B(t, 0, p)R -1 p , = D 2 n 2 Dx 2 (R p X(t, 0, p))R p B(t, 0, p)R -1 p = D 2 n 2 Dx 2 (X(t, 0, p 0 ))R p B(t, 0, p)R -1 p R p D(0, 0, p)R -1 p = 0.
Proof of Proposition 3.9. Due to the fact that the stationary set M X in the to-be-developped stationary phase argument has a boundary at θ 1 = ±θ 0 , the argument is in two steps. This is the reason why the above Proposition distinguishes between two cases.

•• Proof of Proposition 3.9-part (i)

Outside the stationary set M X associated with the complex phase ψ, the oscillatory integral (41) defining w ε , φ is of order O(ε ∞ ). On the stationary set M X and near the support of a N , the stationary set M X is a submanifold without boundary, having codimension k = 6d + 1 -(d -1) = 5d + 2. Indeed, thanks to the hypothesis on the support of S, we have supp a N ∩ ∂M X = ∅.

Let us now come to the explicit application of the stationary phase Theorem to the oscillatory integral (41). Writing p = (r, θ 1 , . . . , θ d-1 ) in hyperspherical coordinates, we define the application:

γ : R 6d+1 ∩ supp a N -→ R 5d+2 × S d-1 (t, q, p, x, ξ, y, η) -→ (t -T R , q, x, y, ξ -p, η + p, r -2n 2 (0) =:α , θ 1 , . . . , θ d-1 =:θ )
The map γ is a C ∞ -diffeomorphism between supp a N and γ (supp a N ). Furthermore, we have by construction

(t, X) ∈ M X ∩ supp a N ⇐⇒ α = 0.
The new coordinates (α, θ) are adapted to the stationary set M X associated with ψ. Making the change of variables (t, X) = γ -1 (α, θ) in the integral defining w ε , φ we have

w ε , φ = O δ,T1 (ε N )+ (49) 1 ε (5d+2)/2 γ(supp a N ) e i ε ψ•γ -1 (α,θ) S(.) φ * (.)P N ., ., ., . √ ε • γ -1 (α, θ)χ 3 (α, θ) r d-1 dα dσ(θ),
where dσ(θ) denotes the standard euclidean surface measure on the unit sphere S d-1 , and χ 3 is a truncation function on some compact set, a neighbourhood of M X , whose precise value is irrelevant. Here we have used the non-stationary phase Theorem to reduce the original integral to an integral on a given compact set.

Since for all point m ∈ M X ∩ supp a N we have Ker(D 2 ψ |m ) = T m M X (Lemma 3.7), the function D 2 ψ is non-degenerate in the normal direction to M X , which gives det

D 2 ψ • γ -1 Dα 2 (0, θ) = 0.
Furthermore, the projection of γ(supp a N ) onto the space variable θ is the angular sector

Π θ I θ0 := {(θ 1 , . . . , θ d-1 ), θ 1 ∈] -θ 0 , θ 0 [} ,
where Π θ denotes the projection (r, θ 1 , . . . , θ d-1 ) → (θ 1 , . . . , θ d-1 ). We can now apply the stationary phase Theorem in (49). Remembering that the codimension of the stationary set M X associated with ψ is 5d + 2, we obtain that for any integer L there exists a sequence (Q 2 (∂)) ∈{0,...,L} 29 of operators of order 2 such that

w ε , φ = C 1 Π θ I θ 0 exp i π 4 sgn D 2 ψ•γ -1 Dα 2 (0, θ) det D 2 ψ•γ -1 Dα 2 (0, θ) exp i ε ψ • γ -1 (0, θ) Q 0 (.) S(.) φ * (.)P N ., ., ., . √ ε • γ -1 χ 3 (0, θ) dσ(θ) + Π θ I θ 0 exp i ε ψ • γ -1 (0, θ) L =1 ε Q 2 (∂) S(.) φ * (.)P N ., ., ., . √ ε • γ -1 χ 3 (0, θ) dσ(θ) + O ε L+1 sup K≤2L+d+3 ∂ K (α,θ) S(.) φ * (.)P N ., ., ., . √ ε • γ -1 χ 3 L ∞ + O δ,T1 (ε N ) (50) 
:= I ε + II ε + III ε + O δ,T1 (ε N ), with the value C 1 = (2π) (5d+2)/2 (2n 2 (0)) (d-1)/2 .
The last line in (50) serves as a definition of the three terms I ε , II ε and III ε , and the L ∞ -norm in III ε is evaluated on a compact set of values of (α, θ), whose precise value is irrelevant. We compute these three contributions. Note that the retained value of the integer L remains to be determined at this stage.

• Contribution of the remainder term III ε in (50). This term is best studied by coming back to the original variables (t, X) instead of (α, θ). Expanding the k-th order derivatives involved in this term, we clearly have

III ε = O ε L+1 sup K≤2L+d+3 ∂ K (t,X) S(.) φ * (.)P N ., ., ., . √ ε L ∞ = O ε L+1 sup K≤2L+d+3 ∂ K (t,X) P N ., ., ., . √ ε L ∞ .
Hence, since P N (t, q, p, x) = π -d/4 det(A(t, q, p) + iB(t, q, p)) -1/2 c Q N (t, q, p, x), we recover

III ε = O ε L+1 sup K≤2L+d+3 ∂ K (t,q,p,y) Q N (t, q, p, (y -q t )/ √ ε) L ∞ .
Lastly, using (40) we have

Q N (t, q, p, x) := 1 + (k,j)∈I N ε k 2 -j p k,j (t, q, p, x),
where p k,j has at most degree k in x. We deduce

III ε = (k,j)∈I N O ε k 2 -j+L+1 sup K≤2L+d+3 ∂ K (t,q,p,y) p k,j (t, q, p, (y -q t )/ √ ε) = (k,j)∈I N O ε k 2 -j+L+1-k 2 = O ε L+1-(2N -1) ,
where we have used that j ≤ 2N -1 whenever (k, j) ∈ I N (see (40)). There remains to chose

L = 2N -1 to recover III ε = O(ε).
• Contribution of II ε in (50). This estimate is more delicate. Firstly, we have

II ε = L =1 ε O Q 2 (∂) S(.) φ * (.)P N ., ., ., . √ ε • γ -1 χ 3 (0, θ) L ∞ .
Hence, going back to the (t, X) variables again, and remembering that the relation (α, θ) = (0, θ) implies y = q t = 0 and t = T R , we recover the identity

II ε = L =1 ε O sup K≤2 ∂ K (t,q,p,y) y=qt=0,t=T R P N t, q, p, y -q t √ ε L ∞ ,
where the L ∞ -norm is evaluated on some compact set of values of p. Now, inserting the exact value of P N , we may write

II ε = L =1 ε O   (k,j)∈I N sup K≤2 ∂ K (t,q,p,y) y=qt=0,t=T R ε k 2 -j p k,j t, q, p, y -q t √ ε L ∞   = L =1 (k,j)∈I N ε ε k 2 -j O sup K≤2 ∂ K (t,q,p,y) y=qt=0,t=T R p k,j t, q, p, y -q t √ ε L ∞
Hence, using the fact that each p k,j is a polynomial in its last argument, so that the above derivatives evaluated at y = q t = 0 only leave the zero-th order term in the derived polynomial, we recover

II ε = O   L =1 (k,j)∈I N ε ε k 2 -j sup K≤2 ε -K/2   = O   L =1 (k,j)∈I N ε ε k 2 -j ε -   = O   L =1 (k,j)∈I N ε k 2 -j ε -   = O ε 1/2 ,
where we have used that k -2j ≥ 1 whenever (k, j) ∈ I N .

• Contribution of I ε in (50).

The integral defining I ε has the following more explicit value, where p = ( 2n 2 (0), θ 1 , . . . , θ d-1 ), namely + n 2 (q s (0, p)) ds, while the fact that n 2 is radial implies that ψ(T R , 0, p, 0, p, 0, -p) = ψ(T R , 0, p 0 , 0, p 0 , 0, -p 0 ) whenever p ∈ I θ0 . For the same reason, we also have whenever θ ∈ Π θ I θ0 the relation This ends the proof of Proposition 3.9-part (i).

I ε = C 1 Π θ I θ 0
•• Proof of Proposition 3.9-part (ii)

In that case, the argument is essentially the same (a stationary phase argument in the variable α), up to a convenient use of the dominated convergence Theorem (to deal with the variable θ 1 , and more specifically with the boundary θ 1 = ±θ 0 ).

Namely, we first write, as in the proof of part (i) of the Proposition, w ε , φ = O δ,T1 (ε N )+ (52)

1 ε (5d+2)/2
γ(supp a N ) e i ε ψ•γ -1 (α,θ) S(.) φ * (.)P N ., ., ., . √ ε • γ -1 (α, θ)χ 3 (α, θ) r d-1 dα dσ(θ),

where χ 3 is a truncation function on some compact set, a neighbourhood of M X , whose precise value is irrelevant. Here we have used the non-stationary phase Theorem to reduce the original integral to an integral on a given compact set. The key point now lies in writing, .

With this formulation in mind, our next objective is to prove that whenever η > 0 is a small parameter we have

|θ1±θ0|≤η dσ(θ) |J ε (θ)| ≤ C η, (54) 
for some C > 0 independent of ε and η. It is clear indeed that the upper-bound (54), in conjunction with part (i) of the Proposition, provides a complete proof of Proposition 3.9-part (ii).

Let us now concentraate on the case |θ 1 -θ 0 | ≤ η (the proof in the case |θ 1 + θ 0 | ≤ η is the same).

In order to prove (54), we fix a value (θ 0 2 , . . . , θ 0 d-1 ) and we prove that, given (θ 0 2 , . . . , θ 0 d-1 ), there is an η > 0, and a C > 0 independent of ε, such that 55) is proved. Now, relation (55) results from an application of the stationary phase Theorem, with complex phase and with parameter. Here α is the variable used for the stationary phase itself, while θ is the parameter, and ψ • γ -1 is the complex phase. We introduce the short-hand notation θ 0 = (θ 0 , (θ ) 0 ) = (θ 0 , θ 0 2 , . . . , θ 0 d-1 ) for convenience. It has already been established6 that Im ψ • γ -1 (α, θ) ≥ 0, ∀(α, θ),

Im ψ • γ -1 (α = 0, θ = θ 0 ) = 0, ∇ α ψ • γ -1 (α = 0, θ = θ 0 ) = 0, det D 2 ψ • γ -1 Dα 2 (α = 0, θ = θ 0 ) = 0
Therefore, the stationary phase theorem with parameter ensures that close to θ = θ 0 there is an expansion of the form

J ε (θ) = e iφ(θ)/ε L =0 ε Q 2 (∂ α ) S(.) φ * (.) P N ., ., . √ ε • γ -1 χ 3 (.) 0 (θ) + R(ε, L, θ),
for some smooth functions φ and R(ε, L, θ), where the Q 2 's are differential operators of order 2 in the variable α, and, for any function u(α, θ), the notation u 0 (θ) refers to any smooth function u 0 (θ) that belongs to the same residue class than the original function u(α, θ) modulo the ideal generated by ∇ α ψ • γ -1 (α, θ) (see Hörmander [START_REF] Hörmander | The analysis of linear partial differential operators. I. Classics in Mathematics[END_REF], sect. 7.7, for the details). With this notation, we actually have φ = ψ • γ -1 0 . Besides, the remainder term R satisfies as the term III ε in the previous step an estimate of the form

|R(ε, L, θ)| ≤ C L ε L+1 sup K≤2(L+1)
∂ K α S(.) φ * (.) P N ., ., ., .

√ ε • γ -1 χ 3 (.) L ∞
, for some constant C L > 0 independent of ε, and provided θ is close to θ 0 (independently of ε). These two ingredients immediately provide, using the same estimates as we did for the terms III ε and II ε above, the upper-bound, valid for θ close to θ 0 ,

|J ε (θ)| ≤ C L =0 ε Q 2 (∂ α ) S(.) φ * (.) P N ., ., . √ ε • γ -1 χ 3 (.) 0 (θ) + R(ε, L, θ),
Gathering powers of ε as in the previous part of the proof, provides the upper bound

|J ε (θ)| ≤ C,
where C does not depend on ε and θ is close to θ 0 , independently of ε. Point (55) is proved. We immediately deduce that (54) holds, and the proof of Proposition 3.9 -part (ii) is complete.

Conclusion

Gathering the intermediate result in Proposition 1.6, together with Proposition 3.9, gives item (iii) of Theorem 1.5, by conveniently choosing the parameters δ, θ, T 0 and T 1 .
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 2 Figure 2: The function n 2 ∞ -n 2 (x) = λ f (x) g(x) in dimension d = 2
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 5 Figure 5: Perturbation of the initial speed
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  ∀θ such that |θ -(θ 0 .θ 0 2 , . . . , θ 0 d-1 )| ≤ η, we have |J ε (θ)| ≤ C. (55) Covering the whole set {θ ∈ S d-1 ; |θ 1 -θ 0 | ≤ η} by finitely many sets of the form {|θ -(θ 0 .θ 0 2 , . . . , θ 0 d-1 )| ≤ η} clearly provides the desired relation (54) once (

Here and below we use the standard notation n

(x), a squared term, assuming in doing so that the corresponding term is everywhere non-negative. This is a harmless abuse of notation, since the refraction index n 2 (x) that is eventually chosen in our analysis is negative for certain values of x. The reader may safely skip this fact, since the Helmholtz equation also arises in the spectral analysis of Schrödinger operators, where the refraction index becomes E -V (x) where E is an energy and V (x) is a space-dependent potential, and the term E -V (x) may change sign in that context.[START_REF] Bony | Mesures limites pour l'équation de Helmholtz dans le cas non captif[END_REF] The limiting case αε = 0 + can be considered along our analysis, see below.

This assumption may be considerably relaxed at the price of some irrelevant technicalities.

The refraction index is negative in a bounded region of x. As already mentioned, we still use the abuse of notation consisting in using the squared of n.

The fact that all these quantities exist and are well defined is part of the Theorem, and is proved in section 2.2.

Stricto sensu, these relations have only be proved when |θ 1 | < θ 0 , and we here extend the result to the case θ 1 = θ 0 . This is allowed due to the invariance of the phase on the parameter θ whenever |θ 1 | ≤ θ 0 -Lemma 3.8.

Uniqueness of solutions to a differential system then gives ∀t, R p B t (0, p)R -1 p = B t (0, p 0 ), R p D t (0, p)R -1 p = D t (0, p 0 ).

Relation (48) is proved. 

The same statement holds for the factor p t • q t . The only non-obvious factor is Γ t q t • q t . As in the preceding proof we write

There remains to write

for we already know that R p B t (0, p)R -1 p = B t (0, p 0 ), R p D t (0, p)R -1 p = D t (0, p 0 ), and a similar proof establishes R p A t (0, p)R -1 p = B t (0, p 0 ), R p C t (0, p)R -1 p = D t (0, p 0 ).

The stationary phase argument: Proof of item (iii) of our main Theorem

The main result of the present section is Proposition 3.9. Let n 2 be the potential constructed according to 21. Select a source S ∈ S(R d ).

Then, the following holds.

where L ε , φ is defined in (24) above (see also the Remark after Theorem 1.5), and ∂I θ0 = {ξ = (|ξ|, θ 1 , . . . , θ d-1 ) such that θ 1 = ±θ 0 } (see definition 1.4).

(ii) In the general case we have ∀ φ ∈ S(R d ), w ε -L ε , φ = o T1,δ (ε 0 ).