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Abstract

Mixture models in reliability bring a useful compromise between paramet-
ric and nonparametric models, when several failure modes are suspected. The
classical methods for estimation in mixture models rarely handle the additional
difficulty coming from the fact that lifetime data are often censored, in a de-
terministic or random way. We present in this paper several iterative methods
based on EM and Stochastic EM methodology, that allow us to estimate para-
metric or semiparametric mixture models for randomly right censored lifetime
data, provided they are identifiable. We consider different levels of completion
for the (incomplete) observed data, and provide genuine or EM-like algorithms
for several situations. In particular, we show that in censored semiparametric
situations, a stochastic step is the only practical solution allowing computation
of nonparametric estimates of the unknown survival function. The effectiveness
of the new proposed algorithms are demonstrated in simulation studies and an
actual dataset example.

Keywords. Censored data; EM algorithm; finite mixture; semiparametric mixtures;
survival data.

1 Introduction

Statistical analysis of reliability or lifetime data is usually based on parametric or
nonparametric models. On the nonparametric side, when the classical parametric
distributions (e.g., exponential, Weibull, lognormal) fail to properly fit the data, the
nonparametric Kaplan-Meier survival estimate is a standard approach. However on
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EM-type algorithms for reliability mixture models under censoring 2

several occasions both the simple parametric and fully nonparametric models fail to
capture a phenomenon quite common in this context, which is the heterogeneity of
the underlying population. As an example, consider satellite reliability models as
in Castet and Saleh (2010) and Dubos et al. (2010), where two non-observed failure
causes, infant mortality and wear out, are suspected. In such situations a (usually
parametric) mixture model (see, e.g., McLachlan and Peel, 2000) is appropriate and
can significantly improve the quality of the fit. In mixture models, estimates of
the parameters of the distribution comprise estimates of the proportions of each
(non-observed) subpopulation corresponding to each failure mode, that may be of
great interest for the end user. Moreover, when the statistical inference is done
by using Expectation-Maximization (EM) algorithms (see Section 1.1), estimates of
the individual probabilities that each observation come from each component are
provided, allowing for unsupervised clustering of the data. We propose an example
of such situation in Section 4.5, where a new semiparametric mixture model provides
an alternative to the nonparametric Kaplan-Meier approach, taking into account the
two suspected failure modes.

Estimating unknown parameters of a reliability mixture model may be a more
or less intricate problem, especially if durations are censored. In the parametric
framework one approach consists in minimizing the distance between a paramet-
ric distribution and its nonparametric estimate. Several distances may be chosen:
e.g. Hellinger in Karunamuni and Wu (2009) or Cramèr-von Mises in Beutner and
Bordes (2011). These methods fail to account semiparametric mixture models with-
out training data. There are many iterative algorithms to reach mixture models
Maximum Likelihood Estimates (MLE’s), mostly in the well-known class of EM al-
gorithms (see Section 1.1 below), but few of them handle the additional problem
of censoring. Atkinson (1992) derived an EM algorithm for a finite mixture of two
univariate normal distributions for deterministically right-censored data. Chauveau
(1995) proposed extentions of EM and of Stochastic EM algorithms (introduced by
Celeux and Diebolt, 1986) to handle Type-I deterministic right censoring or trunca-
tion, for exponential and Weibull mixtures. More recently, Balakrishnan and Mitra
(2011) fitted right censored and left truncated data by adapting the EM algorithm
to a finite mixture of lognormal distributions; Lee and Scott (2012) proposed EM
solutions for deterministically censored or truncated multivariate Gaussian mixtures.

We present in this paper several iterative methods based on Monte Carlo simula-
tion and Stochastic EM-like algorithms for estimation of identifiable (semi-)parametric
right censored reliability mixture models. We first detail in this section the general
model and notations that will be used throughout the paper. The objective is to
fit n independent and identically distributed (iid) lifetime observations taking values
in R

+, from a lifetime probability density function (pdf)

X = (X1, . . . , Xn) iid ∼ g(x|θ),

where θ denotes the model parameter. It will always be assumed that these lifetime



EM-type algorithms for reliability mixture models under censoring 3

data come from a finite mixture of m components, i.e.

g(x|θ) =
m
∑

j=1

λjfj(x), θ = (λ,f), (1)

where λ = (λ1, . . . , λm) are the component weights satisfying
∑m

j=1 λj = 1, and f =
(f1, . . . , fm) are the component densities. We define the cumulative density function
(cdf) of component j by Fj(·), the mixture cdf by G(x|θ) =

∑m
j=1 λjFj(x), with

corresponding survival (reliability) functions F̄j(·) = 1 − Fj(·) and Ḡ(·) = 1 − G(·).
We will in addition often allow the models to handle random right-censored data.

This random censoring process is described by a random variable C with density
function h, cdf H and survival function H̄(·) = 1 − H(·). In the right censoring
setup the available information is

T = min(X, C), D = I(X ≤ C).

The n lifetime data x = (x1, . . . , xn) iid ∼ g are associated to n censoring times
c = (c1, . . . , cn) iid ∼ h. The observations are finally in the censoring case

(t,d) = ((t1, d1), . . . , (tn, dn)) ,

where ti = min(xi, ci) and di = I(xi ≤ ci), i = 1, . . . , n.

1.1 Missing data and EM algorithms

The association of EM algorithms with mixture models has a long history since the
seminal paper of Dempster et al. (1977) in which the initials “EM” were coined, and
a finite mixture model was presented as a missing data example. A recent account
of EM principle, properties and generalizations can be found in McLachlan and
Krishnan (2008), and mixture models are deeply detailed in McLachlan and Peel
(2000). In the missing data setup, the n-fold product of g, say g(·|θ), corresponds to
the incomplete data pdf, associated to the log-likelihood ℓx(θ) =

∑n
i=1 log g(xi|θ).

When maximizing ℓx(θ) leads to a difficult problem (such as in, e.g., the mixture
model situation), considering x as an incomplete data resulting from a non-observed
and suitable complete data y often helps. Assuming y comes from a complete data
pdf gc, the EM algorithm iteratively maximizes the operator

Q(θ|θk) = E[log gc(y|θ)|x,θk],

the expectation being taken relatively to the conditional distribution of (y|x), for
the value θk of the parameter at iteration k. Given an arbitrary starting value θ0,
the EM algorithm generates a (deterministic) sequence (θk, k = 1, 2, . . .) :

1. E-step: compute Q(θ|θk)
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2. M-step: set θk+1 = argmaxθ∈Θ Q(θ|θk).

In the mixture framework, the complete data associated to x correspond to the
situation where the component of origin z ∈ {1, . . . ,m} of each individual data x
is observed. The complete data distribution of (X, Z) is given by Pθ(Z = z) = λz

and (X|Z = z) ∼ fz. Computing Q(θ|θk) reduces then to the computation of the
essential ingredient of any EM algorithm for finite mixture, the posterior probabilities

pk
ij = P

θ
k (Zi = j | Xi = xi) =

λk
j f

k
j (xi)

∑m
j′=1 λk

j′f
k
j′(xi)

, i = 1, . . . , n; j = 1, . . . ,m. (2)

pk
ij is the probability that the ith observation belongs to component j, conditional

on the data and the current value of the parameter at iteration k.

In the present setup the observed data (t,d) depends on x which comes from a
finite mixture with pdf g, hence missing data are naturally involved. When censored
lifetimes (t,d) are observed, we may think of two stages for the associated complete
data: the simplest one is to consider the component indicators z = (z1, . . . , zn) as
missing like in the usual mixture situation, so that (t,d,z) is the complete data.
But we can also consider in addition the censored observations (xi, i ∈ {1, . . . , n} :
di = 0) as missing (this is the case in Chauveau (1995) for deterministic censoring),
so that the complete data is (x,z). This latter model allows in the stochastic EM
machinery (introduced in Section 2.3) to plug standard MLE of the parameters for
simple random sample from each population, whereas the former gives a simpler
algorithmic implementation but requires MLE on censored data, that may be more
complex numerically, as it will be illustrated in further Sections. One advantage of
the Stochastic EM algorithm is that it can be extended easily to some semiparametric
mixture models provided they are identifiable (see e.g. Bordes et al., 2007).

1.2 Nonparametric estimation under censoring

We recall here some classical results concerning estimation in nonparametric situ-
ations, when the available data are (t,d) from a single (i.e., non mixture) lifetime
distribution F . Let us introduce the two counting processes N and Y defined by

N(t) =
n
∑

i=1

I(ti ≤ t, di = 1) and Y (t) =
n
∑

i=1

I(ti ≥ t) t ≥ 0,

counting respectively the number of failures in [0, t] and the number of items at risk
at time t−. The Nelson-Aalen estimator of the cumulative hazard rate function A is
defined by

Â(t) =

∫ t

0

dN(s)

Y (s)
=

∑

{i:ti≤t}

∆N(ti)

Y (ti)
t ≥ 0,



EM-type algorithms for reliability mixture models under censoring 5

where ∆N(s) = N(s)−N(s−). The Kaplan-Meier estimator of the survival function
F̄ is defined by

ˆ̄F (t) =
∏

i:ti≤t

(

1 − ∆N(ti)

Y (ti)

)

t ≥ 0.

Let K be a kernel function and bn a bandwidth satisfying bn ց 0 and nbn ր +∞,
it is well known that the hazard rate function α(·) = f(·)/F̄ (·) can be estimated
nonparametrically by

α̂(t) =

∫ +∞

0
Kbn

(t − s)dÂ(s) =
n
∑

i=1

Kbn
(t − ti)

∆N(ti)

Y (ti)
,

where Kbn
(·) = b−1

n K(·/bn). Then f = α × F̄ can be estimated by f̂(t) = α̂(t) ˆ̄F (t).
We will use this estimate in the present paper, even though f could also be estimated
by smoothing the Kaplan-Meier estimator.

Since we consider that the unknown distribution is absolutely continuous with
respect to the Lebesgue measure we have ti 6= tj for i 6= j with probability 1. Let us
denote by t(1) < · · · < t(n) the ordered durations, and write d(i) the corresponding
censoring indicators (d(i) = dj if t(i) = tj). The estimates can be written

Â(t) =
∑

{i:t(i)≤t}

d(i)

n − i + 1
, (3)

ˆ̄F (t) =
∏

{i:t(i)≤t}

(

1 −
d(i)

n − i + 1

)

, (4)

and

α̂(t) =
n
∑

i=1

1

bn

K
(

t − t(i)

bn

)

d(i)

n − i + 1
. (5)

For more properties about these estimators see, e.g., Andersen et al. (1993).

2 Parametric mixture model with censored data

If we assume that the jth component density is restricted to fj(·) = f(·|ξj) ∈ F ,
where F is a parametric family indexed by a Euclidean parameter ξ ∈ R

d. Model (1)
becomes

X ∼ g(x|θ) =
m
∑

j=1

λjf(x|ξj), (6)

where θ = (λ, ξ) = (λ1, . . . , λm, ξ1, . . . , ξm) is the (Euclidean) model parameter.

Note that in the present model all components share densities from the same para-
metric family (shape) F . This is the description commonly used in finite mixture
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models for ease of notation and simplicity in the maximization (M-step) calculation.
However, it is usually straightforward to extend this model to mixtures with para-
metric densities from different families, i.e. fj(·) = fj(·|ξj) ∈ Fj for j = 1, . . . ,m.
The only consequence is that each jth M-step for ξj then depends on the paramet-
ric family Fj . In usual mixture models (usual meaning without censoring), the jth
M-step looks like a “weighted MLE” for ξj in the parametric family Fj , where the
weights are the posterior probabilities given by (2) (see e.g. McLachlan and Krishnan,
2008, for the Gaussian mixture case).

As explained in Section 1.1, two EM algorithms can be defined in this case,
depending on the desired level for the complete data.

2.1 EM algorithm for complete data (t, d, z)

We consider here that the missing information is only the component of origin of
the n lifetimes. The complete data pdf (where informally densities and probabilities
are denoted f(·|θ)) is given by

f c(T = t, D = 1, Z = z|θ) = Pθ(Z = z) f(D = 1, T = t|Z = z;θ)

= λz f(C ≥ X, X = t|z;θ)

= λz P(C ≥ t) f(X = t|z;θ)

= λz f(t|ξz)H̄(t),

and similarly f c(t, 0, z|θ) = λzF̄ (t|ξz)h(t), where Fj(·) = F (·|ξj) denotes the cdf of
the jth component. This can be summarized by

f c(t, d, z|θ) =
[

λzf(t|ξz)H̄(t)
]d [

λzF̄ (t|ξz)h(t)
]1−d

. (7)

The observed data log-likelihood is then given by taking the marginal of the complete-
data pdf w.r.t. z,

ℓt,d(θ) = log

(

n
∏

i=1

f(ti, di|θ)

)

=
n
∑

i=1

log
(

H̄(ti)
dih(ti)

1−di

)

+
n
∑

i=1

log





m
∑

j=1

λjf(ti|ξj)
diF̄ (ti|ξj)

1−di



 ,

where the first sum does not depends on θ. The EM methodology amounts here to
iteratively maximize

Q(θ|θk) = E

[

log f c(t,d,Z|θ) | t,d,θk
]

=

n
∑

i=1

E

[

log f c(ti, di, Zi|θ) | ti, di,θ
k
]

,

where f c denotes the n-fold product of f c, and the rightmost term comes from the
iid assumption on the complete data. Computing this expectation (in Z) amounts to
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compute the posterior probability that the ith observation (an observed or censored
lifetime) belongs to component j, conditional on the data and the current value of
the parameter at iteration k:

pk
ij := P(Zi = j|ti, di,θ

k)

=

(

λk
j f(ti|ξk

j )H̄(ti)
∑p

ℓ=1 λk
ℓ f(ti|ξk

ℓ )H̄(ti)

)di
(

λk
j F̄ (ti|ξk

j )h(ti)
∑p

ℓ=1 λk
ℓ F̄ (ti|ξk

ℓ )h(ti)

)1−di

=

(

λk
j f(ti|ξk

j )
∑p

ℓ=1 λk
ℓ f(ti|ξk

ℓ )

)di
(

λk
j F̄ (ti|ξk

j )
∑p

ℓ=1 λk
ℓ F̄ (ti|ξk

ℓ )

)1−di

(8)

= λk
j F̄ (ti|ξk

j )

(

α(ti|ξk
j )

∑p
ℓ=1 λk

ℓ α(ti|ξk
ℓ )F̄ (ti|ξk

ℓ )

)di
(

p
∑

ℓ=1

λk
ℓ F̄ (ti|ξk

ℓ )

)di−1

, (9)

where equation (9) is a rewriting of equation (8) using only survival and hazard
rate function for component j, α(·|ξj) = f(·|ξj)/F̄ (·|ξj), that will be used later in
Section 3.2. Note that these posterior probabilities do not depend on the censoring
distribution. Then

Q(θ|θk) =

n
∑

i=1

m
∑

j=1

pk
ij

[

log(λj) + di log f(ti|ξj) + (1 − di) log F̄ (ti|ξj)
]

+R(t,d,θk, h), (10)

where the remaining term R(t,d,θk, h) does not depends on θ but only on the data,
current parameter and censoring distribution. The maximization for λ is direct
and does not depends on the parametric family considered. Hence the EM imple-
mentation is straightforward if the maximization of Q(θ|θk) in ξ is feasible for the
parametric family F .

Exemple 1 If F is the family of exponential distributions with rate parameter ξ > 0,
f(x|ξ) = ξ exp(−ξx), the iteration θk → θk+1 for the parametric case and complete
data (t, d,z) is given by:

1. E-step: Calculate the posterior probabilities pk
ij using Equation (8), for all

i = 1, . . . , n and j = 1, . . . ,m.

2. M-step: Set

λk+1
j =

1

n

n
∑

i=1

pk
ij for j = 1, . . . ,m

ξk+1
j =

∑n
i=1 pk

ij di
∑n

i=1 pk
ij ti

for j = 1, . . . ,m.

This algorithm behavior is illustrated in Section 4.
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2.2 EM algorithm for complete data (x, z)

In this case the complete data pdf is given by f c(X = x, Z = z|θ) = λz f(x|ξz), and
the missing information is z and {xi : di = 0, 1 ≤ i ≤ n}. The EM methodology
aims to iteratively maximize

Q(θ|θk) = E

[

log f c(X, Z|θ) | t, d, θk
]

=
n
∑

i=1

E

[

log f c(Xi, Zi|θ) | ti, di,θ
k
]

,

where each expectation is in this case w.r.t. (Xi, Zi). Computing this expectation
requires the (posterior) probability of (Xi, Zi) given Ti = ti, Di = di and for the
parameter value θk. Since the distribution of (X|t, d, Z = j) is a Dirac measure δt

when d = 1, and the pdf of (X|X > t, Z = j) when d = 0, we get

f(x, j|ti, di,θ
k) = pk

ij f(x|ti, di, Z = j,θk)

= λk
j

(

I(x = ti)f(ti|ξk
j )

∑m
ℓ=1 λk

ℓ f(ti|ξk
ℓ )

)di
(

I(x > ti)f(x|ξk
j )

∑m
ℓ=1 λk

ℓ F̄ (ti|ξk
ℓ )

)1−di

.

Again these posterior probabilities do not depend on the censoring distribution which
cancels out. Then

Q(θ|θk) =

n
∑

i=1

m
∑

j=1

pk
ij log(λj)

+

n
∑

i=1

m
∑

j=1

pk
ij

[

di log (f(ti|ξj)) + (1 − di)

∫ +∞

ti

log (f(x|ξj))
f(x|ξk

j )

F̄ (ti|ξk
j )

dx

]

.

Note that as far as λ is concerned, this expression is exactly Equation (10) for the
case where (t, d, z) is the complete data, so that the M-step for λ is identical in both
situations. This EM implementation is not straightforward in general since, except
for very specific parametric families, calculation of Q(θ|θk) is not obtained in closed
form and has to be calculated and maximized by numerical methods.

Exemple 2 If F is the family of exponential distributions with rate parameter ξ > 0,
f(x|ξ) = ξ exp(−ξx) and F̄ (x|ξ) = exp(−ξx). The iteration θk → θk+1 for the
parametric case and complete data (x,z) is given by:

1. E-step: Calculate the posterior probabilities pk
ij as in Equation (8), for all

i = 1, . . . , n and j = 1, . . . ,m.

2. M-step: Set

λk+1
j =

1

n

n
∑

i=1

pk
ij for j = 1, . . . ,m,

ξk+1
j =

∑n
i=1 pk

ij
∑n

i=1 pk
ij

(

ti + (1 − di)/ξk
j

) for j = 1, . . . ,m.
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Note that the update for ξj can also be written as the weighted average

ξk+1
j =

∑n
i=1 pk

ij
∑n

i=1 pk
ij

(

diti + (1 − di)(ti + 1/ξk
j )
)

which means that each observed failure (di = 1) contributes with ti, and each censored
lifetime (di = 0) contributes with ti + 1/ξk

j , as in simple censored sample case. This
algorithm behavior is illustrated in Section 4.

2.3 Stochastic EM algorithms

The advantage of using a genuine EM algorithm as in Sections 2.1 and 2.2 is that
it has a provable ascent property for the observed log-likelihood, as any EM does.
On the other hand, using an EM algorithm requires the implementation of the M-
step for the component parameters (the ξj ’s), which is specific of the parametric
family F , and may often be tedious, particularly here where expression of survival
functions are needed (e.g. for deterministic censored mixtures of Weibull distributions
see Chauveau, 1995).

When this is the case, Stochastic versions of EM like the one initially introduced
by Celeux and Diebolt (1986) may overcome this difficulty at the expand of the loss
of the ascent property, and more complicated convergence properties (general results
from Nielsen (2000) give conditions for convergence of the sequence of estimates,
which is generally a Markov Chain). In the mixture problem without censoring, the
Stochastic EM (St-EM) principle consists in simulating the missing data z from the
posterior probabilities, so that the estimation gets back to standard MLE procedures
applied to m simple random samples, allowing in particular usage of standard MLE
software packages.

In the present parametric setup with censoring, we have considered two kinds of
missing data: because of the mixture the z are missing; but due to the censoring
process, some of the xi’s are also missing (replaced by the incomplete observations
{ti, i = 1, . . . , n : di = 0}. We may think about simulating all the missing data as in
Chauveau (1995) in the deterministic type-I censoring case, or simulating just the
indicator z, which has been the preferred solution here (i.e. the complete data are
(t,d,z)), since it allows straightforward M-step implementation by calling standard
MLE packages for right censored data from standard distributions, as e.g. the survival
package (Therneau and Lumley, 2009) for the R statistical software (R Development
Core Team, 2010). Morevover simulation of z alone seems to be up to know the
only practical solution for the semiparametric extensions we propose later on. An
example of this St-EM approach for censored mixtures of Weibull distributions is
given in Section 4.3.

Let pk
i = (pk

i1, . . . , p
k
im) denote the posterior probability vector associated to

observation i, and Zi ∼ Mult(1, pk
i ) a multinomial distributed random variable with
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parameters 1 and pk
i (i.e., Zi ∈ {1, . . . m} with probabilities P(Zi = j) = pk

ij). The

iteration θk → θk+1 of the St-EM algorithm is given by:

1. E-step: Calculate pk
ij from Equation (8), for all i = 1, . . . , n and j = 1, . . . ,m.

2. Stochastic step: Simulate Zk
i ∼ Mult(1,pk

i ), i = 1, . . . , n, and define the
subsets

χk
j = {i ∈ {1, . . . , n} : Zk

i = j}, j = 1, . . . ,m. (11)

3. M-step: For each component j ∈ {1, . . . ,m}

λk+1
j = Card(χk

j )/n,

and
ξk+1
j = arg max

ξ∈Ξ
Lj(ξ), (12)

where
Lj(ξ) =

∏

i∈χk
j

(f(ti|ξ))di(F̄ (ti|ξ))1−di . (13)

Asymptotic results of ergodic averages from a St-EM algorithm From
Nielsen (2000), several asymptotic results may be derived under regularity assump-
tions. Let us temporarily add the subscript n to θk to remember that our esti-
mates depend on both k and n). The main important result deals with the asymp-
totic behavior (in n) of the weak limit (in k) θn of (θk

n)k≥0. Nielsen (2000) shows
that if θ0 is the true value of the unknown parameter θ, then

√
n(θn − θ0) con-

verges in distribution to a centered Gaussian random vector with variance-covariance
matrix I−1(θ0)

[

2I − {I + F (θ0)}−1
]

where I(θ0) denotes the observed data infor-
mation and F (θ0) is the expected fraction of missing information. As a conse-
quence the basic Stochastic EM algorithm produces estimators whose the asymp-
totic variance can be divided into a model part I−1(θ0) and a simulation part
I−1(θ0)

[

I − {I + F (θ0)}−1
]

. Various strategies can be used to reduce the simu-
lation part of the variance. For example Nielsen shows that averaging the last J iter-
ations of the Markov chain, i.e. taking the weak limit (in k) of (θk−J+1

n + · · ·+θk
n)/J ,

reduces the simulation part of the asymptotic variance to a O(1/J). Similar asymp-
totic results are obtained by increasing the number of simulation per iteration as for
example in the MCEM algorithm by Wei and Tanner (1990).

In this paper two different strategies are proposed. Either we use the standard
St-EM algorithm that produces a Markov chain (θk)k≥0 and our final estimate is

the ergodic mean θ̄
K

of the first K iterates, or at iteration k + 1 missing data are
simulated by fixing θ to the mean of the first k iterates, i.e. θ = (θ1 + · · · + θk)/k.

Again the final estimate of θ is nothing but the ergodic mean θ̄
K

of the first K
iterates. In the latter case the sequence (θk

n)k≥0 is no longer a Markov chain but it
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generally results in more stable algorithm and in both cases we can expect that the
variance part due to simulation is almost deleted. Then the asymptotic variance of
the estimator can be derived following the method of Louis (1982) (see also formula
(42) in Nielsen (2000)). The Louis method is applied to a mixture of lognormal
distributions in Balakrishnan and Mitra (2011).

3 Semiparametric two-components mixture models

We consider now a mixture of accelerated lifetime model, where two lifetime popu-
lations are mixed with lifetime distributions equal up to a scale parameter:

g(x|λ, ξ, f) = λf(x) + (1 − λ)ξf(ξx), x > 0. (14)

This model means that the lifetime has the distribution of a r.v. (say) U ∼ f when
belonging to component 1, and of U/ξ when belonging to component 2. The unknown
parameter is θ = (λ, ξ, f) ∈ (0, 1) × R

+
∗ × F where F is a set of density functions.

Let us define by θ0 = (λ0, ξ0, f0) and θk = (λk, ξk, fk) the initial and current values
of θ.

Nonparametric or semiparametric models like (14) are generally not identifiable
without additional assumptions on the underlying nonparametric densities. Indeed
identifiability, whereby the distribution of the data uniquely determines the param-
eter values, is a difficult question. In the particular case of model (14) where X is
distributed according to a mixture of scaled random variables f -distributed, trans-
forming X to Y = log(X) gives a mixture of the common density ϕ(y) = eyf(ey)
differing only by a shift parameter. It has been proved that if ϕ(·) is even, then such
shift-location semiparametric mixtures are identifiable (see Bordes et al. (2006) for
the two-component case, and Hunter et al. (2007) for the two and three-component
cases). Therefore, identifiability of model (14) holds if the density function f satisfies
the constraint that y 7→ eyf(ey) is an even function. This family of density functions
includes for example log-normal distributions.

3.1 Semiparametric St-EM algorithm without censoring

If observations from the scale mixture model (14) are uncensored then only a n-
sample t is observed (note that t is in this case nothing but x since there is no
censored data).

Step 1. For each item i ∈ {1, . . . , n}:

pk
i1 =

λkfk(ti)

λkfk(ti) + (1 − λk)ξkfk(ξkti)
,

then set pk
i = (pk

i1, 1 − pk
i1).
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Step 2. Simulate Zk
i ∼ Mult(1,pk

i )) and define subsets

χk
j = {i ∈ {1, . . . , n} : Zk

i = j}, j = 1, 2.

Step 3. Update Euclidean parameters:

λk+1 = n1/n where n1 = Card(χk
1),

ξk+1 =
n − n1

n1

∑

i∈χk
1
ti

∑

i∈χk
2
ti

Step 3’. Update the functional parameters f : Let tk = (tk1, . . . , t
k
n) be the “un-

scaled sample” {ti; i ∈ χk
1} ∪ {ξkti; i ∈ χk

2}. Set:

fk+1(x) =
n
∑

i=1

1

nb
K
(

x − tki
b

)

, (15)

where K is a kernel function and b a bandwidth.

Remark: Note that at the third step ξk is updated using a moment estimation
method instead of a ML principle. This latter method is hard to use here since it
requires to estimate nonparametrically the first derivative of f which generally leads
to unstable estimates. This and the additional nonparametric step 3′ may precludes
application of general results from Nielsen (2000) on St-EM convergence. Hence
convergence of this algorithm is yet only based on empirical numerical evidence.

3.2 Semiparametric St-EM algorithm for right censored data

We consider now that lifetime data from the scale mixture model (14) are randomly
censored like in Section 1, so that only a n-sample (t,d) is observed, so that the
nonparametric estimation techniques for censored data (recalled in Section 1.2) have
to be used to estimate the functional parameter f . In particular, for computing the
posterior probabilities using (8) or (9), estimates of the survival function F̄ and the
hazard rate α(·) associated to f are needed. F̄ is naturally estimated by the Kaplan-
Meier estimator (4), and α(·) by the kernel estimate (5). It appears that modified
versions of kernel density estimates can be imbedded in “EM-like” algorithms for semi-
or non-parametric mixtures. For example, Benaglia et al. (2009a) define a weighted
kernel density estimate for the density fj of component j, in which the ith observation
is weighted according to its posterior probability pk

ij at step k. Unfortunately, there
is no direct way to use these posterior probabilities to define a similar weighted
version of the Kaplan-Meier estimate (4). In this case, stochastic versions of the EM
algorithm provide the workable solutions that we propose here: simulation of z as
in Section 2.3 allows to define at each iteration sub-samples corresponding to each
component, from which Kaplan-Meier estimates can be directly computed.
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St-EM for semiparametric scale mixture and censored data

Step 1. E-step: For each item i ∈ {1, . . . , n},
if di = 0

pk
i1 =

λkF̄ k(ti)

λkF̄ k(ti) + (1 − λk)F̄ k(ξkti)
, (16)

else

pk
i1 =

λkαk(ti)F̄
k(ti)

λkαk(ti)F̄ k(ti) + (1 − λk)ξkαk(ξkti)F̄ k(ξkti)
, (17)

then set pk
i = (pk

i1, 1 − pk
i1).

Step 2. Stochastic step: Simulate Zk
i ∼ Mult(1,pk

i ), i = 1, . . . , n, and define the
subsets

χk
j = {i ∈ {1, . . . , n} : Zk

i = j}, j = 1, 2. (18)

Step 3. Update the Euclidean parameters:

λk+1 = n1/n where n1 = Card(χk
1).

Let S̄k
j denotes the Kaplan-Meier survival estimate associated to {ti : i ∈ χk

j },
for j = 1, 2, and Mk

j = maxi∈χk
j
(ti), then set

ξk+1 =

∫Mk
1

0 S̄k
1 (s) ds

∫Mk
2

0 S̄k
2 (s) ds

(19)

Step 3’. Update the functional parameters α and F̄ :
Let tk = (tk1, . . . , t

k
n) be the order statistic of {ti; i ∈ χk

1} ∪ {ξkti; i ∈ χk
2}, so

that tk1 ≤ · · · ≤ tkn, and dk = (dk
1, . . . , d

k
n) be the corresponding indicators. Set:

αk+1(x) =
n
∑

i=1

1

b
K
(

x − tki
b

)

dk
i

n − i + 1
, (20)

and

F̄ k+1(x) =
∏

{i:tki ≤x}

(

1 − dk
i

n − i + 1

)

, (21)

where K is a kernel function and b a bandwidth.

Note that here also ξk is updated using a moment estimation method instead of
a ML principle. Implementation considerations such as starting values, choices for
kernels and bandwidths are discussed in Section 4.
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4 Implementation and Examples

We propose in this section some examples illustrating most of the parametric and
semiparametric, genuine and stochastic EM or EM-like algorithms that have been
proposed in this paper. All the algorithms shown here are implemented — and will be
publicly available — in an upcoming version of the mixtools package (Benaglia et al.,
2009b) for the R statistical software (R Development Core Team, 2010). Several
models are tested on various simulated data, and this section ends with a study on
a real dataset from aeronautical industry.

4.1 Initialization of EM-type algorithms

As it is typically the case for EM algorithms, the choice of the starting parameter
value θ0 ∈ Θ is important. A common initialization procedure when experimenting
on synthetic data consists in simply starting the algorithms from the true parame-
ter. The argument supporting that approach is that on real data, a usual practice
consists in starting the algorithm from several values either taken from a grid, or
randomly drawn from a uniform distribution on the parameter space, and retaining
the EM estimate achieving the maximum of the observed likelihood among all the
trials. If this exhaustive exploration of Θ if done with enough precision (number of
trials), then this estimate corresponds to the location of the global maximum closest
to the true parameter value. We first tried initialization from the true values in all
our experiments on synthetic data, but choose instead to present here only practi-
cal, data-driven or realistic initialization procedures. For instance, we applied the
initialization by this exploration of Θ in Section 4.3 where it is detailed.

The disadvantage of this approach is its high computing requirement, so that for
the particular case of univariate data where m = 2 components are suspected, and
assuming that these components have an effect at least in localization (as it is often
the case for lifetime data t), a faster approach, that we call here splitting the data
amounts to:

1. Split the data at a threshold s into two subsamples {ti : ti ≤ s} and {ti : ti > s}.
Ideally, s corresponds to a visible separation between two modes from the
histogram of t, or a threshold between two types of lifetimes obtained by prior
information on the data.

2. Fit an appropriate model and compute a MLE from each subsample: in para-
metric mixture case, the ideal model is simply the parametric family Fj and

the MLE is the corresponding ξ̂j . Set λ0
1 = #{ti : ti ≤ s}/n, to obtain an

initial parameter θ0 = θ0(s).

3. Run the St-EM algorithm from that θ0(s) to get an estimate θ̂(s).
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4. If there is no obvious unique choice for s, apply steps 1-2-3 above for a set of
plausible s ∈ S (typically a grid within the observations range) and retain the
estimate achieving the largest log-likelihood: θ̂ = argmaxs∈S ℓ(θ̂(s)).

When appropriate, this one-dimensional approach is obviously simpler than exploring
the multidimensional parameter space Θ. It can be viewed also as a crude way of
completing the data by setting the missing data to zi = j for i’s in subsample j. We
applied initialization based on splitting the data in Sections 4.4 and 4.5.

Finally, when performing Monte-Carlo experiments, care should be taken to pre-
vent or handle a possible “label-switching” as much as possible. This label-switching
issue arises because the particular ordering of the subscripts j = 1, . . . ,m in equation
such as (1) is arbitrary: A permutation of these subscripts gives exactly the same
density function, so that the best we can do is to estimate the parameters up to a
permutation of the labels. However, in a simulation study based on Monte-Carlo
replications, this issue can lead to flawed average estimates because there is no guar-
antee that only estimates from the “same” component are averaged together. For
a fuller account of the label-switching issue, see McLachlan and Peel (2000), and
Celeux et al. (1996) for label switching issues in Stochastic-EM algorithms.

4.2 EM algorithm for parametric model with censored data

The algorithms of Section 2 for mixture of lifetime distributions with censored data
has been implemented for exponential densities,

g(x) =
m
∑

j=1

λjξj exp(−ξjx) x > 0,

and the two types of complete data ((t,d,z) and (x,z) (see Examples 1 and 2). We
choose here a m = 3 components model with true parameters λ = (0.2, 0.3, 0.5) and
ξ = (4, 1, 0.02). We assume that C is uniformly distributed on [0, c], where we have
chosen c = 150 in order to achieve an average censoring rate of about 16%. Even
if this true model have rather different rates, the component densities are severely
overlapping because of the shape of the exponential distribution.

We applied on this model the two EM strategies introduced in Sections 2.1
and 2.2, i.e. for the two possible levels of complete data, over 300 Monte-Carlo
replications and sample size n = 500. For the initialization, we define a very crude
data-driven procedure to compute initial rates ξ using a “uniform binning” of the
data (even simpler than the splitting of the data presented in Section 4.1). We
split t in m = 3 bins of equal empirical probabilities 1/3, and from each bin j we
compute ξ0

j as the inverse of the average of the data within the bins. This implies

that the ξ0
j ’s are decreasing like the true ξ. Note that this is not a constraint since a

mixture is define up to a permutation of the labels (label-switching). For the weights,
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the initialization has been completely non informative by simply set λj = 1/m for
all j = 1, . . . ,m.

Results of this Monte-Carlo experiment are given in Fig. 1, which shows the good
behavior of these algorithms and no clear winner between both strategies, even for
this rather coarse initialization procedure. In this experiment no label switching
occured between the rate parameters. In less than 1% of the replications, λ3 have
been wrongly estimated to very small weight. A more careful examination of these
cases show that the corresponding rates ξ3 are then also very small (< 10−3), so that
these cases correspond to a degenerate estimation of the third component.
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rate parameters
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Figure 1: Boxplots of estimates for 300 replications of two EM algorithms started
from a θ0 given by the “uniform binning” described above, for n = 500 sample size
and average censoring rate of 16%. EM algorithms using complete data (t,d,z) are
in white, and complete data (x, z) in grey. Horizontal dotted lines are true values.

4.3 Stochastic EM for parametric model with censored data

As explained in Section 2.3, using stochastic versions of EM only makes sense when
dealing with parametric families for which the M-steps of the genuine EM algorithms
for censored mixture (Sections 2.1 and 2.2) are not in closed form. This is the case,
e.g., for a mixture of Weibull distributions which can be expressed in terms of its
survival function

Ḡ(x) =
m
∑

j=1

λj exp

[

−
(

x

ηj

)βj

]

(22)
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with shape parameters β = (β1, . . . , βm) and scale parameters η = (η1, . . . , ηm). The
Weibull distribution is commonly used in reliability analysis because it can captures
different kinds of failure behavior through its shape parameter: infant mortality when
0 < β < 1, constant failure rate (exponential distribution) when β = 1, wear-out
when β > 1.

We have chosen to apply the parametric St-EM algorithm to a synthetic model
similar to those used to model satellite reliability, as in Castet and Saleh (2010)
and Dubos et al. (2010). The model we precisely focused on is a m = 2 com-
ponents mixture of Weibull distributions fitted on n = 1394 actual lifetime data,
where component 1 with β1 = 0.4477 and η1 = 4102 years captures infant mortality
(representing a proportion λ1 = 0.9466 of the population), and component 2 with
β2 = 7.163 and η2 = 9.2 years corresponds to an increasing failure rate and wear-out
behavior for large satellites (see Table 5 in Dubos et al. (2010)).

We have simulated artificial data based on this actual reliability model since the
real data are not publicly available, with similar but rounded parameters (see the
true values in Table 1). Within each M-step of the St-EM algorithm, the MLE on
complete data from each component j, {ti, di : i ∈ χk

j }, as defined in equations (11),
(12) and (13), has been implemented by calling the survreg() function from the survival
package (Therneau and Lumley, 2009). It itself requires an iterative optimization
method within each St-EM iteration. The Monte-Carlo experiment consists in 300
replications of censored samples of size n = 1400, to which we applied a somehow
strong random, exponentially-distributed censoring process, achieving in average 31%
of censored observations.

The initialization of the St-EM algorithm has revealed more tricky for this model.
We first tried the splitting the data approach explained in Section 4.1, computing the
MLE from each subsample using survreg() and optimizing the cutting point based on
the log-likelihood. This approach reveals itself non appropriate here, for a reason due
to the model for the satellite data: component 1 called “infant mortality” by Dubos
et al. (2010) since β1 < 1 is actually associated to a long life duration of several
thousands years, whereas component 2 called “wearout” (β2 > 1) is associated to a
short life of about 9 years. Hence the region of interest of component 2 is imbedded
in the region of interest of component 1, so that, as suggested by an histogram,
no splitting can lead to reasonable MLE’s and starting parameters. We have thus
implemented the more demanding initialization by exhaustive exploration of the 5-
dimensional parameter space Θ. This approach is not data-driven but we added
some “prior information” using what is reasonably expected for these satellite data:
assuming that a good starting parameter could be in the subset

Θ̃ = {λ1 > 0.6, β1 < 1 < β2 < 10, 1000 < η1 < 10, 000, η2 < 50} ,

we applied the following algorithm for each replication:

1. simulate B starting points θ0(1), . . . ,θ0(B) iid∼ UΘ̃;
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2. run B St-EM algorithms started from the θ0(u)’s, for 100 iterations, giving
St-EM estimates θ̂(u), u = 1, . . . , B;

3. set θ̃ = argmax1≤u≤B ℓt,d(θ̂(u)) the estimate achieving the best observed log-
likelihood;

4. run 1000 iterations of the St-EM algorithm started from θ̃ to get a final esti-
mate.

Since this approach involves repetitive tasks for each replication, the code has
been written taking advantage of recent advances in High Performance Computing in
R using the Rmpi package (Yu, 2012). Our code run St-EM’s on multicore computers
or actual clusters, and we ran it on the regional cluster CCSC1.

Each St-EM algorithm was ran using the “averaged” strategy where missing data
at iteration k are simulated from a conditional distribution with parameter based on
the mean of the first k iterates, as discussed in Section 2.3. A careful examination of
the estimates reveals no label switching issue here. Results are given in Table 1 in
terms of means and standard deviations over replications, for each scalar parameter.

true mean stdev
j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

λ 0.95 0.05 0.9504 0.0496 0.0073 0.0073
β 0.45 7.00 0.452 7.461 0.0168 1.3814
η 4100 9 4190.1 9.004 503.298 0.228

Table 1: Estimated means and standard deviations from 300 replications of the
parametric St-EM algorithm for a Weibull mixture with n = 1400 lifetime data
among which 31% are censored in average. Initialization done as described above
with B = 480 starting points iid∼ UΘ̃.

These results show the good behavior of this St-EM strategy in this situation
where one component is characterized by a rather small wheight (λ2 = 5%), com-
pensated by a large dataset (n = 1400), and even with 31% of censored data. The
somehow large standard deviation for η1 is due to about 1% (3 cases out of 300) of
too large estimates η̂3 > 6000 years.

4.4 Stochastic EM for semiparametric model with censored data

We consider the mixture of accelerated lifetime model of Equation (14), in which
the unknown parameter is θ = (λ, ξ, f) chosen here to be λ = 0.4, ξ = 0.1 and for
the nonparametric part f the density of LN (3, 0.5), a lognormal distribution with
mean 3 and standard deviation 0.5 on the log scale. For brevity, we do not show
results on simulated or actual data for this model without censored data, because in

1Centre de Calcul Scientifique en région Centre, http://cascimodot.fdpoisson.fr/?q=ccsc
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this case the M-step for the functional parameter uses a kernel density estimate on
the unscaled sample (15) which is thus very similar in its principle to the St-EM for
a location-shift mixture, as in Bordes et al. (2007). We thus simulated the (much
harder) censored data case, where we choose for the censoring distribution a Uniform
over the interval [20 ; 1300], which results in a censoring rate of about 10% of the
data.

The algorithm needs for initialization of its first E-step (Equations (16) and (17))
initial values for both the Euclidean parameters (λ0, ξ0) and the nonparametric sur-
vival and hazard rate functions F̄ 0 and α0, evaluated at the ti’s and the ξ0ti’s. These
require an initial “unscaled” sample t0 which in turn requires initial component indi-
cators (Z0

1 , . . . , Z0
n). Since a typical histogram of data issued from this model reveals

two bumps, we first applied a splitting of the data as in Section 4.1, with a cutting
point set at s = 60 from the typical histogram, from which we compute an initial
proportion λ0 and, taking into account only the ti’s associated to di = 1, mean times
for each subsample and their ratio that gives an initial scaling ξ0. The means of each
subsample have been also used as initial centers of a k-means clustering algorithm
on t from which the Z0

i ’s are assigned, and initial t0, F̄ 0 and α0 can be built using an
initial Step 3’, Equations (20) and (21). Actually, these computations are done inside
the function running the semiparametric St-EM algorithm in the mixtools package.

We then ran the semiparametric St-EM of Section 3.2 for K = 300 iterations,
where the bandwidth b involved in the nonparametric kernel estimate of the hazard
rate α(·) has been set by calling the R default function bw.nrd0 (Silverman’s “rule
of thumb”), applied to the first subsample only, since most of the data from this
subsample are f -distributed, the other subsample, mostly issued from the scaled f ,
would have lead to an over-estimation of b.

Since the algorithm is stochastic, there is no pointwise convergence to expect.
The algorithm is ran up to some fixed number K of iterations, and then estimates
are computed. For the Euclidean parameters we proceed as usual, by taking the
empirical mean over iterations sequences,

λ̂ =
1

K

K
∑

k=1

λk; ξ̂ =
1

K

K
∑

k=1

ξk. (23)

For the nonparametric F̄ and α, things are not so clear. We have suggested and
tried two strategies in this experiment. The simplest one, so-called “final”, consists
in plotting the F̄K(·) and αK(·) obtained at the last iteration and evaluated at the
last unscaled sample tK . Then, since we are in the censored data situation, the
density f itself is estimated by plug-in fK(·) = F̄K(·)αK(·). The other approach we
tested tries to mimic the average strategy used for the scalar parameters, and is for
that denoted “average” later. It amounts to use ξ̂ from Equation (23) instead of ξK

to compute an “averaged” unscaled ordered sample t̂ from which ˆ̄F (·) and α̂(·) are
estimated using an additional Step 3’ (as in (20) and (21)). Both strategies delivered
very similar estimates in our experiments.
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We ran R = 300 replications of n = 500 observations each, and for each repli-
cation the algorithm was initialized by the above procedure. As explained before,
with stochastic EM sequences, care should be taken with possible label switching is-
sues. A careful examination of the estimates reveals no obvious label switching issue
here. In particular we get λ̂ < 1/2 for all the B replications. Results are given in
Table 2 in terms of means, standard deviations and mse’s over replications, for each
scalar parameter. In addition, we have computed the error for the unknown density
estimation in terms of the Mean Integrated Squared Error (MISE) over replications:

MISE =
1

R

R
∑

r=1

∫ ∞

0

(

f̂ (r)(u) − f(u)
)2

du ≈ 0.00079

where f is the pdf of the lognormal distribution LN (3, 0.5) and the integral is
computed numerically. Each estimated density f̂ (r) at rth replication is computed,

as discussed in Section (3.2), from the product ˆ̄F (·)α̂(·), where these estimates can
be “final” or “average” versions (see above). Hence this error includes the error on
the estimation of the survival function.

Table 2 provides the results over replications for the scalar parameters, where we
can see that the estimation of λ is rather good. The estimation of ξ is also good, even
though it is slightly biased. Figure 2 shows a typical result on a simulated sample of
size n = 500 from this model. Note that this plot is the default output of a generic
plot() command within R, applied to a result returned by the semiparametric St-EM
algorithm implemented in the next version of the mixtools package (Benaglia et al.,
2009b). Fig. 2 illustrates the good estimation of the scalar parameters (despite the
tendency to over estimate ξ), and of the survival function through Kaplan-Meier
estimates on the unscaled samples tK or t̂. The typical estimate of the density f
is, not surprisingly, not so precise since it includes a kernel density estimate of the
hazard rate (20), which itself depends on the choices for the underlying kernel and
bandwidth. Some hints about these issues are given in Section 5.

true mean stdev mse

λ 0.4 0.398 0.0207 0.00043
ξ 0.1 0.112 0.00793 0.0002

Table 2: Estimated means, standard deviations and MSE’s from 300 replications of
the semiparametric St-EM algorithm with n = 500 lifetime data among which 10%
are censored in average.

4.5 An example on actual data

We study in this section an actual dataset consisting of n = 2057 observations (t, d)
among which 26% are censored. These lifetimes correspond to times of wearout of
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mechanical parts collected by the Turbomeca (TM) company2. These mechanical
parts (inspected on a regular basis) are used in two “configurations”, and depending
on that are replaced typically after 3000 or 6000 hours. The configurations are not
observed here, so that it is reasonable to assume that a two-components mixture
model corresponding to two different average lifetimes is appropriate, even though
the histogram of t, depicted in Fig. 3, does not show by itself a clear bimodal picture.

Parametric models. We first choose to fit parametric two-components mixtures
with Stochastic EM algorithms from Section 2.3, for two parametric families for
which the MLE on single sample of censored data is implemented in the survreg()
function of the survival package, so that the M-step (equations(12) and (13)) does
not require much additional coding. We applied mixtures of Weibull distributions as
in Section 4.3 model (22), and mixtures of lognormal distributions.

For actual data the initialization of EM or St-EM algorithms is a crucial question,
since poor starting points can lead to stabilization near unmeaningful local maxima
of the likelihood. This remains an issue even for stochastic versions because of the
averaging procedure detailed in Section 2.3. We choose first to apply the splitting
procedure for univariate data described in Section 4.1, where for each subsample a
parametric (Weibull or lognormal) model has been fit using the survival package, to
obtain an initial θ0 after log-likelihood optimization in the cutting point s since the
histogram of the TM data (Fig. 3) does not exhibit a bimodal shape. We applied the
splitting procedure for a sequence of s ∈ S = {1000, 1200, . . . , 5000}. Surprisingly,
the estimates were heavily dependent from the starting positions (even after about
K = 10, 000 St-EM iterations), and the largest values of the log-likelihood were
obtained for degenerate models corresponding more or less to a single Weibull or
lognormal distribution. This suggest that these parametric families may not be
appropriate for the TM data. To confirm this, we even ran the same procedure on
simulated but similar data from true Weibull mixtures. The procedure above with
optimization of s 7→ ℓ(θ̂(s)) resulted in good St-EM estimates and less dependence
from the initial θ0(s)’s. These results are not detailed here for brevity. However,
from the histogram (Fig. 3) and the prior knowledge we have for the TM data, a
binning procedure with s ≈ 3000 seemed to be a reasonable choice, so we illustrate
the approach with that initialization here. The estimated Weibull and lognormal
components from each mixture models are provided in Fig. 3, and the corresponding
mixture survival functions are plotted for comparison in Fig. 4.

Semiparametric model. The previous study argue for trying to fit the semipara-
metric mixture model (14) to these data. We thus splitted the data in two bins
at s = 3000 as previously, and computed mean times and their ratio that gives an
initial scaling ξ0 ≈ 0.4 (the censoring/observed indicator was not taken into account

2The authors thank the Turbomeca Company http://www.turbomeca.com that allowed us to

use these data.
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here). We then ran the semiparametric St-EM of Section 3.2 for K = 500 itera-
tions, with several settings for the bandwidth b involved in the nonparametric kernel
estimate of the hazard rate α(·). The R standards settings (bw.nrd0, biaised cross
validation, . . . ) return bandwidths between b = 223 and b = 287, that result in
slightly too jagged density estimate, so that we finally used b = 300. This gave
estimates of the Euclidean parameters λ̂ = 0.421 and ξ̂ = 0.643. Note that all the
bandwidth trials gave approximately similar estimates. The fitting of the mixture
survival function,

λ̂Ŝ(t) + (1 − λ̂)Ŝ(ξ̂t),

where Ŝ is the “average” estimate of the survival function (i.e. computed with an
additional M-step based on the average of the posterior probabilities over iterations,
as explained before) is compared to the plain Kaplan-Meier estimate of (t,d), and
to the Weibull and lognormal mixtures fit in Fig.4. The slightly better fitting of the
semiparametric mixture model (particularly near the decay at about 3000 hours), and
the estimated scaling ξ̂ in accordance with the prior information that the ratio of
lifetimes between the two possible subpopulations could be approximately 1/2 show
that, if there is a good reason to account for the existence of two sub-populations,
then this model is a preferable solution. This illustrates the better flexibility provided
by the nonparametric assumption.

5 Discussion

We have proposed several iterative methods based on EM and Stochastic EM method-
ologies, for parametric and semiparametric identifiable mixture models designed for
randomly right censored lifetime data. For some simple parametric situations, it was
possible to define genuine EM algorithms. For more intricate models we have shown
that the introduction of stochastic steps in EM-like algorithms provides practical so-
lutions taking advantage of the simulated complete data. Several of these algorithms
have been compared on a case study for actual data.

For censored semiparametric mixtures, the stochastic step is an even more at-
tractive tool since it allows direct and per-component computation of nonparamet-
ric, Kaplan-Meier estimates of the survival function. This semiparametric St-EM
algorithm also requires hazard rate kernel density estimates, that raise kernel and
bandwidth issues. We have for now implemented and tested three basic kernels:
the Gaussian, a triangular and an adaptive triangular kernel preventing the “mass
leaking” near 0. Indeed, it is known that for nonparametric estimation from survival
data on the positive real line, a Gaussian kernel is not a good choice because of this
mass leaking for observations too close to 0. After some preliminary experiments,
we finally apply here an adaptive triangular kernel, where “adaptive” means that the
shape of the triangle is adapted for observations too close to 0, for which usage of
the regular triangle at the chosen bandwidth would result in a positive mass below 0.
The bandwidth has often simply been set here to R default, which is probably not the
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best method for this model. The choices of kernel and bandwidth definitely require
more investigations, that are beyond the scope of the present paper.

Finally, we reiterate that the computational work in this paper has been done
using an upcoming next version of the mixtools package for the R statistical software
(Benaglia et al., 2009b; R Development Core Team, 2010).
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Figure 2: Sample output of the semiparametric St-EM algorithm “final” estimate, for
n = 500 censored observations with 10% censored. True values are horizontal dotted
lines in top panels (scalar parameters), and dotted lines from LN (3, 0.5) in bottom
panels (functional parameter).
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Figure 3: The Turbomeca (TM) data together with the components λ̂j f̂j’s from St-
EM fits for m = 2 components Weibull mixture (solid lines), and lognormal mixture
(dashed lines); initialization based on a binning with s = 3000.
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Figure 4: Kaplan-Meier, Weibull mixture, lognormal mixture (from parametric St-
EM algorithms) and semiparametric scaling mixture (from semiparametric St-EM
algorithm) survival estimates for the TM data.


