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Abstract

We present in this paper several iterative methods based on EM and Stochas-
tic EM methodology, that allow to estimate parametric or semiparametric mix-
ture models for randomly right censored lifetime data, provided they are identi-
fiable. We consider different levels of completion for the (incomplete) observed
data, and provide genuine or EM-like algorithms for several situations. In par-
ticular, we show that in censored semiparametric situations, a stochastic step
is the only practical solution allowing computation of nonparametric estimates
of the unknown survival function. The effectiveness of the new proposed algo-
rithms is demonstrated in simulation studies.

Keywords. Censored data; EM algorithm; finite mixture; semiparametric mixtures;
reliability; survival data.

1 Introduction

Estimating unknown parameters of a reliability mixture model may be a more or less
intricate problem, especially if durations are censored. In the parametric framework
one approach consists in minimizing the distance between a parametric distribution
and its nonparametric estimate. Several distances may be chosen: e.g. Hellinger
in Karunamuni and Wu (2009) or Cramèr-von Mises in Beutner and Bordes (2011).
These methods fail to account semiparametric mixture models without training data.
There are many iterative algorithms to reach mixture models maximum likelihood
estimates, mostly in the well-known class of EM algorithms (see section 1.1 below),
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but few of them handle the additional problem of censoring. Chauveau (1995) pro-
posed extentions of EM and of the Stochastic EM algorithm (Celeux and Diebolt,
1986) to handle Type-I deterministic right censoring. One advantage of the Stochas-
tic EM algorithm is that it can be extended easily to some semiparametric mixture
models provided they are identifiable (see e.g. Bordes et al. (2007)).

We present in this paper several iterative methods based on Monte Carlo simula-
tion and Stochastic EM-like algorithms for estimation of identifiable (semi-)parametric
right censored reliability mixture models. We first detail in this section the general
model and notations that will be used throughout the paper. The objective is to fit n
independent and identically distributed (i.i.d.) lifetime observations taking values in
R

+, from a lifetime density

X = (X1, . . . , Xn) i.i.d. ∼ g(x|θ),

where θ denotes the model parameter. It will always be assumed that these lifetime
data come from a finite mixture of m components, i.e.

g(x|θ) =

m
∑

j=1

λjfj(x), θ = (λ,f), (1)

where λ = (λ1, . . . , λm) are the component weights satisfying
∑m

j=1 λj = 1, and f =
(f1, . . . , fm) are the component densities. We define the cumulative density function
(cdf) of component j by Fj(·), the mixture cdf by G(x|θ) =

∑m
j=1 λjFj(x), with

corresponding survival (reliability) functions F̄j(·) = 1 − Fj(·) and Ḡ(·) = 1 − G(·).
We will in addition often allow the models to handle random right-censored data.

This random censoring process is described by a random variable C with density
function h, cdf H and survival function H̄(·) = 1 − H(·). In the right censoring
setup the available information is

T = min(X, C), D = I(X ≤ C).

The n lifetime data x = (x1, . . . , xn) iid ∼ g are associated to n censoring times
c = (c1, . . . , cn) iid ∼ h. The observations are finally in the censoring case

(t,d) = ((t1, d1), . . . , (tn, dn)) ,

where ti = min(xi, ci) and di = I(xi ≤ ci), i = 1, . . . , n.

1.1 Missing data and EM algorithms

The association of EM algorithms with mixture models has a long history since the
seminal paper of Dempster et al. (1977) in which the initials “EM” were coined, and
a finite mixture model was presented as a missing data example. A recent account
of EM principle, properties and generalizations can be found in McLachlan and
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Krishnan (2008), and mixture models are deeply detailed in McLachlan and Peel
(2000). In the missing data setup, the n-fold product of g, say g(·|θ), corresponds to
the incomplete data pdf, associated to the log-likelihood ℓx(θ) =

∑n
i=1 log g(xi|θ).

When maximizing ℓx(θ) leads to a difficult problem (such as in, e.g., the mixture
model situation), considering x as an incomplete data resulting from a non-observed
and suitable complete data y often helps. Assuming y comes from a complete data
pdf gc, the EM algorithm iteratively maximizes the operator

Q(θ|θk) = E[log gc(y|θ)|x, θk],

the expectation being taken relatively to the conditional distribution of (y|x), for
the value θk of the parameter at iteration k. Given an arbitrary starting value θ0,
the EM algorithm generates a (deterministic) sequence (θk, k = 1, 2, . . .) :

1. E-step: compute Q(θ|θk)

2. M-step: set θk+1 = argmaxθ∈Θ Q(θ|θk).

In the present setup the observed data (t,d) depends on x which comes from
a finite mixture with pdf g, hence missing data are naturally involved (McLachlan
and Peel, 2000). In the mixture framework, the complete data associated to x

correspond to the situation where the component of origin z ∈ {1, . . . ,m} of each
individual lifetime x is observed. The complete data distribution of (X, Z) is given
by Pθ(Z = z) = λz and (X|Z = z) ∼ fz.

When censored lifetimes (t,d) are observed, we may think of two stages for the
associated complete data: the simplest one is to consider the component indicators
z = (z1, . . . , zn) as missing like in the usual mixture situation, so that (t,d,z) is
the complete data. But we can also consider in addition the censored observations
(xi, i ∈ {1, . . . , n} : di = 0) as missing (this is the case in Chauveau (1995) for
deterministic censoring), so that the complete data is (x, z). This latter model allows
in the stochastic EM machinery (introduced in Section 2.3) to plug standard MLE of
the parameters for simple random sample from each population, whereas the former
gives a simpler algorithmic implementation but requires MLE on censored data, that
may be more complex numerically, as it will be illustrated in further Sections.

1.2 Nonparametric estimation under censoring

We recall here some classical results concerning estimation in nonparametric situ-
ations, when the available data are (t, d) from a single (i.e., non mixture) lifetime
distribution F . Let us introduce the two counting processes N and Y defined by

N(t) =

n
∑

i=1

I(ti ≤ t, di = 1) and Y (t) =

n
∑

i=1

I(ti ≥ t) t ≥ 0,
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counting respectively the number of failures in [0, t] and the number of items at risk
at time t−. The Nelson-Aalen estimator of the cumulative hazard rate function A is
defined by

Â(t) =

∫ t

0

dN(s)

Y (s)
=

∑

{i:ti≤t}

∆N(ti)

Y (ti)
t ≥ 0,

where ∆N(s) = N(s)−N(s−). The Kaplan-Meier estimator of the survival function
F̄ is defined by

ˆ̄F (t) =
∏

s≤t

(

1 − ∆Â(s)
)

=
∏

s≤t

(

1 − ∆N(s)

Y (s)

)

t ≥ 0.

Let K be a kernel function and bn a bandwidth satisfying bn ց 0 and nbn ր +∞,
it is well known that the hazard rate function α(·) = f(·)/F̄ (·) can be estimated
nonparametrically by

α̂(t) =

∫ +∞

0
Kbn

(t − s)dÂ(s) =
n
∑

i=1

Kbn
(t − ti)

∆N(ti)

Y (ti)
,

where Kbn
(·) = b−1

n K(·/bn). Then f = α × F̄ can be estimated by f̂(t) = α̂(t) ˆ̄F (t).

Since we consider that the unknown distribution is absolutely continuous with
respect to the Lebesgue measure we have ti 6= tj for i 6= j with probability 1. Let us
denote by t(1) < · · · < t(n) the ordered durations, and write d(i) the corresponding
censoring indicators (d(i) = dj if t(i) = tj). The estimates can be written

Â(t) =
∑

{i:t(i)≤t}

d(i)

n − i + 1
, (2)

ˆ̄F (t) =
∏

{i:t(i)≤t}

(

1 −
d(i)

n − i + 1

)

, (3)

and

α̂(t) =
n
∑

i=1

1

bn

K
(

t − t(i)

bn

)

d(i)

n − i + 1
. (4)

For more properties about these estimators see, e.g., Andersen et al. (1993).

2 Parametric mixture model with censored data

If we assume that the jth component density is restricted to fj(·) = f(·|ξj) ∈ F ,
where F is a parametric family indexed by a Euclidean parameter ξ ∈ R

d. Model (1)
becomes

X ∼ g(x|θ) =

m
∑

j=1

λjf(x|ξj), (5)
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where θ = (λ, ξ) = (λ1, . . . , λm, ξ1, . . . , ξm) is the (Euclidean) model parameter. The
cdf of the jth component reduces to Fj(·) = F (·|ξj). As explained in Section 1.1,
two EM algorithms can be defined in this case, depending on the desired level for
the complete data.

2.1 EM algorithm for complete data (t, d, z)

We consider here that the missing information is only the component of origin of
the n lifetimes. The complete data pdf (where informally densities and probabilities
are denoted fθ) is given by

f c
θ(T = t, D = 1, Z = z) = Pθ(z) fθ(D = 1, T = t|Z = z)

= λz fθ(C ≥ X,X = t|z)

= λz Pθ(C ≥ t) fθ(X = t|z)

= λz f(t|ξz)H̄(t),

and similarly f c
θ
(t, 0, z) = λzF̄ (t|ξz)h(t). This can be summarized by

f c(t, d, z|θ) =
[

λzf(t|ξz)H̄(t)
]d [

λzF̄ (t|ξz)h(t)
]1−d

. (6)

The observed data log-likelihood is then given by taking the marginal of the complete-
data pdf w.r.t. z,

ℓt,d(θ) = log

(

n
∏

i=1

f(ti, di|θ)

)

=

n
∑

i=1

log
(

H̄(ti)
dih(ti)

1−di

)

+

n
∑

i=1

log





m
∑

j=1

λjf(ti|ξj)
diF̄ (ti|ξj)

1−di



 ,

where the first sum does not depends on θ. The EM methodology amounts here to
iteratively maximize

Q(θ|θk) = E

[

log f c(t,d,Z|θ) | t, d,θk
]

=
n
∑

i=1

E

[

log f c(ti, di, Zi|θ) | ti, di, θ
k
]

,

where f c denotes the n-fold product of f c, and the rightmost term comes from the
iid assumption on the complete data. Computing this expectation (in Z) requires
the essential ingredient of any EM algorithm for finite mixture, i.e. the definition
of pk

ij , the posterior probability that the ith observation (an observed or censored
lifetime) belongs to component j, conditional on the data and the current value of
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the parameter at iteration k :

pk
ij := P(Zi = j|ti, di,θ

k)

=

(

λk
j f(ti|ξk

j )H̄(ti)
∑p

ℓ=1 λk
ℓ f(ti|ξk

ℓ )H̄(ti)

)di
(

λk
j F̄ (ti|ξk

j )h(ti)
∑p

ℓ=1 λk
ℓ F̄ (ti|ξk

ℓ )h(ti)

)1−di

=

(

λk
j f(ti|ξk

j )
∑p

ℓ=1 λk
ℓ f(ti|ξk

ℓ )

)di
(

λk
j F̄ (ti|ξk

j )
∑p

ℓ=1 λk
ℓ F̄ (ti|ξk

ℓ )

)1−di

(7)

= λk
j F̄ (ti|ξk

j )

(

α(ti|ξk
j )

∑p
ℓ=1 λk

ℓ α(ti|ξk
ℓ )F̄ (ti|ξk

ℓ )

)di
(

p
∑

ℓ=1

λk
ℓ F̄ (ti|ξk

ℓ )

)di−1

, (8)

where equation (8) is a rewriting of equation (7) using only survival and hazard
rate function for component j, α(·|ξj) = f(·|ξj)/F̄ (·|ξj), that will be used later in
Section 3.2. Note that these posterior probabilities do not depend on the censoring
distribution. Then

Q(θ|θk) =
n
∑

i=1

m
∑

j=1

pk
ij

[

log(λj) + di log f(ti|ξj) + (1 − di) log F̄ (ti|ξj)
]

+R(t,d,θk, h), (9)

where the remaining term R(t,d,θk, h) does not depends on θ but only on the data,
current parameter and censoring distribution. The maximization for λ is straight-
forward and does not depends on the parametric family considered. Hence the EM
implementation is straightforward if the maximization of Q(θ|θk) in ξ is feasible for
the parametric family F .

Exemple 1 If F is the family of exponential distributions with rate parameter ξ > 0,
f(x|ξ) = ξ exp(−ξx), the iteration θk → θk+1 for the parametric case and complete
data (t, d,z) is given by:

1. E-step: Calculate the posterior probabilities pk
ij using Equation (7), for all

i = 1, . . . , n and j = 1, . . . ,m.

2. M-step: Set

λk+1
j =

1

n

n
∑

i=1

pk
ij for j = 1, . . . ,m

ξk+1
j =

∑n
i=1 pk

ij di
∑n

i=1 pk
ij ti

for j = 1, . . . ,m.

This algorithm behavior is illustrated in Section 4.
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2.2 EM algorithm for complete data (x, z)

In this case the complete data pdf is given by f c(X = x, Z = z|θ) = λz f(x|ξz),
and the missing information is (z, (xi > ti, i ∈ {1, . . . , n} : di = 0)). The EM
methodology aims to iteratively maximize

Q(θ|θk) = E

[

log f c(X, Z|θ) | t,d, θk
]

=
n
∑

i=1

E

[

log f c(Xi, Zi|θ) | ti, di,θ
k
]

,

where each expectation is in this case w.r.t. (Xi, Zi). Computing this expectation
requires the (posterior) probability of (Xi, Zi) given Ti = ti, Di = di and for the
parameter value θk. Since the distribution of (X|t, d, Z = j) is a Dirac measure δt

when d = 1, and the pdf of (X|X > t, Z = j) when d = 0, we get

f(x, j|ti, di,θ
k) = pk

ij f(x|ti, di, Z = j,θk)

= λk
j

(

I(x = ti)f(ti|ξk
j )

∑m
ℓ=1 λk

ℓ f(ti|ξk
ℓ )

)di
(

I(x > ti)f(x|ξk
j )

∑m
ℓ=1 λk

ℓ F̄ (ti|ξk
ℓ )

)1−di

.

Again these posterior probabilities do not depend on the censoring distribution which
cancels out. Then

Q(θ|θk) =

n
∑

i=1

m
∑

j=1

pk
ij log(λj)

+

n
∑

i=1

m
∑

j=1

pk
ij

[

di log f(ti|ξj) + (1 − di)

∫ +∞

ti

log f(x|ξj)
f(x|ξk

j )

F̄ (ti|ξk
j )

dx

]

.

Note that as far as λ is concerned, this expression is exactly Equation (9) for the
case where (t,d, z) is the complete data, so that the M-step for λ is identical in both
situations. This EM implementation is not straightforward in general since, except
for very specific parametric families, calculation of Q(θ|θk) is not obtained in closed
form and has to be calculated and maximized by numerical methods.

Exemple 2 If F is the family of exponential distributions with rate parameter ξ > 0,
f(x|ξ) = ξ exp(−ξx) and F̄ (x|ξ) = exp(−ξx). The iteration θk → θk+1 for the
parametric case and complete data (x,z) is given by:

1. E-step: Calculate the posterior probabilities pk
ij as in Equation (7), for all

i = 1, . . . , n and j = 1, . . . ,m.

2. M-step: Set

λk+1
j =

1

n

n
∑

i=1

pk
ij for j = 1, . . . ,m

ξk+1
j =

∑n
i=1 pk

ij
∑n

i=1 pk
ij

(

ti + (1 − di)/ξk
j

) for j = 1, . . . ,m.
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Note that the update for ξj can also be written as the weighted average

ξk+1
j =

∑n
i=1 pk

ij
∑n

i=1 pk
ij

(

diti + (1 − di)(ti + 1/ξk
j )
)

which means that each observed failure (di = 1) contributes with ti, and each censored
lifetime (di = 0) contributes with ti + 1/ξk

j , as in simple censored sample case. This
algorithm behavior is illustrated in Section 4.

2.3 Stochastic EM algorithms

The advantage of using a genuine EM algorithm as in Sections 2.1 and 2.2 is that it
has a provable ascent property for the observed log-likelihood, as any EM does. On
the other hand, using an EM algorithm requires the implementation of the M-step
for the component parameters (the ξj ’s), which is specific of the parametric family F ,
and may often be tedious, particularly here where expression of survival functions
are needed (e.g. for deterministic censored mixtures of Weibull distributions, see
Chauveau (1995)).

When this is the case, Stochastic versions of EM like the one initially introduced
by Celeux and Diebolt (1986) may overcome this difficulty at the expand of the loss
of the ascent property, and more complicated convergence properties (general results
from Nielsen (2000) give conditions for convergence of the sequence of estimates,
which is generally a Markov Chain). In the mixture problem without censoring, the
Stochastic EM (St-EM) principle consists in simulating the missing data z from the
posterior probabilities, so that the estimation gets back to standard MLE procedures
applied to m simple random samples, allowing in particular usage of standard MLE
software packages.

In the present parametric setup with censoring, we have considered two kinds of
missing data: because of the mixture the z are missing; but due to the censoring
process, some of the xi’s are also missing (replaced by the incomplete observations
{ti, i = 1, . . . , n : di = 0}. We may think about simulating all the missing data as in
Chauveau (1995) in the deterministic type-I censoring case, or simulating just the
indicator z, which has been the preferred solution here (i.e. the complete data are
(t, d,z)), since it allows straightforward M-step implementation by calling standard
MLE packages for right censored data from standard distributions, as e.g. the survival
package (Therneau and Lumley, 2009) for the R statistical software (R Development
Core Team, 2010). Morevover simulation of z alone seems to be up to know the
only practical solution for the semi-parametric extensions we propose later on. An
example of this St-EM approach for censored mixtures of Weibull distributions is
given in Section 4.2.

Let pk
i = (pk

i1, . . . , p
k
im) denote the posterior probability vector associated to

observation i, and Zi ∼ Mult(1,pk
i ) a multinomial distributed random variable with
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parameters 1 and pk
i (i.e., Zi ∈ {1, . . . m} with probabilities P(Zi = j) = pk

ij)). The

iteration θk → θk+1 of the St-EM algorithm is given by:

1. E-step: Calculate pk
ij from Equation (7), for all i = 1, . . . , n and j = 1, . . . ,m.

2. Stochastic step: Simulate Zk
i ∼ Mult(1,pk

i ), i = 1, . . . , n, and define the
subsets

χk
j = {i ∈ {1, . . . , n} : Zk

i = j}, j = 1, . . . ,m. (10)

3. M-step: For each component j ∈ {1, . . . ,m}

λk+1
j = Card(χk

j )/n,

and
ξk+1
j = arg max

ξ∈Ξ
Lj(ξ), (11)

where
Lj(ξ) =

∏

i∈χk
j

(f(ti|ξ))di(F̄ (ti|ξ))1−di . (12)

Asymptotic results of ergodic averages from a St-EM algorithm From
Nielsen (2000), several asymptotic results may be derived under regularity assump-
tions. Let us temporarily add the subscript n to θk to remember that our esti-
mates depend on both k and n) The main important result deals with the asymp-
totic behavior (in n) of the weak limit (in k) θn of (θk

n)k≥0. Nielsen (2000) shows
that if θ0 is the true value of the unknown parameter θ, then

√
n(θn − θ0) con-

verges in distribution to a centered Gaussian random vector with variance-covariance
matrix I−1(θ0)

[

2I − {I + F (θ0)}−1
]

where I(θ0) denotes the observed data infor-
mation and F (θ0) is the expected fraction of missing information. As a conse-
quence the basic Stochastic EM algorithm produces estimators whose the asymp-
totic variance can be divided into a model part I−1(θ0) and a simulation part
I−1(θ0)

[

I − {I + F (θ0)}−1
]

. Various strategies can be used to reduce the simu-
lation part of the variance. For example Nielsen shows that averaging the last J iter-
ations of the Markov chain, i.e. taking the weak limit (in k) of (θk−J+1

n + · · ·+θk
n)/J ,

reduces the simulation part of the asymptotic variance to a O(1/J). Similar asymp-
totic results are obtained by increasing the number of simulation per iteration as for
example in the MCEM algorithm by Wei and Tanner (1990).

In this paper two different strategies are proposed. Either we use the standard
St-EM algorithm that produces a Markov chain (θk)k≥0 and our final estimate is

the ergodic mean θ̄
K

of the first K iterates, or at iteration k + 1 missing data are
simulated by fixing θ to the mean of the first k iterates, i.e. θ = (θ1 + · · · + θk)/k.

Again the final estimate of θ is nothing but the ergodic mean θ̄
K

of the first K
iterates. In the latter case the sequence (θk

n)k≥0 is no longer a Markov chain but it
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generally results in more stable algorithm and in both cases we can expect that the
variance part due to simulation is almost deleted. Then the asymptotic variance of
the estimator can be derived following the method of Louis (1982) (see also formula
(42) in Nielsen (2000)).

3 Semiparametric two-components mixture models

We consider now a mixture of accelerated lifetime model, where two lifetime popu-
lations are mixed with lifetime distributions equal up to a scale parameter:

g(x|λ, ξ, f) = λf(x) + (1 − λ)ξf(ξx), x > 0. (13)

This model means that the lifetime has the distribution of a r.v. (say) U ∼ f when
belonging to component 1, and of U/ξ when belonging to component 2. The unknown
parameter is θ = (λ, ξ, f) ∈ (0, 1) × R

+
∗ × F where F is a set of density functions.

Let us define by θ0 = (λ0, ξ0, f0) and θk = (λk, ξk, fk) the initial and current values
of θ.

Nonparametric or semi-parametric models like (13) are generally not identifiable
without additional assumptions on the underlying nonparametric densities. Indeed
identifiability, whereby the distribution of the data uniquely determines the param-
eter values, is a difficult question. In the particular case of model (13) where X is
distributed according to a mixture of scaled random variables f -distributed, trans-
forming X to Y = log(X) gives a mixture of the common density ϕ(y) = eyf(ey)
differing only by a shift parameter. It has been proved that if ϕ(·) is even, then such
shift-location semiparametric mixtures are identifiable (see Bordes et al. (2006) for
the two-component case, and Hunter et al. (2007) for the two and three-component
cases). Therefore, identifiability of model (13) holds if the density function f satisfies
the constraint that y 7→ eyf(ey) is an even function. This family of density functions
includes for example log-normal distributions.

3.1 Semiparametric St-EM algorithm without censoring

If observations from the scale mixture model (13) are uncensored then only a n-
sample t is observed (note that t is in this case nothing but x since there is no
censored data).

Step 1. For each item i ∈ {1, . . . , n}:

pk
i1 =

λkfk(ti)

λkfk(ti) + (1 − λk)ξkfk(ξkti)
,

then set pk
i = (pk

i1, 1 − pk
i1).
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Step 2. Simulate Zk
i ∼ Mult(1,pk

i )) and define subsets

χk
j = {i ∈ {1, . . . , n} : Zk

i = j}, j = 1, 2.

Step 3. Update Euclidean parameters:

λk+1 = n1/n where n1 = Card(χk
1),

ξk+1 =
n − n1

n1

∑

i∈χk
1
ti

∑

i∈χk
2
ti

Step 3’. Update the functional parameters f : Let tk = (tk1, . . . , t
k
n) be the “un-

scaled sample” {ti; i ∈ χk
1} ∪ {ξkti; i ∈ χk

2}. Set:

fk+1(x) =

n
∑

i=1

1

nb
K
(

x − tki
b

)

, (14)

where K is a kernel function and b a bandwidth.

Remark: Note that at the third step ξk is updated using a moment estimation
method instead of a Maximum Likelihood principle. This latter method is hard
to use here since it requires to estimate nonparametrically the first derivative of f
which generally leads to unstable estimates. This and the additional nonparametric
step 3′ may precludes application of general results from Nielsen (2000) on St-EM
convergence. Hence convergence of this algorithm is yet only based on empirical
numerical evidence.

3.2 Semiparametric St-EM algorithm for right censored data

We consider now that lifetime data from the scale mixture model (13) are randomly
censored like in Section 1, so that only a n-sample (t,d) is observed, so that the
nonparametric estimation techniques for censored data (recalled in Section 1.2) have
to be used to estimate the functional parameter f . In particular, for computing the
posterior probabilities using (7) or (8), estimates of the survival function F̄ and the
hazard rate α(·) associated to f are needed. F̄ is naturally estimated by the Kaplan-
Meier estimator (3), and α(·) by the kernel estimate (4). It appears that modified
versions of kernel density estimates can be imbedded in “EM-like” algorithms for semi-
or non-parametric mixtures. For example, Benaglia et al. (2009a) define a weighted
kernel density estimate for the density fj of component j, in which the ith observation
is weighted according to its posterior probability pk

ij at step k. Unfortunately, there
is no direct way to use these posterior probabilities to define a similar weighted
version of the Kaplan-Meier estimate (3). In this case, stochastic versions of the EM
algorithm provide the workable solutions that we propose here: simulation of z as
in Section 2.3 allows to define at each iteration sub-samples corresponding to each
component, from which Kaplan-Meier estimates can be directly computed.
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St-EM for semi-parametric scale mixture and censored data

Step 1. E-step: For each item i ∈ {1, . . . , n},

if di = 0, pk
i1 =

λkF̄ k(ti)

λkF̄ k(ti) + (1 − λk)F̄ k(ξkti)
, (15)

else

pk
i1 =

λkαk(ti)F̄
k(ti)

λkαk(ti)F̄ k(ti) + (1 − λk)ξkαk(ξkti)F̄ k(ξkti)
, (16)

then set pk
i = (pk

i1, 1 − pk
i1).

Step 2. Stochastic step: Simulate Zk
i ∼ Mult(1,pk

i ), i = 1, . . . , n, and define the
subsets

χk
j = {i ∈ {1, . . . , n} : Zk

i = j}, j = 1, 2. (17)

Step 3. Update the Euclidean parameters:

λk+1 = n1/n where n1 = Card(χk
1).

Let S̄k
j denotes the Kaplan-Meier survival estimate associated to {ti : i ∈ χk

j },
for j = 1, 2, and Mk

j = maxi∈χk
j
(ti), then set

ξk+1 =

∫Mk
1

0 S̄k
1 (s) ds

∫Mk
2

0 S̄k
2 (s) ds

(18)

Step 3’. Update the functional parameters α and F̄ :
Let tk = (tk1, . . . , t

k
n) be the order statistic of {ti; i ∈ χk

1} ∪ {ξkti; i ∈ χk
2}, so

that tk1 ≤ · · · ≤ tkn, and dk = (dk
1, . . . , d

k
n) be the corresponding indicators. Set:

αk+1(x) =

n
∑

i=1

1

b
K
(

x − tki
b

)

dk
i

n − i + 1
, (19)

and

F̄ k+1(x) =
∏

{i:tki ≤x}

(

1 − dk
i

n − i + 1

)

, (20)

where K is a kernel function and b a bandwidth.

Note that here also ξk is updated using a moment estimation method instead
of a Maximum Likelihood principle. Implementation considerations such as starting
values, choices for kernels and bandwidths are discussed in Section 4.
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4 Implementation and Examples

We propose in this Section some examples illustrating most of the parametric and
semi-parametric, genuine and stochastic EM or EM-like algorithms that have been
introduced in this paper. Note that all the algorithms shown here will be publicly
available in an upcoming version of the mixtools package (Benaglia et al., 2009b) for
the R statistical software (R Development Core Team, 2010).

As is typically the case for EM-type algorithms, the choice of the initial start-
ing parameter values is important. When performing Monte-Carlo experiments, we
always started the algorithms from the true parameter values to prevent a possible
“label-switching” as much as possible. This label-switching issue arises because the
particular ordering of the subscripts j = 1, . . . ,m in equation such as (1) is arbi-
trary: A permutation of these subscripts gives exactly the same density function,
so that the best we can do is to estimate the parameters up to a permutation of
the labels. However, in a simulation study based on Monte-Carlo replications, this
issue can lead to flawed average estimates because there is no guarantee that only
estimates from the “same” component are averaged together. For a fuller account of
the label-switching issue, see McLachlan and Peel (2000), and Celeux et al. (1996)
for label switching issues in Stochastic-EM algorithms.

Note that starting the algorithms from the true parameter is not an “unfair”
procedure, since on real data the common practice consists in starting the algorithm
from several values uniformly spreaded on the parameter space (or on the region of
interest of it). Then the retained EM estimate is the estimate achieving the maximum
of the observed likelihood among all the trials, which is typically the location of the
global maximum closest to the true parameter value.

4.1 EM algorithm for parametric model with censored data

The algorithms of Section 2 for mixture of lifetime distributions with censored data
has been implemented for exponential densities,

g(x) =

m
∑

j=1

λjξj exp(−ξjx) x > 0,

and the two types of complete data ((t,d,z) and (x,z) (see Examples 1 and 2). We
choose here a m = 3 components model with true parameters λ = (0.2, 0.3, 0.5) and
ξ = (4, 1, 0.02). We assume that C is uniformly distributed on [0, c], where we have
chosen c = 150 in order to achieve an average censoring rate of about 16%. Fig. 1
shows the good behavior of a particular EM sequence for n = 500 observations among
which 13.8% are censored, and even using initial values that are not the true values:
λ0 = (1/3, 1/3, 1/3) is “non-informative”, and ξ0 = (5, 0.5, 0.1) is just ordered like
the true ξ. Estimates are accurate except for ξ1 in this particular case.
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We also apply on this model the two EM strategies, i.e. for the two levels of com-
plete data, over 300 Monte-Carlo replications started with the true θ. As explained
previously, this initialization together with a true model with somehow different rates
has been chosen to avoid label switching across replications in Monte-Carlo simula-
tions (even if the component densities are severely overlapping because of the shape
of the exponential component densities). In this experiment no label switching oc-
cured between rate parameters. Results of this Monte-Carlo experiment are given in
Fig. 2, which shows the good behavior of these algorithms, similar behaviour and no
clear winner between both strategies.
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Figure 1: Sequence of output of the EM algorithm started from “arbitrary” parameters
λ0 = (1/3, 1/3, 1/3) and ξ0 = (5, 0.5, 0.1), for n = 500 observations with 13.8%
censored; horizontal grey lines are true values.

4.2 Stochastic EM for parametric model with censored data

As explained in Section 2.3, using stochastic versions of EM only makes sense when
dealing with parametric families for which the M-steps of the genuine EM algorithms
for censored mixture (Sections 2.1 and 2.2) are not in closed form. This is the case,
e.g., for a mixture of Weibull distributions which can be expressed in terms of its
survival function

Ḡ(x) =

m
∑

j=1

λj exp

[

−
(

x

ηj

)βj

]
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Figure 2: Boxplots of estimates for 300 replications of two EM algorithms started
from the true θ, for n = 500 sample size and average censoring rate of 16%; white
boxplots are EM algorithms using complete data (t,d,z), and grey boxplots are EM
algorithms using complete data (x,z); horizontal dotted lines are true values.

with shape parameters β = (β1, . . . , βm) and scale parameters η = (η1, . . . , ηm).
Weibull distributions are commonly used in reliability analysis because this distri-
bution can capture different kinds of failure behavior through its shape parameter:
infant mortality when 0 < β < 1, constant failure rate (exponential distribution)
when β = 1, wear-out when β > 1.

We have chosen to apply the parametric St-EM algorithm to a synthetic model
similar to those used to model satellite reliability, as in Castet and Saleh (2010)
and Dubos et al. (2010). The model we precisely focused on is a m = 2 com-
ponents mixture of Weibull distributions fitted on n = 1394 actual lifetime data,
where component 1 with β1 = 0.4477 and η1 = 4102 years captures infant mortality
(representing a proportion λ1 = 0.9466 of the population), and component 2 with
β2 = 7.163 and η2 = 9.2 years corresponds to an increasing failure rate and wear-out
behavior for large satellites (see Table 5 in Dubos et al. (2010)).

We have simulated artificial data based on this actual reliability model since
these data are not publicly available. Within each M-step of the St-EM algorithm,
the MLE on complete data from each component j, {ti, di : i ∈ χk

j }, as defined in
equations (10), (11) and (12), has been implemented by calling the survreg() function
from the survival package (Therneau and Lumley, 2009). It itself requires an iterative
optimization method within each St-EM iteration.
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The Monte-Carlo experiment consists in 300 replications of censored samples
of size n = 1400, from the true parameter given above, to which we applied a
somehow strong random censoring process, achieving in average 30.6% of censored
observations. Each St-EM algorithm was ran for K = 500 iterations using the
“averaged” strategy where missing data at iteration k are simulated from the mean
of the first k iterates, as discussed in Section 2.3. A careful examination of the
estimates reveals no label switching issue here. Results are given in Table 1 in terms
of means and standard deviations over replications, for each scalar parameter.

true mean stdev
j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

λ 0.9466 0.0534 0.9466 0.0534 0.00708 0.00708
β 0.4477 7.1630 0.449 7.457 0.0172 1.0145
η 4102.000 9.201 4178.20 9.19 473.923 0.211

Table 1: Estimated means and standard deviations from 300 replications of the
parametric St-EM algorithm for a Weibull mixture with n = 1400 lifetime data
among which 30.6% are censored in average. All the replications were started from
the true parameter value.

These results show the good behavior of this St-EM strategy in this situation
where one component is characterized by a rather small wheight (λ2 ≈ 5%), com-
pensated by a large dataset (n = 1400), and even with 30% of censored data.

4.3 Stochastic EM for semi-parametric model with censored data

We consider the mixture of accelerated lifetime model of Equation (13), in which
the unknown parameter is θ = (λ, ξ, f) chosen here to be λ = 0.4, ξ = 0.1 and for
the nonparametric part f the density of LN (3, 0.5), a lognormal distribution with
mean 3 and standard deviation 0.5 on the log scale. For brevity, we do not show
results on simulated or actual data for this model without censored data, because in
this case the M-step for the functional parameter uses a kernel density estimate on
the unscaled sample (14) which is thus very similar in its principle to the St-EM for
a location-shift mixture, as in Bordes et al. (2007). We thus simulated the censored
data case, where we choose for the censoring distribution a Uniform over the interval
[20 ; 1300], which results in a censoring rate of about 10% of the data.

The algorithm needs for the first E-step (Equations (15) and (16)) initial val-
ues for both the Euclidean parameters (λ0, ξ0) and the nonparametric survival and
hazard rate functions F̄ 0 and α0, evaluated at the ti’s and the ξ0ti’s. These require
an initial “unscaled” sample t0 which in turn requires initial component indicators
(Z0

1 , . . . , Z0
n). We choose here to first apply a kmeans clustering algorithm on the

lifetime data t with initial centers chosen in a data-driven manner from the histogram
of these data, from which the Z0

i ’s are assigned, and initial t0, F̄ 0 and α0 can be
built using an initial Step 3’ (Equations (19) and (20)). The initial scalar parameters
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have been set to the true scale parameter ξ0 = 0.1 and non-informative arbitrary
λ0 = (1/2, 1/2),

Since the algorithm is stochastic, there is no pointwise convergence to expect.
The algoritm is ran up to some fixed number K of iterations, and then estimates
are computed. For the Euclidean parameters we proceed as usual, by taking the
empirical mean over iterations sequences,

λ̂ =
1

K

K
∑

k=1

λk; ξ̂ =
1

K

K
∑

k=1

ξk. (21)

For the nonparametric F̄ and α, things are not so clear. We have suggested and
tried two strategies in this experiment. The simplest one, so-called “final”, consists in
plotting the F̄K(·) and αK(·) obtained at the last iteration and evaluated at the last
unscaled sample tK . Then, since we are in the censored data situation, the density
f itself can only be estimated using the plug-in estimator fK(·) = F̄K(·)αK(·).
The other approach we tried tries to mimic the average strategy used for the scalar
parameters, and is for that denoted “average” below. It amounts to use ξ̂ from
Equation (21) instead of ξK to compute an “averaged” unscaled ordered sample

t̂ from which ˆ̄F (·) and α̂(·) are estimated using an additional Step 3’ (as in (19)
and (20)).x Both strategies delivered very similar estimates in our experiments.

We ran R = 300 replications of n = 500 observations each, and for each repli-
cation the algorithm was ran for K = 200 iterations. As explained before, with
stochastic EM sequences, care should be taken with possible label switching issues.
A careful examination of the estimates reveals no obvious label switching issue here.
In particular we get λ̂ < 1/2 for all the B replications. Results are given in Table 2
in terms of means and standard deviations over replications, for each scalar parame-
ter. In addition, we have computed the error for the unknown density estimation in
terms of the Mean Integrated Squared Error (MISE) over replications:

MISE =
1

R

S
∑

r=1

∫

(

f̂ (r)(u) − f(u)
)2

du ≈ 0.000831

where f is the pdf of the lognormal distribution LN (3, 0.5) and the integral is
computed numerically. Each estimated density f̂ (r) at rth replication is computed,

as discussed in Section (3.2), from the product ˆ̄F (·)α̂(·), where these estimates can
be “final” or “average” versions (see above). Hence this error includes the error on
the estimation of the survival function.

Table 2 provides the results over replications for the scalar parameters, where we
can see that the estimation of λ is rather good. The estimation of ξ is also good, even
though it is slightly biased. Figures 3 shows a typical result on a simulated sample of
size n = 500 from this model. Note that this plot is the standard output of a generic
plot() command within R, applied to a result returned by the semiparametric St-EM
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algorithm implemented in the next version of the mixtools package (Benaglia et al.,
2009b). Figures 3 illustrates the good estimation of the scalar parameters (despite
the tendency to over estimate ξ, and of the survival function through Kaplan-Meier
estimates on the unscaled samples tK or t̂. The typical estimate of the density f
is, not surprisingly, not so precise since it includes a kernel density estimate of the
hazard rate (19), which itself depends on the choices for the underlying kernel and
bandwidth. Some hints about these issues are given in Section 5.

true mean stdev mse

λ 0.4 0.3995 0.0211 0.00045
ξ 0.1 0.1118 0.00686 0.00019

Table 2: Estimated means and standard deviations from 300 replications of the
semiparametric St-EM algorithm with n = 500 lifetime data among which 10% are
censored in average.

5 Discussion

We have proposed several iterative methods based on EM and Stochastic EM method-
ologies, for parametric and semiparametric identifiable mixture models designed for
randomly right censored lifetime data. For some simple parametric situations, it was
possible to define genuine EM algorithms. For more intricate models we have shown
that the introduction of stochastic steps in EM-like algorithms provide practical
solutions taking advantage of the simulated complete data.

For censored semiparametric mixtures, the stochastic step is an even more at-
tractive tool since it allows direct and per-component computation of nonparamet-
ric, Kaplan-Meier estimates of the survival function. This semiparametric St-EM
algorithm also requires hazard rate kernel density estimates, that raise kernel and
bandwidth issues. We have for now implemented and tested three basic kernels:
the Gaussian, a triangular and an adaptive triangular kernel preventing the “mass
leaking” near 0. Indeed, it is known that for nonparametric estimation from survival
data on the positive real line, a Gaussian kernel is not a good choice because of this
mass leaking for observations too close to 0. After some preliminary experiments,
we finally apply here an adaptive triangular kernel, where “adaptive” means that the
shape of the triangle is adapted for observations too close to 0, for which usage of
the regular triangle at the chosen bandwidth would result in a positive mass below 0.
The bandwidth has simply been set here to R default, which is probably not the best
method for this model. The choices of kernel and bandwidth definitely require more
investigations, that are beyond the scope of the present paper.

Finally, we reiterate that the simulations in this paper have been done with an
upcoming new version of the mixtools package for the R statistical software (Benaglia
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et al., 2009b; R Development Core Team, 2010).
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Figure 3: Sample output of the semiparametric St-EM algorithm “final” estimate.
The algorithm have been started from the true scale parameter and arbitrary λ0 =
(1/2, 1/2), for n = 500 censored observations with 10% censored. True values are
horizontal lines in top panels (scalar parameters), and dotted lines from LN (3, 0.5)
in bottom panels (functional parameter).


