MICROLOCAL LIMITS OF PLANE WAVES AND EISENSTEIN FUNCTIONS
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Abstract. We study microlocal limits of plane waves on noncompact Riemannian manifolds (M, g) which are either Euclidean or asymptotically hyperbolic with curvature -1 near infinity. The plane waves E(z, ξ) are functions on M parametrized by the square root of energy z and the direction of the wave, ξ, interpreted as a point at infinity. If the trapped set K for the geodesic flow has Liouville measure zero, we show that, as z → +∞, E(z, ξ) microlocally converges to a measure µ ξ , in average on energy intervals of fixed size, [z, z + 1], and in ξ. We express the rate of convergence to the limit in terms of the classical escape rate of the geodesic flow and its maximal expansion rate -when the flow is Axiom A on the trapped set, this yields a negative power of z. As an application, we obtain Weyl type asymptotic expansions for local traces of spectral projectors with a remainder controlled in terms of the classical escape rate.

For a compact Riemannian manifold (M, g) of dimension d whose geodesic flow is ergodic with respect to the Liouville measure µ L , quantum ergodicity (QE) of eigenfunctions [START_REF] Shnirelman | Ergodic properties of eigenfunctions[END_REF][START_REF] Zelditch | Uniform distribution of eigenfunctions on compact hyperbolic surfaces[END_REF][START_REF] De Verdière | Ergodicité et fonctions propres du Laplacien[END_REF] states that any orthonormal basis (e j ) j∈N of eigenfunctions of the Laplacian with eigenvalues z 2 j , has a density one subsequence (e j k ) that converges microlocally to µ L in the following sense: for each symbol a ∈ C ∞ (T * M ) of order zero, Op h j k (a)e j k , e j k L 2 (M ) → 1 µ L (S * M ) S * M a dµ L .

(1.1)

Here S * M stands for the unit cotangent bundle, Op h (a) denotes the pseudodifferential operator obtained by quantizing a (see Section 3.1), and we put h j = z -1 j . The proof uses the following integrated form of quantum ergodicity [HeMaRo]:

h d-1 h -1 ≤z j ≤h -1 +1 Op h (a)e j , e j L 2 - 1 µ L (S * M ) S * M
a dµ L → 0 as h → 0.

(1.2)

See Appendix D for a short self-contained proof of this result using the methods of this paper.

In the present paper, we consider a non-compact complete Riemannian manifold (M, g) and show that generalized eigenfunctions of the Laplacian on M known in scattering theory as distorted plane waves or Eisenstein functions, converge microlocally on average, similarly to (1.2), with the limiting measure µ ξ depending on the direction of the plane wave ξ -see Theorem 1. We also give estimates on the rate of convergence in terms of classical quantities defined from the geodesic flow on M -see Theorem 2.

Our microlocal convergence of plane waves is similar in spirit to the QE results (1.1) and (1.2). However, unlike the case of QE where ergodicity of the geodesic flow is essential, our result is based on a different phenomenon, roughly described as dispersion of plane waves.
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This difference manifests itself in the proofs as follows: instead of averaging an observable along the geodesic flow as in the standard proof of quantum ergodicity, we propagate it. See Section 2 for an outline of the proofs of Theorems 1 and 2.

Geometric assumptions near infinity. The manifold M has dimension d = n + 1. For our results to hold, we need to make several assumptions on the geometry of (M, g) near infinity and on the spectral decomposition of its Laplacian ∆. They are listed in Section 4 and we check in Sections 6 and 7 that they are satisfied in each of the following two cases:

(1) there exists a compact set K 0 ⊂ M such that (M \ g 0 , K 0 ) is isometric to R n+1 \ B(0, R 0 ) with the Euclidean metric for some R 0 > 0; here B(0, R 0 ) denotes the ball centered at 0 of radius R 0 , (2) (M, g) is an asymptotically hyperbolic manifold in the sense that it admits a smooth compactification M and there exists a smooth boundary defining function x such that in a collar neighbourhood of the boundary ∂M , the metric has the form

g = dx 2 + h(x) x 2 . (1.3)
where h(x) is a smooth 1-parameter family of metrics on ∂M for x ∈ [0, ε). We further assume that g has sectional curvature -1 in a neighbourhood of ∂M .

In case (1), we call (M, g) Euclidean near infinity, while in case (2), we call it hyperbolic near infinity. Case (2) in particular includes convex co-compact hyperbolic quotients Γ\H n+1see Appendix A. Other possible geometries are discussed in Section 2.1.

Distorted plane waves/Eisenstein functions. Let ∆ be the (nonnegative) Laplace-Beltrami operator on M . In the study of the relation between classical dynamics and high energy behavior it is natural to use the semiclassically rescaled operator h 2 ∆, with h > 0 small parameter tending to zero.

The operator h 2 ∆ has continuous spectrum on a half-line [c 0 h 2 , ∞) (here c 0 is 0 for the Euclidean and n 2 /4 for the hyperbolic case), parametrized by distorted plane waves (or Eisenstein functions in the hyperbolic case) E h (λ, ξ) ∈ C ∞ (M ), satisfying for λ ∈ R,

(h 2 ∆ -λ 2 -c 0 h 2 )E h (λ, ξ) = 0.
(1.4)

Here ξ lies on the boundary ∂M of a compactification M of M . We can think of an element of ∂M as the direction of escape to infinity for a non-trapped geodesic; then ξ is the direction of the outgoing part of the plane wave E h (λ, ξ) at infinity.

For instance, in the case of manifolds Euclidean near infinity, c 0 = 0, ∂M = S n is the sphere, and for m near infinity,

E h (λ, ξ; m) = e iλ h ξ•m + E inc ,
where E inc is incoming in the sense that it satisfies a Sommerfeld radiation condition, or equivalently, that it lies in the image of C ∞ 0 (R n+1 ) under the free (incoming) resolvent R 0 (λ/h) of the Laplacian on the Euclidean space R n+1 . These conditions provide a unique characterization of E h (λ, ξ). We can also write E h (λ, ξ) = E(λ/h, ξ), where E(z, ξ) is the nonsemiclassical plane wave, and rewrite the results below in terms of the parameter z, as in the abstract.

We will freely use the notions of semiclassical analysis as found for example in [Zw], and reviewed in Section 3. We denote elements of the cotangent bundle T * M by (m, ν), where m ∈ M and ν ∈ T * m M . The semiclassical principal symbol of h 2 ∆ is equal to p(m, ν) = |ν| 2 g , where |ν| g is the length of ν ∈ T * m M with respect to the metric g. Therefore, the plane wave E h should be concentrated on the unit cotangent bundle (see [START_REF] Zworski | Semiclassical analysis[END_REF]Theorem 5.3])

S * M := {(m, ν) ∈ T * M | |ν| g = 1}.
If g t : T * M → T * M denotes the geodesic flow, then the Hamiltonian flow of p is e tHp = g 2t .

Semiclassical limits of E h when the trapped set has measure zero. In scattering theory trajectories which never escape to infinity play a special role as they can be observed only indirectly in asymptotics of plane waves. The incoming tail (resp. outgoing tail ) Γ -⊂ S * M (resp. Γ + ⊂ S * M ) of the flow is defined as follows: a point (m, ν) lies in Γ -(resp. Γ + ) if and only if the geodesic g t (m, ν) stays in some compact set for t ≥ 0 (resp. t ≤ 0). The trapped set K := Γ + ∩ Γ -is the set of points (m, ν) such that the geodesic g t (m, ν) lies entirely in some compact subset of S * M .

Our first result states that if µ L (K) = 0, then plane waves E h (λ, ξ) converge on average to some measures supported on the closure of the set of trajectories converging to ξ in M : Theorem 1. Let (M, g) be a Riemannian manifold satisfying the assumptions of Section 4 and suppose that the trapped set has Liouville measure µ L (K) = 0. For Lebesgue almost every ξ ∈ ∂M , there exists a Radon measure µ ξ on S * M such that for each compactly supported h-semiclassical pseudodifferential operator A ∈ Ψ 0 (M ), we have as h → 0,

h -1 AE h (λ, ξ), E h (λ, ξ) L 2 (M ) - S * M σ(A) dµ ξ L 1 ξ,λ (∂M ×[1,1+h])
→ 0.

(1.5)

The measure µ ξ has support

supp(µ ξ ) ⊂ {(m, ν) ∈ S * M | lim t→+∞ g t (m, ν) = ξ}, (1.6)
and disintegrates the Liouville measure in the sense that there exists a smooth measure dξ on ∂M such that, if µ L is the Liouville measure generated by √ p = |ν| g on S * M , then ∂M µ ξ dξ = µ L .

(1.7)

The limiting measure µ ξ is defined in Section 4.3. Implicit in (1.7) is the statement that for any bounded Borel S ⊂ S * M , we have µ ξ (S) ∈ L 1 ξ (∂M ). In the case when WF h (A) ∩ Γ -= ∅ (in particular when g is non-trapping), we actually have a full expansion of AE h , E h in powers of h, with remainders bounded in L 1 ξ,λ (∂M × [1, 1 + h]) -see (5.14).

The now standard argument of Colin de Verdière and Zelditch (see for example the proof of [START_REF] Zworski | Semiclassical analysis[END_REF]Theorem 15.5]) shows that there exists a family of Borel sets A(h) ⊂ ∂M × [1, 1 + h] such that the ratio of the measure of A(h) to the measure of the whole ∂M × [1, 1 + h] goes to 1 as h → 0, and for each A ∈ Ψ 0 (M ) as in Theorem 1 with σ(A) independent of h, AE h (λ, ξ), E h (λ, ξ) L 2 (M ) → S * M σ(A) dµ ξ uniformly in (λ, ξ) ∈ A(h).

(1.8)

This statement can be viewed as an analogue of the quantum ergodicity fact (1.1), though as explained above, it is produced by a different phenomenon.

Estimates for the remainder. We next provide a quantitative version of Theorem 1, namely an estimate of the left-hand side of (1.5). We define the set T (t) of geodesics trapped for time t > 0 as follows: let K 0 be a compact geodesically convex subset of M containing a neighborhood of the trapped set K, then (see also Section 5.2)

T (t) := {(m, ν) ∈ S * M | m ∈ K 0 , g t (m, ν) ∈ K 0 }.
(1.9)

A quantity which will appear frequently with some parameter Λ > 0 is the following interpolated measure

r(h, Λ) := sup 0≤θ≤1 h 1-θ µ L T θΛ -1 | log h| , (1.10)
where h > 0 is small. This converges to 0 as h → 0 when µ L (K) = 0 and it interpolates between h (when θ = 0) and the Liouville measure of the set of geodesics that remain trapped for time Λ -1 | log h| (when θ = 1). When the measure µ L (T (t)) decays exponentially in t, as in (1.14), r(h, Λ) can be replaced by simply O(h) + µ L (T (Λ -1 | log h|)). The O(h) term here is natural because of the influence of the subprincipal part of the operator A.

We next define the maximal expansion rate as follows (see also (3.17 dg t (m, ν) .

(1.11)

We can estimate the left-hand side of (1.5) in terms of the (interpolated) measure of the set of all trajectories trapped for the Ehrenfest time. If we pair with a test function in ξ instead of taking the L 1 ξ norm, then the estimate becomes stronger, corresponding to the set of all trajectories trapped for twice the Ehrenfest time:

Theorem 2. Let (M, g) be as in Theorem 1. Take Λ 0 > Λ max . Then for each compactly supported h-semiclassical pseudodifferential operator A ∈ Ψ 0 (M ) and for each f ∈ C ∞ (∂M ),

h -1 AE h , E h - S * M σ(A) dµ ξ L 1 ξ,λ (∂M ×[1,1+h])
= O(r(h, 2Λ 0 )), (1.12)

h -1 ∂M f (ξ) AE h , E h - S * M σ(A) dµ ξ dξ L 1 λ ([1,1+h])
= O(r(h, Λ 0 )).

(1.13)

The proof of Theorem 2 actually gives an expansion of AE h , E h in powers of h, with remainder µ L (T (Λ -1 | log h|)) instead of r(h, Λ) -see (5.35) and the proofs of Propositions 5.11 and 5.13. This full expansion is cumbersome to write down, therefore we only do it for the trace estimates (1.16) below.

Remainder in terms of pressure. When the trapped set K has Liouville measure 0 and is uniformly partially hyperbolic in the sense of Appendix B.1, we estimate using [Yo] µ L (T (t)) = O(e t(P (J u )+ε) ), (1.14) for each ε > 0, where P (J u ) ≤ 0 is the topological pressure of the unstable Jacobian -see Appendix B.1. When K is a hyperbolic basic set (Axiom A flow), then P (J u ) < 0 by [BoRu], and the remainders in (1.12) and (1.13) are then polynomial in h:

r(h, Λ) = O(h + h -(P (J u )+ε)/Λ ),
and one can get rid of ε here by slightly changing Λ 0 . In the special case where g has constant sectional curvature -1 near K, the bounds in (1.12) and (1.13) become O(h + h (n-δ)/2-) and O(h + h n-δ-), respectively, where K has Hausdorff dimension dim H (K) = 2δ + 1. See Appendix B.2 for details.

In all cases, if K is nonempty, then it has Minkowski dimension at least 1; since g t/2 (T (t)) contains an e -Λ 0 t/2 sized neighborhood of K, we have

µ L T ((2Λ 0 ) -1 | log h|) h n/2 , µ L T (Λ -1 0 | log h|) h n .
(1.15)

Local Weyl asymptotics for spectral projectors. It is possible to express the spectral measure of h 2 ∆ in terms of the distorted plane waves (see (4.5)), and using (1.13), we obtain an expansion in powers of h for local traces of spectral projectors up to an explicit remainder. We only write it here for the case where the flow is partially uniformly hyperbolic with P (J u ) < 0, but a more general result with the Liouville measure of T (Λ -1 0 | log h|) holdssee Theorem 4 in Section 5.3. Below, we fix a quantization procedure Op h on M mapping compactly supported symbols to compactly supported operators.

Theorem 3. Let (M, g) be as in Theorem 1, let Λ 0 > Λ max and assume that the trapped set K is uniformly partially hyperbolic with µ L (K) = 0 and that the topological pressure P (J u ) of the unstable Jacobian on K is negative. Then there exist differential operators 1 L j of order 2j on T * M , with L 0 = 1, such that for each compactly supported zeroth order classical symbol a, we have for each s > 0 and N ∈ N

Tr(Op h (a) 1l [0,s] (h 2 ∆)) = (2πh) -n-1 N j=0 h j |ν| 2 g ≤s L j a dµ ω + h -n O h - P (J u ) Λ 0 + h N (1.16)
where µ ω is the standard volume form on T * M and 1l [0,s] (h 2 ∆) denotes the spectral projector of h 2 ∆ onto the frequency window [0, s]. The remainder is uniform in s when s varies in a compact subset of (0, ∞).

In particular, if g has constant sectional curvature -1 near K and the Hausdorff dimension of K is given by 2δ + 1, then the remainder in (1.16) becomes O(h -δ-), for N large enough.

Applications. In a separate paper [DyGu], we show that Theorem 3 implies new asymptotics for the spectral shift function (or scattering phase) with remainders in terms of P (J u ) when the trapped set has Liouville measure 0 and the manifold is Euclidean near infinity with uniformly partially hyperbolic geodesic flow near K.

Previous works. Let us briefly discuss the history of Quantum Ergodicity (QE) and explain its relation to the present paper. The original QE statement was proved by Shnirelman [Sh], Zelditch [START_REF] Zelditch | Uniform distribution of eigenfunctions on compact hyperbolic surfaces[END_REF], and Colin de Verdière [CdV] in the microlocal case, by Helffer-Martinez-Robert [HeMaRo] in the semiclassical case (with the integrated estimate using an O(h) spectral window like in the present paper, rather than the O(1) window used in the microlocal case), and by Gérard-Leichtnam [GéLe] and Zelditch-Zworski [ZeZw] for manifolds with boundary (ergodic billiards). Quantum ergodicity for boundary values and restrictions of eigenfunctions to hypersurfaces was studied by Hassell-Zelditch [HaZe], Burq [START_REF] Burq | Quantum ergodicity of boundary values of eigenfunctions: a control theory approach[END_REF], [START_REF] Toth | Quantum ergodic restriction theorems, II: manifolds without boundary[END_REF], and by Dyatlov-Zworski [DyZw].

The first result on noncompact manifolds, namely for embedded eigenvalues and Eisenstein functions on surfaces with cusps, was proved by Zelditch [START_REF] Zelditch | Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series[END_REF]. For the special case of arithmetic hyperbolic surfaces, a stronger statement of Quantum Unique Ergodicity (QUE), saying that the whole sequence of eigenstates microlocally converges to the Liouville measure, was proved by Lindenstrauss [Li] and Soundararajan [So] for Hecke-Maass forms and by Luo-Sarnak [LuSa] and Jakobson [Ja] for Eisenstein functions. For further information on the topic, the reader is directed to the recent reviews [No,[START_REF] Sarnak | Recent progress on the quantum unique ergodicity conjecture[END_REF][START_REF] Zelditch | Recent developments in mathematical quantum chaos[END_REF].

As remarked above, our result differs from the above works in that it uses dispersion of plane waves instead of the ergodicity of the geodesic flow. This dispersion phenomenon was used to study microlocal limits of plane waves on convex co-compact hyperbolic quotients satisfying δ < n/2 by Guillarmou-Naud in [GuNa], and on surfaces with cusps at complex energies by Dyatlov [START_REF] Dyatlov | Microlocal limits of Eisenstein functions away from the unitarity axis[END_REF]. Both [GuNa] and [START_REF] Dyatlov | Microlocal limits of Eisenstein functions away from the unitarity axis[END_REF] guarantee microlocal convergence of the Eisenstein functions that is uniform in λ and ξ, rather than the (weaker) L 1 λ,ξ estimates of the current paper; these statements are formally similar to QUE, while our statement is formally similar to QE. In [GuNa], uniform in λ and ξ estimates are possible because Lagrangian states, when propagated by the Schrödinger group U (t), would disperse faster than they fail to be approximated semiclassically, a phenomenon similar to the one studied by Nonnenmacher-Zworski [NoZw]. In fact, it is plausible that the result of [GuNa] is true when the condition δ < n/2 is replaced by the negative pressure condition of [NoZw]. As for [START_REF] Dyatlov | Microlocal limits of Eisenstein functions away from the unitarity axis[END_REF], the energy being away from the real line makes the measure corresponding to E h exponentially increasing, rather than invariant, along the flow; then the result of propagation of E 0 h by U (t) is multiplied by e -νt for a certain ν > 0, and decays in L 2 as t → +∞ (it is then more correct to say that this paper relies on damping of plane waves rather than dispersion).

We see that the uniform convergence in [GuNa] and [START_REF] Dyatlov | Microlocal limits of Eisenstein functions away from the unitarity axis[END_REF] is possible because one has better control on the propagated Lagrangian states. Such better control is directly related to having a polynomial bound on the scattering resolvent. In the less restricted situation of our paper, however, it is not clear if such a bound would hold; therefore, we need to average in λ and ξ to pass to trace (or, strictly speaking, Hilbert-Schmidt norm) estimates, just as in the proof of Quantum Ergodicity.

The expansions for local traces of the spectral measure as in Theorem 3 were studied by Robert-Tamura [RoTa] for nontrapping perturbations of the Euclidean space, yielding a full expansion in powers of h in that setting.

Outline of the proofs

In this section, we explain the ideas of the proofs of Theorems 1 and 2, in the case of manifolds Euclidean near infinity. We also describe the structure of the paper.

We start with Theorem 1. Take t > 0; we will use lim t→+∞ lim h→0 limits, therefore remainders that decay in h with constants depending on t will be negligible. Since E h is a generalized eigenfunction of the Laplacian (1.4), we have

E h (λ, ξ) = e -itλ 2 /(2h) U (t)E h (λ, ξ).
(2.1)

Here U (t) = e ith∆/2 is the semiclassical Schrödinger propagator, quantizing the geodesic flow g t . Since E h does not lie in L 2 (M ), we cannot apply the operator U (t) to it; however, (2.1) can be made rigorous, with an O(h ∞ ) error, by using appropriate cutoffs -see Lemma 3.10. We will not write these cutoffs here for the sake of brevity.

Take a compactly supported and compactly microlocalized semiclassical pseudodifferential operator A on M ; then by (2.1),

AE h , E h = AU (t)E h , U (t)E h = A -t E h , E h , (2.2) 
where A -t := U (-t)AU (t) is a pseudodifferential operator with principal symbol σ(A) • g -t .

(It is not compactly supported, but we ignore this issue here.) We now use the following decomposition of plane waves:

E h = χ 0 E 0 h + E 1 h , E 0 h = e iλ h ξ•m , E 1 h = -R h (λ)F h , F h := (h 2 ∆ -λ 2 )χ 0 E 0 h . Here E 0
h is the outgoing part of the plane wave, defined in a certain neighborhood of infinity and solving (1.4) there, while χ 0 is a cutoff function equal to 1 near infinity and supported inside the domain of E 0 h ; then

F h = [h 2 ∆, χ 0 ]E 0 h
is compactly supported and we can apply to it the semiclassical scattering resolvent R h (λ).

Note that here R h (λ) is the incoming resolvent; in particular, it is bounded L 2 → L 2 for Im λ < 0. (The situation is more complicated in the case of manifolds hyperbolic near infinity, in particular the domain of E 0 h and the cutoff χ 0 will depend on ξ.) For λ = 1 + O(h), the function F h is microlocalized inside the set

W ξ := {(m, ν) | m ∈ supp(dχ 0 ), ν = ξ} ⊂ S * M.
In general, we cannot expect the resolvent R h (λ) to be polynomially bounded in h, and thus cannot determine the wavefront set of E 1 h . However, we will show the following weaker propagation of singularities statement: the function

E 1 h (λ, ξ) := E 1 h (λ, ξ) 1 + E h (λ, ξ) L 2 (K 0 ) , ϕ dχ 0 A ϕ dχ 0 A -t 0 A -t 1 Figure 1.
A phase space picture of the main argument. The right side of each picture represents infinity; χ 0 = 1 in the lighter shaded region and dχ 0 is supported in the darker shaded region, while ϕ = 1 to the left of the vertical dashed line. The horizontal dashed lines on the right represent the wavefront set of E 1 h ; they terminate at the solid arrows, which denote the set W ξ .

where K 0 ⊂ M is a sufficiently large compact set, is polynomially bounded in h and for each (m, ν) ∈ WF h ( E 1 h ), the geodesic g t (m, ν) is either trapped as t → +∞ or passes through W ξ for some t ≥ 0. For the case of manifolds Euclidean near infinity, this statement follows directly from the explicit formula for the scattering resolvent on the free Euclidean space; for manifolds hyperbolic near infinity, we use the microlocal properties of the resolvent established in [START_REF] Vasy | Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates[END_REF]. See assumption (A6) in Section 4.2, Section 6.2, and Proposition 7.4 for details.

If A and 1χ 0 are both supported in the ball of radius R, let ϕ ∈ C ∞ 0 (M ) be independent of t and equal to 1 in the ball of radius R + 1. Then we write

A -t = A -t 0 + A -t 1 , A -t 0 := A -t ϕ, A -t 1 := A -t (1 -ϕ).
Now, each (m, ν) ∈ WF h (A -t 1 ) has the following properties: |m| ≥ R + 1, and for (m 1.) Therefore, the geodesic g s (m, ν) escapes to infinity for s ≥ 0 and never passes through W ξ ; it follows from the discussion of the wavefront set of E 1 h in the previous paragraph that

′ , ν ′ ) = g -t (m, ν), |m ′ | ≤ R. (See Figure
A -t 1 E 1 h L 2 = O(h ∞ (1 + E h L 2 (K 0 ) )).
Therefore, we can write

AE h , E h = A -t 1 χ 0 E 0 h , χ 0 E 0 h + A -t 0 E h , E h + O(h ∞ (1 + E h 2 L 2 (K 0 ) )). (2.
3)

The first term on the right-hand side is explicit, as we have a formula for E 0 h ; we can calculate for Lebesgue almost every ξ and λ = 1 + O(h),

lim t→+∞ lim h→0 A -t 1 χ 0 E 0 h (λ, ξ), χ 0 E 0 h (λ, ξ) = S * M a dµ ξ .
(2.4)

It then remains to estimate the second and third terms on average in λ and ξ. For this, we use the relation (4.5) of distorted plane waves to the spectral measure of the Laplacian to get for any bounded compactly supported pseudodifferential operator B,

h -1 BE h (λ, ξ) 2 L 2 m,ξ,λ (M ×∂M ×[1,1+h]) ≤ Ch n B 1l [1,(1+h) 2 ] (h 2 ∆) 2 HS .
(2.5)

Here HS denotes the Hilbert-Schmidt norm. One can estimate the right-hand side of (2.5) uniformly in h -see Lemma 3.11 and the proof of Proposition 4.5. Then h -1 E h 2 L 2 (K 0 ) , when integrated over λ ∈ [1, 1 + h] and ξ, is bounded uniformly in h; this removes the third term on the right-hand side of (2.3).

Finally, the average in λ, ξ of the second term on the right-hand side of (2.3) can be bounded, modulo an O t (h) remainder, by the L 2 norm σ(A -t 0 ) L 2 (S * M ) of the restriction of the principal symbol of A -t 0 to the energy surface S * M , with respect to the Liouville measure. Now, σ(A -t 0 ) = (σ(A) • g -t )ϕ converges to zero as t → +∞ at any point which is not trapped in the backwards direction. Since we assumed µ L (K) = 0, by the dominated convergence theorem σ(A -t 0 ) L 2 (S * M ) converges to zero as t → +∞; this finishes the proof of Theorem 1.

For the estimate (1.12) in Theorem 2, we need to take t up to the Ehrenfest time:

t = t e := Λ -1 0 log(1/h)/2,
replacing the lim t→+∞ lim h→0 limit in the argument of Theorem 1 by just the lim h→0 limit, but with t depending on h. The operator A -t is then still pseudodifferential, though in a mildly exotic class. To avoid a quantization procedure uniform at infinity, we give an iterative argument, propagating A for a fixed time for ∼ log(1/h) steps, applying t-independent cutoffs and removing the microlocally negligible terms at each step. The proof then works as before, with the term A -t 0 E h , E h bounded by the Liouville measure of the support of the full symbol of A -t 0 , which depends on h and is contained in g t (T (t)), where T (t) is defined in (1.9); this proves (1.12). The interpolated quantity r(h, Λ) from (1.10) appears because of the subprincipal terms in (2.4).

For (1.13), we have to propagate to twice the Ehrenfest time: t = 2t e . The operator A -t is not pseudodifferential, but we can use (2.1) to write

A -t 0 E h , E h = U (-t/2)AU (t/2) • U (t/2)ϕU (-t/2)E h , E h . (2.6)
The operators U (-t/2)AU (t/2) and U (t/2)ϕU (-t/2) are both pseudodifferential in a mildly exotic class; multiplying them, we get a pseudodifferential operator whose full symbol is supported inside g t/2 (T (t)), and thus (2.6) can be estimated by the Liouville measure of this set, giving the remainder (1.13).

A problem arises when trying to get a rate of convergence in (2.4) for t up to twice the Ehrenfest time. We are unable to propagate the Lagrangian state E 0 h (λ, ξ) pointwise in ξ and λ for time t, therefore we do not get an L 1 ξ estimate in (1.13). However, for f ∈ C ∞ (∂M ) we can still approximate the integral

∂M f (ξ) A -t 1 χ 0 E 0 h , χ 0 E 0 h dξ (2.7)
as follows. Define the operator

Π 0 f (λ) := ∂M f (ξ)(χ 0 E 0 h (λ, ξ)) ⊗ (χ 0 E 0 h (λ, ξ)) dξ.
Here ⊗ denotes the Hilbert tensor product; that is, if u, v ∈ C ∞ (M ), then u ⊗ v is the operator with the Schwartz kernel

K u⊗v (m, m ′ ) = u(m)v(m ′ ).
(2.8)

We can show that for X ∈ Ψ comp (M ) satisfying certain conditions, XΠ 0 f X * is a Fourier integral operator associated to the canonical relation

{(m, ν; m ′ , ν ′ ) | (m, ν) ∈ S * M, (m ′ , ν ′ ) = g s (m, ν) for some s ∈ (-T 0 , T 0 )},
for a fixed T 0 > 0 depending on X. (For comparison, for the spectral measure of h 2 ∆ we would have to formally take all possible values of s, which would destroy any hope on microlocally approximating it when the geodesic flow is chaotic.) We can then write

XΠ 0 f (λ) X * = (2πh) n T 0 -T 0 e -iλ 2 s/(2h) U (s)B s ds,
where B s is a smooth family of pseudodifferential operators, compactly supported in s ∈ (-T 0 , T 0 ) -see Lemma 5.12. We then write the integral (2.7) as

Tr(U (-t)AU (t)(1 -ϕ)Π 0 f (λ)) = Tr T 0 -T 0 e -iλ 2 s/(2h) U (-t)AU (t)(1 -ϕ)U (s)B s ds = Tr T 0 -T 0 e -iλ 2 s/(2h) U (-t/2)AU (t/2) • U (t/2)(1 -ϕ)U (s)B s U (-s -t/2) • U (s) ds.
The operators U (-t/2)AU (t/2) and U (t/2)(1ϕ)U (s)B s U (-st/2) are pseudodifferential in a mildly exotic class; thus their product is also pseudodifferential and (bearing in mind that s varies in a bounded set) one gets a microlocal expansion for (2.7) through a local trace formula for Schrödinger propagators -see Lemma 3.12 and Proposition 5.13.

2.1.

Other possible geometric assumptions. Our results should be true for asymptotically hyperbolic manifolds without the constant curvature assumption near infinity. The main difficulty here is constructing a good semiclassical parametrix for the Eisenstein function E h (λ, ξ) near ξ ∈ ∂M ; this can be done by WKB approximation, and the phase is a Busemann function φ ξ (m) near ξ, however one would need a good understanding of the regularity of φ ξ (m) as m → ξ. This is in a way related to the high-frequency parametrix of [MeSBVa] in the non-trapping setting. For the asymptotically Euclidean of asymptotically conic ends, this might be more complicated as we would need a parametrix of E h (λ, ξ) in a large neighbourhood of ξ ∈ ∂M , essentially in a region with closure containing a ball of radius π/2 in ∂M . In particular, the Lagrangian supporting the semiclassical parametrix of E h (λ, ξ) would not a priori be projectable far from ξ, which would make the construction more technical. We leave these questions for future research.

The convergence result in Theorem 1 should be true in the case where M has a boundary, for instance M = R n+1 \ Ω with Ω a piecewise smooth obstacle. In fact, it should be straightforward to check that the method of proof applies when combined with the idea of [ZeZw], based on the fact that the region in phase space near the boundary where the dynamics is complicated is of Liouville measure 0 (since we assume µ L (K) = 0). To get a good remainder in that setting would be more involved since one would need to care about the amount of mass of plane waves staying in the regions near the boundary where the dynamics is complicated, as we propagate up to Ehrenfest time. A reasonable case to start with is that of strictly convex obstacles.

2.2. Structure of the paper. In Section 3, we review certain notions of semiclassical analysis and derive several technical lemmata; in particular, in Section 3.2, we review the local theory of semiclassical Lagrangian distributions and Fourier integral operators and in Section 3.3 we study microlocal properties of Schrödinger propagators, including the Hilbert-Schmidt norm bound (Lemma 3.11). In Section 4, we formulate the general assumptions on the studied manifolds and derive some immediate corollaries; Section 4.1 contains the geometric assumptions and the definition of the trapped set and Section 4.2 contains the analytic assumptions on distorted plane waves. In Section 4.3 we construct the limiting measures µ ξ and in Section 4.4 we prove averaged estimates on Eisenstein functions.

In Section 5, we give the proofs of our main theorems. Section 5.1 contains the proof of Theorem 1, Section 5.2 contains the proof of the estimate (1.12) in Theorem 2, while Section 5.3 contains the proof of the estimate (1.13) in Theorem 2. Section 5.3 also contains the Tauberian argument proving an expansion of the local trace of a spectral projector (Theorem 4). Sections 6 and 7 study the Euclidean and hyperbolic near infinity manifolds, respectively, and show that the general assumptions of Section 4 are satisfied in these cases.

Appendix A provides a formula for the limiting measures in the case of a convex co-compact hyperbolic quotient, which generalizes the limiting measure of [GuNa] to the case δ ≥ n/2. Appendix B discusses the classical escape rate, in particular explaining (1.14). Appendix C gives a self-contained proof of Egorov's theorem up to the Ehrenfest time (Proposition 3.9). Finally, Appendix D contains a short proof of (a special case of) quantum ergodicity in the semiclassical setting, which is simpler than that of [HeMaRo] because it does not rely on [DuGu, PeRo].

Semiclassical preliminaries

In this section, we review the methods of semiclassical analysis needed for our argument. Most of the constructions listed below are standard: pseudodifferential operators, wavefront sets, local theory of Fourier integral operators, and Egorov's theorem. However, Section 3.3 contains the propagation result for generalized eigenfunctions (Lemma 3.10) and a Hilbert-Schmidt norm estimate in an O(h) spectral window (Lemma 3.11), which the authors were unable to find in previous literature.

We will also need Egorov's theorem up to the Ehrenfest time (Proposition 3.9); while several versions of this fact are available, we could not find a detailed proof for the case of manifolds and when the Ehrenfest time is defined via the maximal expansion rate of the flow. For this reason, and also because we insert cutoffs in between the propagators, we give a proof of Proposition 3.9 in Appendix C.

3.1. Notation. In this subsection, we briefly review certain notation used in semiclassical analysis. The reader is referred to [Zw] (especially Chapter 14 on semiclassical calculus on manifolds) or [DiSj] for a detailed introduction to the subject.

The phase space. Let M be a d-dimensional manifold without boundary. We denote points in M by the letter m and elements of the cotangent bundle T * M by (m, ν), where ν ∈ T * m M . Following [START_REF] Vasy | Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates[END_REF] Section 2], we consider the fiber-radial compactification T * M of T * M . The boundary of T * M , denoted by ∂T * M and called the fiber infinity (unlike [START_REF] Vasy | Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates[END_REF], we do not use the notation S * M for fiber infinity -we reserve it for the unit cotangent bundle {|ν| g = 1} ⊂ T * M ), is associated with the cosphere bundle over M and the interior of T * M is associated with T * M . Take some smooth inner product on the fibers of T * M ; if |ν| is the norm of a covector (m, ν) ∈ T * M generated by this inner product and ν = 1 + |ν| 2 , then ν -1 is a boundary defining function on T * M .

We will mostly use compactly microlocalized operators, for which the fiber-radial compactification is not necessary. However, it will come up in the elliptic estimate (Proposition 3.2) and in the proof of the propagation of singularities result for plane waves on asymptotically hyperbolic manifolds (Proposition 7.4).

Symbol classes. For any k ∈ R and any ρ ∈ [0, 1/2), we consider the symbol class S k ρ (M ) defined as follows: a smooth function a(m, ν; h) on T * M × [0, h 0 ) lies in S k ρ (M ) if and only if for each compact K ⊂ M and each multiindices α, β, there exists a constant C αβK such that for h small enough,

sup m∈K, ν∈T * m M |∂ α m ∂ β ν a(m, ν; h)| ≤ C αβK h -ρ(|α|+|β|) ν k-|β| . (3.1)
These classes are independent of the choice of coordinates on M . Note that we do not fix the behaviour of the symbols as m → ∞. The important special case is ρ = 0, which includes the classical symbols studied in [START_REF] Vasy | Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates[END_REF]. The class S k 0 (M ), denoted simply by S k (M ), would be sufficient for the convergence Theorem 1. The classes S k ρ with ρ > 0 will be important for obtaining the remainder estimate of Theorem 2; these classes arise when propagating symbols in S k 0 for short logarithmic times, as in Proposition 3.9. Since plane waves are microlocalized on the cosphere bundle, away from the fiber infinity, we will most often work with the classes S comp ρ , consisting of compactly supported functions satisfying (3.1); we have S comp ρ ⊂ S k ρ for all k.

Pseudodifferential operators. Following [START_REF] Zworski | Semiclassical analysis[END_REF]Section 14.2], we can define the algebra Ψ k ρ (M ) of pseudodifferential operators with symbols in S k ρ (M ). (The properties of the symbol classes S k ρ required for the construction of [START_REF] Zworski | Semiclassical analysis[END_REF]Section 14.2] are derived as in [START_REF] Zworski | Semiclassical analysis[END_REF]Section 4.4]; see also [START_REF] Grigis | Microlocal analysis for differential operators: an introduction[END_REF]Chapter 3].) As before, denote Ψ k = Ψ k 0 . Since our symbols can grow arbitrarily fast as m → ∞, we do not make any a priori assumptions on the behavior of elements of Ψ k ρ near the infinity in M . However, we require that all operators A ∈ Ψ k (M ) be properly supported ; namely, the restriction of each of the projection maps π m , π m ′ : M × M → M to the support of the Schwartz kernel K A (m, m ′ ) of A is a proper map. Then each element of Ψ k (M ) acts H s h,loc (M ) → H s-k h,loc (M ), where H s h,loc (M ) denotes the space of distributions locally in the semiclassical Sobolev space H s h (see for example [START_REF] Zworski | Semiclassical analysis[END_REF]Section 7.1] for the definition of semiclassical Sobolev spaces).

We have the semiclassical principal symbol map

σ : Ψ k ρ (M ) → S k ρ (M )/h 1-2ρ S k-1 ρ (M )
and its right inverse, a non-canonical quantization map

Op h : S k ρ (M ) → Ψ k ρ (M ).
The standard operations of pseudodifferential calculus with symbols in S k ρ have an O(h 1-2ρ ) remainder instead of the O(h) remainder valid for the class S k 0 . More precisely, we have for

A ∈ Ψ k ρ (M ) and B ∈ Ψ k ′ ρ (M ), σ(A * ) = σ(A) + O(h 1-2ρ ) S k-1 ρ (M ) , σ(AB) = σ(A)σ(B) + O(h 1-2ρ ) S k+k ′ -1 ρ (M ) , σ([A, B]) = -ih{σ(A), σ(B)} + O(h 2(1-2ρ) ) S k+k ′ -2 ρ (M ) .
Here {•, •} stands for the Poisson bracket. The O(•) notation is used in the present paper in the following way: we write u = O z (F ) X if the norm of the function, or the operator, u in the functional space X is bounded by the expression F times a constant depending on the parameter z.

Wavefront sets. If

A : C ∞ (M ) → C ∞ (M ) is a properly supported operator, we say that A = O(h ∞ ) Ψ -∞ if A is smoothing and each of the C ∞ (M × M ) seminorms of its Schwartz kernel is O(h ∞ ). For each A ∈ Ψ k ρ (M ), we have A = Op h (a) + O(h ∞ ) Ψ -∞ for some a ∈ S k ρ (M )
. Define the semiclassical wavefront set WF h (A) ⊂ T * M of A as follows:

a point (m, ν) ∈ T * M does not lie in WF h (A), if there exists a neighborhood U of (m, ν)

in T * M such that each (m, ν)-derivative of a is O(h ∞ ν -∞ ) in U ∩ T * M .
The notion of the wavefront set does not depend on the choice of the quantization procedure. We have WF h

(A) = ∅ if and only if A = O(h ∞ ) Ψ -∞ and WF h (A * ) = WF h (A), WF h (AB) ⊂ WF h (A) ∩ WF h (B). For A, B ∈ Ψ k ρ (M ), we say that A = B microlocally in some open set U ⊂ T * M , if WF h (A -B) ∩ U = ∅.
Operators with compact wavefront sets are called compactly microlocalized ; those are exactly operators of the form Op h (a) + O(h ∞ ) Ψ -∞ for some a ∈ S comp ρ . We denote by Ψ comp ρ (M ) the class of all compactly microlocalized elements of Ψ k ρ (M ); as before, we put Ψ comp (M ) = Ψ comp 0 (M ). Compactly microlocalized operators should not be confused with compactly supported operators; that is, operators whose Schwartz kernels are compactly supported. That being said, most operators that we use will be both compactly supported and compactly microlocalized.

We will need a finer notion of microsupport on h-dependent sets, used in the proofs in Sections 5.2 and 5.3, for example in Proposition 5.9:

Definition 3.1. An operator A ∈ Ψ comp ρ (M ) is said to be microsupported on an h-dependent family of sets V (h) ⊂ T * M , if we can write A = Op h (a)+O(h ∞ ) Ψ -∞
, where for each compact set K ⊂ T * M , each differential operator ∂ α on T * M , and each N , there exists a constant C αN such that for h small enough,

sup (m,ν)∈K\V (h) |∂ α a(m, ν; h)| ≤ C αN h N .
Since the change of variables formula for the full symbol of a pseudodifferential operator contains an asymptotic expansion in powers of h, consisting of derivatives of the original symbol, Definition 3.1 does not depend on the choice of the quantization procedure Op h . Moreover, if A ∈ Ψ comp ρ is microsupported inside some V (h) and B ∈ Ψ k ρ , then AB, BA, and A * are also microsupported inside V (h). It follows from the definition of the wavefront set that (m, ν) ∈ T * M does not lie in WF h (A) for some A ∈ Ψ comp ρ , if and only if there exists an h-independent neighborhood U of (m, ν) such that A is microsupported on the complement of U . Note however that A need not be microsupported on WF h (A), though it will be microsupported on any h-independent neighborhood of WF h (A). Finally, it can be seen by Taylor's formula that if A ∈ Ψ comp ρ (M ) is microsupported in V (h) and ρ ′ > ρ, then A is also microsupported on the set of all points in V (h) which are at least h ρ ′ away from the complement of V (h).

Ellipticity. For A ∈ Ψ k ρ (M ), define its elliptic set ell(A) ⊂ T * M as follows: (m, ν) ∈ ell(A) if and only if there exists a neighborhood U of (m, ν) in T * M and a constant C such that |σ(A)| ≥ C -1 ν k in U ∩ T * M .
The following statement is the standard semiclassical elliptic estimate; see [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators III[END_REF]Theorem 18.1.24'] for the closely related microlocal case and for example [Dy1, Section 2.2] for the semiclassical case.

Proposition 3.2. Assume that P ∈ Ψ k ρ (M ), A ∈ Ψ k ′ ρ (M ), and WF h (A) ⊂ ell(P ). Assume moreover that A is compactly supported. Then there exists a constant C and a function χ ∈ C ∞ 0 (M ) such that for each s ∈ R, each u ∈ H s h,loc (M ) and each N , we have

Au H s h ≤ C χP u H s+k ′ -k h + O(h ∞ ) χu H -N .
Moreover, if P is a differential operator, then we can take any χ such that the Schwartz kernel of A is supported in {χ = 0} × {χ = 0}.

Semi-classical wave-front sets of distributions.

An h-dependent family u(h) ∈ D ′ (M ) is called h-tempered, if for each open U compactly contained in M , there exist constants C and N such that u(h) H -N h (U ) ≤ Ch -N . (3.2)
For a tempered distribution u, we say that (m 0 , ν 0 ) ∈ T * M does not lie in the wavefront set

WF h (u), if there exists a neighborhood V (m 0 , ν 0 ) in T * M such that for each A ∈ Ψ 0 (M ) with WF h (A) ⊂ V , we have Au = O(h ∞ ) C ∞ . By Proposition 3.2, (m 0 , ν 0 ) ∈ WF h (u) if and only if there exists compactly supported A ∈ Ψ 0 (M ) elliptic at (m 0 , ν 0 ) such that Au = O(h ∞ ) C ∞ . The wavefront set of u is a closed subset of T * M ; it is empty if and only if u = O(h ∞ ) C ∞ (M ) .
We can also verify that for u tempered and

A ∈ Ψ k ρ (M ), WF h (Au) ⊂ WF h (A) ∩ WF h (u).
3.2. Semiclassical Lagrangian distributions. In this subsection, we review some facts from the theory of semiclassical Lagrangian distributions. See [START_REF] Guillemin | Geometric asymptotics[END_REF]Chapter 6] or [START_REF] Vũ | Systèmes intégrables semi-classiques: du local au global[END_REF]Section 2.3] for a detailed account, and [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators IV[END_REF]Section 25.1] or [START_REF] Grigis | Microlocal analysis for differential operators: an introduction[END_REF]Chapter 11] for the closely related microlocal case. However, note that we do not attempt to define the principal symbols as global invariant geometric objects; this makes the resulting local theory considerably simpler.

Phase functions. Let M be a manifold without boundary. We denote its dimension by d; in the convention used in the present paper, d = n + 1. As before, we denote elements of

T * M by (m, ν), m ∈ M , ν ∈ T * m M . Let ϕ(m, θ
) be a smooth real-valued function on some open subset U ϕ of M × R L , for some L; we call m base variables and θ oscillatory variables. We say that ϕ is a (nondegenerate) phase function, if the differentials d(∂ θ 1 ϕ), . . . , d(∂ θ L ϕ) are linearly independent on the critical set

C ϕ := {(m, θ) | ∂ θ ϕ = 0} ⊂ U ϕ .
(3.3)

In this case

Λ ϕ := {(m, ∂ m ϕ(m, θ)) | (m, θ) ∈ C ϕ } ⊂ T * M
is an (immersed, and we will shrink the domain of ϕ to make it embedded) Lagrangian submanifold. We say that ϕ generates Λ ϕ .

Symbols. Let ρ ∈ [0, 1/2). A smooth function a(m, θ; h) is called a compactly supported symbol of type ρ on U ϕ , if it is supported in some compact h-independent subset of U ϕ , and for each differential operator ∂ α on M × R L , there exists a constant C α such that sup

Uϕ |∂ α a| ≤ C α h -ρ|α| .
Similarly to Section 3.1, we write a ∈ S comp ρ (U ϕ ). For the convergence Theorem 1, we will only need the class S comp := S comp 0 ; the classes S comp ρ for ρ > 0 will be required in the proof of the remainder estimates of Theorem 2.

Lagrangian distributions. Given a phase function ϕ and a symbol a ∈ S comp ρ (U ϕ ), consider the h-dependent family of functions

u(m; h) = h -L/2
R L e iϕ(m,θ)/h a(m, θ; h) dθ.

(3.4)

We call u a Lagrangian distribution of type ρ generated by ϕ. Using the method of nonstationary phase, we can see that if supp a is contained in some h-independent compact set

K ⊂ U ϕ , then WF h (u) ⊂ {(m, ∂ m ϕ(m, θ)) | (m, θ) ∈ C ϕ ∩ K} ⊂ Λ ϕ . (3.5)
The principal symbol of u is the function

σ ϕ (u) ∈ S comp ρ (Λ ϕ )
defined by the formula

σ ϕ (u)(m, ∂ m ϕ(m, θ); h) = a(m, θ; h), (m, θ) ∈ C ϕ . (3.6)
That σ ϕ (u) does not depend on the choice of a producing u, up to an O(h 1-2ρ ) remainder, will follow from Proposition 3.3 and (3.9). As mentioned above, we will not attempt to define the principal symbol independently of the choice of ϕ.

Following [START_REF] Grigis | Microlocal analysis for differential operators: an introduction[END_REF]Chapter 11], we introduce a certain (local) canonical form for Lagrangian distributions. Fix some local system of coordinates on M (shrinking M to the domain of this coordinate system and identifying it with a subset of R d ) and consider

Λ F = {(m, ν) | m = -∂ ν F (ν), ν ∈ U F } ⊂ T * M, (3.7)
where F is a smooth real-valued function on some open set

U F ⊂ R d , such that the image of -∂ ν F is contained in M .
Then Λ F is Lagrangian; in fact, it is generated by the phase function m • ν + F (ν), with ν the oscillatory variable. One can also prove that each Lagrangian submanifold that does not intersect the zero section locally has the form (3.7) for an appropriate choice of the coordinate system on M . (We will not have to work with Lagrangians intersecting the zero section in this paper; the corresponding distributions have all the properties listed below, except that the normal forms (3.4) and (3.14) have to be written differently.)

If b(ν; h) ∈ S comp ρ (U F ) and χ ∈ C ∞ 0 (M ) is equal to 1 near -∂ ν F (supp b
), then we can define a Lagrangian distribution by the following special case of (3.4):

v(m; h) = χ(m)h -d/2 U F e i(m•ν+F (ν))/h b(ν; h) dν.
(3.8)

We need χ to make v ∈ C ∞ 0 (M ); however, by (3.5) (or directly by the method of nonstationary phase), if we choose χ differently, then v will change by O(h ∞ ) C ∞ 0 . If v is given by (3.8), then we can recover the symbol b by the Fourier inversion formula:

e iF (ν)/h b(ν; h) = (2π) -d h -d/2 M e -im•ν/h v(m; h) dm + O(h ∞ ) S (R d ) ,
(3.9)

here S denotes the space of Schwartz functions. Note that

v = O(h ∞ ) C ∞ 0 implies b(ν; h) = O(h ∞ ) C ∞ 0 . Moreover, if v ∈ C ∞ 0 (M ) satisfies (3.9) for some b ∈ S comp ρ (U F ), then v is given by (3.8) modulo O(h ∞ ) C ∞ 0 .
Any Lagrangian distribution can be brought locally into the form (3.8):

Proposition 3.3. Assume that ϕ is a phase function, and the corresponding Lagrangian Λ = Λ ϕ can be written in the form (3.7). For a(m, θ; h) ∈ S comp ρ (U ϕ ) and b(ν; h) ∈ S comp ρ (U F ), denote by u a and v b the functions given by (3.4) and (3.8), respectively. Then: 

1. For each a ∈ S comp ρ (U ϕ ), there exists b ∈ S comp ρ (U F ) such that u a = v b + O(h ∞ ) C ∞ 0 . Moreover,
(ν; h) = 0≤j<N h j L j a(m, θ; h) + O(h N (1-2ρ) ) S comp ρ (U F ) , (3.10)
where each L j is a differential operator of order 2j on U ϕ , and (m, θ) ∈ C ϕ is the solution to the equation (m, ∂ m ϕ(m, θ)) = (-∂ ν F (ν), ν). In particular, if σ ϕ (u) is given by (3.6), then

σ ϕ (u)(-∂ ν F (ν), ν; h) = f ϕF b(ν; h) + O(h 1-2ρ ) S comp ρ (U F ) , (3.11)
where f ϕF is some nonvanishing function depending on ϕ and the choice of the coordinate system on M . Adding a certain constant to the function F , we can make f ϕF independent of h.

For each

b ∈ S comp ρ (U F ), there exists a ∈ S comp ρ (U ϕ ) such that v b = u a + O(h ∞ ) C ∞ 0 . Proof.
We follow [START_REF] Grigis | Microlocal analysis for differential operators: an introduction[END_REF]Chapter 11]. For part 1, we apply the method of stationary phase to get (3.9) and then use the Fourier inversion formula. For part 2, we take some a 0 ∈ S comp ρ (U ϕ ) satisfying (3.11) and define u a 0 by the formula (3.4) using the symbol a 0 . Then v b = u a 0 +v b 1 , where v b 1 has the form (3.8) with the symbol b 1 = O(h 1-2ρ ). Repeating this process with v b 1 in place of v b , we can write for each N ,

v = 0≤j<N u a j + v b N ,
where each u a j has the form (3.4) with the symbol a j = O(h j(1-2ρ) ), and v b N has the form (3.8) with the symbol b

N = O(h N (1-2ρ) ). If a ∼ j a j is an asymptotic sum, then v b -u a = O(h ∞ ) C ∞ 0 .
We can now give Definition 3.4. Let Λ ⊂ T * M be an embedded Lagrangian submanifold. We say that an h-dependent family of functions u(m; h) ∈ C ∞ 0 (M ) is a (compactly supported and compactly microlocalized) Lagrangian distribution of type ρ associated to Λ, if it can be written as a sum of finitely many functions of the form 

(h ∞ ) C ∞ 0 remainder. The symbol σ ϕ (u), given by (3.6), is well-defined modulo O(h 1-2ρ ).
The action of a pseudodifferential operator on a Lagrangian distribution is given by the following proposition, following from Proposition 3.3 and the method of stationary phase:

Proposition 3.5. Assume that u ∈ I comp ρ (Λ) and P ∈ Ψ k ρ (M ). Then P u ∈ I comp ρ (Λ). Moreover, 1. Assume that Λ = Λ ϕ for some phase function ϕ. Then σ ϕ (P u) = σ(P )| Λϕ • σ ϕ (u) + O(h 1-2ρ ) S comp ρ (Λ) .
2. Assume that Λ = Λ F is given by (3.7) in some coordinate system on M . Let b(ν; h) and b P (ν; h) be the symbols corresponding to u and P u, respectively, via (3.8). Let also P = Op h (p) for some quantization procedure Op h . Then we have the following asymptotic decomposition for b P :

b P (ν; h) = 0≤j<N h j L j (p(m, ν ′ ; h)b(ν; h))| ν ′ =ν, m=-∂ν F (ν) + O(h N (1-2ρ) ) S comp ρ (U F ) ,
where each L j is a differential operator of order 2j on M × U F × U F .

Finally, we give the following estimate of the L 2 norm of a Lagrangian distribution, following from the boundedness of the Fourier transform on L 2 : Proposition 3.6. Assume that u ∈ I comp ρ (Λ F ), where Λ F is given by (3.7). Assume that u is given by (3.8), with b(ν; h) the corresponding symbol. Then

u(m; h) L 2 ≤ C b(ν; h) L 2 (U F ) .
(3.12)

Here C is a constant independent of h. 

Λ κ = {(m, ν; m ′ , -ν ′ ) | κ(m, ν) = (m ′ , ν ′ )} ⊂ T * M × T * M ′ = T * (M × M ′ ).
A compactly supported operator U :

D ′ (M ′ ) → C ∞ 0 (M ) is called a (semiclassical) Fourier in- tegral operator of type ρ associated to κ, if its Schwartz kernel K U (m, m ′ ) lies in h -d/2 I comp ρ (Λ κ ). We write U ∈ I comp ρ (κ). Note that we quantize a canonical transformation T * M → T * M ′ as an operator D ′ (M ′ ) → C ∞ 0 (M )
, in contrast with the standard convention, which would quantize it as an operator

D ′ (M ) → C ∞ 0 (M ′ ). The h -d/2
factor is explained as follows: the normalization for Lagrangian distributions is chosen so that u L 2 ∼ 1, while the normalization for Fourier integral operators is chosen so that U L 2 (M ′ )→L 2 (M ) ∼ 1.

After sufficiently shrinking the domain of κ and choosing an appropriate coordinate system on M ′ (replacing M ′ with the domain of this coordinate system and identifying it with a subset of R d ), we can find a generating function S(m, ν ′ ) for κ; that is,

κ(m, ν) = (m ′ , ν ′ ) ⇐⇒ ∂ m S(m, ν ′ ) = ν, ∂ ν ′ S(m, ν ′ ) = m ′ . (3.13) Here (m, ν ′ ) vary in some open set U S ⊂ M × R d . The phase function S(m, ν ′ ) -m ′ • ν ′ , with ν ′ the oscillatory variable, parametrizes Λ κ and for U ∈ I comp ρ (κ), we can write similarly to (3.8), K U (m, m ′ ) = h -d χ(m ′ ) R d e i h (S(m,ν ′ )-m ′ •ν ′ ) b(m, ν ′ ; h) dν ′ + O(h ∞ ) C ∞ 0 , (3.14) for some symbol b ∈ S comp ρ (U S ) and any χ ∈ C ∞ 0 (M ′ ) such that χ = 1 near the set ∂ ν ′ S(supp b). The function b is determined uniquely by U modulo O(h ∞ ) S comp ρ (U S )
, similarly to (3.9). Note that if κ is the identity map, then S(m, ν ′ ) = m • ν ′ and we arrive to the quantization formula for a semiclassical pseudodifferential operator.

Similarly to Proposition 3.5, we have

Proposition 3.7. Assume that U ∈ I comp ρ (κ) and P ∈ Ψ k ρ (M ′ ). Then U P ∈ I comp ρ (κ).
If moreover κ is given by (3.13), b(m, ν ′ ; h) and b P (m, ν ′ ; h) are the symbols corresponding to U and U P , respectively, via (3.14), and P = Op h (p) for some quantization procedure Op h , then we have the following asymptotic decomposition for b P :

b P (m, ν ′ ; h) = 0≤j<N h j L j (p(m ′ , ν)b(m, ν ′ ))| ν=ν ′ , m ′ =∂ ν ′ S(m,ν ′ ) + O(h N (1-2ρ) ) S comp ρ (U S ) .
Here each L j is a differential operator of order 2j on

M ′ × R d × U S . In particular, b P (m, ν ′ ; h) = p(∂ ν ′ S(m, ν ′ ), ν ′ ; h)b(m, ν ′ ; h) + O(h 1-2ρ ) S comp ρ (U S ) .
A similar statement is true for an operator of the form P U , where P ∈ Ψ k ρ (M ); the terms of the asymptotic decomposition have the form

h j L j (p( m, ν)b(m, ν ′ ))
, where we take m = m and ν = ∂ m S(m, ν ′ ).

Schrödinger propagators.

In this subsection, we assume that (M, g) is a complete Riemannian manifold and ∆ = ∆ g is the corresponding (nonnegative) Laplace-Beltrami operator. Let p be the semiclassical principal symbol of h 2 ∆ ∈ Ψ 2 (M ); we have p(m, ν) = |ν| 2 g , where |ν| g is the norm of the covector ν ∈ T * m M induced by g. We use the notation

S * M = p -1 (1) ⊂ T * M
for the unit cotangent bundle. The geodesic flow g t on T * M is related to the Hamiltonian flow e tHp of p by the formula g t = e tHp/2 . Note that g t is a canonical transformation. The operator ∆ is essentially self-adjoint on L 2 (M ) by [Ch] and its domain is given by the Friedrichs extension. Let

U (t) = e ith∆/2 = e it h (h 2 ∆/2)
be the semiclassical Schrödinger propagator; it is a unitary operator on L 2 (M ). The basic microlocal properties of U (t) are given by the following Proposition 3.8. For each t ∈ R,

1. (Egorov's Theorem) For each compactly supported A ∈ Ψ comp ρ (M ), there exists com- pactly supported A t ∈ Ψ comp ρ (M ) such that U (t)AU (-t) = A t + O(h ∞ ) L 2 →L 2 .
(3.15)

Moreover, WF h (A t ) ⊂ g -t (WF h (A)) and σ(A t ) = σ(A) • g t + O(h 1-2ρ ).

(Microlocalization)

The operator U (t) is microlocalized on the graph of g -t in the following sense: if A, B ∈ Ψ k ρ (M ) are compactly supported, at least one of them is compactly microlocalized, and

g t (WF h (A)) ∩ WF h (B) = ∅, (3.16) then AU (t)B = O(h ∞ ) L 2 →L 2 . 3. (Parametrix) If A ∈ Ψ comp (M ) is compactly supported, then U (t)
A is the sum of a compactly microlocalized Fourier integral operator (of type 0) associated to g t , as defined in Section 3.2, and an O(h ∞ ) L 2 →L 2 remainder.

The proofs are standard; part 1 can be found in [START_REF] Zworski | Semiclassical analysis[END_REF]Theorem 11.1] (with the mildly exotic classes Ψ comp ρ handled as in Appendix C), part 2 follows directly from part 1, and part 3 is proved similarly to [START_REF] Zworski | Semiclassical analysis[END_REF]Theorem 10.3]. The operator U (t)A quantizes g t , not g -t , because of the convention adopted in Section 3.2 that a canonical transformation

T * M → T * M ′ is quantized as an operator D ′ (M ′ ) → C ∞ 0 (M ).
Egorov's theorem until the Ehrenfest time. Proposition 3.8 is valid for bounded times t; as t → ∞, the constants in the estimates for the corresponding symbols will blow up. However, it is still possible to prove Egorov's Theorem for t bounded by a certain multiple of log(1/h), called the Ehrenfest time. To define this time, we fix an open bounded geodesically convex set U ⊂ M and define the maximal expansion rate

Λ max := lim sup |t|→∞ 1 |t| log sup m∈U, |ν|g =1, g t (m,ν)∈U dg t (m, ν) .
(3.17)

Here dg t (m, ν) is the operator norm of the differential

dg t (m, ν) : T (m,ν) T * M → T g t (m,ν) T * M
with respect to any given smooth norm on the fibers of T (T * M ) (e.g. the norm induced by the metric g).

Since we will work on a noncompact manifold, we introduce cutoffs into the corresponding propagators:

Proposition 3.9. Assume that X 1 , X 2 ∈ Ψ 0 (M ) satisfy X j L 2 →L 2 ≤ 1 + O(h) and are compactly supported inside U . Let ε e > 0 and take Λ 0 , Λ ′ 0 > 0 such that Λ 0 > Λ ′ 0 > (1 + 2ε e )Λ max . Fix t 0 ∈ R. Then for each integer l ∈ [0, log(1/h)/(2|t 0 |Λ 0 )], (3.18)
and each compactly supported

A ∈ Ψ comp (M ) with WF h (A) ⊂ E εe := {1 -ε e ≤ |ν| g ≤ 1 + ε e },
the compactly supported operator

A (l) := (X 2 U (t 0 )) l A(U (-t 0 )X 1 ) l lies in Ψ comp ρ l (M ), modulo an O(h ∞ ) L 2 →L 2 remainder, with ρ l = l|t 0 |Λ ′ 0 / log(1/h) < 1/2. (3.19)
Moreover, the S comp ρ l seminorms of the full symbol of A (l) are bounded uniformly in l, in the following sense: the order k derivatives of this symbol are bounded by Ch -kρ l , where C is a constant independent of h and l. The principal symbol of l) is microsupported, in the sense of Definition 3.1, inside the set

A (l) is σ(A (l) ) = (σ(A) • g lt 0 ) l-1 j=0 (σ(X 1 )σ(X 2 )) • g jt 0 + O(h 1-2ρ l ).

The wavefront set of

A (l) , for l > 0, is contained in WF h (X 1 ) ∩ WF h (X 2 ) ∩ E εe . Finally, if U A and U X are open sets such that WF h (A) ⊂ U A and WF h (X 1 ) ∩ WF h (X 2 ) ⊂ U X , then A (
V (l) := g -lt 0 (U A ) ∩ l-1 j=0 g -jt 0 (U X ).
The set V (l) does not depend on h directly, however it depends on l, which is allowed to depend on h, and our microlocal vanishing statement is uniform in l.

Proposition 3.9 is the main technical tool of obtaining the polynomial remainder bound of Theorem 2; it is also the reason why the classes Ψ comp ρ appear. Its proof, following the methods of [START_REF] Anantharaman | Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold[END_REF]Section 5.2] and [START_REF] Zworski | Semiclassical analysis[END_REF]Theorem 11.12], is given in Appendix C. We do not impose any restrictions on the set U at this point, however in our actual argument it will have to contain a neighborhood of the trapped set -see the beginning of Section 5.2.

Propagating generalized eigenfunctions. The following fact, similar to [Dy2, Proposition 3.3], will be used to propagate the Eisenstein functions by the group U (t):

Lemma 3.10. Assume that u ∈ C ∞ (M ) solves the equation (h 2 ∆ -z)u = 0, |1 -z| ≤ Ch. Let χ ∈ C ∞ 0 (M ); take t ∈ R and assume that χ t ∈ C ∞ 0 (M ) is supported in the interior of a compact set K t ⊂ M and satisfies d g (supp χ, supp(1 -χ t )) > |t|.
(3.20)

Here d g denotes Riemannian distance on M . Then

χu = χe -itz/(2h) U (t)χ t u + O(h ∞ u L 2 (Kt) ) L 2 (M ) .
Proof. Without loss of generality, we assume that t ≥ 0. For 0 ≤ s ≤ t, define

u s = χ(u -e -isz/(2h) U (s)χ t u).
We need to prove that

u t L 2 = O(h ∞ ) u L 2 (Kt) . (3.21) Since χ = χχ t , we have u 0 = 0; next, 2hD s u s = -χe -isz/(2h) U (s)(h 2 ∆ -z)χ t u = -e -isz/(2h) χU (s)[h 2 ∆, χ t ]u.
Let B ∈ Ψ comp be compactly supported inside K t × K t , equal to the identity microlocally near supp χ t ∩ S * M , but microlocalized in a small enough neighborhood of S * M so that by (3.20),

g s (supp χ) ∩ WF h (B) ∩ supp(1 -χ t ) = ∅. Note that WF h ([h 2 ∆, χ t ]) ⊂ supp(1 -χ t ).
Then by part 2 of Proposition 3.8, Kt) ; it remains to integrate in s to get (3.21).

χU (s)[h 2 ∆, χ t ]Bu L 2 = O(h ∞ ) u L 2 (Kt) , 0 ≤ s ≤ t. (3.22) Moreover, by Proposition 3.2 χU (s)[h 2 ∆, χ t ](1 -B)u L 2 = O(h ∞ ) u L 2 (Kt) . (3.23) Combining (3.22) and (3.23), we get ∂ s u s L 2 = O(h ∞ ) u L 2 (
Hilbert-Schmidt norm estimates. We now prove Hilbert-Schmidt norm estimates for the product of a pseudodifferential operator with a spectral projector. (See [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators III[END_REF]Section 19.1] for the properties of Hilbert-Schmidt and trace class operators.) To simplify notation, we consider a spectral interval of size h centered at λ = 1; similar statement is true for the

interval [λ + c 1 h, λ + c 2 h] with λ > 0, replacing S * M by λS * M . Lemma 3.11. Fix c 1 , c 2 ∈ R and let 1l [1+c 1 h,1+c 2 h] (h 2 ∆) be defined by means of spectral theory. Assume that A ∈ Ψ comp ρ (M ) is compactly supported. Then h (d-1)/2 1l [1+c 1 h,1+c 2 h] (h 2 ∆)A HS ≤ C σ(A) L 2 (S * M ) + O(h 1-2ρ ). (3.24)
Here C is a constant independent of A (if WF h (A) is contained in a fixed compact set), however the constant in O(h 1-2ρ ) depends on A. We take the L 2 norm of σ(A) on the energy surface S * M with respect to the Liouville measure µ L .

Moreover, if WF

h (A) is microsupported, in the sense of Definition 3.1, in some h-dependent family of sets V (h) ⊂ T * M , then h (d-1)/2 1l [1+c 1 h,1+c 2 h] (h 2 ∆)A HS ≤ Cµ L (V (h) ∩ S * M ) 1/2 + O(h ∞ ).
(3.25)

Here µ L (V (h)∩S * M ) denotes the volume of V (h)∩S * M with respect to the Liouville measure on S * M and the constant C depends on a certain S comp ρ -seminorm of the full symbol of A.

Proof. Take a function χ ∈ S (R) such that χ is compactly supported in some interval (-T, T ) and χ does not vanish on [c 1 , c 2 ] (for example, take nonzero

ψ ∈ C ∞ 0 (R) with ψ ≥ 0, then | ψ| > 0 in an interval [c 1 ε, c 2 ε]; set χ(x) := ψ(εx)). Then 1l [1+c 1 h,1+c 2 h] (h 2 ∆) = Zχ((h 2 ∆ -1)/h),
where Z is a certain function of h 2 ∆ and it is bounded on L 2 (M ) uniformly in h. It then suffices to estimate the Hilbert-Schmidt norm of

B = h (d-1)/2 χ((h 2 ∆ -1)/h)A = (2π) -1 h (d-1)/2 T -T χ(t)e -it/h U (2t)A dt.
Let A 0 ∈ Ψ comp 0 (M ) be compactly supported and equal to the identity microlocally near WF h (A). By part 3 of Proposition 3.8, for each t we have

U (2t)A 0 = U 2t + R 2t , where U 2t ∈ I comp (g 2t ) is a compactly supported Fourier integral operator and R 2t = O(h ∞ ) L 2 →L 2 . Then (U (2t) -U 2t )A = O(h ∞ ) HS . (3.26)
Indeed, we can write the left-hand side of (3.26) as the sum of R 2t A and U (2t

)(1 -A 0 )A; it remains to note that R 2t = O(h ∞ ) L 2 →L 2 , A HS is polynomially bounded in h, and (1 -A 0 )A HS = O(h ∞ ).
By (3.26), we can replace U (2t) by U 2t in the definition of B. Now, the Hilbert-Schmidt norm of B is equal to the L 2 (M ×M ) norm of its Schwartz kernel K B . Using the local normal form (3.14) for Fourier integral operators, we can write K B , up to an O(h ∞ ) C ∞ 0 remainder and an appropriate cutoff in the m ′ variable, as a finite sum of expressions of the form (in a fixed coordinate system on M )

h -(d+1)/2 T -T R d e i(S(m,ν ′ ;2t)-m ′ •ν ′ -t)/h b(m, ν ′ , t; h) dν ′ dt.
(3.27)

Here S(m, ν ′ ; 2t) is a generating function for g 2t and b is a certain symbol in S comp ρ . Moreover, b admits an asymptotic expansion in terms of the full symbol of A, by Proposition 3.7. The fact that S and b can be choosen to depend smoothly on t follows from the proof of part 3 of Proposition 3.8.

We can deduce from (3.13) that

g 2t (m, ν) = (m ′ , ν ′ ) =⇒ ∂ t (S(m, ν ′ ; 2t)) = p(m, ν).
(3.28)

The equation (3.28) is true for the particular generating function constructed in the proof of part 3 of Proposition 3.8. One can add any function of t to the function S and still obtain a generating function of g 2t ; however, the amplitude b with respect to the new generating function will no longer be a symbol, as its derivatives in t will not be bounded uniformly in h. It follows from (3.28) that the function

Φ(m, m ′ , ν ′ , t) = S(m, ν ′ ; 2t) -m ′ • ν ′ -t
is a nondegenerate phase function (with m, m ′ as base variables and ν ′ , t as the oscillatory variables) and generates the (immersed) Lagrangian

Λ = {(m, ν; m ′ , -ν ′ ) | p(m, ν) = 1, ∃t ∈ (-T, T ) : g 2t (m, ν) = (m ′ , ν ′ )}.
Then (3.27) lies in I comp ρ (Λ). By the local normal form (3.8) of a Lagrangian distribution, we can write (3.27), up to an O(h ∞ ) C ∞ 0 remainder and an appropriate cutoff in the (m, m ′ ) variables, as the sum of finitely many expressions of the form

h -d R 2d e i(m•ν+m ′ •ν ′ +F (ν,ν ′ ))/h b(ν, ν ′ ; h) dνdν ′ , (3.29)
where F parametrizes some open subset of Λ by (3.7) and b is a symbol in S comp ρ . By Proposition 3.7 and Proposition 3.3, we see that the symbol b has the following asymptotic expansion in terms of the full symbol a of A:

b(ν, ν ′ ; h) = 0≤j<N h j L j a(m ′ , ν ′ ; h) + O(h N (1-2ρ) ) S comp ρ , (3.30)
where each L j is a differential operator of order 2j and m, m ′ are given by the relation

(m, ν, m ′ , -ν ′ ) ∈ Λ; in particular, (m ′ , ν ′ ) ∈ S * M .
We now use Proposition 3.6 to estimate the L 2 norm of (3.29); as B is, modulo O(h ∞ ) HS , a sum of operators with Schwartz kernels of the form (3.29), this would give an estimate on the Hilbert-Schmidt norm of B. For (3.24), we can write b(ν, ν ′ ; h) as a multiple of a(m ′ , ν ′ ) plus an O(h 1-2ρ ) remainder and note that (m ′ , ν ′ ) always lies in S * M . For (3.25), we use that b = O(h ∞ ) outside of the preimage of V (h) under the map (ν, ν ′ ) → (m ′ , ν ′ ), and that sup | b| can be estimated by a certain S comp ρ -seminorm of a.

Local traces of integrated Schrödinger propagators. We give the following version of the Schrödinger propagator trace formula in the case where there are no contributions from closed geodesics: Lemma 3.12. Assume that M is a d-dimensional complete Riemannian manifold and B s is a family of compactly supported pseudodifferential operators in Ψ comp ρ (M ), smooth and compactly supported in s ∈ (-T 0 , T 0 ), where T 0 > 0 is fixed. Assume also that all B s are microsupported, in the sense of Definition 3.1, in some h-dependent family of bounded sets V (h) ⊂ T * M , and the following nonreturning condition holds:

(m, ν) ∈ V (h), |s| < T 0 =⇒ d((m, ν), g s (m, ν)) ≥ C -1 |s|h ρ . (3.31)
Here C is some constant and d denotes some smooth distance function on

T * M . Let B s = Op h (b(s))+O(h ∞ ) Ψ -∞
for some family of symbols b(s, m, ν) and some quantization procedure Op h . Then for each N and each λ > 0, we have the trace expansion

(2πh) d-1 T 0 -T 0 e -iλ 2 s/(2h) Tr(U (s)B s ) ds = 0≤j<N h j S * M L j b(0, m, λν) dµ L (m, ν) + O(h N (1-2ρ) ) C ∞ λ , (3.32)
where µ L is the Liouville measure and each L j is a differential operator of order 2j on T * M (m,ν) × (-T 0 , T 0 ) s , independent of B s and depending smoothly on λ. In particular,

L 0 = λ d-2 .
Proof. As in the proof of Lemma 3.11, we can reduce to computing the trace of the operator with the Schwartz kernel (in some fixed local coordinates)

K(m, m ′ ) = (2πh) -1 T 0 -T 0 R d e i h (S(m,ν ′ ;s)-m ′ •ν ′ -λ 2 s/2) b(m, ν ′ , s; h) dν ′ ds,
where S(m, ν ′ ; s) is a local generating function for g s in the sense of (3.13) and b(m, ν ′ , s; h) is a certain symbol in S ρ having an asymptotic expansion in terms of the jet of b s at the point (∂ ν ′ S(m, ν ′ ; s), ν ′ ). The trace of the corresponding operator is

M K(m, m) dm = (2πh) -1 T 0 -T 0 M ×R d e i h (S(m,ν ′ ;s)-m•ν ′ -λ 2 s/2) b(m, ν ′ , s; h) dmdν ′ ds.
We now use the method of stationary phase. The stationary points of the phase are solutions to the equations g s (m, ν ′ ) = (m, ν ′ ) and |ν ′ | g = λ; they occur at s = 0 and may also occur for λ|s| ≥ r i , where r i > 0 is the injectivity radius of M . For λ|s| ≥ r i /2, we see by (3.31) that the expression under the integral can be split into two pieces, on one of which the symbol is O(h ∞ ) and on the other, the differential of the phase function has length at least C -1 h ρ ; by repeated integration by parts, the latter integral is O(h ∞ ).

It remains to evaluate the contribution of the stationary set {s = 0} ∩ λS * M . The phase function is degenerate on these points; however, one can pass to polar coordinates ν ′ = rω, with |ω| g = 1 and r > 0, and apply the method of stationary phase in the (r, s) variables, resulting in the expansion (3.32). See for example the proofs of [Ro, Théorème V-7 and Proposition V-8] or [START_REF] Robert | Semi-classical asymptotics for local spectral densities and time delay problems in scattering processes[END_REF]Lemma 3.1] for details of the computation.

General assumptions

In this section, we list the general geometric assumptions on the manifold M and analytic assumptions on its Laplacian required for our results to hold. As noted in the introduction, they are satisfied in particular if outside of a compact set, M is isometric to either the Euclidean space (studied in Section 6) or an asymptotically hyperbolic space of constant curvature (studied in Section 7). We also derive some direct consequences of the general assumptions, including averaged estimates on plane waves and the existence of limiting measures µ ξ .

4.1. Geometric assumptions. In this subsection, we specify the geometry of the manifold M at infinity.

Let us introduce some notation and terminology first. On a complete Riemannian manifold (M, g) we denote by g t the geodesic flow of the metric g, considered as a map on the cotangent bundle T * M . Any smooth function f on M can be lifted to a function on T * M ; denote by ḟ , f ∈ C ∞ (T * M ) the derivatives of f with respect to the geodesic flow:

ḟ (m, ν) := d t f (g t (m, ν))| t=0 , f (m, ν) := d 2 t f (g t (m, ν))| t=0 . We denote by S * M the unit cotangent bundle {(m, ν) | |ν| g = 1} ⊂ T * M .
A boundary defining function on a smooth compact manifold M with boundary is a smooth function x : M → [0, ∞) such that x > 0 on M and x vanishes to first order on ∂M .

We make the following assumptions: (G1) (M, g) is a complete Riemannian manifold of dimension d = n + 1. Moreover, there exists a compactification of M , namely a compact manifold with boundary M such that M is diffeomorphic to the interior of M . The boundary ∂M is called the boundary at infinity; (G2) There exists a boundary defining function x on M and a constant ε 0 > 0 such that for any point (m, ν)

∈ S * M , if x(m, ν) ≤ ε 0 and ẋ(m, ν) = 0, then ẍ(m, ν) < 0; (4.1) (G3) For each (m, ν) ∈ S * M such that x(m) ≤ ε 0 and ẋ(m, ν) ≤ 0, the geodesic g t (m, ν)
(projected onto the base space M ) converges as t → +∞, in the topology of M , to some point ξ +∞ (m, ν) ∈ ∂M . The function ξ +∞ depends smoothly on (m, ν), and we extend it naturally (as the limit of the corresponding geodesic) to a smooth function on

S * M \ Γ -, with Γ -given in Definition 4.1 below; (G4) There exists an open set U ∞ ⊂ M × ∂M such that U ∞ contains a neighbourhood of {(ξ, ξ) ∈ M × ∂M | ξ ∈ ∂M } and a smooth real-valued function φ(m, ξ) = φ ξ (m) on U ∞ such that |∂ m φ ξ (m)| g = 1 everywhere and the function τ (m, ξ) := (m, ∂ m φ ξ (m)) ∈ S * M, (m, ξ) ∈ U ∞ , (4.2) x ∂M ε 0 x ∂M ε 0 (m, ν) (m ′ , ν ′ ) ξ +∞ Figure 2.
Left: an illustration of (G2), showing a forbidden geodesic. Right: an illustration of (G3). The point (m, ν) does not escape directly in the forward direction, but the point (m ′ , ν ′ ) does. Escaping trajectories and the trapped set.. We now define the incoming/outgoing tails Γ ± and the trapped set K: Definition 4.1. Let γ(t) be a unit speed geodesic. We say that it escapes in the forward, respectively backward, direction, if γ(t) goes to infinity in M as t → +∞, respectively t → -∞. If γ(t) does not escape in some direction, we call it trapped in this direction. Denote by Γ + ⊂ S * M the union of all geodesics trapped in the backward direction, by Γ -the union of all geodesics trapped in the forward direction, and put K = Γ + ∩ Γ -; we call K the trapped set.

is a diffeomorphism from U + ∞ onto V + ∞ with inverse given by τ -1 (m, ν) = (m, ξ +∞ (m, ν)), (m, ν) ∈ V + ∞ where the sets U + ∞ and V + ∞ are defined by U + ∞ := {(m, ξ) ∈ U ∞ | x(m) ≤ ε 0 , ẋ(τ (m, ξ)) ≤ 0}, V + ∞ := {(m, ν) ∈ S * M | x(m) ≤ ε 0 , ẋ(m, ν) ≤ 0, (m, ξ +∞ (m, ν)) ∈ U ∞ }; (G5) if (m, ν) ∈ V + ∞ , then g t (m, ν) ∈ V + ∞ for all t ≥ 0; (G6) if ξ ∈ ∂M and m, m ′ ∈ M are such that (m, ξ), (m ′ , ξ) ∈ U + ∞ , then ∂ ξ φ ξ (m) = ∂ ξ φ ξ (m ′ ) if
An escaping geodesic could potentially spend a long time in the compact part of the manifold. It is helpful to consider geodesics that escape in a straightforward way (with the boundary defining function x decreasing along them); they appeared in assumption (G3) for instance.

Definition 4.2. We say that (m, ν) ∈ S * M directly escapes in the forward, respectively backward, direction, if x(m) ≤ ε 0 and ẋ(m, ν) ≤ 0, respectively ẋ(m, ν) ≥ 0. Here ε 0 is the constant from (G2). Denote by DE + , respectively DE -, the set of all points directly escaping in the forward, respectively backward, direction.

One can verify that Γ ± are closed sets and the trapped set K is compact (see [GéSj, Appendix]); in fact, since

S * M ∩ {x ≤ ε 0 } ⊂ DE + ∪ DE -, we have K ⊂ {x > ε 0 }. For the example of M = R n+1 discussed below, we have Γ ± = ∅. The point (m, ν) lies in DE + if and only if x(m) ≤ ε 0 and m • ν ≥ 0.
Comments on the geometric assumptions.

A basic example to have in mind for a manifold satisfying our assumptions is M = R n+1 with the radial compactification M being a closed ball and the boundary at infinity ∂M equal to the sphere S n . We will often use this example to illustrate the somewhat abstract assumptions of this section. (A more general version will be considered in Section 6.)

An important corollary of the assumption (G2) is that for ε ≤ ε 0 , the compact set {x ≥ ε} ⊂ M is geodesically convex ; i.e., if γ(t) is a geodesic and γ(t 1 ), γ(t 2 ) ∈ {x ≥ ε}, then γ(t) ∈ {x ≥ ε} for t ∈ [t 1 , t 2 ].
For the example of M = R n+1 , we can take x = (1+|m| -2 ) -1/2 , where |m| is the Euclidean length of m ∈ R d ; the corresponding sets {x ≥ ε} are balls centered at zero. It also follows from (G2) that for (m, ν) ∈ DE + , the function x(g t (m, ν)) is decreasing for t ≥ 0. One can show that x(g t (m, ν)) → 0 as t → +∞ and thus g t (m, ν) escapes in the forward direction; we do not give a proof of this fact as it follows from the more restrictive assumption (G3). Also, if a geodesic γ(t) escapes in the forward direction, then for t large enough we have γ(t)

∈ DE + . For M = R n+1 , we have ξ +∞ (m, ν) = ν ∈ S n .
Assumption (G4) means that for m sufficiently close to the infinity, the covectors ν such that (m, ν) ∈ DE + are in one-to-one correspondence with the limit points ξ +∞ (m, ν), and the inverse correspondence can be described by a phase function. It follows in particular from (G4) that for a fixed ξ ∈ ∂M , the set of directly escaping points (m, ν) such that ξ +∞ (m, ν) = ξ and (m, ξ) ∈ U ∞ is the intersection of DE + with the Lagrangian

Λ ξ := {(m, ∂ m φ ξ (m)) | (m, ξ) ∈ U ∞ }. (4.3) In the model case M = R n+1 we can put for any R > 0, U ∞ = {(m, ξ) | |m| > R}, and φ ξ (m) = m • ξ, so that τ is the canonical map from R n+1 × S n to S * R n+1 . Then U + ∞ = {(m, ξ) | |m| > R, m • ξ ≥ 0} and V + ∞ = {(m, ν) | |m| ≥ R, m • ν ≥ 0}; the difference is that U + ∞ is considered as a subset of R n+1 × S n , while V + ∞ is considered as a subset of S * R n+1 .
The condition (G6) is required in Proposition 5.12. To explain it, note that under the assumption

(G4), if (m, ξ) ∈ U + ∞ and (m(t), ν(t)) = g t (τ (m, ξ)), then ∂ t φ ξ (m(t))| t=0 = ∂ m φ ξ (m) • ∂ t m(t)| t=0 = g(∂ m φ ξ (m), ∂ m φ ξ (m)) = 1. (4.4)
Therefore, ∂ ξ φ ξ (m) is constant on the geodesic passing through τ (m, ξ).

Analytic assumptions.

In this subsection, we formulate the analytic assumptions on plane waves. Let M be as in the previous subsection, ∆ be the (nonnegative definite) Laplace-Beltrami operator on M , and h > 0 be the semiclassical parameter. We make the following assumptions:

(A1) There exists c 0 ≥ 0 (equal to 0 for the Euclidean and to n 2 /4 for the hyperbolic case), such that for each λ > 0, h > 0 and ξ ∈ ∂M , there exists a function, called distorted plane wave, E h (λ, ξ; m), smooth in all variables and solving on M the differential equation (1.4) in m:

(h 2 ∆ -c 0 h 2 -λ 2 )E h (λ, ξ; •) = 0.
Here ξ gives the direction of the plane wave, while λ corresponds to its semiclassical energy; (A2) for each 0 < λ 1 ≤ λ 2 , the Schwartz kernel of the semiclassical spectral projector

Π [λ 1 ,λ 2 ] := 1l [λ 2 1 +c 0 h 2 ,λ 2 2 +c 0 h 2 ] (h 2 ∆) can be written in the form Π [λ 1 ,λ 2 ] (m, m ′ ) = (2πh) -n-1 λ 2 λ 1 λ n f Π (λ/h) ∂M E h (λ, ξ; m)E h (λ, ξ; m ′ ) dξdλ. (4.5)
Here integration in ξ is carried with respect to a certain given volume form dξ on ∂M and

f Π (z) > 0 is a smooth function of z such that |∂ k z f Π (z)| ≤ C k z -k for each k and f Π (z) → 1 as z → ∞.
We now assume that plane waves admit the decomposition

E h (λ, ξ; m) = χ 0 (m; ξ)E 0 h (λ, ξ; m) + E 1 h (λ, ξ; m), (4.6) 
where χ 0 , E 0 h , E 1 h are respectively a cutoff function, an explicit 'outgoing' part of the wave, and the 'incoming' part, satisfying more precisely the following properties:

(A3) χ 0 (m; ξ) is a function smooth in m ∈ M and ξ ∈ ∂M , supported inside the set U ∞ from (G4) and χ 0 (m, ξ) = 1 for m sufficiently close to ξ;

(A4) E 0 h (λ, ξ; m) is a smooth function of λ ∈ R and (m, ξ) ∈ U ∞ , of the form E 0 h (λ, ξ; m) = e iλ h φ ξ (m) b 0 (λ, ξ, m; h), (4.7) 
where U ∞ and φ ξ are defined in (G4) and b 0 is a classical symbol in h defined for λ ∈ R and (m, ξ) ∈ U ∞ ; that is, b 0 is smooth in all variables, including h, up to h = 0. We also require that b 0 (λ, ξ, m; 0) is independent of λ; (A5) for λ in a fixed compact subset of (0, ∞) and ε 0 defined in (G2), the function

E 1 h (λ, ξ; m) := E 1 h (λ, ξ; m) 1 + E h (λ, ξ; m) L 2 ({x≥ε 0 }) (4.8)
is h-tempered in the sense of (3.2); (A6) for λ in a fixed compact subset of (0, ∞), each ξ ∈ ∂M , and each (m, λν) ∈ WF h ( E 1 h (λ, ξ)), we have (m, ν) ∈ S * M and either the geodesic γ(t) = g t (m, ν) does not escape in the forward direction (i.e. (m, ν) ∈ Γ -) or there exists t ≥ 0 such that γ(t) lies in the set

W ξ := {(m, ∂ m φ ξ (m)) | m ∈ supp(∂ m χ 0 )}.
(4.9)

The constants in the corresponding estimates (in the definition of the wave front set of a distribution given in Section 3.1) are uniform in λ and ξ;

(A7) there exists ε 1 ∈ (0, ε 0 ) such that for (m, ν) ∈ S * M directly escaping in the forward direction and x(m) ≤ ε 1 , the point (m, ξ +∞ (m, ν)) lies in the set U ∞ defined in (G4) and χ 0 = 1 near this point; (A8) Let τ : U + ∞ → V + ∞ be the diffeomorphism from (G4). Then its Jacobian with respect to the volume measure dvol(m)dξ on U + ∞ and the Liouville measure on V + ∞ , is equal to |b 0 (1, ξ, m; 0)| 2 , with b 0 defined in (A4).

For example, for M = R n+1 we put c 0 = 0, E h (λ, ξ; m) = e iλξ•m/h and use the standard volume form on the sphere ∂M = S n . The equation (4.5) then follows from the Fourier inversion formula.

Let us informally explain how the decomposition (4.6) is constructed and provide a justification for assumptions (A3)-(A6), putting for simplicity λ = 1. First of all, (A4) implies that for any χ ∈ C ∞ 0 (M ), χχ 0 E 0 h , as a function of m, is a Lagrangian distribution associated to the Lagrangian Λ ξ from (4.3). In fact, in the cases considered in the present paper, E 0 h solves on its domain the equation (1.4); however, we do not make this assumption here, as in more complicated cases (such as asymptotically hyperbolic manifolds of variable curvature) E 0 h might only be an approximate solution to (1.4) in a certain sense.

If we assume that E 0 h solves (1.4) on its domain, then the function

F h (λ, ξ; m) = (h 2 ∆ -λ 2 -c 0 h 2 )(χ 0 (m)E 0 h (λ, ξ; m)) is equal to [h 2 ∆, χ 0 ]E 0 h . Since E 0
h is a Lagrangian distribution associated to Λ ξ , the wavefront set of F h is contained in W ξ . We will now take E 1 h = -R h (λ)F h , where R h (λ) is the incoming scattering resolvent, a certain right inverse of h 2 ∆λ 2c 0 h 2 . Moreover, in our cases R h (λ) will be microlocally incoming in the weak sense: if we multiply F h by a (possibly small) constant to make R h (λ)F h bounded polynomially in h, then each point in the wavefront set of R h (λ)F h , when propagated forward by the geodesic flow, will either converge to the trapped set or pass through WF h (F h ). Thus, the assumption (A6) should be viewed as a direct consequence of the fact that the scattering resolvent is microlocally incoming and of propagation of singularities.

The assumption (A7) looks less natural, but will play an essential role in our proofs, in Propositions 5.2 and 5.5. It holds for both Euclidean and hyperbolic infinities, but for different reasons. For the hyperbolic infinity, χ 0 (•; ξ) is equal to 1 in a small neighborhood of ξ and one can see that for (m, ν) directly escaping in the forward direction and converging to ξ, the distance from m to ξ in M is O(x(m)). This is not true in the Euclidean case; however, in that case χ 0 is equal to 1 outside of a compact subset of M (that is, near the whole boundary ∂M , not just near ξ).

The assumption (A8) is required to relate the natural measure arising from the function E 0 h to the Liouville measure. If E h were equal to E 0 h , then this assumption would simply follow by taking the trace in (4.5) with a compactly supported pseudodifferential operator and a smooth cutoff function in λ.

4.3.

Limiting measures. We now define the family of limiting measures µ ξ . These measures result from propagating the natural measure arising from the 'outgoing' part E 0 h of the plane wave, which is supported on the Lagrangian Λ ξ from (4.3), backwards along the geodesic flow. In contrast with [START_REF] Dyatlov | Microlocal limits of Eisenstein functions away from the unitarity axis[END_REF], where the exponential decay of the measure along the flow ensured its convergence, our measures will only be defined for almost every ξ.

We first define the measure μξ on S * M , corresponding to E 0 h , as follows: for each compactly supported continuous function a on S * M , put

S * M a dμ ξ = (m,ξ)∈U + ∞ |b 0 (1, ξ, m; 0)| 2 a(τ (m, ξ)) dvol(m).
(4.10)

The support of μξ is contained in the Lagrangian Λ ξ from (4.3) and the integral (4.10) depends continuously on ξ. We see from (A8) that for any continuous function

f on ∂M , ∂M f (ξ) S * M a(m, ν) dμ ξ (m, ν)dξ = V + ∞ f (ξ +∞ (m, ν))a(m, ν) dµ L (m, ν). (4.11)
We now want to define the measure µ ξ by

S * M a dµ ξ = lim t→+∞ S * M a • g -t dμ ξ , (4.12) 
valid for all compactly supported continuous functions a. To show that the limit exists for almost every ξ (chosen independently of a) and for every a, we will use monotonicity. By (4.11), (G5), and using the invariance of the function ξ +∞ and the Liouville measure µ L under the geodesic flow, we see that if a and f are nonnegative, then

∂M f (ξ) S * M (a • g -t ) dμ ξ dξ = g -t (V + ∞ ) f (ξ +∞ (m, ν))a(m, ν) dµ L (m, ν)
is increasing with t. Therefore, for each ξ the integral

I a,t (ξ) = S * M (a • g -t ) dμ ξ
is increasing in t for any nonnegative a. Moreover, the integral of I a,t (ξ) in ξ is bounded by a t-independent constant, namely by the integral of a by the Liouville measure. Taking a to be an approximation of the characteristic function of each member of a countable family of compact sets exhausting S * M , and using the monotone convergence theorem, we see that there exists a measure zero set X ⊂ ∂M such that for ξ ∈ X , we have for each j and for any compactly supported continuous function a,

lim t→+∞ S * M (a • g -t ) dμ ξ < ∞.
This limit is a continuous functional on the space of continuous compactly supported functions on S * M ; therefore, there exists unique Borel measure µ ξ such that (4.12) holds. Moreover, we see that the limit (4.12) is uniform in a, as soon as we fix a compact set containing supp a and impose a bound on sup S * M |a|. One also sees immediately (1.6), namely that for compactly supported continuous a,

supp a ∩ ξ -1 +∞ (ξ) = ∅ =⇒ S * M a dµ ξ = 0, as S * M (a • g -t ) dμ ξ = 0 for all t.
We can integrate the measure µ ξ in ξ, getting back the Liouville measure:

Proposition 4.3. For each f ∈ C ∞ (∂M ) and each a ∈ C ∞ 0 (S * M ) we have ∂M f (ξ) S * M a(m, ν) dµ ξ (m, ν)dξ = S * M \Γ - f (ξ +∞ (m, ν))a(m, ν) dµ L (m, ν). (4.13)
In particular, if µ L (Γ -) = 0 (which will always be the case in our theorems, see (5.2)), then µ ξ dξ is the Liouville measure.

Proof. The left-hand side can be written as

lim t→+∞ g -t (V + ∞ ) f (ξ +∞ (m, ν))a(m, ν) dµ L (m, ν).
It remains to use the dominated convergence theorem; indeed, the function under the integral is bounded and compactly supported, we have

g -t 1 (V + ∞ ) ⊂ g -t 2 (V + ∞ ) for t 1 < t 2
, and the union of g -t (V + ∞ ) over all t ∈ R is exactly S * M \ Γ -, as for every geodesic γ(t) escaping in the forward direction and for t large enough, the point γ(t) is directly escaping in the forward direction and (γ(t), ξ +∞ (γ(t))) ∈ U ∞ .

Finally, the following lemma will be useful to relate our measure µ ξ to the one obtained from E 0 h in the proofs of Theorems 1 and 2:

Lemma 4.4. Let ξ ∈ X , so that µ ξ is well-defined. Let a be a compactly supported continuous function on S * M .

1. µ ξ is invariant under the geodesic flow: for each t ∈ R,

S * M a • g t dµ ξ = S * M a dµ ξ . (4.14) 2. If supp a ⊂ DE + ∩ {x ≤ ε 1 }
, where DE + is given by Definition 4.2 and ε 1 is defined in (A7), then

(m,ξ)∈U∞ |b 0 (1, ξ, m; 0)χ 0 (m; ξ)| 2 a(m, ∂ m φ ξ (m)) dvol(m) = S * M a dµ ξ .
(4.15)

Proof. 1. Follows immediately from the definition (4.12).

2. First of all, note that for m in the support of the function a(m, ∂ m φ ξ (m)), we have (m, ξ) ∈ U + ∞ and χ 0 (m; ξ) = 1 by (A7); therefore, the left-hand side of (4.15) becomes the integral of a over the measure μξ defined in (4.10). By (4.12), it is enough to show that for t ≥ 0,

S * M a • g -t dμ ξ = S * M a dμ ξ .
For that, it is enough to show that for each

f ∈ C ∞ 0 (∂M ), ∂M f (ξ) S * M a • g -t dμ ξ = ∂M S * M a dμ ξ .
Using (4.11), we rewrite this as

g -t (V + ∞ ) f (ξ +∞ )a dµ L = V + ∞ f (ξ +∞ )a dµ L .

This is true as supp

a ⊂ V + ∞ ⊂ g -t (V + ∞ ).
4.4. Averaged estimates on plane waves. One of the principal tools of the present paper are microlocal estimates on the plane waves E h (λ, ξ) on average in λ, ξ, where λ takes values in a size h interval. They are direct consequences of (4.5) and the Hilbert-Schmidt norm estimate (3.24). More precisely, restricting to the case λ = 1 + O(h) for simplicity, we have the following

Proposition 4.5. Let χ ∈ C ∞ 0 (M ). Then: 1. χΠ [1,1+h
] is a Hilbert-Schmidt operator and there exists a global constant C such that for each bounded operator A : L 2 (M ) → L 2 (M ), we have

h -1 Aχ(m)E h (λ, ξ; m) 2 L 2 m,ξ,λ (M ×∂M ×[1,1+h]) ≤ Ch n AχΠ [1,1+h] 2 HS .
(4.16)

2. The functions χE h are bounded in L 2 on average in the following sense: there exists a constant C(χ) such that for any h,

h -1 χ(m)E h (λ, ξ; m) 2 L 2 m,ξ,λ (M ×∂M ×[1,1+h]) ≤ C(χ).
(4.17)

The h -1 prefactor in both cases is due to the fact that we are integrating over an interval of size h in λ.

Proof. 1. It follows immediately from (4.5) that

h -1 1+h 1 f Π (λ/h)λ n ∂M (χE h (λ, ξ)) ⊗ (χE h (λ, ξ)) dξdλ = (2π) n+1 h n χΠ [1,1+h] χ. (4.18)
Here ⊗ denotes the Hilbert tensor product, defined in (2.8). The integral on the left-hand side converges in the trace class norm, as the Schwartz kernels of the integrated operators are smooth and compactly supported. Therefore, χΠ [1,1+h] χ is trace class. Since

χΠ [1,1+h] χ = (χΠ [1,1+h] )(χΠ [1,1+h] ) * ,
we see that χΠ [1,1+h] is a Hilbert-Schmidt operator. Now, multiplying both sides of (4.18) by A on the left and A * on the right and taking the trace, we get

h -1 λ n/2 f Π (λ/h) 1/2 Aχ(m)E h (λ, ξ; m) 2 L 2 m,ξ,λ (M ×∂M ×[1,1+h]) = (2π) n+1 h n Tr((AχΠ [1,1+h] )(AχΠ [1,1+h] ) * ) = (2π) n+1 h n AχΠ [1,1+h] 2 HS . (4.19)
2. We would like to use Lemma 3.11 to estimate χΠ [1,1+h] HS (we can put χ on the other side of the projector in (3.24) by taking the adjoint), however this is not directly possible as χ is not compactly microlocalized. We thus use that E h solve the equation (1.4), writing by the elliptic parametrix construction (same as for the proof of Proposition 3.2)

χ = B + Q λ (h 2 ∆ -λ 2 -c 0 h 2 ) + R λ (4.20) for λ ∈ [1, 1+h], where B ∈ Ψ comp (M ), Q λ ∈ Ψ -2 (M ), and R λ ∈ h ∞ Ψ -∞ ( 
M ) are compactly supported and B is independent of λ and equal to χ microlocally near S * M . We can also assume that Q λ and R λ are smooth in λ. Now, we substitute (4.20) into the left-hand side of (4.17) and use the triangle inequality. By (4.16), the term featuring B is bounded by a constant times

h n BΠ [1,1+h]
2 HS , which is bounded uniformly in h by Lemma 3.11. The term featuring Q λ is zero by (1.4).

Finally, we show that the term featuring R λ is O(h ∞ ). This does not follow immediately from (4.16), as the operator R λ depends on λ. We use the following variant of (4.19): for

λ ∈ [1, 1 + h], h -1 λ n/2 f Π (λ/h) 1/2 R λE h (λ) 2 L 2 m,ξ,λ (M ×∂M ×[1, λ]) = (2π) n+1 h n R λΠ [1, λ] 2 HS .
Differentiating in λ, we get

(2π) n+1 h n ∂ λ R λΠ [1, λ] 2 HS = h -1 λn/2 f Π ( λ/h) 1/2 R λE h ( λ) 2 L 2 (m,ξ)(M ×∂M ) + 2h -1 Re λ n/2 f Π (λ/h) 1/2 (∂ λR λ)E h (λ), λ n/2 f Π (λ/h) 1/2 R λE h (λ) L 2 m,ξ,λ (M ×∂M ×[1, λ]
) . We now integrate in λ from 1 to 1 + h. The integral of the left-hand side is bounded by a constant times h n R 1+h 2 HS = O(h ∞ ). The integral of the first term on the right-hand side is the quantity we are estimating. Finally, the second term on the right-hand side is bounded by a constant times where µ L denotes the Liouville measure on S * M and K is the trapped set. First of all, note that (5.1) implies µ L (Γ ± ) = 0.

h n | Tr((∂ λR λ)Π [1,1+h] R * λ)|, which is O(h ∞ )
(5.2) Indeed, fix ε ∈ (0, ε 0 ), where ε 0 is defined in (G2), and take the set Γ ε + = Γ + ∩ {x ≥ ε}. For (m, ν) ∈ Γ + ∩ {x = ε}, we have ẋ(m, ν) < 0; indeed, otherwise (m, ν) directly escapes in the backward direction and thus cannot lie in Γ + . It follows that g

-t (Γ ε + ) ⊂ Γ ε + for t ≥ 0. Since Γ ε
+ is bounded, and µ L is invariant under the geodesic flow, we have

µ L (Γ ε + ) = lim t→+∞ µ L (g -t (Γ ε + )) = µ L t≥0 g -t (Γ ε + ) = µ L (K) = 0.
Letting ε → 0, we get (5.2).

We next note that the averaged L 2 bound (4.17) on E h on compact sets, together with (1.4) and the elliptic Proposition 3.2, give the following

Proposition 5.1. Assume that A ∈ Ψ 0 (M ) is compactly supported and WF h (A) ∩ S * M = ∅. Then h -1 AE h (λ, ξ), E h (λ, ξ) L 1 ξ,λ (∂M ×[1,1+h]) = O(h ∞ ). (5.3)
Therefore, it is enough to prove (1.5) for a compactly supported A ∈ Ψ comp (M ) microlocalized in an arbitrarily small neighborhood of S * M . Take t > 0; we will calculate limits of the form lim t→+∞ lim h→0 , thus O t (h ∞ ) expressions (that is, expressions that are O(h ∞ ) with the constants depending on t) will be negligible. Take χ ∈ C ∞ 0 (M ) indepedendent of t and such that A = χAχ. We first use that E h is a generalized eigenfunction of the Laplacian (1.4) and apply Lemma 3.10: for each λ ∈ [1, 1+h] and each ξ ∈ ∂M ,

χE h = χe -it(λ 2 +c 0 h 2 )/2h U (t)χ t E h + O t (h ∞ E h L 2 (Kt) ) L 2 .
(5.4)

Here U (t) = e ith∆/2 is the semiclassical Schrödinger propagator and

χ t ∈ C ∞ 0 (M ) is sup- ported in the interior of the compact set K t ⊂ M and satisfies d g (supp χ, supp(1 -χ t )) > t.
We also assume that |χ t | ≤ 1 everywhere and K t contains {x ≥ ε 0 }, where ε 0 is defined in (G2). By Proposition 3.8, we can write U (-t)AU (t

) = A -t + O t (h ∞ ) L 2 →L 2 , where A -t ∈ Ψ comp is compactly supported. Then AE h , E h = A -t χ t E h , χ t E h + O t (h ∞ ) E h 2 L 2 (Kt) .
(5.5)

We will now write

A -t = A -t 0 + A -t 1 , A -t 0 := A -t ϕ, A -t 1 := A -t (1 -ϕ), (5.6) 
where the L 2 norm of the principal symbol of A -t 0 will decay with t and the operator A -t 1 will be negligible on E 1 h . The function ϕ ∈ C ∞ 0 (M ) is taken independent of t and such that supp χ ⊂ {x > ε χ } for some ε χ and ϕ = 1 near {x ≥ ε χ }. We also require that ϕ = 1 near {x ≥ ε 1 }, where ε 1 comes from the assumption (A7).

We first show that the terms in (5.5) featuring both A -t

1 and E 1 h are O(h ∞ ). For that, we need to show that the trajectories in WF h (A -t 1 ) ⊂ supp(1ϕ) ∩ g t (supp χ) satisfy the geometric property shown on Figure 1:

Lemma 5.2. Let t ≥ 0. Assume that (m, ν) ∈ S * M satisfies m ∈ supp(1 -ϕ), but g -t (m, ν) ∈ supp χ. Then:
(1) (m, ν) directly escapes in the forward direction, in the sense of Definition 4.2;

(2) for each s ≥ 0, g s (m, ν) does not lie in the set W ξ defined in (4.9), for any ξ ∈ ∂M .

Proof. (1) We have x(m) < ε 1 ≤ ε 0 ; therefore, if (m, ν) does not directly escape in the forward direction, then it directly escapes in the backward direction; this would imply that x(g -t (m, ν)) is decreasing in t ≥ 0, which is impossible as x(m) < ε χ < x(g -t (m, ν)).

(2) The point g s (m, ν) directly escapes in the forward direction and x(g s (m, ν)) < ε 1 . If g s (m, ν) ∈ W ξ , then by (G4), ξ = ξ +∞ (m, ν), but this is impossible as χ 0 = 1 near (g s (m, ν), ξ +∞ (m, ν)) by (A7).

Combining Lemma 5.2 with the microlocal information we have on E 1 h , we get Proposition 5.3.

If E h = χ 0 E 0 h + E 1 h is the decomposition (4.6), then for each t ≥ 0, AE h , E h = A -t 1 χ t χ 0 E 0 h , χ t χ 0 E 0 h + A -t 0 χ t E h , χ t E h + O t (h ∞ (1 + E h 2 L 2 (Kt) )).
(5.7)

where A -t 0 , A -t 1 are defined in (5.6).

Proof. By (5.5), it is enough to show that

A -t 1 χ t E h , χ t E h -A -t 1 χ t χ 0 E 0 h , χ t χ 0 E 0 h = O t (h ∞ (1 + E h 2 L 2 (Kt) )).
Given that

χ 0 E 0 h L 2 (Kt) = O(1), it suffices to prove Bχ t E 1 h L 2 = O t (h ∞ (1 + E h L 2 (Kt) )),
where B is equal to either A -t 1 or its adjoint. This in turn follows from

Bχ t E 1 h L 2 = O t (h ∞ ), (5.8) with E 1 h defined in (4.8). Take (m, ν) ∈ WF h (Bχ t E 1 h ) ⊂ S * M . Then by Proposition 3.8, (m, ν) ∈ WF h (B) ⊂ WF h (A -t ) ∩ supp(1 -ϕ) ⊂ g t (WF h (A)) ∩ supp(1 -ϕ).
Since WF h (A) ⊂ supp χ, we see that m ∈ supp(1ϕ) and g -t (m, ν) ∈ supp χ; therefore, by Lemma 5.2, the geodesic g s (m, ν) escapes in the forward direction and does not pass through W ξ for s ≥ 0. But then by (A6) the point (m, ν) cannot lie in WF h ( E 1 h ), a contradiction. We showed that the wavefront set of Bχ t E 1 h is empty, which implies (5.8).

We now use the averaged estimate (4.16) and the Hilbert-Schmidt norm estimates from Section 3.3, to estimate the second term on the right-hand side of (5.7):

Proposition 5.4. There exists a constant C independent of t such that

h -1 A -t 0 χ t E h , χ t E h L 1 ξ,λ (∂M ×[1,1+h]) ≤ C (σ(A) • g -t )ϕ L 2 (S * M ) + O t (h).
(5.9)

Here a L 2 (S * M ) is the L 2 norm of the restriction of a to S * M with respect to the Liouville measure.

Proof. Take a real-valued function ϕ 1 ∈ C ∞ 0 (M ) independent of t such that ϕ 1 = 1 near supp ϕ. Then the left-hand side of (5.9) is bounded by

h -1 A -t 0 χ t E h , ϕ 1 χ t E h L 1 ξ,λ + h -1 (1 -ϕ 1 )A -t 0 χ t E h , χ t E h L 1 ξ,λ
, where the L 1 , and later L 2 , norms in ξ, λ are taken over ∂M × [1, 1 + h]. The second term here is O t (h ∞ ) by the bound (4.17) and since (1

-ϕ 1 )A -t 0 = O t (h ∞ ) L 2 →L 2 is compactly supported.
The first term can be estimated by applying the Cauchy-Schwarz inequality first in m and then in (λ, ξ):

h -1 A -t 0 χ t E h , ϕ 1 χ t E h L 1 ξ,λ ≤ h -1 A -t 0 χ t E h L 2 (M ) • ϕ 1 χ t E h L 2 (M ) L 1 ξ,λ ≤ h -1/2 A -t 0 χ t E h L 2 m,ξ,λ • h -1/2 ϕ 1 χ t E h L 2 m,ξ,λ . Now, h -1/2 ϕ 1 χ t E h L 2 m,ξ,λ
is bounded (independently of t) uniformly in h by (4.17). As for

h -1/2 A -t 0 χ t E h L 2 m,ξ,λ
, we can estimate it using (4.16) by a constant times

h n/2 A -t 0 χ t Π [1,1+h] HS .
Note that the operator A -t 0 χ t ∈ Ψ comp is compactly supported and it is compactly microlocalized independently of t. It then remains to apply (3.24) (to the adjoint of our operator); by Proposition 3.8, the principal symbol of A -t 0 χ t is given by (σ(A) • g -t )ϕ.

We now use the dynamical assumption that µ L (K) = 0. The function (σ(A) • g -t )ϕ is supported in a t-independent compact set and bounded uniformly in t. Moreover, it converges to zero pointwise on S * M \ Γ + as t → +∞. Therefore, by (5.2) and the dominated convergence theorem we have (σ(A) • g -t )ϕ → 0 in L 2 (S * M ), as t → +∞. It then follows from (5.7) together with the bound (4.17) and from (5.9) that lim

t→+∞ lim sup h→0 h -1 AE h , E h -A -t 1 χ t χ 0 E 0 h , χ t χ 0 E 0 h L 1 ξ,λ (∂M ×[1,1+h]) = 0.
To prove Theorem 1, it now remains to show that

lim t→+∞ lim sup h→0 h -1 A -t 1 χ t χ 0 E 0 h , χ t χ 0 E 0 h - S * M σ(A) dµ ξ L 1 ξ (∂M )
= 0 (5.10)

uniformly in λ = 1 + O(h). We first note that by (4.7) the function

χ t χ 0 E 0 h (λ, ξ; m) = e iλ h φ ξ (m) χ t (m)χ 0 (m, ξ)b 0 (1, ξ, m; 0) + O t (h) L 2
is a compactly supported Lagrangian distribution associated to the Lagrangian Λ ξ from (4.3). Therefore, by Proposition 3.5, we find

A -t 1 χ t χ 0 E 0 h (λ, ξ) = e iλ h φ ξ χ t χ 0 b 0 (1, ξ, m; 0)σ(A -t 1 )(m, ∂ m φ ξ (m)) + O t (h) L 2 .
(5.11) Therefore,

A -t 1 χ t χ 0 E 0 h , χ t χ 0 E 0 h = M σ(A -t 1 )(m, ∂ m φ ξ (m))|χ t χ 0 b 0 (1, ξ, m; 0)| 2 dvol(m) + O t (h).
Now, by Proposition 3.8, σ(A -t 1 ) = (σ(A) • g -t )(1ϕ). By Lemma 5.2, this function is supported in DE + ∩ {x < ε 1 }, with DE + from Definition 4.2. Also, χ t = 1 near supp σ(A -t 1 ). Then by part 2 of Lemma 4.4,

A -t 1 χ t χ 0 E 0 h , χ t χ 0 E 0 h = S * M (σ(A) • g -t )(1 -ϕ) dµ ξ + O t (h).
(5.12) Therefore, (5.10) reduces to

lim t→+∞ S * M (σ(A) • g -t )(1 -ϕ) dµ ξ - S * M σ(A) dµ ξ L 1 ξ (∂M ) = 0.
(5.13) By part 1 of Lemma 4.4 and (4.13), we write the norm on the left-hand side of (5.13) as

S * M σ(A)(ϕ • g t ) dµ ξ L 1 ξ (∂M ) ≤ S * M |σ(A)(ϕ • g t )| dµ L .
The expression under the integral on the right-hand side is bounded and compactly supported uniformly in t and converges to zero pointwise on S * M \ Γ -; by (5.2) and the dominated convergence theorem, we get (5.13). This finishes the proof of Theorem 1.

The nontrapped case. We briefly discuss the situation when WF h (A) ∩ Γ -= ∅. In this case, for t large enough (depending on A), for any (m, ν) ∈ WF h (A) we have g t (m, ν) ∈ supp ϕ and thus

A -t 0 = O(h ∞ ) L 2 →L 2 .
Then by (5.7) and the bound (4.17),

AE h , E h = A -t 1 χ t χ 0 E 0 h , χ t χ 0 E 0 h + O(h ∞ ) L 1 ξ,λ (∂M ×[1,1+h]) . The quantity A -t 1 χ t χ 0 E 0 h , χ t χ 0 E 0 h is calculated in (5.
12) up to O(h). However, since E 0 h is a Lagrangian distribution, one can get by Proposition 3.5 a full expansion of this quantity in powers of h; this yields

AE h (λ, ξ), E h (λ, ξ) = 0≤j<N h j S * M L j a dµ ξ + O(h N +1 ) L 1 ξ,λ (∂M ×[1,1+h]) , (5.14) 
where A = Op h (a) for some symbol a and some quantization procedure Op h and each L j is a differential operator of order 2j on T * M , with L 0 = 1.

5.2.

Estimates on the remainder. In this subsection, we prove (1.12) and establish an approximation fact (Proposition 5.8) used in the proofs of (1.13) and Theorem 4.

Classical escape rate and Ehrenfest time. Let K 0 ⊂ M be a compact geodesically convex set containing a neighborhood of the projection of the trapped set K onto M . As in (1.9), define the set

T (t) = {(m, ν) ∈ S * M | m ∈ K 0 , g t (m, ν) ∈ K 0 }.
The choice of K 0 does not matter here: if K ′ 0 ⊂ M is another set with same properties and T ′ (t) is defined using K ′ 0 in place of K 0 , then there exists a constant T 0 > 0 such that for each T ≥ T 0 and t ≥ 0, g T (T ′ (t + 2T )) ⊂ T (t).

(5.15) Indeed, assume that (5.15) were false. Then there exists sequences T j → +∞, t j ≥ 0, and (m j , ν j ) ∈ S * M such that g -T j (m j , ν j ) and g t j +T j (m j , ν j ) both lie in K ′ 0 , but for each j, either (1) (m j , ν j ) ∈ K 0 or (2) g t j (m j , ν j ) ∈ K 0 . We may assume that case (1) holds for all j; case (2) is handled similarly, reversing the direction of the flow and taking g t j (m j , ν j ) in place of (m j , ν j ). Take ε > 0 such that K ′ 0 ⊂ {x ≥ ε}; since {x ≥ ε} is geodesically convex for ε small enough, we have (m j , ν j ) ∈ {x ≥ ε}. Passing to a subsequence, we can assume that (m j , ν j ) → (m, ν) ∈ S * M as j → +∞. Now, since g -T j (m j , ν j ) ∈ K ′ 0 and T j → +∞, we have (m, ν) ∈ Γ + (indeed, otherwise there would exist s > 0 such that g -s (m, ν) ∈ {x < ε} and this would also hold in a neighborhood of (m, ν)). Similarly, since g t j +T j (m j , ν j ) ∈ K ′ 0 and t j + T j → +∞, we have (m, ν) ∈ Γ -. It follows that (m, ν) ∈ K, which is impossible, as each (m j , ν j ) does not lie in K 0 , which contains a neighborhood of K.

By changing Λ 0 slightly and using (5.15), we see that the choice of K 0 does not matter for the validity of (1.12) and (1.13); more precisely, if Λ 0 > Λ ′ 0 , then r ′ (h, Λ ′ 0 ) ≤ Cr(h, Λ 0 ), where r ′ is defined by (1.10) using T ′ in place of T . Also, the maximal expansion rate Λ max defined in (1.11) does not depend on the choice of K 0 .

We now choose a geodesically convex K 0 such that its interior contains the supports of all cutoff functions and compactly supported operators used in the argument below. We will rely on Proposition 3.9 (with U equal to the interior of K 0 ); we let Λ 0 > Λ max and fix ε e > 0 and Λ ′ 0 such that Λ 0 > Λ ′ 0 > (1 + 2ε e )Λ max . Define the Ehrenfest time t e := log(1/h)/(2Λ 0 ).

(5.16)

Then when propagating an operator in Ψ comp microlocalized inside

E εe := {1 -ε e ≤ |ν| g ≤ 1 + ε e }
(5.17) with cutoffs supported inside K 0 , as in Proposition 3.9, for time t = lt 0 ∈ [-t e , t e ], we get a mildly exotic pseudodifferential operator in Ψ comp ρe , where

ρ e := t e Λ ′ 0 / log(1/h) = Λ ′ 0 /(2Λ 0 ) < 1/2.
(5.18)

First decomposition of AE h , E h . By Proposition 5.1, we may assume that A ∈ Ψ comp (M ) is compactly supported and microlocalized inside the set E εe defined in (5.17).

We first establish the following decomposition similar to (5.7):

AE h , E h = e ilβ A(ϕU (t 0 )) l ϕE h , E h + l j=1 e ijβ A(ϕU (t 0 )) j (1 -ϕ)ϕ t 0 χ 0 E 0 h , E h + O(h ∞ N (E h ) 2 ), (5.19) uniformly in ξ ∈ ∂M and λ ∈ [1, 1 + h].
Here l = O(log(1/h)) is a nonnegative integer and t 0 > 0 and ϕ, ϕ t 0 ∈ C ∞ 0 (M ), specified below, are independent of j. The quantity N (E h ), defined in (5.22), is related to the L 2 norm of E h on a certain compact set, and is bounded on average by (5.23). The real-valued parameter β is equal to

β = -t 0 (λ 2 + c 0 h 2 )/(2h)
(5.20)

and will not play a big role in our argument.

To show (5.19), we start by considering the functions ϕ, ϕ 1 , ϕ 2 ∈ C ∞ 0 (M ) such that: • 0 ≤ ϕ, ϕ 1 , ϕ 2 ≤ 1 everywhere, • ϕ = 1 near supp ϕ 2 and ϕ 1 = 1 near supp ϕ, and • ϕ 2 = 1 both near the support of A and near the set {x ≥ ε 1 }, with ε 1 defined in (A7).

The proof of (5.19) only uses the function ϕ, however the other two functions will be required for the more precise decomposition (5.35) below.

We now have the following analogue of Lemma 5.2: Lemma 5.5. There exists t 0 ≥ 0 such that if (m, ν) ∈ S * M satisfies m ∈ supp(1ϕ 2 ) and g -t (m, ν) ∈ supp ϕ 1 for some t ≥ t 0 ,

(5.21) then:

(1) (m, ν) directly escapes in the forward direction;

(2) for each s ≥ 0, g s (m, ν) does not lie in the set W ξ defined in (4.9) for any ξ ∈ ∂M ; and (3) for each s ≥ t 0 , g s (m, ν) ∈ supp ϕ 1 .

ϕ 2 ϕ ϕ 1 (m, ν) g -t (m, ν) g s (m, ν)
Proof.

(1) Let supp ϕ 1 ⊂ {x ≥ ε ϕ }. The set DE -∩ {x ≥ ε ϕ }, where DE -is specified in Definition 4.2, is compact; therefore, there exists t 0 > 0 such that for t ≥ t 0 and (m,

ν) ∈ DE -∩ {x ≥ ε ϕ }, we have g -t (m, ν) ∈ supp ϕ 1 .
Now, assume that (m, ν) satisfies (5.21), but it does not directly escape in the forward direction. Since (m, ν) ∈ supp(1ϕ 2 ), we have x(m) ≤ ε 0 ; therefore, (m, ν) ∈ DE -. Then x(m) ≥ x(g -t (m, ν)) ≥ ε ϕ ; therefore, (m, ν) ∈ DE -∩ {x ≥ ε ϕ }, a contradiction with the fact that g -t (m, ν) ∈ supp ϕ 1 and t ≥ t 0 .

(2) This is proved exactly as part 2 of Lemma 5.2.

(3) It is enough to use part (1), take t 0 large enough, and use that the set DE + ∩ {x ≥ ε ϕ } is compact. Take t 0 from Lemma 5.5. Let ϕ t 0 ∈ C ∞ 0 (M ) be real-valued and satisfy d g (supp ϕ 1 , supp(1ϕ t 0 )) > t 0 . Take a compact set K t 0 ⊂ M whose interior contains supp ϕ t 0 . Put

N (E h ) := 1 + E h L 2 (Kt 0 ) ;
( 5.22) this quantity depends on λ and ξ and we know by (4.17) that

h -1 N (E h ) 2 L 2 ξ,λ (∂M ×[1,1+h]) = O(1).
(5.23)

By (1.4) and Lemma 3.10, we have similarly to (5.4),

ϕE h = e iβ ϕU (t 0 )ϕ t 0 E h + O(h ∞ N (E h )) L 2 .
(5.24)

Here β is given by (5.20). Iterating (5.24) by writing ϕ t 0 = ϕ + (1ϕ)ϕ t 0 , we get for l = O(log(1/h)) (or even for l polynomially bounded in h)

ϕE h = e ilβ (ϕU (t 0 )) l ϕE h + l j=1 e ijβ (ϕU (t 0 )) j (1 -ϕ)ϕ t 0 E h + O(h ∞ N (E h )) L 2 , (5.25) uniformly in ξ ∈ ∂M and λ ∈ [1, 1 + h]. Same is true if ϕ is replaced by any function ϕ ′ ∈ C ∞ 0 (M ) such that d g (supp ϕ ′ , supp(1 -ϕ t 0 )) > t 0 .
One can also replace U (t 0 ) by U (-t 0 ). We now use our knowledge of the wavefront set of E 1 h to prove the following analogue of Proposition 5.3: 

Proposition 5.6. If E h = χ 0 E 0 h + E 1 h is the decomposition (4.6), then ϕU (t 0 )(1 -ϕ)ϕ t 0 E 1 h L 2 = O(h ∞ N (E h )), ( 5 
ϕU (t 0 )(1 -ϕ)ϕ t 0 E 1 h L 2 = O(h ∞ ).
(5.27)

We now make the following observation: a point (m, ν) ∈ S * M in the wavefront set of E 1 h will make an O(h ∞ ) contribution to (5.27) unless m ∈ supp(1ϕ), but g -t 0 (m, ν) ∈ supp ϕ; however, by (A6) and Lemma 5.5, in this case (m, ν) ∈ WF h ( E 1 h ). To make this argument rigorous, we can write (bearing in mind that E 1 h is polynomially bounded)

ϕ t 0 E 1 h = B E 1 h + O(h ∞ ) L 2 ,
where B ∈ Ψ comp is compactly supported and such that

(m, ν) ∈ WF h (B) ∩ supp(1 -ϕ) =⇒ g -t 0 (m, ν) ∈ supp ϕ.
Then the operator ϕU (t 0 )(1ϕ)B is O(h ∞ ) L 2 →L 2 by part 2 of Proposition 3.8, which proves (5.27).

Using (5.26), we can replace E h by χ 0 E 0 h in each term of the sum (5.25):

ϕE h = e ilβ (ϕU (t 0 )) l ϕE h + l j=1 e ijβ (ϕU (t 0 )) j (1 -ϕ)ϕ t 0 χ 0 E 0 h +O(h ∞ N (E h )) L 2 .
(5.28)

Applying the operator A = ϕAϕ, we get (5.19).

Properties of propagators up to Ehrenfest time. We will now establish certain properties of the cut off and iterated propagators up to the Ehrenfest time t e defined in (5.16), or, in certain cases, up to twice the Ehrenfest time. The need for these properties arises mostly because of the cutoffs present in the argument. Define the Ehrenfest index l e := ⌊t e /t 0 ⌋ + 1 ∼ log(1/h).

(5.29)

Lemma 5.7. Assume that ϕ ′ , ϕ ′′ ∈ C ∞ 0 (M ) satisfy |ϕ ′ |, |ϕ ′′ | ≤ 1 everywhere. Let B ∈ Ψ comp be compactly supported and microlocalized inside the set E εe defined in (5.17). Then:

1. If ϕ ′′ = 1 near supp ϕ ′ , then for 0 ≤ j ≤ l e , (ϕ ′ U (±t 0 )) j BU (∓jt 0 ) = (ϕ ′ U (±t 0 )) j B(U (∓t 0 )ϕ ′′ ) j + O(h ∞ ) L 2 →L 2 ,
(5.30)

(U (±t 0 )ϕ ′ ) j BU (∓jt 0 ) = (U (±t 0 )ϕ ′ ) j B(ϕ ′′ U (∓t 0 )) j + O(h ∞ ) L 2 →L 2 .
(5.31)

2. If B 1 , B 2 ∈ Ψ comp satisfy same conditions as B and moreover WF h (B 1 )∩WF h (B 2 ) = ∅, then for 0 ≤ j ≤ 2l e (that is, up to twice the Ehrenfest time)

B 1 (ϕ ′ U (±t 0 )) j B(U (∓t 0 )ϕ ′′ ) j B 2 = O(h ∞ ) L 2 →L 2 .
(5.32)

Same is true if we replace ϕ ′ U (±t 0 ) by U (±t 0 )ϕ ′ and/or replace U (∓t 0 )ϕ ′′ by ϕ ′′ U (∓t 0 ).

3. If ϕ ′′ = 1 near supp ϕ ′ and both ϕ ′′ and B are supported at distance more than t 0 from supp(1ϕ t 0 ), then for 0 ≤ j ≤ l e (β is defined in (5.20))

e ±ijβ (ϕ ′ U (±t 0 )) j BE h = (ϕ ′ U (±t 0 )) j B(U (∓t 0 )ϕ ′′ ) j E h + O(h ∞ N (E h )) L 2 ,
(5.33)

e ±ijβ (U (±t 0 )ϕ ′ ) j BE h = (U (±t 0 )ϕ ′ ) j B(ϕ ′′ U (∓t 0 )) j ϕ t 0 E h + O(h ∞ N (E h )) L 2 .
(5.34)

Proof. We will repeatedly use Propositions 3.8 and 3.9 and omit the O(h ∞ ) L 2 →L 2 remainders present there.

1. We prove (5.30); (5.31) is proved similarly. Assume that the signs are chosen so that (5.30) features ϕ ′ U (t 0 ). We argue by induction in j. The case j = 0 is obvious. Now, assume that (5.30) is true for j -1 in place of j. Then

(ϕ ′ U (t 0 )) j BU (-jt 0 ) = ϕ ′ B ′ + O(h ∞ ) L 2 →L 2 ,
where

B ′ = U (t 0 )(ϕ ′ U (t 0 )) j-1 B(U (-t 0 )ϕ ′′ ) j-1 U (-t 0 )
is a compactly supported operator in Ψ comp ρe , with ρ e defined in (5.18). Since supp ϕ ′ ∩ supp(1ϕ ′′ ) = ∅, we have

ϕ ′ B ′ = ϕ ′ B ′ ϕ ′′ + O(h ∞ ) L 2 →L 2
and (5.30) follows.

2. We again assume that the signs are chosen so that (5.32) features ϕ ′ U (t 0 ). Write j = j 1 +j 2 , where 0 ≤ j 1 , j 2 ≤ l e , and write the left-hand side of (5.32) as U (j

1 t 0 ) B 1 B B 2 U (-j 1 t 0 ), where B = (ϕ ′ U (t 0 )) j 2 B(U (-t 0 )ϕ ′′ ) j 2 , B 1 = U (-j 1 t 0 )B 1 (ϕ ′ U (t 0 )) j 1 , B 2 = (U (-t 0 )ϕ ′′ ) j 1 B 2 U (j 1 t 0 ).
Now, B is a compactly supported member of Ψ comp ρe . Same can be said about B 1 and B 2 , by applying (5.31) and its adjoint (where the role of ϕ ′ is played by either ϕ ′ or ϕ ′′ and the role of ϕ ′′ , by a suitably chosen cutoff function). Moreover, if U 1 , U 2 are bounded open subsets of T * M such that WF h (B k ) ⊂ U k and U 1 ∩ U 2 = ∅, then by Proposition 3.9, B k is microsupported, in the sense of Definition 3.1, on the set g j 1 t 0 (U k ); since these two sets do not intersect, we see that

B 1 B B 2 = O(h ∞ ) L 2 →L 2 as needed.
3. We once again fix the sign so that U (t 0 ) stands next to ϕ ′ . Formally, (5.33) and (5.34) follow by applying (5.30) and (5.31), respectively, to the identity e ijβ E h = U (-jt 0 )E h . To make this observation rigorous, we write by Lemma 3.10

e iβ BE h = BU (-t 0 )ϕ t 0 E h + O(h ∞ N (E h )) L 2 , e iβ ϕ ′′ E h = ϕ ′′ U (-t 0 )ϕ t 0 E h + O(h ∞ N (E h )) L 2 .
We now use induction in j. For j = 0, both (5.33) and (5.34) are trivial. Now, assume that they both hold for j -1 in place of j. We then write

e ijβ (ϕ ′ U (t 0 )) j BE h = e iβ (ϕ ′ U (t 0 )) j B(U (-t 0 )ϕ ′′ ) j-1 E h + O(h ∞ N (E h )) L 2 = (ϕ ′ U (t 0 )) j B(U (-t 0 )ϕ ′′ ) j-1 U (-t 0 )ϕ t 0 E h + O(h ∞ N (E h )) L 2 .
The operator (ϕ ′ U (t 0 )) j B(U (-t 0 )ϕ ′′ ) j-1 U (-t 0 ) is a compactly supported element of Ψ comp ρ ; moreover, as j ≥ 1, the wavefront set of this operator is contained in supp ϕ ′ . Since ϕ ′′ = 1 near supp ϕ ′ , we can replace ϕ t 0 by ϕ ′′ in the last formula, proving (5.33).

We next write

e ijβ (U (t 0 )ϕ ′ ) j BE h = e iβ (U (t 0 )ϕ ′ ) j B(ϕ ′′ U (-t 0 )) j-1 ϕ t 0 E h + O(h ∞ N (E h )) L 2 . However, ϕ ′ (U (t 0 )ϕ ′ ) j-1 B(ϕ ′′ U (-t 0 )) j-1 is a compactly supported element of Ψ comp ρ
and its wavefront set is contained in supp ϕ ′ . Since ϕ ′′ = 1 near supp ϕ ′ , we can replace ϕ t 0 by ϕ ′′ , obtaining (5.34):

e ijβ (U (t 0 )ϕ ′ ) j BE h = e iβ (U (t 0 )ϕ ′ ) j B(ϕ ′′ U (-t 0 )) j-1 ϕ ′′ E h + O(h ∞ N (E h )) L 2 = (U (t 0 )ϕ ′ ) j B(ϕ ′′ U (-t 0 )) j-1 ϕ ′′ U (-t 0 )ϕ t 0 E h + O(h ∞ N (E h )) L 2 .
Second decomposition of AE h , E h . We now analyse the terms of (5.19), reducing AE h , E h to an expression depending on the 'outgoing' part E 0 h of the plane wave (see (4.6)), with remainder estimated by the classical escape rate for up to twice the Ehrenfest time:

Proposition 5.8. For 0 ≤ l ≤ 2l e , AE h , E h = l j=1 A j χ 0 E 0 h , χ 0 E 0 h + O hµ L (T (lt 0 )) + h ∞ L 1 ξ,λ (∂M ×[1,1+h]) , A j := ϕ t 0 (1 -ϕ 2 )(U (-t 0 )ϕ 1 ) j A(ϕU (t 0 )) j (1 -ϕ)ϕ t 0 .
(5.35)

Here l e is defined in (5.29) and T (t) in (1.9); we keep the O(h ∞ ) remainder to include the nontrapping case.

We will use Lemma 5.7; since it only applies to pseudodifferential operators microlocalized inside the set E εe from (5.17), we take an operator

X 0 ∈ Ψ comp (M ), WF h (X 0 ) ⊂ E εe , X 0 = 1 near S * M ∩ supp ϕ t 0 ,
(5.36) compactly supported inside K t 0 . By (1.4) and the elliptic estimate (Proposition 3.2), we have

ϕ t 0 E h = X 0 ϕ t 0 E h + O(h ∞ N (E h )) L 2 = ϕ t 0 X 0 E h + O(h ∞ N (E h )) L 2 .
(5.37)

Same is true if we replace E h by χ 0 E 0 h , as by (A4) and the fact that |∂ m φ ξ | g = 1, we have WF h (χ 0 E 0 h ) ⊂ S * M . We also recall that WF h (A) ⊂ E εe . We start the proof of Proposition 5.8 by estimating the first term on the right-hand side of (5.19) for l up to twice the Ehrenfest time, in terms of the classical escape rate: Proposition 5.9. There exists a constant C such that for 0 ≤ l ≤ 2l e , we have

h -1 A(ϕU (t 0 )) l ϕE h , E h L 1 ξ,λ (∂M ×[1,1+h]) ≤ Cµ L (T (lt 0 )) + O(h ∞ ).
(5.38)

Proof. We write l = l 1 + l 2 , where 0 ≤ l 1 , l 2 ≤ l e ; then

A(ϕU (t 0 )) l ϕE h , E h = (ϕU (t 0 )) l 1 ϕE h , (U (-t 0 )ϕ) l 2 A * E h .
Now, by (5.33)

e il 1 β (ϕU (t 0 )) l 1 ϕE h = e il 1 β (ϕU (t 0 )) l 1 X 0 ϕE h + O(h ∞ N (E h )) L 2 = B 1 l E h + O(h ∞ N (E h )) L 2 , where B 1 l = (ϕU (t 0 )) l 1 X 0 ϕ(U (-t 0 )ϕ 1 ) l 1 . Similarly, by (5.34) (recalling that A = ϕAϕ) e -il 2 β (U (-t 0 )ϕ) l 2 A * E h = B 2 l E h + O(h ∞ N (E h )) L 2 , where B 2 l = (U (-t 0 )ϕ) l 2 A * (ϕ 1 U (t 0 )) l 2 ϕ t 0 . Put B l = (B 2 l ) * B 1 l ; recalling (5.23), it is then enough to show that h -1 B l E h , E h L 1 ξ,λ (∂M ×[1,1+h]) ≤ Cµ L (T (lt 0 )) + O(h ∞ ).
(5.39) Now, by Proposition 3.9, the operator B 1 l is a compactly supported element of Ψ comp ρe (modulo an O(h ∞ ) L 2 →L 2 remainder which we will omit), and it is microsupported, in the sense of Definition 3.1, inside the set g -l 1 t 0 ({ϕ 1 = 0}) (here we only use that supp ϕ ⊂ {ϕ 1 = 0}). Similarly, B 2 l ∈ Ψ comp ρe is microsupported inside g l 2 t 0 ({ϕ 1 = 0}). Therefore, B l is microsupported on the set

S l = g -l 1 t 0 ({ϕ 1 = 0}) ∩ g l 2 t 0 ({ϕ 1 = 0}).
Note also that B l is compactly supported independently of l. Now, by taking the convolution of the indicator function of an h ρe sized neighborhood of S l with an appropriately rescaled cutoff function, we can construct a compactly supported operator

B l ∈ Ψ comp ρe such that B l = B * l B l + O(h ∞ ) Ψ -∞
and B l is microsupported inside an O(h ρe ) sized neighborhood S l of S l . Using (5.16), (5.18), and the estimate on the Lipschitz constant of the flow given by (3.17), we see that for ( m, ν) ∈ S l ∩ S * M , there exists (m, ν) ∈ S l ∩ S * M such that d(( m, ν), (m, ν)) ≤ Ch ρe and for Λ

′ 0 > Λ ′′ 0 > (1 + 2ε e )Λ max , d(g l 1 t 0 ( m, ν), g l 1 t 0 (m, ν)) ≤ Ce l 1 t 0 Λ ′′ 0 h ρe ≤ Ce teΛ ′′ 0 h ρe ≤ Ce -te(Λ ′ 0 -Λ ′′ 0 )
is bounded by some positive power of h. Here d denotes some smooth distance function on T * M . Same is true if we replace g l 1 t 0 with g -l 2 t 0 ; therefore, if the compact set K 0 used in the definition (1.9) of T (t) is chosen large enough, we have S l ∩ S * M ⊂ g l 2 t 0 (T (lt 0 )).

(5.40)

Using the Cauchy-Schwartz inequality and (4.16), we bound the left-hand side of (5.39) by

h -1 B l E h , E h L 1 ξ,λ ≤ h -1 B l E h , B l E h L 1 ξ,λ + O(h ∞ ) ≤ h -1 B l E h L 2 (M )L 2 ξ,λ • B l E h L 2 (M )L 2 ξ,λ + O(h ∞ ) ≤ C(h n/2 B l Π [1,1+h] HS )(h n/2 B l Π [1,1+h] HS ) + O(h ∞ ).
It remains to use (3.25) (or rather its adjoint). Indeed, both B l and B l are bounded in Ψ comp ρe uniformly in l, and they are microsupported in S l ; therefore, by (5.40)

h -1 B l E h , E h L 1 ξ,λ ≤ Cµ L ( S l ∩ S * M ) + O(h ∞ ) ≤ Cµ L (T (lt 0 )) + O(h ∞ ).
As for the sum in (5.19), we have the following Proposition 5.10. For 1 ≤ j ≤ 2l e , we have (5.41) uniformly in ξ ∈ ∂M and λ ∈ [1, 1 + h], with A j defined in (5.35).

e ijβ A(ϕU (t 0 )) j (1 -ϕ)ϕ t 0 χ 0 E 0 h , E h = A j χ 0 E 0 h , χ 0 E 0 h + O(h ∞ N (E h ) 2 ),
Proof. Since A = ϕAϕ, we can replace E h by ϕ 1 E h on the left-hand side of (5.41). Writing down (5.25) for ϕ 1 in place of ϕ and using ϕ 2 in place of ϕ 1 in the splitting ϕ t 0 = ϕ 1 + (1ϕ 1 )ϕ t 0 in the last step, we get

ϕ 1 E h = e ijβ (ϕ 1 U (t 0 )) j ϕ 2 E h + e ijβ (ϕ 1 U (t 0 )) j (1 -ϕ 2 )ϕ t 0 E h + j-1 k=1 e ikβ (ϕ 1 U (t 0 )) k (1 -ϕ 1 )ϕ t 0 E h + O(h ∞ N (E h )) L 2 .
(5.42)

We now substitute (5.42) into the left-hand side of (5.41). The first term gives, after using (5.37) to replace

ϕ t 0 χ 0 E 0 h by X 0 ϕ t 0 χ 0 E 0 h and ϕE h by X 0 ϕE h A(ϕU (t 0 )) j (1 -ϕ)ϕ t 0 χ 0 E 0 h , (ϕ 1 U (t 0 )) j ϕ 2 E h = B 0 χ 0 E 0 h , E h + O(h ∞ N (E h ) 2 ), where B 0 = ϕ 2 X * 0 (U (-t 0 )ϕ 1 ) j A(ϕU (t 0 )) j (1 -ϕ)X 0 ϕ t 0 = O(h ∞ ) L 2 →L 2 by (5.32), as supp ϕ 2 ∩ supp(1 -ϕ) = ∅.
Next, we use Proposition 5.6 to write the second term of (5.42) as

e ijβ (ϕ 1 U (t 0 )) j (1 -ϕ 2 )ϕ t 0 χ 0 E 0 h + O(h ∞ N (E h
)) L 2 ; therefore, this term gives the right-hand side of (5.41).

It remains to estimate the contribution of each term of the sum in (5.42), which we can write, using (5.37), as

e i(j-k)β B k χ 0 E 0 h , χ 0 E 0 h + O(h ∞ N (E h ) 2 ), with B k = ϕ t 0 X * 0 (1 -ϕ 1 )(U (-t 0 )ϕ 1 ) k A(ϕU (t 0 )) j (1 -ϕ)X 0 ϕ t 0 .
We need to show that

B k L 2 →L 2 = O(h ∞ ) for 1 ≤ k < j.
For that, we consider two cases. First, assume that k ≤ l e . Then we have (5.43) as the supports of 1ϕ 1 and ϕ do not intersect and the operator in between them is a compactly supported element of Ψ comp ρe (modulo an O(h ∞ ) L 2 →L 2 remainder which we will omit). Since B k is obtained by multiplying the left-hand side of (5.43) on the right by

ϕ t 0 X * 0 (1 -ϕ 1 )(U (-t 0 )ϕ 1 ) k A(ϕU (t 0 )) k ϕ = O(h ∞ ) L 2 →L 2 ,
U (t 0 )(ϕU (t 0 )) j-1-k (1 -ϕ)X 0 ϕ t 0 , it is also O(h ∞ ) L 2 →L 2 .
Now, assume that k ≥ l e . Take ϕ 1 ∈ C ∞ 0 (M ) equal to 1 near supp ϕ 1 and such that | ϕ 1 | ≤ 1 everywhere. We write by (5.30) and its adjoint,

U ((k -l e )t 0 )B k U (-(j -l e )t 0 ) = B 1 k B 2 k B 3 k + O(h ∞ ) L 2 →L 2 , B 1 k = ( ϕ 1 U (t 0 )) k-le ϕ t 0 X * 0 (1 -ϕ 1 )(U (-t 0 )ϕ 1 ) k-le , B 2 k = (U (-t 0 )ϕ 1 ) le A(ϕU (t 0 )) le , B 3 k = (ϕU (t 0 )) j-le (1 -ϕ)X 0 ϕ t 0 (U (-t 0 )ϕ 1 ) j-le . Now all B i k , i = 1, 2, 3, are compactly supported members of Ψ comp ρe . Let U 1 , U 2 be two bounded open sets such that supp(ϕ t 0 (1 -ϕ 1 )) ⊂ U 1 , supp ϕ ⊂ U 2 , and U 1 ∩ U 2 = ∅.
Since kl e > jl e and by Proposition 3.9, the operator B 1 k is microsupported, in the sense of Definition 3.1, on the set g -(k-le)t 0 (U 1 ), while B 3 k is microsupported on the set g -(k-le)t 0 (U 2 ); since these two sets do not intersect, we get

B k = O(h ∞ ) L 2 →L 2 , finishing the proof.
Combining (5.19) with (5.38) and (5.41), we finally get (5.35).

Proof of (1.12). Put l equal to the number l e defined in (5.29). By (5.35), it is enough to approximate the terms A j χ 0 E 0 h , χ 0 E 0 h . This is done by the following proposition, relying on the Lagrangian structure of E 0 h and featuring the interpolated escape rate r(h, Λ) from (1.10):

Proposition 5.11. Put l = l e given by (5.29), and r(h, Λ) defined in (1.10). Then the sum on the right-hand side of (5.35) is approximated as follows:

l j=1 A j χ 0 E 0 h , χ 0 E 0 h = S * M σ(A) dµ ξ + O(hr(h, 2Λ 0 )) L 1 ξ,λ (∂M ×[1,1+h]) .
(5.44)

Proof. By Proposition 3.9, the operator A j is compactly supported and lies in Ψ comp ρ j

, modulo an O(h ∞ ) L 2 →L 2 remainder, where

ρ j = jt 0 t e ρ e , with jt 0 /t e ≤ 1 + o(1)
with t e and ρ e defined in (5.16) and (5.18), respectively. Next, A j is microsupported, in the sense of Definition 3.1, in the set

Q j := g t 0 ({ϕ 1 = 0}) ∩ g jt 0 ({ϕ 1 = 0}).
If the set K 0 from the definition (1.9) of T (t) is large enough, then Q j ∩ S * M ⊂ g jt 0 (T (jt 0 )); by the definition (1.10) of r(h, Λ), we find

h 1-jt 0 /te µ L (Q j ∩ S * M ) ≤ r(h, 2Λ 0 ).
(5.45)

By (A4) and Proposition 3.5, we have the following analogue of (5.11):

A j χ 0 E 0 h = e iλ h φ ξ χ 0 b 0 (1, ξ, m; 0)σ( A j )(m, ∂ m φ ξ (m)) + O(h 1-2ρ j ) L ∞ .
Moreover, by part 2 of the same proposition, we see that

A j χ 0 E 0 h is O(h ∞ ) outside of the set of points m ∈ U ξ such that (m, ∂ m φ ξ (m)) ∈ Q j . By Lemma 5.5, σ( A j ) is supported in supp(1 -ϕ) ∩ g t 0 (supp ϕ 1 ) ⊂ DE + ∩ {x < ε 1 }, with DE + from Definition 4.2.
Using part 2 of Lemma 4.4, we then get (5.46) uniformly in ξ ∈ ∂M and λ ∈ [1, 1 + h]. Now, we write by (5.45) and Proposition 4.3,

A j χ 0 E 0 h , χ 0 E 0 h = S * M σ( A j ) dµ ξ + O(h 1-2ρ j µ ξ (Q j )) + O(h ∞ ),
l j=1 h 1-2ρ j µ ξ (Q j ) L 1 ξ = l j=1 h 1-2ρ j µ L (Q j ∩ S * M ) ≤ r(h, 2Λ 0 ) l j=1 h (1-2ρe)jt 0 /te = r(h, 2Λ 0 ) l j=1
e -2Λ 0 (1-2ρe)jt 0 ≤ Cr(h, 2Λ 0 ).

It remains to sum up the integrals in (5.46). We have by Proposition 3.9, bearing in mind that

ϕϕ 1 = ϕ, (1 -ϕ)(1 -ϕ 2 ) = 1 -ϕ, A = ϕAϕ, and d g (supp(1 -ϕ t 0 ), supp ϕ) > t 0 , σ( A j ) = (σ(A) • g -jt 0 )(1 -ϕ) j-1 k=1 ϕ • g -kt 0 .
By part 1 of Lemma 4.4, we write

l j=1 S * M σ( A j ) dµ ξ = S * M σ(A) l j=1 (1 -ϕ • g jt 0 ) j-1 k=1 ϕ • g kt 0 dµ ξ = S * M σ(A) 1 - l k=1 ϕ • g kt 0 dµ ξ .
It remains to note that by Proposition 4.3,

∂M S * M |σ(A)| l k=1 ϕ • g kt 0 dµ ξ dξ = S * M |σ(A)| l k=1 ϕ • g kt 0 dµ L = O(µ L (T (lt 0 )))
since the expression under the last integral is supported in T (lt 0 ).

Trace estimates.

In this subsection, we prove a stronger remainder bound (1.13) for the case when AE h , E h is paired with a test function in ξ and obtain an expansion of the trace of spectral projectors with a fractal remainder -Theorem 4.

Expressing E 0 h ⊗ E 0 h via Schrödinger propagators. Our argument will be based on the decomposition (5.35). The remainder in this decomposition is already controlled by the escape rate at twice the Ehrenfest time t e defined in (5.16). However, in the previous subsection (see Proposition 5.11), we were only able to estimate the sum in (5.35) for l up to the Ehrenfest index l e ∼ t e /t 0 defined in (5.29). We therefore need a better way of writing down the Lagrangian states E 0 h , when coupled with a test function in ξ, and such a way is provided by Lemma 5.12. Let f (ξ) ∈ C ∞ (∂M ) and define for λ ∈ (1/2, 2),

Π 0 f (λ) := ∂M f (ξ)(χ 0 E 0 h (λ, ξ)) ⊗ (χ 0 E 0 h (λ, ξ)) dξ.
(5.47)

Here ⊗ denotes the Hilbert tensor product, see (2.8). Assume that X 1 , X 2 ∈ Ψ comp (M ) are compactly supported and the projections π S (WF h ( X j )) of WF h ( X j ) onto S * M along the radial rays in the fibers of T * M lie inside DE + ∩ {x ≤ ε 1 }, with DE + defined in (4.2) and ε 1 from (A7). Then

X 1 Π 0 f (λ) X * 2 = (2πh) n T 0 -T 0 e -iλ 2 s/(2h) U (s)B s (λ) ds + O(h ∞ ) L 2 →L 2 ,
where T 0 > 0 is independent of h and B s (λ) ∈ Ψ comp (M ) is compactly supported on M , smooth and compactly supported in s ∈ (-T 0 , T 0 ), and smooth in λ. Moreover, if ξ +∞ is the function defined in (G3), then

σ(B 0 (1))| S * M = f (ξ +∞ )σ( X 1 X * 2 ).
(5.48)

Proof. We write

X 1 Π 0 f (λ) X * 2 = ∂M f (ξ)( X 1 χ 0 E 0 h (λ, ξ)) ⊗ ( X 2 χ 0 E 0 h (λ, ξ)) dξ.
By (A4), χ 0 E 0 h (λ, ξ) is a Lagrangian distribution associated to λ times the Lagrangian Λ ξ from (4.3). By Proposition 3.5, we can write

X j χ 0 E 0 h (λ, ξ)(m) = e iλ h φ ξ (m) b j (λ, ξ, m; h) + O(h ∞ ) C ∞ 0
, where φ ξ is defined in (G4) and b j is a classical symbol in h smooth in λ, ξ, m and compactly supported in m. The symbol b j depends on the operator X j ; in fact, we can make supp b j ⊂ τ -1 (π S (WF h ( X j ))), with τ defined in (4.2). We then write the Schwartz kernel of

X 1 Π 0 f (λ) X * 2 , modulo an O(h ∞ ) C ∞ 0 remainder, as Π(m, m ′ ; λ, h) = ∂M e iλ h (φ ξ (m)-φ ξ (m ′ )) f (ξ)b 1 (λ, ξ, m; h)b 2 (λ, ξ; m ′ , h) dξ.
(5.49)

Now, the support of each b j in the (m, ξ) variables lies in the set U + ∞ defined in (G4). The critical points of the phase λ(φ ξ (m)φ ξ (m ′ )) are given by ∂ ξ φ ξ (m) = ∂ ξ φ ξ (m ′ ); using (G6), we see that h -n/2 Π(m, m ′ ; λ, h) is a Lagrangian distribution associated to the Lagrangian

Λ λ := {(m, ν; m ′ , ν ′ ) | |ν| g = λ, ∃s ∈ (-T 0 , T 0 ) : g s (m, ν) = (m ′ , ν ′ )}.
(5.50)

Here T 0 > 0 is large, but fixed. Now, take some family B s (λ) ∈ Ψ comp (M ) smooth and compactly supported in s ∈ (-T 0 , T 0 ) and define the operator

Π B (λ) := (2πh) n T 0 -T 0 e -iλ 2 s/(2h) U (s)B s (λ) ds.
(5.51)

Following the proof of Lemma 3.11, we see that

h -n/2 times the Schwartz kernel Π B (m, m ′ ; λ, h) of Π B (λ) is, up to an O(h ∞ ) L 2 →L 2
remainder, a compactly supported and compactly microlocalized Lagrangian distribution associated to the Lagrangian Λ λ . Moreover, the principal

symbol of h -n/2 Π B (m, m ′ ; λ, h) at (m, ν, m ′ , ν ′ ) such that g s (m, ν) = (m ′ , ν ′ ) is a nonvanish- ing factor times σ(B s )(m ′ , ν ′ ).
Arguing as in the proof of part 2 of Proposition 3.3, we see that we can find a family of operators B s (λ) such that

Π(m, m ′ ; λ, h) = Π B (m, m ′ ; λ, h) + O(h ∞ ) C ∞ 0 .
It remains to check that the family B s (λ) can be chosen to depend smoothly on λ uniformly in h (this is not automatic, as multiplication by e i h ψ(λ) for some function ψ destroys this property, but does not change the Lagrangians where our kernels are microlocalized for each λ). For that, it is enough to note (by Proposition 3.3) that if we consider h -n/2 Π and h -n/2 Π B as Lagrangian distributions in m, m ′ , λ, they are associated to the Lagrangian

{(m, ν, m ′ , ν ′ , λ, q λ ) | |ν| g = λ, ∃s ∈ (-T 0 , T 0 ) : g s (m, ν) = (m ′ , ν ′ ), q λ = -λs},
where q λ is the momentum corresponding to λ. For Π, this is true as when τ (m ′ , ξ) = g s (τ (m, ξ)), we have φ ξ (m)φ ξ (m ′ ) = -s by (4.4); for Π B , this is seen directly from the parametrization (3.27), keeping in mind the factor e -iλ 2 s/(2h) in the definition of Π B .

Finally, to show the formula (5.48), put λ = 1, take an arbitrary Z ∈ Ψ comp , and compute the trace

Tr( X 1 Π 0 f (1) X * 2 Z) = (2πh) n T 0 -T 0 e -is/(2h) Tr(U (s)B s (1)Z) ds + O(h ∞ ).
(5.52)

The left-hand side of (5.52) can be computed as at the end of Section 5.1, using the limiting measure µ ξ ; by Proposition 4.3, it is equal to the integral of f (ξ +∞ )σ( X * 2 Z X 1 ) over the Liouville measure on S * M , plus an O(h) remainder. The right-hand side of (5.52) can be computed by the trace formula (3.32), and is equal to the integral of B 0 (1)Z over the Liouville measure on S * M , plus an O(h) remainder. Therefore,

S * M σ(Z)f (ξ +∞ )σ( X 1 X * 2 ) dµ L = S * M σ(Z)σ(B 0 (1)) dµ L
for any Z; (5.48) follows.

Proof of (1.13). By (5.35), it is enough to approximate the sum in this formula up to twice the Ehrenfest time:

Proposition 5.13. Fix f ∈ C ∞ (∂M ). Put l = 2l e , where l e is defined in (5.29), and consider

S f (λ) := l j=1 ∂M f (ξ) A j χ 0 E 0 h (λ, ξ), χ 0 E 0 h (λ, ξ) dξ.
(5.53)

If ξ +∞ (m, ν) is the limit of g t (m, ν) as t → +∞, for (m, ν) ∈ S * M \ Γ -(see (G3)), then for λ ∈ [1, 1 + h], S f (λ) = S * M f (ξ +∞ )σ(A) dµ L + O(r(h, Λ 0 )).
(5.54)

Here r(h, Λ) is defined in (1.10). Moreover, for each k

sup λ∈[1,1+h] |∂ k λ S f (λ)| ≤ C k h -kρe , (5.55) 
where ρ e is defined in (5.18).

Proof. First of all, take a compactly supported operator X ∈ Ψ comp such that WF h ( X)∩S * M lies inside the set DE + ∩ {x ≤ ε 1 } and for X 0 defined in (5.36),

ϕU (t 0 )(1 -ϕ)ϕ t 0 X 0 (1 -X) = O(h ∞ ) L 2 →L 2 , ϕ 1 U (t 0 )(1 -ϕ 2 )ϕ t 0 X 0 (1 -X) = O(h ∞ ) L 2 →L 2 .
Such an operator exists by Lemma 5.5 (it can be easily seen that in part 1 of this lemma, (m, ν) actually lies in the interior of DE + ). Then by (5.37), the definition (5.35) of A j , and Lemma 5.12,

S f (λ) = l j=1 ∂M f (ξ) A j X 0 Xχ 0 E 0 h (λ, ξ), Xχ 0 E 0 h (λ, ξ) dξ + O(h ∞ ) = l j=1 Tr( A j X 0 XΠ 0 f (λ) X * ) + O(h ∞ ) = (2πh) n l j=1 T 0 -T 0 e -iλ 2 s/(2h) Tr( A j X 0 U (s)B s (λ)) ds + O(h ∞ )
for some fixed T 0 > 0 and some family B s (λ) ∈ Ψ comp smooth in s and λ and compactly supported in s; we can make B s microlocalized inside the set E εe defined in (5.17). We will henceforth ignore the O(h ∞ ) term. Now, take 1 ≤ j ≤ l and put j = j 1 + j 2 , where 0 ≤ j 1 , j 2 ≤ l e , j 2 ≥ 1, and |j 1j 2 | ≤ 1. Using the cyclicity of the trace, we find

Tr( A j X 0 U (s)B s (λ)) = Tr(U (s)B j 1 B j 2,s (λ)), B j 1 := (U (-t 0 )ϕ 1 ) j 1 A(ϕU (t 0 )) j 1 , B j 2,s (λ) := (ϕU (t 0 )) j 2 (1 -ϕ)ϕ t 0 X 0 U (s)B s (λ)ϕ t 0 (1 -ϕ 2 )(U (-t 0 )ϕ 1 ) j 2 U (-s).
Put ρ j = (jt 0 /t e )ρ e ; since j 1 , j 2 ≤ j/2 + 1, by Proposition 3.9 the operator B j 1 is a compactly supported element of Ψ comp ρ j /2 (modulo an O(h ∞ ) L 2 →L 2 remainder which we will ignore). Same can be said about the operator

B j 2,s (λ) = (ϕU (t 0 )) j 2 • (1 -ϕ)ϕ t 0 X 0 U (s)B s (λ)ϕ t 0 (1 -ϕ 2 )U (-s) • (U (-t 0 ) • U (s)ϕ 1 U (-s)) j 2 .
(The operator U (s)ϕ 1 U (-s) is not pseudodifferential because ϕ 1 is not compactly microlocalized, but this can be easily fixed by taking X 0 ∈ Ψ comp equal to the identity on a sufficiently large compact set and replacing U (s)ϕ 1 U (-s) by U (s)ϕ 1 X 0 U (-s) in B 2,s (λ), with an O(h ∞ ) error.) Therefore, B j 1 B j 2,s (λ) also lies in Ψ comp ρ j /2 ; moreover, it depends smoothly on s and λ, uniformly in this operator class. (In principle, we get powers of l ∼ log(1/h) when differentiating in s, due to the (U (-t 0 ) • U (s)ϕ 1 U (s)) j 2 term, but they can be absorbed into the powers of h in the expansion (3.32).)

We now use the trace formula of Lemma 3.12, writing

S f (λ) = (2πh) n l j=1 T 0 -T 0 e -iλs 2 /(2h) Tr(U (s)B j 1 B j 2,s (λ)) ds.
(5.56)

The operator B 2,s (λ) j is microsupported, in the sense of Definition 3.1, inside the set g -j 2 t 0 ({ϕ 2 = 1})∩g -(j 2 -1)t 0 ({ϕ 1 = 0}); by Lemma 5.5, this set lies inside g -j 2 t 0 (DE + ) and in particular does not intersect any closed geodesics, therefore (3.31) holds. The estimate (5.55) now follows immediately from (3.32). The power h -kρe arises because we integrate over the energy surface {|ν| g = λ} depending on λ; therefore, ∂ k λ S f (λ) will involve kth derivatives of the full symbol of B j 1 B j 2,s (λ) in the direction transversal to the energy surface, which are bounded by h -kρ j . The sum (5.56) has l ∼ log(1/h) terms; however, our estimate is not multiplied by log(1/h) because one can see that the sum of Liouville measures of the sets where these terms are microsupported is bounded.

As for the approximation (5.54), we write (note that we take s = 0 in B 2,s )

σ(B j 1 ) = (σ(A) • g -j 1 t 0 ) j 1 -1 k=1 ϕ • g -kt 0 , σ(B j 2,0 (λ))| S * M = (1 -ϕ)σ(B 0 (λ)) • g j 2 t 0 j 2 -1 k=0 ϕ • g kt 0 .
Since the Liouville measure is invariant under the geodesic flow, the contribution of the principal term of (3.32) to S f (λ) for λ = 1 is

S * M σ(A) l j=1 (1 -ϕ)σ(B 0 (λ)) • g jt 0 j-1 k=1 ϕ • g kt 0 dµ L .
Now, by (5.48), σ(B 0 (1)) = f (ξ +∞ ) on the support of the integrated expression; recombining the terms as in the proof of Proposition 5.11, we get the right-hand side of (5.54), with an µ L (T (lt 0 )) remainder. The subprincipal terms (and also the difference S f (λ) -S f (1) for λ ∈ [1, 1 + h]) are estimated using the bound on the Liouville measure of the set where B j 1 B j 2,s is microsupported; arguing as in the proof of Proposition 5.11, we see that they are bounded by a constant times r(h, Λ 0 ).

Expansion of the trace of spectral projectors in powers of h. We now use the results obtained so far to derive an asymptotic expansion for the trace of the product of the spectral projector 1l [0,λ 2 ] (P (h)) with a compactly supported pseudodifferential operator, with the remainder depending on the classical escape rate for up to twice the Ehrenfest time.

Here we denote

P (h) := h 2 (∆ -c 0 ), (5.57) 
with the constant c 0 from (A1). It will also be more convenient for us to use the spectral parameter s = λ 2 in the following corollary and theorem (not to be confused with the time variable s used in Lemma 5.12).

We start with the following consequence of the decomposition (5.35), the bound (5.54), and the spectral formula (4.5):

Corollary 5.14. Take Λ 0 > Λ max , with Λ max defined in (1.11), and let T (t) be defined in (1.9).

For ε > 0, let ϕ ∈ C ∞ 0 ((1 -ε, 1 + ε)) equal to 1 near [1 -ε/2, 1 + ε/2] and for s ∈ R, define ϕ s := ϕ • 1l (-∞,s] . If ε > 0 is small enough, then for each compactly supported A ∈ Ψ 0 (M ), there exist some functions S h (s), Q h (s) and some constants C > 0, C k > 0 such that for all s ∈ R and all k ∈ N Tr Aϕ s (P (h)) = S h (s) + Q h (s), |∂ k s S h (s)| ≤ C k h -n-1-k/2 , |Q h (s + u) -Q h (s)| ≤ Ch -n µ L T | log h| Λ 0 + O(h ∞ ) for u ∈ [0, h].
(5.58)

Proof. By (4.5),

Tr Aϕ s (P (h)) = (2πh) -n-1 √ 1+ε √ 1-ε λ n f Π (λ/h)ϕ s (λ 2 ) ∂M AE h (λ, ξ), E h (λ, ξ) dξdλ.
Now, note that the decomposition (5.35

) (with l = 2l e ) is still valid in any O(h) sized interval inside ( √ 1 -ε, √ 1 + ε), if ε is small enough. More precisely, if we write S h (s) := (2πh) -n-1 √ 1+ε √ 1-ε λ n f Π (λ/h)ϕ s (λ 2 )S 1 (λ) dλ,
where S 1 (λ) is defined by (5.53) with f (ξ) ≡ 1, then we have the expansion (5.58) with Q h (s) satisfying the required bound. To estimate the derivatives of S h (s), it now suffices to use the bound (5.54), noting that it is valid for |λ 2 -1| < ε if ε is small enough.

Using the last corollary, we can show the following trace decomposition with a fractal remainder:

Theorem 4. Let P (h) be defined in (5.57), let A = Op h (a) ∈ Ψ 0 (M ) be a compactly supported operator, then there exist some smooth differential operators L j of order 2j on T * M , depending on the quantization procedure Op h , with L 0 = 1, such that for any compact interval I ⊂ (0, ∞), all s ∈ I, all h > 0 small, and all N ∈ N

Tr A 1l [0,s] (P (h)) =(2πh) -n-1 N j=0 h j |ν| 2 g ≤s L j a dµ ω + h -n O µ L (T (Λ -1 0 | log h|)) + h N
where the remainder is uniform in s. Here µ ω is the standard volume form on T * M ; we have µ ω = ω n+1 S /(n + 1)!, where ω S is the symplectic form.

Proof. By rescaling h, it suffices to prove the result for |s-1| ≤ ε/2 where ε > 0 is obtained in Corollary 5.14, we can thus assume |s -1| ≤ ε/2. Let ϕ s be defined as in Corollary 5.14, and

ψ ∈ C ∞ 0 ((-1 + ε/2, 1 -ε/2)) such that ψ + ϕ = 1 on [0, 1 + ε/2]. For s ∈ (1 -ε/2, 1 + ε/2
), one has 1l [0,s] (P (h)) = ϕ s (P (h)) + ψ(P (h)) and it suffices to study the expansion in h of σ A,h (s) and Tr(Aψ(P (h))) where σ A,h (s) := Tr Aϕ s (P (h)) = Tr Aϕ s (P (h))χ .

(5.59

) if χ ∈ C ∞ 0 (M ) is such that A = χAχ.
Since A is compactly supported, one can use the functional calculus of Helffer-Sjöstrand [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF] to deduce that Aψ(P (h))χ ∈ Ψ comp (M ) is a compactly supported and microsupported pseudodifferential operator with a classical symbol2 . Its trace thus has a complete expansion in powers of h (see [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF]Th 9.6]):

Tr(Aψ(P (h))χ) = (2πh) -n-1 N j=0 h j T * M L ′′ j a dµ ω + O(h -n+N ) (5.60)
where L ′′ j are some differential operators of order 2j and L ′′ 0 a(m, ν) = a(m, ν)ψ(|ν| 2 g ). Let us now analyze the function σ A,h . This is a smooth function of s > 0 by the smoothness assumption on the E h (λ, ξ) in λ, it is constant in s for |1-s| > ε, and we know that σ A,h (s) = O(h -n-1 ) uniformly in s by Lemma 3.11. Let θ(s) ∈ S (R) be a Schwartz function such that θ ∈ C ∞ 0 (-η, η) for some small η > 0 and θ(t) = 1 near t = 0, and let θ h (s) = h -1 θ(s/h). We write

σ ′ A,h (s) := ∂ s σ A,h (s) = Tr(Aϕ(P (h))dΠ s (P (h))χ) ∈ C ∞ 0 ((0, ∞))
where dΠ s (P (h)) is the spectral measure of P (h). The operator Aϕ(P (h))dΠ s (P (h))χ has a smooth compactly supported kernel and is trace class. We clearly have σ ′ A,h ⋆ θ h ∈ S (R) and by a simple computation, its semi-classical Fourier transform is given by

R e -i t h s σ ′ A,h ⋆ θ h (s)ds = Tr(Aϕ(P (h))e -i t h P (h) ) θ(t)
and thus

σ ′ A,h ⋆ θ h (s) = 1 2πh R e i s h t Tr(Aϕ(P (h))e -i t h P (h) ) θ(t)dt.
Now we can apply Lemma 3.12 with B u = 1 2 e ic 0 hu/2 θ(-u/2)Aϕ(P (h)); the condition (3.31) is satisfied because θ is supported in a small neighborhood of zero. This shows that, as h → 0, we have the expansion (locally uniformly in s)

σ ′ A,h ⋆ θ h (s) = (2πh) -n-1 N j=0 h j S * M L j b(m, √ sν)dµ L (m, ν) + O(h N +1 ) for all N ∈ N, where b is a symbol such that Op h (b) = 1 2 Aϕ(P (h))+O(h ∞ ), L j are differential operators of order 2j on T * M , smooth in √ s, with L 0 = s n-1 2 . In particular, one has L 0 b(m, √ sν) = 1 2 s n-1 2 a(m, √ sν)ϕ(s|ν| 2 g ). Notice that b is supported in {(m, ν) ∈ T * M | |ν| 2 g ∈ supp ϕ} thus L j b(m, √ sν) is smooth in s ∈ R when (m, ν) ∈ S * M . Since σ A,h (s) is
bounded in s, the convolution σ A,h ⋆ θ h (s) is well defined (as an element in L ∞ (R)) and we have for all N and for all s ≤ 2

σ A,h ⋆ θ h (s) = (2πh) -n-1 N j=0 h j s 0 S * M L j b(m, √ uν)dµ L (m, ν)du + O(h N +1 ) .
We are going to show that, uniformly in s ∈ R,

σ A,h (s) -σ A,h ⋆ θ h (s) = O(h ∞ ) + O h -n µ L (T (Λ -1 0 | log h|)) , (5.61) 
using the decomposition

σ A,h (s) = S h (s) + Q h (s)
defined in (5.58). Since ∂ s S h (s) is a compactly supported symbol we get by integrating by parts N times

(1 -θ(t)) e -i t h s ∂ s S h (s)ds = (1 -θ(t)) e -i t h s h it N ∂ N +1 s (S h (s))ds = O h N/4 (1 + |t|) N
for all t ∈ R and all N ≫ 1. Thus, taking the Fourier transform we deduce that S h (s) -S h ⋆ θ h (s) = O(h ∞ ) uniformly in s. From (5.58), we obtain by induction that for all s, u

|Q h (s + u) -Q h (s)| ≤ Ch -n 1 + |u| h µ L (T (Λ -1 0 | log h|)) + O(h ∞ )
then multiplying by θ h (-u) and integrating in u, we obtain (5.61).

Given (5.61), we have

σ A,h (s) = (2πh) -n-1 N j=0 h j s 0 S * M L j b(m, √ uν)dµ L (m, ν)du +O h -n µ L (T (Λ -1 0 | log h|)) + O(h -n+N ).
(5.62)

Since the symbol of b is explicitly obtained from a using Moyal product, we can rewrite this expression with a instead of b and with some new differential operators with the same properties as L j but supported in {|ν| 2 g ∈ supp ϕ}; using polar coordinates S * M × R + √ u on T * M , we deduce that there exist some differential operators L ′ j of order 2j on T * M such that

s 0 S * M L j b(m, √ uν)dµ L (m, ν)du = |ν| 2 g ≤s L ′ j a(m, ν)dµ ω (m, ν)
and L ′ 0 a(m, ν) = ϕ(|ν| 2 g )a(m, ν). Combining this with (5.62) and (5.60), we obtain the desired result where L j in the statement of the Theorem corresponds now to L ′ j + L ′′ j .

Euclidean near infinity manifolds

In this section, we assume that (M, g) is a complete Riemannian manifold such that there exists a compact set K 0 ⊂ M such that for

E := M \ K 0 , (E, g) is isometric to (R n+1 \ B(0, R), g eucl )
where R > 0, B(0, R) is the Euclidean ball of center 0 and radius R and g eucl is the Euclidean metric. We will check that all the assumptions of Section 4 are satisfied.

6.1. Geometric assumptions. We let x ∈ C ∞ (M ) be an everywhere positive function equal to x(m) = |m| -1 in E identified with R n+1 \ B(0, R), and such that x ≥ R -1 in K 0 . (We take it instead of the function (1 + |m| 2 ) -1/2 used in Section 4 for the model case of R n+1 , to simplify the calculations and since we no longer need smoothness at zero.) We shall use the polar coordinates m = ω/x in E, where ω ∈ S n . Assumption (G1) is satisfied by taking the radial compactification of M , i.e. adding the sphere at infinity: the map ψ : R n+1 \ B(0, R) → (0, 1/R) × S n defined by ψ(m) = (x(m), x(m)m) is a diffeomorphism and the radial compactification of M is obtained by setting M = M ⊔ ∂M where ∂M := S n , the smooth structure on M is the same as before on M but we extend it to M by asking that ψ extends smoothly to the boundary ∂M and ψ(ξ) = (0, ξ) if ξ ∈ ∂M = S n (see for instance [Me] for more details). In other words, smooth functions on M are smooth functions on M with an asymptotic expansion in integer powers of 1/|m| to any order near infinity. Assumption (G2) is clearly satisfied for ε 0 := 1/2R since the trajectories of the geodesic flow in x ≤ ε 0 are simply g t (m, ν) = (m + tν, ν). A point (m, ν) ∈ S * M is directly escaping in the forward direction in the sense of Definition 4.2 if and only if x(m) ≤ ε 0 and m

• ν ≥ 0. Now, (G3) is satisfied with ξ +∞ (m, ν) = ν for (m, ν) ∈ DE + .
For the assumption (G4), we define

U ∞ = {x < ε 0 } × ∂M ⊂ M × ∂M , φ ξ (m) = m • ξ, (m, ξ) ∈ U ∞ . Then τ : U ∞ → S * M from (4.2) maps each (m, ξ) ∈ (R n \ B(0, 2R)) × S n to itself as an element of S * (R n \ B(0, 2R))
. Assumptions (G4) and (G5) follow immediately. To see assumption (G6), we note that for x(m), x(m ′ ) < ε 0 and some ξ ∈ S n , we have

∂ ξ φ ξ (m) = ∂ ξ φ ξ (m ′ ) if and only if m -m ′ is a multiple of ξ.
6.2. Distorted plane waves and analytic assumptions. We recall a few well known facts about scattering theory on perturbations of R n , we refer to [Me] for a geometric approach and to [MeZw, HaVa] in a more general setting (asymptotically Euclidean case). A plane wave for the flat Laplacian on R n+1 is the function, for λ ∈ (1/2, 2),

u(λ; m, ξ) := ce iλ h m•ξ , ξ ∈ S n , m ∈ R n+1 , c ∈ C. (6.1)
This is a semiclassical Lagrangian distribution, its oscillating phase has level sets given by planes orthogonal to ξ. The continuous spectrum of the Laplacian ∆ associated to the metric g is the half-line [0, ∞). We will take the resolvent of h 2 ∆ to be the L 2 -bounded operator

R h (λ) := (h 2 ∆ -λ 2 ) -1 in Im(λ) < 0.
This admits a continuous extension to {λ = 0, Im(λ) ≤ 0} as a bounded operator from L 2 comp to L 2 loc . For λ > 0 we call R h (λ) the incoming resolvent and R h (-λ) the outgoing resolvent The distorted plane wave is defined for ξ ∈ S n (see [MeZw, HaVa]) by

E h (λ, ξ; m) := 2iλh 2πh iλ n 2 lim x ′ →0 [(x ′ ) -n/2 e iλ hx ′ R h (λ; m, ξ/x ′ )], (6.2) 
where R h (λ; m, m ′ ) is the Schwartz kernel of R h (λ) and ξ/x ′ ∈ E. This is a smooth function of (m, ξ) ∈ M × S n , and in the case of M = R n+1 it is given by (6.1) with c = 1 (see [START_REF] Melrose | Geometric scattering theory[END_REF]Chapter 1]). We shall use the notation E h (λ, ξ) for the C ∞ (M ) function defined by m → E h (λ, ξ; m) and we notice that (h λ) for λ ∈ R, and the decomposition of the spectral measure in terms of these functions in given as follows: by Stone's formula, the semiclassical spectral measure is given by

2 ∆ -λ 2 )E h (λ, ξ) = 0 in M . One has E h (λ; m, ξ) = E h (-λ; m, ξ) since R h (λ) * = R(-
dΠ h (λ) = iλ π (R h (λ) -R h (-λ)) dλ for λ ∈ (0, ∞) (6.3) in the sense that F (h 2 ∆) = ∞ 0 F (λ 2
)dΠ h (λ) for any bounded function F ; by combining this with the Green's type formula of [START_REF] Hassell | The spectral projections and the resolvent for scattering metrics[END_REF]Lemma 5.2], we deduce that

dΠ h (λ; m, m ′ ) = λ n (2πh) -n-1 S n E h (λ; m, ξ)E h (λ, m ′ , ξ) dξdλ.
Here dξ corresponds to the standard volume form on the sphere S n . The assumptions (A1) and (A2) are then satisfied. In fact, using [HaVa], one can define distorted plane waves and verify assumptions (A1) and (A2) for the more general case of scattering manifolds.

Outgoing/incoming decomposition. We now construct the decomposition (4.6) of E h into the outgoing and incoming parts and verify assumptions (A3)-(A8). Take χ 0 ∈ C ∞ (M ) (thus constant in ξ) supported in {x < ε 0 } and equal to 1 near {x ≤ ε 0 /2}, so that assumptions (A3) and (A7) hold, where we put ε 1 := ε 0 /2. We next put

E 0 h (λ, ξ; m) := e iλ h m•ξ , x(m) < ε 0 ,
so that (A4) holds with b 0 ≡ 1 and (A8) follows. We then claim that (6.4) where

E h = χ 0 E 0 h + E 1 h ,
E 1 h := -R h (λ)F h , F h (λ, ξ) = (h 2 ∆ -λ 2 )(χ 0 E 0 h (λ, ξ)) = [h 2 ∆, χ 0 ]E 0 h (λ, ξ).
We can apply R h (λ) to F h (λ, ξ) as the latter lies in C ∞ 0 (M ); in fact, supp F h ⊂ {ε 0 /2 < x < ε 0 }. To show (6.4), note that the incoming resolvent R h (-λ) satisfies

R h (λ)χ 1 = χ 0 R 0 h (λ)χ 1 -R h (λ)[h 2 ∆, χ 0 ]R 0 h (λ)χ 1 if χ 1 ∈ C ∞ (M ) is such that χ 0 χ 1 = χ 1 and R 0 h (λ)
is the incoming scattering resolvent of the free semiclassical Laplacian h 2 ∆ on R n+1 (we use again the isometry E ≃ R n+1 \ B(0, R)). Multiplying the last equation on the right by x -n 2 e iλ hx , taking the Schwartz kernel of the obtained operators and considering the limit in the second variable along a line with tangent vector ξ as in (6.2) (using the formula (6.1) with c = 1 for the expression (6.2) for the free resolvent R 0 h (λ)), we obtain (6.4).

Microlocalization of E 1 h . It remains to verify assumptions (A5) and (A6). By rescaling h and using that E h (λ, •) depends only on λ/h, we may assume that λ = 1. Fix ξ and take χ 2 ∈ C ∞ (M ) equal to 1 near {x ≤ ε 0 }, but supported inside E. Then

χ 2 E 1 h = R 0 h (λ)F 0 h , F 0 h := (h 2 ∆ -λ 2 )(χ 2 E 1 h ) = F h + [h 2 ∆, χ 2 ]E 1 h . (6.5)
The function F 0 h is supported inside {x > ε 0 /2} and

F 0 h H -1 h ≤ Ch(1 + E h L 2 ({x≥ε 0 }) ). The free resolvent R 0 h (λ) is bounded H -1 h,comp → L 2 loc with norm O(h -1
) by [Bu02, Prop 2.1]; therefore, for each compact set K ⊂ M , there exists a constant C K such that

E 1 h L 2 (K) ≤ C K (1 + E h L 2 ({x≥ε 0 }) ).
This shows (A5), namely that the function

E 1 h := E 1 h 1 + E h L 2 ({x≥ε 0 })
is h-tempered. To prove (A6), we use semiclassical elliptic estimate and propagation of singularities (see for example [START_REF] Vasy | Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates[END_REF]Section 4.1]). We have

(h 2 ∆ -λ 2 ) E 1 h = -F h , F h := F h 1 + E h L 2 ({x≥ε 0 }) . Now, F h is a Lagrangian distribution associated to {(m, ξ) | m ∈ supp(dχ 0 )}; therefore, WF h ( F h ) ⊂ WF h (F h ) ⊂ W ξ ,
with W ξ ⊂ S * M defined in (4.9).

Take (m, ν) ∈ WF h ( E 1 h ). By the elliptic estimate, (m, ν) ∈ S * M . Next, if γ(t) = g t (m, ν), then by propagation of singularities, either γ(t) ∈ WF h ( F h ) ⊂ W ξ for some t ≥ 0 or γ(t) ∈ WF h ( E 1 h ) for all t ≥ 0. Now, the free resolvent R 0 h (λ) is semiclassically incoming in the following sense: if f is a compactly supported h-tempered family of distributions, then for each (m ′ , ν ′ ) ∈ WF h (R 0 h (λ)f ), there exists t ≥ 0 such that g t (m ′ , ν ′ ) ∈ supp f . This can be seen for example from the explicit formulas for R 0 h (λ), see [Me]. By (6.5) and since supp(F 0 h ) ⊂ {x > ε 0 /2}, we see that for (m ′ , ν ′ ) ∈ WF h ( E 1 h ), we cannot have x(m ′ ) < ε 0 /2 and m ′ • ν ′ ≥ 0. Therefore, if γ(t) ∈ W ξ for all t ≥ 0, then γ(t) is trapped as t → +∞; this proves (A6).

Hyperbolic near infinity manifolds

In this section, we verify the assumptions of Section 4 for certain asymptotically hyperbolic manifolds. Let (M, g) be an (n+1)-dimensional asymptotically hyperbolic manifold as defined in the introduction. It has a compactification M = M ∪ ∂M and the metric can be written in the product form (1.3):

g = dx 2 + h(x)
x 2 where x is a boundary defining function and h(x) a smooth family of metrics on ∂M defined near x = 0. The function x putting the metric in the form (1.3) is not unique, and those functions (thus satisfying |d log(x)| g = 1 near ∂M ) are called geodesic boundary defining functions. The set of such functions parametrizes the conformal class of h(0), as shown in [START_REF] Graham | Einstein metrics with prescribed conformal infinity on the ball[END_REF]Lemma 5.2]. The metric is called even if h(x) is an even function of x, this condition is independent of the choice of geodesic boundary defining function. A choice of geodesic boundary defining function induces a metric on ∂M by taking h 0 = h(0) = x 2 g| T ∂M , and therefore one has a Riemannian volume form, denoted dξ, on ∂M induced by the choice of x. Any other choice x = e ω x of boundary defining function induces a volume form dξ = e nω 0 dξ where ω 0 = ω| ∂M .

(7.1)

We will further assume that M has constant sectional curvature -1 outside of some compact set, even though some of the assumptions of Section 4 hold for general asymptotically hyperbolic manifolds.

7.1. Geometric assumptions. Let (M, g) be an asymptotically hyperbolic manifold. The assumption (G1) is satisfied. We are now going to prove a Lemma which implies directly that the assumptions (G2) and (G3) are satisfied, except that this only proves continuous dependence of ξ +∞ in (m, ν) in (G3). To prove C 1 dependence in a general setting, a bit more analysis would be required, but we shall later concentrate only on cases with constant curvature near infinity, in which case the dependence is smooth (see below).

Lemma 7.1. Let (M, g) an asymptotically hyperbolic manifold. Then there exists ε 0 > 0 such that the function x satisfies (4.1) and for any unit speed geodesic γ(t) = (m(t), ν(t)) with x(m(0)) ≤ ε 0 and ∂ t x(m(t))| t=0 ≤ 0, one has the following: ∂ t x(m(t)) ≤ 0 for all t ≥ 0 and m(t) converges in the topology of M to some point ξ +∞ ∈ ∂M . More precisely, the distance with respect to the compactified metric ḡ = x 2 g between m(t) and ξ +∞ is bounded by

d ḡ(m(t), ξ +∞ ) ≤ Ct -1 .
Proof. Consider coordinates (m, ν) = (x, y; ρdx + θ • dy) on T * M near the boundary ∂M = {x = 0}. The geodesic flow is the Hamiltonian flow of p/2, where p(m, ν) = x 2 (ρ 2 + |θ| 2 hm ); if dots denote time derivatives with respect to the geodesic flow, we get ẋ = ρx 2 , ρ = -x -1 p(m, ν)x 2 ∂ x h (x,y) (θ, θ)/2.

(7.2)

Since ∂ x h (x,y) is smooth up to x = 0, there exists a constant C such that

|x 2 ∂ x h (x,y) (θ, θ)/2| ≤ Cx 2 h (x,y) (θ, θ) ≤ Cp(m, ν).
Therefore, there exists ε 0 > 0 such that along any unit speed geodesic, we have (7.3) This in particular implies (4.1). Now, let γ(t) = (x(t), y(t); ρ(t), θ(t)) be a unit speed geodesic and assume that x(0) ≤ ε 0 and ẋ(0) ≤ 0. It follows from (4.1) that for t ≥ 0, we have ẋ(t) ≤ 0 and thus x(t) ≤ ε 0 . (Indeed, for each s ≥ 0 the minimal value of x(t) on the interval [0, s] has to be achieved at t = s.) It remains to show that as t → +∞, x(t) converges to 0 and y(t) converges to some ξ +∞ ∈ ∂M . For that, note that by (7.3), ρ(t) ≤ -ε -1 0 /2 for t ≥ 0; since ẋ(0) ≤ 0, we have ρ(0) ≤ 0 and thus

x ≤ ε 0 =⇒ ρ = -x -1 + O(1) ≤ -x -1 /2 < 0.
ρ(t) ≤ - ε -1 0 2 t.
Setting u(t) := x(t) -1 , we find u(t) = -ρ(t) ≥ (ε -1 0 /2)t; therefore,

x(t) ≤ ε 0 1 + t 2 /4 .
In particular, x(t) → 0 as t → +∞. Now the equation for ẏ(s) tells us that

ẏi (t) = x n k=1 h ki (x,y) xθ k = O(x(t)) = O(t -2 )
and therefore |y(t)y(t ′ )| ≤ C/t ′ for any t > t ′ > 0, which implies lim t→∞ m(t) = ξ ∞ for some ξ ∞ ∈ ∂M and |m(t)ξ ∞ | = O(1/t).

The geometric assumption (G4) is a more complicated one, and we will restrict ourselves to asymptotically hyperbolic manifolds with constant curvature -1 in a neighbourhood of ∂M and x a geodesic boundary defining function. Let ξ ∈ ∂M , then there exists a neighborhood V ξ of ξ in M , and an isometric diffeomorphism ψ ξ from V ξ ∩ M into the following neighbourhood V q 0 of the north pole q 0 in the unit ball B := {m ∈ R n+1 ; |m| < 1} equipped with the hyperbolic metric g H n+1 (the hyperbolic space H n+1 is B equipped with g H n+1 ):

V q 0 := {q ∈ B | |q -q 0 | < 1/4}, g H n+1 = 4 dq 2 (1 -|q| 2 ) 2 (7.4)
where ψ ξ (ξ) = q 0 and | • | denotes the Euclidean length. This statement is proved for instance in [START_REF] Guillopé | Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity[END_REF]Lemma 3.1]. We shall choose the boundary defining function

x 0 = 2 (1 -|q|) (1 + |q|) (7.5)
on B. Note that we might not be able to find ψ ξ such that x = ψ * ξ x 0 . This would be possible only if the boundary is globally conformally flat and x is chosen so that the metric on ∂M induced by x 2 g is flat.

We define for each p ∈ S n = ∂B the Busemann function on B

φ B p (q) = log 1 -|q| 2 |q -p| 2 .
The geodesic trajectory g t (q, dφ B p (q)) generated by the differential dφ B p converges (in the Euclidean ball topology) to p and the Lagrangian manifold Λ B p := {(q, dφ B p (q)) ∈ S * H n+1 | q ∈ B} is the stable manifold of the geodesic flow associated to p on B. The level sets of φ B p are horospheres based at p. We cover a neighbourhood of ∂M by finitely many V ξ j for some ξ j ∈ ∂M and take a partition of unity χ j ∈ C ∞ (∂M ) on ∂M with χ j supported in V ξ j ∩ ∂M . Then there exists ε > 0 such that for all j and all ξ ∈ supp χ j , the set

U ξ := {m ∈ M | d ḡ(m, ξ) < ε} (7.6)
lies inside V ξ j , where ḡ = x 2 g is the compactified metric. Put

U ∞ := {(m, ξ) ∈ M × ∂M | m ∈ U ξ }.
Define the function

φ ξ (m) := j χ j (ξ)φ B ψ ξ j (ξ) (ψ ξ j (m)), (m, ξ) ∈ U ∞ . (7.7)
Since ψ ξ j are isometries, each function φ j ξ (m) := φ B ψ ξ j (ξ) (ψ ξ j (m)) is such that dφ j ξ (m) is the unit covector which generates the unique geodesic in M starting at m, staying in U ξ for positive times, and converging to ξ (therefore, the difference of any two functions φ j ξ for different j is a function of ξ only). Therefore ∂ m φ ξ (m) = j χ j (ξ)∂ m φ j ξ (m) is also equal to this unit covector; (G4) and (G5) follow. The dependence of all objects in m, ξ is smooth here. Finally, (G6) can be reduced via ψ ξ j to the following statement that can be verified by a direct computation: if p ∈ S n and q, q ′ ∈ B, then ∂ p φ B p (q) = ∂ p φ B p (q ′ ) if and only if q and q ′ lie on a geodesic converging to p, and the matrix ∂ 2 pq φ B p (q) has rank n.

7.2. Eisenstein functions and analytic assumptions. Let (M, g) be asymptotically hyperbolic. The Laplacian ∆ on (M, g) has absolutely continuous spectrum on [n 2 /4, ∞) and a possibly non-empty finite set of eigenvalues in (0, n 2 /4). By [MaMe, Gu], if g is an even metric 3 , the resolvent of the Laplacian R(s) := (∆s(ns)) -1 defined in the half plane Re(s) > n/2 admits a meromorphic continuation to the whole complex plane C, with poles of finite rank (i.e. the Laurent expansion at each pole consists of finite rank operators), as a family of bounded operators

R(s) : x N L 2 (M ) → x -N L 2 (M ), if Re(s) -n/2 + N > 0,
moreover it has no poles on the line Re(s) = n 2 except possibly s = n 2 , as shown by Mazzeo [Ma]. Let us fix a geodesic boundary defining function x on M . By [MaMe], the resolvent integral kernel R(s; m, m ′ ) near the boundary ∂M has an asymptotic expansion given as follows: for any m ∈ M fixed

m ′ → R(s; m, m ′ )x(m ′ ) -s ∈ C ∞ (M )
3 There is a simpler proof by Guillopé-Zworski [GuZw] when the curvature is constant outside a compact set.

and similarly for m ′ ∈ M fixed and m → ∂M . Since we are interested in high frequency asymptotics, we will consider the semiclassical rescaled versions

R h (λ) := h -2 R(n/2 + iλ/h),
Notice that the physical region Re s > n/2, in which the resolvent is bounded on L 2 , corresponds to Im λ > 0, which agrees with our convention for Euclidean case.

Definition 7.2. Let 1/2 ≤ |λ| ≤ 2 and h > 0, then Eisenstein functions are the functions in C ∞ (M × ∂M ) defined for any fixed ξ ∈ ∂M by the following limit of the resolvent kernel at infinity

E h (λ, ξ; m) := 2iλh C(λ/h) lim m ′ →ξ x(m ′ ) -n/2-iλ/h R h (λ; m, m ′ ), C(z) := 2 -iz (2π) -n 2 Γ( n 2 + iz) Γ(iz) .
(7.8)

The normalisation constant in (7.8) is like the constant in (6.2) so that in B, E h (λ) is a horospherical wave as described below in (7.11). For any ξ ∈ ∂M , we will denote by E h (λ, ξ) the function m → E h (λ, ξ; m), and we observe that they solve (1.4):

(h 2 (∆ -n 2 /4) -λ 2 )E h (λ, ξ) = 0.
One also has E h (λ, ξ; m) = E h (-λ, ξ; m) as an easy consequence of R h (λ) * = R(-λ) for λ ∈ R. From its definition, E h (λ, ξ) depends on the choice of the boundary defining function x, but considering such a change we easily see from (7.1) that the density on ∂M AE h (λ, ξ), E h (λ, ξ) L 2 (M ) dξ for A ∈ Ψ comp (M ) (7.9) is independent of x.

Let us recall the decomposition of the spectral measure in terms of these functions. By Stone's formula, the semiclassical spectral measure is given by

dΠ h (λ) = iλ π (R h (λ) -R h (-λ)) dλ for λ ∈ (0, ∞) in the sense that F (h 2 (∆-n 2 /4)) = ∞ 0 F (λ 2
)dΠ h (λ) for any bounded function F supported in (0, ∞). Now we can write (see [Gu]) for any m, m (7.10) where (2πh

′ dΠ h (λ; m, m ′ ) = |C(λ/h)| 2 2πh ∂M E h (λ, ξ; m)E h (-λ, ξ; m ′ )dξ dλ.
) n |C(λ/h)| 2 → λ n as h → 0 uniformly in λ ∈ [1/2, 2].
The assumptions (A1) and (A2) are then satisfied in the general asymptotically hyperbolic case (without asking the constant curvature near infinity).

Outgoing/incoming decomposition. To check assumptions (A3)-(A8), we give a representation of the Eisenstein functions as sums of the 'outgoing' part E 0 h and the 'incoming' part E 1 h . We assume constant curvature near infinity in what follows. The expression for E B h (λ) on hyperbolic space H n+1 viewed as a unit ball B, defined using the boundary defining function x 0 of (7.5), is given by [GuNa, Section 2.2]

E B h (λ, p; q) = 1 -|q| 2 |q -p| 2 n/2+iλ/h
, p ∈ S n , q ∈ B (7.11)

We thus set E 0 h (λ, ξ; m) to be E 0 h (λ, ξ; m) := e (n/2+iλ/h)φ ξ (m) , (7.12)

where φ ξ is the Busemann function defined in (7.7). Viewing the neighbourhood U ξ as a subset of one of the V ξ j ≃ ψ ξ j V q 0 where V q 0 ⊂ B is defined in (7.4), the Laplacian in this hyperbolic chart pulls back to ∆ H n+1 . Since φ ξ (m) = φ B ψ ξ j (ξ) (ψ ξ j (m))+c j (ξ) for some function c j (ξ) independent of m, we directly have in U ξ (U ξ is defined in (7.6))

(h 2 (∆ -n 2 /4) -λ 2 )E 0 h (λ; m, ξ) = 0. We let χ 0 ∈ C ∞ (∂M × M ) be a function such that χ(ξ, •) is supported in U ξ , equal to 1 near ξ and smooth in x 2 . Therefore we obtain F h (λ, ξ) := (h 2 (∆ -n 2 /4) -λ 2 )χ 0 E 0 h (λ, ξ) = [h 2 ∆, χ 0 ]E 0 h (λ, ξ) (7.13)
and we claim that

F h (λ, ξ) ∈ x n 2 +2+ iλ h C ∞ (M ) and x -1 F h (λ, ξ) L 2 (M ) = O(h)
uniformly in ξ. Indeed, this is an elementary calculation since from (7.11) we see that

E 0 h (λ, ξ) ∈ x n 2 +i λ h C ∞ (M \ {ξ}) and in geodesic normal coordinates near the boundary [∆, χ 0 ] = -x 2 (∂ 2 x χ 0 ) -2x(∂ x χ 0 )x∂ x + x 2 [∆ h(x) , χ 0 ] + n(x∂ x χ 0 ) - 1 2 Tr h(x) (∂ x h(x))x 2 (∂ x χ 0 )
is a first order operator with coefficients vanishing in a neighbourhood of ξ. We thus correct the error by the incoming resolvent R h (λ) by setting

E h (λ, ξ) := χ 0 E 0 h (λ, ξ) + E 1 h (λ, ξ), with E 1 h (λ, ξ) := -R h (λ)F h (λ, ξ) (7.14)
and this makes sense since for λ ∈ R, R h (λ) : x α L 2 (M ) → x -α L 2 (M ) for any α > 0 and F h ∈ xL 2 (M ). We claim that Proposition 7.3. The function E h (λ, ξ) of (7.14) is the Eisenstein function defined in (7.8) for a certain boundary defining function x.

Proof. Let R B h (λ) be the resolvent of the hyperbolic space (that is, the incoming right inverse to h 2 (∆ H n+1n 2 /4)λ 2 ) in the ball model and let χ 1 ∈ C ∞ (∂M × M ) be such that χ 1 (ξ, •) is supported in U ξ and χ 1 χ 0 = χ 1 . Through the pull-back by ψ ξ j (for each j), the operator R B h (λ) induces an operator R j h (λ) on V ξ j ; if U ξ ⊂ V ξ j , then we have the resolvent identity

R h (λ)χ 1 = χ 0 R j h (λ)χ 1 -R h (λ)[h 2 ∆, χ 0 ]R j h (λ)χ 1 (7.15)
for λ ∈ R, the composition makes sense as a map x α L 2 → x -α L 2 for any α > 0. Let x be a boundary defining function, so in V ξ j , one has ψ * ξ j x 0 = xe ω j for some function ω j ∈ ξ ∂M ε Figure 4. Illustration of (A7) for the half-plane model of H n+1 : the set of points on trajectories converging to ξ ∈ ∂H n+1 with ẋ < 0 and x < ε is the triangle formed by dashed lines, lying O(ε) close to ξ. For ε small enough, this triangle lies inside the lighter shaded region, denoting the set {χ 0 = 1}.

C ∞ (∂M ∩V ξ j ). Then multiplying (7.15) by x -n/2-iλ/h on the right, and taking the restriction of the Schwartz kernels on M × ∂M , we have

E h (λ, ξ) = χ 0 E 0 h (λ, ξ) -R h (λ)[h 2 ∆, χ 0 ] E 0 h (λ, ξ) with E 0 h (λ; m, ξ) = 2iλh C(λ/h) lim m ′ →ξ (x(m ′ ) -n 2 -i λ h R j h (λ; m, m ′ )
) a smooth function of m ∈ U ξ and C(λ/h) the constant in (7.8). Note that the Schwartz kernels of R j h and R k h are the same on the intersection of their domains, therefore E 0 h does not depend on the choice of j. Now, since E B h (λ; m, ξ) in (7.11) is the Eisenstein function on B for the defining function x 0 , we deduce that in

U ξ ⊂ V ξ j , one has E 0 h (λ, ξ; m) = E 0 h (λ, ξ; m)e ( n 2 +i λ h )(ω j (ξ)-c j (ξ)) . Here c j (ξ) = φ ξ (m) -φ B ψ ξ j (ξ) (ψ ξ j (m))
. Since E 0 h (λ; m, ξ) does not vanish, this shows that on any intersection ∂M ∩ V ξ j ∩ V ξ k of the cover of ∂M by the open sets V ξ j ∩ ∂M , we get ω j (ξ)c j (ξ) = ω k (ξ)c k (ξ) and therefore this defines a global smooth function θ on ∂M . In its definition, E h (λ, ξ) only depends on the first jet of x at ∂M and thus modifying x to be xe θ , this shows the claim.

It follows that (A3) and (A4) are satisfied, with b 0 = e n 2 φ ξ (m) . Assumption (A8) is then checked by a direct calculation, with the measure dξ on ∂M corresponding to the choice of the function x in Proposition 7.3. Assumption (A7) can be reduced, using the isometries ψ ξ j , to the following statement: if (q, ν) ∈ S * H n+1 is directly escaping in the forward direction and converging to some p ∈ S n , then |q -p| ≤ Cx 0 (q) for some global constant C; the latter statement is verified directly, see Figure 4.

Microlocalization of E 1

h . Finally, assumptions (A5) and (A6) follow, by rescaling h and using that E h (λ, •) is a function of λ/h, from Proposition 7.4. Let K 0 ⊂ M be a compact set containing a neighborhood of the trapped set. Assume that λ = 1 and define

E 1 h (λ, ξ) = E 1 h (λ, ξ) 1 + E h (λ, ξ) L 2 (K 0 ) . ( 7 

.16)

Then:

1

. E 1 h (λ, ξ) is h-tempered in the sense of (3.2). 2. The wavefront set WF h ( E 1 h ) is contained in S * M . 3. If (m, ν) ∈ S * M
and g t (m, ν) escapes to infinity as t → +∞ and never passes through the set

W ξ := {(m, ∂ m φ ξ (m)) | m ∈ supp(∂ m χ 0 )} for t ≥ 0, then (m, ν) ∈ WF h ( E 1 h ).
Moreover, the corresponding estimates are uniform in λ ∈ [1/2, 2] and ξ ∈ ∂M .

Proof. We will use the construction of [START_REF] Vasy | Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates[END_REF]. (See also [START_REF] Vasy | Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces, with an appendix[END_REF]; note however that in that paper L + and L -switch places compared to the notation of [START_REF] Vasy | Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates[END_REF] that we are using.) Let M even (called X 0,even in [START_REF] Vasy | Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates[END_REF]) be the space M with the smooth structure at the boundary ∂M changed so that x 2 is the new boundary defining function. As in [START_REF] Vasy | Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates[END_REF](3.5)], introduce the modified Laplacian

P 1 (λ) := x -2 x -s (1 + x 2 ) s/4-n/8 (h 2 ∆ -s(n -s))(1 + x 2 ) n/8-s/4 x s , s := n/2 + iλ/h.
(The conjugation by (1 + x 2 ) s/4-n/8 is irrelevant in our case, as s/4n/8 = iλ/(4h) is purely imaginary. In [START_REF] Vasy | Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates[END_REF], it is needed to show estimates far away in the physical plane, that is for Re s ≫ 1.) Note that we change the sign of λ in the conjugation (in the notation of [START_REF] Vasy | Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates[END_REF], P 1 (λ) = P σ with σ = -λ/h); therefore, our resolvent will be semiclassically incoming, instead of semiclassically outgoing, for λ > 0. The operator P 1 is smooth up to the boundary of M even ; as in [START_REF] Vasy | Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates[END_REF]Section 3.5], we embed M even as an open set in a certain compact manifold without boundary X, and extend P 1 to a differential operator in Ψ 2 (X). We also consider the semiclassical complex absorbing operator Q(λ) ∈ Ψ 2 (X) satisfying the assumptions of [START_REF] Vasy | Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates[END_REF]Section 3.5]; in particular, Q(λ) is supported outside of M even ⊂ X.

Then (P 1 (λ) -iQ(λ)) -1 : C ∞ (X) → C ∞ (X)
is a meromorphic family of operators in λ, and for f ∈ C ∞ (X), we have (see the proof of [START_REF] Vasy | Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates[END_REF]Theorem 5.1])

x s (1 + x 2 ) n/8-s/4 (P 1 (λ) -iQ(λ)) -1 f | M = R h (λ)(1 + x 2 ) n/8-s/4 x s x 2 (f | M ).
Here R h (λ) is the incoming scattering resolvent on M . In principle, depending on the choice of Q(λ), the operator (P 1 (λ) -iQ(λ)) -1 could have a pole at λ. However, as R(λ) does not have a pole for λ ∈ [1/2, 2], the terms in the Laurent expansion of (P 1 (λ) -iQ(λ)) -1 have to be supported outside of M even and we can ignore them in the analysis.

Let F h ∈ C ∞ (X) be any function such that F h = O(h) H N h
for all N , and

F h = (1 + x 2 ) n/8-s/4 x s+2 ( F h | M ). Such a function exists as x -s χ 0 E 0 h ∈ C ∞ (M even \ ξ), χ 0 ∈ C ∞ (M even ), and F h = x 2+s (1 + x 2 ) n/8-s/4 [P 1 (s), χ 0 ](1 + x 2 ) s/4-n/8 x -s E 0 h is supported away from ξ. Define the function E 1 h ∈ C ∞ (X) by E 1 h = - (P 1 (λ) -iQ(λ)) -1 F h 1 + E h (λ, ξ) L 2 (K 0 ) . ξ ∂M F h ∂T * X L - Q F h Figure 5
. Left: physical space picture of geodesics converging to ξ. The darker shaded region is the support of dχ 0 , and thus of F h . In the lighter shaded region, χ 0 = 1. Right: phase space picture near ξ after the conjugation of [START_REF] Vasy | Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates[END_REF]. L -is the sink consisting of radial points, Q is the complex absorbing operator, and the shaded region corresponds to the wavefront set of F h . The vertical line hitting L -is the boundary of M even , while the horizontal line is the fiber infinity. In both pictures, we mark two points (m, ν) satisfying the assumption of part 3 of Proposition 7.4 and the forward geodesics starting at these points.

Then

E 1 h = x s (1 + x 2 ) n/8-s/4 E 1 h | M . Consider the map ι : T * M → T * X given by ι(m, ν) = m, ν -d ln x(m) - 1 4 ln(1 + x(m) 2 ) , m ∈ M, ν ∈ T * m M ; then for an h-tempered u ∈ C ∞ (X), WF h (x s (1 + x 2 ) n/8-s/4 u| M ) = ι -1 (WF h (u)). Then WF h ((P 1 (λ) -iQ(λ)) E 1 h ) ∩ T * M ⊂ ι(WF h (F h )) ⊂ ι(W ξ ). (7.17) Now, as E 0 h L 2 (K 0 ) ≤ C and thus E 1 h L 2 (K 0 ) ≤ C + E h L 2 (K 0 ) , we have E 1 h L 2 (K 0 ) ≤ C. Consider an operator Q K ∈ Ψ comp (X) supported in K 0 such that σ(Q K ) ≤
0 everywhere and each unit speed geodesic γ(t) either escapes as t → +∞ or passes through the region {σ(Q K ) < 0} at some positive time. This is possible since K 0 contains a neighborhood of the trapped set. Then the operator P 1 (λ) -iQ(λ) -iQ K satisfies the semiclassical nontrapping assumptions [START_REF] Vasy | Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates[END_REF]Section 3.5]; therefore, by the nontrapping estimate [START_REF] Vasy | Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates[END_REF]Theorem 4.8],

E 1 h L 2 (X) ≤ Ch -1 (P 1 (λ) -iQ(λ) -iQ K ) E 1 h L 2 (X) ≤ Ch -1 F h L 2 (X) + Ch -1 Q K E 1 h L 2 (X) . However, Q K E 1 h is bounded by E 1 h L 2 (K 0 ) ; therefore, E 1 h L 2 (X) = O(h -1
) and in particular E 1 h is tempered; it follows that E 1 h is also tempered. This proves part 1 of the proposition; part 2 follows by ellipticity (note that WF

h (F h ) ⊂ W ξ ⊂ S * M ).
Then M is an asymptotically hyperbolic manifold in the sense of Section 7, of constant sectional curvature -1. We shall denote the covering map by

π : B ∪ Ω Γ → M .
We refer the reader to [Ni] for more details and properties of convex co-compact groups.

A.2. Limiting measures in this setting. In constant curvature, it turns out that the limiting measure µ ξ exists for all ξ (rather than for Lebesgue almost every ξ as in Section 4.3), and can be described as a converging sum over the group. We give an expression below, which is the same as the one obtained in [GuNa] when δ < n/2.

For ξ ∈ S n , we let φ ξ be the Busemann function 4 on the unit ball B defined by

φ ξ (m) = log 1 -|m| 2 |m -ξ| 2 .
The map Φ defined by

Φ : B × S n → S * H n+1 , Φ : (m, ξ) → (m, ∂ m φ ξ (m)) (A.4)
gives a diffeomorphism between the unit cotangent bundle S * H n+1 and B × S n , and satisfies where * denotes the map identifying T * H n+1 with T H n+1 through the metric. We have Φ(γ.(m, ξ)) = γ.Φ(m, ξ) and thus Φ descends to a map Γ\(H n+1 × S n ) → S * (Γ\H n+1 ), which we also denote by Φ.

Φ * dµ L = e nφ ξ (m) dvol H n+1 (m) ∧ dξ, with e nφ ξ (m) = 1 -|m| 2 |m -ξ| 2 n , if dµ 
The limiting measure µ ξ in the considered case is given by Lemma A.1. Let M = Γ\H n+1 be a quotient of H n+1 by a convex co-compact group Γ of isometries, let F be a fundamental domain. Then the measure µ π(ξ) of (4.12) exists for all ξ ∈ Ω Γ and is described as a converging series by the following expression:

if ξ ∈ Ω Γ ∩ F and a ∈ C ∞ 0 (S * M ), then M a dµ π(ξ) = F γ∈Γ a(m, dφ γξ (m))e n(φ γξ (m)+log |dγ(ξ)|) dvol H n+1 (m)
where φ ξ (m) is the Busemann function on B associated to ξ ∈ S n and |dγ(ξ)| is the Euclidean norm of dγ(ξ).

4 In Section 7, we used the coordinate q ∈ B, p ∈ S n for certain charts near infinity of M , and the notation φ B p (q) for the Busemann function on the ball. This was to avoid confusion with the coordinate m, ξ on M, ∂M . We keep in this appendix the notation φ ξ (m) to match the notation of the general setting of the article.

Proof. We can view a as a compactly supported function on the unit cotangent bundle S * F over a fundamental domain F ⊂ B and we extend a by 0 in S * H n+1 \S * F (the resulting function might not be smooth, but it does not matter here). The flow g t on S * M is obtained by projecting down the geodesic flow g t of the cover S * H n+1 . Let ξ ∈ Ω Γ ∩ F, then small neighbourhoods of π(ξ) in M are isometric through π to small neighbourhoods of ξ in the unit ball B. By the construction of the decomposition (4.6) for the asymptotically hyperbolic case in Section 7.2, the function E 0 h (λ, π(ξ); π(m)) is equal to e (n/2+iλ/h)φ ξ (m) for m near ξ (ξ being fixed) and thus

|b 0 | 2 = e nφ ξ (m) . One has M a(g -t (m, dφ ξ (m)))e nφ ξ (m) dvol M (m) = F a( g -t Φ(m, ξ))e nφ ξ (m) dvol H n+1 (m)
where a(m, ν) := γ∈Γ a(γ.(m, ν)) is the lift to S * H n+1 of the function a on S * M and dvol H n+1 (m) is the Riemannian measure on H n+1 . Using the map Φ of (A.4), one can define a map g t ξ : B → B by g t Φ(m, ξ) = Φ( g t ξ (m), ξ), this is a diffeomorphism which preserves the measure e nφ ξ (m) dvol H n+1 . By [START_REF] Guillarmou | Equidistribution of Eisenstein series on convex co-compact hyperbolic manifolds[END_REF]Lemma 4], we have e nφ ξ (γ -1 m) = e nφ γξ (m) |dγ(ξ)| n , but we also have γ.Φ(m, ξ) = Φ(γm, γξ). Let U + ∞ be defined in (G4) and put U := {m | (m, π(ξ)) ∈ U + ∞ }, then U lies in a small neighborhood of in M . We can identify U with a small neighbourhood U of ξ in F and we get for μπ(ξ) defined in (4.10),

S * M (a • g -t ) dμ π(ξ) = U a(g -t (m, dφ ξ (m)))e nφ ξ (m) dvol M (m) = e U γ∈Γ a(γ. g -t Φ(m, ξ))e nφ ξ (m) dvol H n+1 (m) = γ∈Γ e U a(Φ(γ g -t ξ m, γξ))e nφ ξ (m) dvol H n+1 (m) = γ∈Γ γe g -t ξ ( e U )
a(m, dφ γξ (m))e nφ ξ (γ -1 m) dvol H n+1 (m).

(A.5)

We now observe that for all γ ∈ Γ, lim t→+∞ 1l γe g -t ξ e U = 1, since U is a neighbourhood of ξ in B containing all points directly escaping to ξ. This achieves the proof by recalling the definition (4.12) of µ π(ξ) and taking the limit in (A.5) and using the dominated convergence theorem, as there exists C, C ′ > 0 such that for all m in the compact set supp(a)

γ∈Γ e nφ ξ (γ -1 m) = γ∈Γ 1 -|γ -1 m| |γ -1 m -ξ| 2 n ≤ C sup m∈supp(a) e -n d(γ -1 m,0) ≤ C ′ by locally uniform (in m) convergence of Poincaré series (A.3) at s = n.

Appendix B. The escape rate

Let us discuss the classical escape rate in some particular cases, following the work of Bowen-Ruelle [BoRu], Young [Yo], and Kifer [Ki].

B.1. Escape rate and the pressure of the unstable Jacobian. We consider (M, g) a complete non-compact Riemannian manifold which has a compact set K 0 ⊂ S * M which is geodesically convex, that is any geodesic trajectory in S * M which leaves K 0 never comes back:

∃t 0 < t 1 , g t 0 (m, ν) ∈ K 0 and g t 1 (m, ν) ∈ M \ K 0 =⇒ ∀t ≥ t 1 , g t (m, ν) ∈ M \ K 0 .
We assume that K 0 contains a neighborhood of the trapped set K. The examples we consider are (M, g) which are hyperbolic or Euclidean near infinity, and K 0 = S * M ∩ {x ≥ ε 0 } with x, ε 0 given in (G2). The trapped set from Definition 4.1 can be written as

K = t∈R g t (K 0 ) = j∈Z g j (K 0 )
This is a compact maximal invariant set for the flow g t . We define the escape rate as in [Yo, Ki] by

Q := lim sup t→∞ 1 t log µ L (T (t)),
with µ L the Liouville measure and T (t) defined in (1.9). Note that, since K 0 is geodesically convex, we have T (t 2 ) ⊂ T (t 1 ) for 0 ≤ t 1 ≤ t 2 . The escape rate is clearly non-positive.

In this section, we assume that µ L (K) = 0 and write Q in terms of the topological pressure of the flow, under certain dynamical assumptions. More precisely, we assume that the trapped set K is uniformly partially hyperbolic, in the following sense: there exists ε f > 0 and a splitting of T (S * M ) over K into continuous subbundles invariant under the flow T z S * M = E cs z ⊕ E u z , ∀z ∈ K such that the dimensions of E u and E cs are constant on K and for all ε > 0, there is t 0 ∈ R such that ∀z ∈ K, ∀t ≥ t 0 , ∀v ∈ E u z , |dg t z v| ≥ e ε f t |v|, ∀v ∈ E cs z , |dg t z v| ≤ e εt |v|. Let J u be the unstable Jacobian of the flow, defined by J u (z) := -∂ t (det dg t z | E u z )| t=0 where dg t : E u z → E u g t z and the determinant is defined using the Sasaki metric for choosing orthornormal bases in E u . If µ is a g t -invariant measure on K, one has

K J u dµ = - K j Λ + j dµ
where Λ + j (z) are the positive Lyapunov exponents at a regular point z ∈ K counted with multiplicity (regular points are points where the exponents are well defined, and this is set of full µ-measure by the Oseledec theorem). It is also direct to see that K J u dµ = -K log det(dg 1 | E u )dµ.

The topological pressure of a continuous function ϕ : K → R with respect to the flow can be defined by the variational formula P (ϕ) := sup then Pesin-Sadovskaya [PeSa] show the following formula dim H (K) = 1 + t u + t s , with P (-t u a u ) = P (-t s a s ) = 0.

Appendix C. Egorov's theorem until Ehrenfest time

In this section, we prove Proposition 3.9, following the methods of [BoRo], [START_REF] Anantharaman | Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold[END_REF]Section 5.2], and [START_REF] Zworski | Semiclassical analysis[END_REF]Theorem 11.12]. Without lack of generality, we assume that t 0 > 0. C.1. Estimating higher derivatives of the flow. First of all, we need to estimate the derivatives of symbols under propagation for long times. Consider the open set

U 1 = {(m, ν) ∈ T * M | m ∈ U, 1 -2ε e < |ν| g < 1 + 2ε e }.
For each k, we fix a norm • C k (U 1 ) for the space C k (U 1 ) of k times differentiable functions on U 1 . (The particular choice of the norm does not matter, as long as it does not depend on t.) The following estimate is an analogue of [START_REF] Anantharaman | Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold[END_REF](5.6)]; we include the proof for the case of manifolds for the reader's convenience. where c α,j are constants, j 1 , . . . , j m ∈ {1, . . . , d}, and α 1 , . . . , α m are nonzero multiindices whose sum equals α. We see from (C.2) that (C.1) is implied by the following estimate on the derivatives of the flow g t (required to hold in any coordinate system):

|α| ≤ k =⇒ sup U 1 ∩g -t (U 1 ) |∂ α g t | ≤ C α e |α|Λ 1 t . (C.3)
The converse is also true, which can be seen by substituting cooordinate functions in place of a in (C.1).

To estimate higher derivatives of the flow, we will need several definitions from differential geometry. For a vector field X on U 1 , define its pushforward g t * X by X(a • g t ) = ((g t * X)a) • g t , a ∈ C ∞ (g t (U 1 )). Then g t * X is a vector field on g t (U 1 ). In local coordinates, we have t * X) j = l (X l ∂ l g t j ) • g -t .

Note that since g t = exp(tH p /2), where H p is the Hamiltonian vector field of p, and since g t * H p = H p , we have

∂ t g t * X = - 1 2 [H p , g t * X] = - 1 2 g t * [H p , X]. (C.4)
We fix a symmetric affine connection ∇ on T * M . For vector fields X and Y , consider the differential operator ∇ 2 XY , acting on functions or on vector fields, defined as follows: for a function f and a vector field Z,

∇ 2 XY f = XY f -(∇ X Y )f, ∇ 2 XY Z = ∇ X ∇ Y Z -∇ ∇ X Y Z. (C.5)
In local coordinates, we have (using Einstein's summation convention)

∇ 2 XY f = X i Y j (∂ 2 ij f -Γ l ij ∂ l f ), (∇ 2 XY Z) m = X i Y j (∂ 2 ij Z m + Γ m jα ∂ i Z α + Γ m iα ∂ j Z α -Γ α ij ∂ α Z m +(∂ i Γ m jα + Γ m iβ Γ β jα -Γ β ij Γ m αβ )Z α ).
Here Γ l ij are the Christoffel symbols of the connection ∇. The advantage of 2 XY over XY is that the coefficients of this differential operator at any point depend (bilinearly) only on the values of X and Y at this point, but not on their derivatives.

We now return to the proof of (C.1). The estimate (C.3) for k = 1 follows directly from the definition (3.17) of Λ max . It is then enough to assume that (C.3) holds for some k ≥ 1 and prove the estimate (C.1) for k + 1. It suffices to show that for any two vector fields X, Y on T * M and any a ∈ C ∞ 0 (U 1 ), we have the estimate We can now apply (C.2) to get an expression for any derivative of order no more than k -1 of (C.8). The result will involve derivatives of orders 1, . . . , k of g t , but not its k + 1'st derivative; therefore, we can apply (C.3) to get (C.7).

XY (a • g t ) C k-1 (U 1 ) ≤ Ce (k+1
Given (C.7) and (C.5), it is enough to show

((∇ g t * X g t * Y )a) • g t C k-1 (U 1 ) ≤ Ce (k+1)Λ 1 t a C k (U 1 ) .
(C.9)

The vector field ∇ g t * X g t * Y involves the second derivatives of g t , therefore the left-hand side of (C.9) depends on the k + 1'st derivatives of g t and we cannot apply (C.3) directly. We will instead use the method of the proof of [START_REF] Bouzouina | Uniform semiclassical estimates for the propagation of quantum observables[END_REF]Lemma 2. We have

(g t * (∇ X Y )a) • g t C k-1 (U 1 ) = ∇ X Y (a • g t ) C k-1 (U 1 ) ≤ C a • g t C k (U 1 ) ≤ Ce kΛ 1 t a C k (U 1 )
. It is then enough to handle the integral part of (C.10). The field Z s depends quadratically on the first derivatives of g s , but does not depend on its higher derivatives; therefore, writing an expression for Z s in local coordinates similar to (C.8), we get for a ∈ C ∞ 0 (U 1 ), (Z s a) • g s C k-1 (U 1 ) ≤ Ce (k+1)Λ 1 s a C k (U 1 ) .

Applying (C.1) for the C k norm (given by the induction hypothesis) and using the geodesic convexity of U , we get t 0 ((g t-s * Z s )a)

• g t C k-1 (U 1 ) ds = t 0 (Z s (a • g t-s )) • g s C k-1 (U 1 ) ds ≤ C t 0 e (k+1)Λ 1 s a • g t-s C k (U 1 ) ds ≤ C t 0 e (k+1)Λ 1 s e kΛ 1 (t-s) a C k (U 1 ) ds ≤ Ce (k+1)Λ 1 t a C k (U 1 )
and the proof is finished.

C.2. Proof of Proposition 3.9. The proof of Proposition 3.9 is based on repeatedly applying the following corollary of Lemma C.1. The functions b (j) below will be the remainders in the formula for the commutator [h 2 ∆, A (j) (t)], while the functions c (j) will be the errors arising from multiplying our operators by X 1 and X 2 .

Proposition C.2. Take Λ 1 > (1 + 2ε e )Λ max . Fix t 0 > 0 and let ϕ ∈ C ∞ 0 (U 1 ) satisfy |ϕ| ≤ 1. Assume that a 0 ∈ C ∞ (T * M ) and for each j ≥ 0, b (j) (t) ∈ C ∞ ([0, t 0 ] × T * M ), and c (j) ∈ C ∞ (T * M ), with support contained in some j-independent compact set. For j ≥ 0, define a (j) ∈ C ∞ ([0, t 0 ] × T * M ) inductively as the solutions to the equations a (0) (0) = a 0 , a (j+1) (0) = ϕ • a (j) (t 0 ) + c (j+1) ; ∂ t a (j) (t) = 1 2 H p a (j) (t) + b (j) (t).

Then for each k, and each j, we have (bearing in mind that each a (j) is supported inside some j-independent compact set and thus its C k norm is well-defined up to a constant) 

(i) (t) C k + c (i) C k ) ,
where C(k) is a constant independent of j.

Proof. We can write a (j) (t) = a (j) (0) • g t + t 0 b (j) (s) • g t-s ds.

Since t 0 is fixed, it is enough to estimate the derivatives of a (j) (0). Define

ϕ (j) = 0≤m<j (ϕ • g mt 0 );
applying the Leibniz rule to ϕ (j) , estimating each nontrivial derivative of ϕ•g mt 0 by Lemma C.1, using that |ϕ| ≤ 1 and absorbing the (polynomial in l) number of different terms in the Leibniz formula into the exponential by increasing Λ 1 slightly, we get ϕ (j) C k = O(e jkΛ 1 t 0 ). Now, a (j) (0) = ϕ (j) • (a 0 • g jt 0 ) + j-1 i=0 ϕ (j-i) t 0 0 b (i) (s) • g (j-i)t 0 -s ds + j i=1 ϕ (j-i) • (c (i) • g (j-i)t 0 ).

Here we put ϕ (0) = 1. We can now apply Lemma C.1 again to get the required estimate.

We are now ready to prove Proposition 3.9. Fix a quantization procedure Op h on M ; our symbols be supported in a certain compact set (in fact, no more than distance t 0 to the set U ) and we require that the corresponding operators be compactly supported. Put Λ 1 = Λ ′ 0 . Let l satisfy (3.18). We will construct the operators

A (j) m (t) = Op h 0≤m ′ ≤m a (j)
m ′ (t) , 0 ≤ t ≤ t 0 , 0 ≤ j ≤ l, m ≥ 0,

Here the symbols a 

A (0) m (0) = A + O(h ∞ ) Ψ -∞ , A (j+1) m (0) = X 2 A (j) m (t 0 )X 1 + Op h (c (j) m ) + O(h ∞ ) Ψ -∞ , hD t A (j) m (t) = 1 2 [h 2 ∆, A (j) m (t)] + h i Op h (b (j) m (t)) + O(h ∞ ) Ψ -∞ , (C.12)
where the symbols b with the constants C(k, m) again independent on j.

We construct the symbols a m-1 (t).

Here A = Op h (a 0 )+O(h ∞ ) Ψ -∞ and we put b and define the operators A (j) (t) = Op h (a (j) (t)). By (C.12), these operators satisfy

A (0) (0) = A + O(h ∞ ) Ψ -∞ , A (j+1) (0) = X 2 A (j) (t 0 )X 1 + O(h ∞ ) Ψ -∞ , hD t A (j) (t) = 1 2 [h 2 ∆, A (j) (t)] + O(h ∞ ) Ψ -∞ .
We then have (X 2 U (t 0 )) l A(U (-t 0 )X 1 ) l = A (l) (0) + O(h ∞ ) L 2 →L 2 .

It remains to recall that a (l) (0) ∈ S comp ρ l uniformly in l. The principal symbol and microlocal vanishing statements follow directly from the procedure we used to construct the symbols a (j) m .

Appendix D. Proof of quantum ergodicity in the semiclassical setting

In this section, we illustrate how our methods yield a proof of the following integrated quantum ergodicity statement in the semiclassical setting: Theorem 5. Let (M, g) be a compact Riemannian manifold of dimension d and assume that the geodesic flow g t on M is ergodic with respect to the Liouville measure µ L on the unit cotangent bundle S * M . For each h > 0, let (e j ) j∈N be an orthonormal basis of eigenfunctions of h 2 ∆ with eigenvalues λ 2 j . Then for each semiclassical pseudodifferential operator A ∈ Ψ 0 (M ), we have A more general version of Theorem 5 was proved in [HeMaRo], in particular relying on the result of [DuGu, PeRo] on o(h) remainders for the Weyl law when the closed geodesics form a set of measure zero. The purpose of this Appendix is to provide a shorter proof. Theorem 5 is formulated here for the semiclassical Laplacian for simplicity of notation, but it applies to any self-adjoint semiclassical pseudodifferential operator P (h) with compact resolvent on a compact manifold, if the Hamiltonian flow of the principal symbol p of P (h) has no fixed points and is ergodic on the energy surface p -1 (0) and we take eigenvalues in the interval [0, h].

h d-1 λ j ∈[1,1+h]
The key component of our proof is the following estimate: Lemma D.1. Let M be as in Theorem 5. Then for each A ∈ Ψ 0 (M ), we have Proof. Assume first that A is compactly microlocalized. We can rewrite the left-hand side of (D.2) as the square of the Hilbert-Schmidt norm of h (d-1)/2 AΠ [1,1+h] , where Π [1,1+h] = 1l [1,(1+h) 2 ] (h 2 ∆) is a spectral projector. It can then be estimated using the local theory of semiclassical Fourier integral operators, by (3.24) (applied to the adjoint of the operator in interest).

h d-1 λ j ∈[1,1+h]
To handle the case of a general A, it remains to note that if WF h (A) ∩ S * M = ∅, then the left-hand side of (D.2) is O(h ∞ ), as each Ae j is O(h ∞ ) by the elliptic estimate (Proposition 3.2; see also the proof of Proposition 4.5).

Putting A equal to the identity in (D.2), we get the following upper Weyl bound:

#{j | λ j ∈ [1, 1 + h]} ≤ Ch 1-d . (D.3)
We can now prove Theorem 5. Take A ∈ Ψ 0 (M ); by subtracting a multiple of the identity operator and applying the ellipticity estimate, we may assume that A is compactly microlocalized and Here U (t) = e ith∆/2 is the semiclassical Schrödinger propagator. By Egorov's theorem (Proposition 3.8), for any fixed T the operator A T lies in Ψ 0 , modulo an O(h ∞ ) L 2 →L 2 remainder, and its principal symbol is

σ( A T ) = σ(A) T := 1 T T 0 σ(A) • g t dt.
Note that for each j, we have U (t)e j = e itλ j /(2h) and thus A T e j , e j = Ae j , e j . Using Cauchy-Schwarz inequality in j and the bounds (D.2) and (D.3), we get A T e j L 2 ≤ C h d-1

λ j ∈[1,1+h]
A T e j However, by (D.4) and the von Neumann ergodic theorem [START_REF] Zworski | Semiclassical analysis[END_REF]Theorem 15.1], we have σ(A) T L 2 (S * M ) → 0 as T → ∞. Therefore, for each ε > 0 we can choose T large enough so that the left-hand side of (D.1) is bounded by ε/2 + O(h). Then for h small enough, it is bounded by ε; since the latter was chosen arbitrarily small, we get (D.1).

  we have the following asymptotic decomposition for b: b

  (3.4), for different phase functions ϕ parametrizing open subsets of Λ, plus an O(h ∞ ) C ∞ 0 remainder. Denote by I comp ρ (Λ) the space of all such distributions, and put I comp (Λ) := I comp 0 (Λ). We can write any u ∈ I comp ρ (Λ) as the sum of Lagrangian distributions associated to a given finite open covering of WF h (u) in Λ; by Proposition 3.3, u is a sum of functions of the form (3.8). Moreover, if ϕ is a phase function and u ∈ I comp ρ (Λ ϕ ), then u can be written in the form (3.4) for some symbol a, plus an O

Fourier

  integral operators. A special case of Lagrangian distributions are Fourier integral operators associated to canonical transformations. Let M, M ′ be two manifolds of the same dimension d, and let κ be a symplectomorphism from an open subset of T * M to an open subset of T * M ′ . Consider the Lagrangian

  and only if τ (m, ξ) and τ (m ′ , ξ) lie on the same geodesic. Moreover, the matrix ∂ m ∂ ξ φ ξ (m) has rank n.

  uniformly in λ, as the Hilbert-Schmidt norms of both R λ and ∂ λR λ are O(h ∞ ).5. Proofs5.1. Proof of Theorem 1. In this section, we prove the convergence Theorem 1 under the following assumption:µ L (K) = 0, (5.1)

Figure 3 .

 3 Figure 3. An illustration of Lemma 5.5. The functions ϕ, ϕ 1 , ϕ 2 are supported to the left of the corresponding dashed lines; the right side of the figure represents infinity.

  L is the Liouville measure (viewed as a volume form on the unit cotangent bundle) and dξ the canonical measure on S n . (This is a more general version of (A8) for the considered case.) Any isometry γ of H n+1 acts on both spaces by γ.(m, ν) = (γm, (dγ(m)ν * ) * ), for (m, ν) ∈ S * H n+1 ; γ.(m, ξ) = (γm, γξ), for (m, ξ) ∈ B × S n ,

  Lemma C.1. Take Λ 1 > (1 + 2ε e )Λ max . Then for each k, there exists a constantC(k) such that for each a ∈ C ∞ 0 (U 1 ) and each t ∈ R, a • g t C k (U 1 ) ≤ C(k)e kΛ 1 |t| a C k (U 1 ) . (C.1)Proof. Without loss of generality, we assume that t > 0. We first recall the formula for derivatives of the composition b• ψ of a function b ∈ C ∞ (R d ) with a map ψ : R d → R d : ∂ α (b • ψ) = α,j c α,j (∂ j 1 ...jm b) • ψ • m l=1∂ α l ψ j l , (C.2)

  2], computing by (C.4) Here R ∇ is the curvature tensor of the connection ∇. Then∇ g t * X g t * Y = g t * (∇ X Y )

  (t) C k (T * M ) ≤ C(k) e jkΛ 1 t 0 a 0 C k + max 0≤i≤j e (j-i)kΛ 1 t 0 ( sup t∈[0,t 0 ]

  b

m

  will be supported in a fixed compact subset of T * M and satisfy the derivative bounds supt∈[0,t 0 ] a (j) m (t) C k ≤ C(k, m)h (1-2ρ j )m-ρ j k . (C.11)with the constants C(k, m) independent on j and ρ j defined by (3.19). The operators A

m

  are supported in some fixed compact set and satisfy bounds supt∈[0,t 0 ] b (j) m (t) C k , c (j) m C k ≤ C(k, m)h (1-2ρ j )(m+1)-ρ j k ,(C.13) 

  0. The function ϕ ∈ C ∞ 0 (U 1 ) is equal to σ(X 1 )σ(X 2 )ψ(|ν|), where ψ ∈ C ∞ 0 (1 -2ε e , 1 + 2ε e) is such that ψ(|ν|) = 1 near WF h (A). We use the fact that the function |ν| is invariant under the geodesic flow. The estimate (C.11) follows immediately from (C.13) and Proposition C.2. As for the equations (C.12) and the bounds (C.13), they follow from (C.11) and the following commutator formula:[h 2 ∆, Op h (a)] = h i Op h (H p a) + Op h (b) + O(h ∞ ) Ψ -∞ , b = O(h 2-2ρ a Sρ ) Sρ ,true for any ρ < 1/2 and any a ∈ S comp ρ . Now, consider the asymptotic sums a (j) (t) ∼ m≥0 a (j) m (t)

  Ae j , e j L 2 (M ) -1 µ L (S * M ) S * M σ(A) dµ L → 0 as h → 0. (D.1)

Ae j 2 L

 2 2 (M ) ≤ (C σ(A) L 2 (S * M ) + O(h)) 2 . (D.2)Here σ(A) L 2 (S * M ) is the L 2 norm of the restriction of σ(A) to S * M with respect to the Liouville measure. The constant in O(h) depends on A, but the constant C does not.

|

  Ae j , e j | = h d-1 λ j ∈[1,1+h] | A T e j , e j | ≤ h d-1 λ j ∈[1,1+h]

≤

  C σ(A) T L 2 (S * M ) + O T (h).

  .26)uniformly in ξ ∈ ∂M and λ ∈ [1, 1 + h].Same is true if we replace each instance of ϕ by any function in the set {ϕ, ϕ 1 , ϕ 2 }.

	Proof. Recalling the definition (4.8) of E 1 h , we see that (5.26) follows from

  )Λ 1 t a C k+1 (U 1 ) . Ce (k+1)Λ 1 t a C k+1 (U 1 ) .

	(C.7)
	Indeed, in local coordinates
	(∇ 2 g t

(C.6) 

The left-hand side of (C.6) is equal to

(g t * Xg t * Y a) • g t C k-1 (U 1 ) . We first claim that (∇ 2 g t * Xg t * Y a) • g t C k-1 (U 1 ) ≤ * Xg t * Y a) • g t = (X α ∂ α g t i )(Y β ∂ β g t j ) (∂ 2 ij a -Γ l ij ∂ l a) • g t . (C.8)

In this paper, the symbols Lj will denote different operators in different propositions.

An alternative method in the Euclidean near infinity setting is the functional calculus of Helffer-Robert[HeRo].
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Appendix A. Limiting measures for hyperbolic quotients

In this appendix, we give an explicit description of the limiting measures µ ξ in case when M is a hyperbolic quotient Γ\H n+1 , in terms of the group Γ. This is a particular case of asymptotically hyperbolic manifolds discussed in Section 7.

A.1. Convex co-compact groups. Let B be the unit ball in R n+1 , and H n+1 the (n + 1)dimensional hyperbolic space, which we view as B equipped with the constant negative curvature metric g H n+1 := 4|dm| 2 /(1 -|m| 2 ) 2 . The boundary S n = ∂B is the sphere of radius 1, which is also the conformal boundary of H n+1 . A convex co-compact group Γ of isometries of H n+1 is a discrete group of hyperbolic transformations (i.e., transformations having 2 disjoint fixed points on B) with a compact convex core, and Γ is not co-compact. The convex core is the smallest convex subset in Γ\H n+1 , which can be obtained as follows. The limit set Λ Γ of the group and the discontinuity set Ω Γ are defined by

where the closure is taken in the closed unit ball B and m ∈ B is any point (the set Λ Γ does not depend on the choice of m). The group Γ acts on the convex hull of Λ Γ (with respect to hyperbolic geodesics) and the convex core is the quotient space.

An important quantity is the Hausdorff dimension of Λ

which in turn is, by Patterson [Pa] and Sullivan [START_REF] Sullivan | The density at infinity of a discrete group of hyperbolic motions[END_REF], the exponent of convergence of Poincaré series: for any m ∈ B, The group Γ acts properly discontinuously on Ω Γ as conformal transformations of the sphere and the quotient space Γ\Ω Γ is a smooth compact manifold of dimension n. The quotient M = Γ\H n+1 is a smooth non-compact manifold equipped with the hyperbolic metric g induced by g H n+1 , and it admits a smooth compactification by setting M = M ∪ (Γ\Ω Γ ), i.e. with ∂M = Γ\Ω Γ .

where M(K) is the set of g t -invariant Borel probability measures and h µ (g 1 ) is the measure theoretic entropy of the flow at time 1 with respect to µ. In particular P (0) is the topological entropy of the flow.

A particular case of uniformly partially hyperbolic dynamics is when K is uniformly hyperbolic, that is when there is a continuous splitting E cs = RH p ⊕ E s into flow direction (H p is the vector field generating the geodesic flow) and stable directions E s where for t ≥ t 0 ∀v ∈ E s z , |dg t z v| ≤ e -ε f t |v|. The set K is called a basic hyperbolic set and the flow is said to be Axiom A when the periodic orbits of g t on K are dense in K and g t | K is topologically transitive.

It is proved by Young [Yo,Theorem 4] that if K is uniformly partially hyperbolic, then

In the Axiom A case, the same formula was essentially contained in the work of Bowen-Ruelle (using the volume lemma [START_REF] Bowen | The ergodic theory of Axiom A flows[END_REF]Lemma 4.2 and 4.3]). Moreover by [START_REF] Bowen | The ergodic theory of Axiom A flows[END_REF]Theorem 5], if the incoming tail Γ -(which is the union of stable manifolds over the trapped set) has Liouville measure 0, then P (J u ) < 0. Thus we deduce by (5.2)

Young [START_REF] Young | Large deviations in dynamical systems[END_REF]Theorem 4] gives a lower bound Q ≥ P (j Λ + j ) which applies without any assumption on K (but we are more interested in an upper bound). B.2. Relation with fractal dimensions in particular cases. Assume first that the metric has constant curvature -1 in a small neighbourhood of the trapped set K (this includes the case of convex co-compact hyperbolic quotients studied in Appendix A). Then the geodesic flow on S * M is uniformly hyperbolic on K and has Lyapunov exponents 0 (with multiplicity 1) and ±1 (each with multiplicity n). Therefore, the maximal expansion rate Λ max from (1.11) is equal to 1, one has J u (z) = -n for all z ∈ K, and (see for example [START_REF] Fathi | Expansiveness, hyperbolicity, and Hausdorff dimension[END_REF]Theorem 4])

where h top is the topological entropy of the flow on K, and dim H (K) ∈ (0, n) is the Hausdorff dimension of K (which is equal to the Minkowski box dimension in this case). For convex co-compact hyperbolic quotients Γ\H n+1 (see Section A for definition), one has by Sullivan [START_REF] Sullivan | Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups[END_REF] δ

where Λ Γ is the limit set of the group Γ defined in (A.1).

If g has negative pinched curvature near the trapped set, then one still has upper and lower bounds on P (J u ) in terms of h top (K) and the pinching constant. If the trapped set K is uniformly hyperbolic, it is also shown in [Fa] that dim H (K) ≤ 1 + 2h top (K)/Λ max . In dimension 2 there is an explicit relation between the Hausdorff dimension dim H (K) and entropies of certain measures for Axiom A cases: if a u (z) = lim