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Abstract

Recently several algorithms have been developed to calculate the solar photovoltaic (PV) potential on the basis of 2.5D 
raster data that can capture urban morphology. This study provides a new algorithm that (i) incorporates both terrain and 
near surface shadowing effects on the beam component; (ii) scales down the diffuse components of global irradiation; 
and (iii) utilizes free and open source GRASS and the module r.sun in modeling irradiation. This algorithm is semi-
automatic and easy to upgrade or correct (no hand drawn areas), open source, detailed and provides rules of thumb for 
PV system design at the municipal level. The workflow is pilot tested on LiDAR data for 100 buildings in downtown 
Kingston, Ontario. Shading behavior was considered and suitable roof sections for solar PV installations selected using 
a multi-criteria objective. At sub-meter resolution and small time steps the effect of occlusion from near object was 
determined. Annual daily horizontal irradiation values were refined at 0.55m resolution and were shown to be lower 
than those obtained at 90 m by 30%. The robustness of r.sun as capable of working with different levels of surface 
complexity has been confirmed. Finally, the trade off of each computation option (spatial resolution, time step and 
shading effect) has been quantified at the meso scale, to assist planners in developing the appropriate computation 
protocols for their regions. 
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Abbreviations
(Apv)site : the true area of the roof sections selected as suitable for installing PV
(Aroof)site : the true area of all the roofs considered in the simulation
(Aprojroof)site

 
: the projected area of all the roofs considered in the simulation

DSM: Digital Surface Model
DTM:  Digital Terrain Model
GIS : Geographic Information System
GRASS : Geographic Resources Analysis Support System
GW : GigaWatts (109W)
Ib : beam irradiation
Idiff : diffuse irradiation
Igb : Global horizontal irradiation (GHI)
IL/P: irradiation loss per plane 
LiDAR: Light Detection And Ranging technology
m: meter
r.horizon : Horizon angle computation from a DEM in GRASS
r.sun : a solar irradiance and irradiation model for GRASS
S : shading
SAGA: System for Automated Geoscientific Analyses 
SVF  : Sky View Factor 
SOLPOS : Solar position and intensity calculator
β : slope
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γ : surface azimuth
δ :  solar declination
θs : solar altitude
κ : clear sky index
ω : solar hour angle

 : latitudeϕ
2.5D : 2 dimensional graphical projections that to appear to be three-dimensional (3D) 

1. Introduction 

Solar photovoltaic (PV) energy conversion offers a sustainable method of producing electricity to provide for 
contemporary society's needs (Pearce, 2002). The advantages of PV in producing electricity are: i) generating no 
atmospheric emissions or radioactive waste during use, ii) acting as a distributed electrical generation source, iii) 
assisting in national energy security (Olz et al., 2007; Wong, 2009) and iv) improving long–term economic growth 
(Branker and Pearce, 2010;  Myrans 2009; Fthenakis et al., 2008) for any country that aggressively develops the 
technology. This has led to international cooperation and technology investment over the past 25 years, which in turn 
has given rise to substantial gains in solar PV cell performance (d’Estaintot, 2000; European Photovoltaic Industry 
Association, 2003; Hoffman, 2006; Green et al., 2010). Solar cells made from a variety of materials have demonstrated 
efficiencies over ten percent and are currently manufactured globally. As the technological proficiency of the solar cell 
industry matured, the total shipments of solar cells increased rapidly. In the last decade (to 2010), global solar PV 
deployment has increased from <1 GW to >16 GW with an annual growth rate of more than 40% (Mints, 2011; IEA, 
2010; REN21, 2010;  Doty et al., 2010; Price & Margolis, 2010). Although this growth rate is impressive, it must be 
kept in context of the global energy market. The 2000 peak electrical generation capacity in the U.S. was 825 GigaWatts 
(GW = 109W), while the cumulative total global installed solar PV was less than a single GW. Within the first half of 
the 21st century de Vries et al. (2006) predicted that the technical potential for solar PV will grow by 4 times to reach 
4,195 PWh/ year by 2050. 

Recent discussion on a ‘new logic of infrastructure provision’ (Marvin and Guy, 1997), a ‘paradigm shift in energy 
policy’ (Helm, 2005), and the use of ‘dynamic carbon life-cycle analysis’ (Kenny, et al., 2010) to guide energy choices 
has mentioned the contribution of the increasing technological competitiveness of solar PV, among other kinds of 
renewable energy sources. However, in the debates on urban and regional development and regional infrastructure 
policy, the delivery of utility services still seems to be taken for granted and to be left to engineers, network operators 
and (supra-)national utility regulators. Consequently, there has been little research on the urban and regional impacts of 
utility restructuring and the changing environment for urban and regional governance (Marvin et al., 1999; Monstad, 
2007) with a large scale introduction of PV. To take advantage of continued price declines observed in PV technology 
and to create extra opportunities for the price declines on a geographical context, an understanding the urban local 
potential (roof space and solar exposure) and an ability to simulate solar availability given the local (urban) topology 
are critical for utility planning, accommodating grid capacity, deploying financing schemes and formulating future 
adaptive policies (Wiginton et al., 2010).

The single problem of solar radiation simulation makes clear the necessity for a multidisciplinary and systemic 
approach related to specialties as different as meteorology, geography, architecture and urban systems engineering. The 
goal of several existing projects and recent workshops (SEUS 20101, IEA PVPS Task 102, POLIS3) has been to examine 
this issue as a whole, from the climatic data to the urban development strategies, showing how the new tools (second 
generation satellites, very large geometric models and technological improvement in the data acquisition) can be 
integrated to obtain better quantification and control in order to transmit the useful information between the actors at 
macro (territory), meso (city) and micro (building) scales (SEUS, 2010). The sheer numbers of existing packages4 (e.g. 
Radiance 1992, Heliodon2, SunTools, etc.) and generations of projects (EU PVP Task 10 2007 - 2010, POLIS 2009 - 
2012 ) confirm the promise and excitement that the topic offers.

Despite (i) the ongoing interests from the public, the government and different sectors in the scientific community 
(architecture, meteorology, geography, engineering); (ii) the previous and existing investigations; and (iii) the 

1 http://www.utc.fr/seus/
2 http://iea-pvps-task10.org/
3 http://www.polis-solar.eu/solar-urban-planning-in-polis/
4 http://www.urbanclimate.net/E_2TOOLS.HTM
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emergence of new tools (Carneiro et al, 2009; SEUS 2010) a comprehensive and reliable toolkit for sustainable urban 
design is lacking among practitioners. Very few applications have been implemented to process the data for the 
environmental analysis and to get quick, but reasonably accurate insight into the performance of the urban morphology. 
Much less takes place in order to streamline the communication across different disciplines of interest and hence a 
perceived difficulty when one desires to do a solar photovoltaic assessment on the meso and micro scale (Wiginton et 
al., 2010; Nguyen & Pearce, 2011; Nguyen et al., 2011, forthcoming). 

Considered individually site data acquisition and derivation (i.e. urban texture reconstruction and modeling) and 
spectral and meteorological performance of the urban fabric are attractive and proliferate research areas5. However the 
algorithms introduced are (i) for macro scale or for micro scale – missing the urban district in the middle (Jochem et al., 
2009; Carneiro et al., 2009); (ii) site specific (Kassner et al., 2008; Barsenic et al., 2008); (iii) of strict requirements 
pertaining the data quality and involved expertise (Wiginton et al., 2010; Kurochi et al., 2007; Levinson et al., 2009) or 
(iv) vague and hence impossible to adapt elsewhere. Scaling site assessment has been one of the larger barriers and is 
currently accomplished manually at high cost (i.e. time and expense) or via crude drawing on Google Earth 
visualizations. None of the current practices is scalable when both high quality and low cost is considered at the 
GigaWatt (GW) scale. This paper responds to the need for  streamlined communication between sectors (remote sensing 
and solar energy engineering) and scales (macro/ meso/ micro) by coupling large scale solar irradiation simulations with 
site data acquired with Light Detection And Ranging technology (LiDAR) to identify individual roof facades suitable 
for PV applications and calculate the shading losses these arrays would experience as one single electricity district unit. 

2. Background 

Three factors that determine the interaction of the solar radiation with the earth's atmosphere and surface are (i) the sun 
- earth geometry: the earth's rotation and revolution around the sun determines the available extraterrestrial radiation on 
solar position above horizon; (ii) the topography of the terrain: slope, aspect, shadowing effects of the neighboring 
terrain features and (iii) the attenuation of solar energy by the atmosphere (i.e. by aerosols and clouds) (Suri & 
Hofierka, 2004; Remund et al., 2003). Accordingly a successful and accurate simulation is conditional upon (i) the 
determination of the solar vector; (ii) the input of local terrain or a Digital Surface Model (DSM, which in this case, is 
reconstructed from LiDAR data); and (iii) the choice of an irradiation/ shading model, which may have its own required 
parameters (e.g.  the Linke turbidity (Remund et al., 2003) and clear sky index). 

2.1. Calculations of the solar vector

For the purpose of this study, which focuses on horizontal irradiation on roof tops, an algorithm that has a maximum 
error between 0.01 and 0.008, limited time window but fast and effortless computation is deemed sufficient. Hence the 
SOLPOS calculator was chosen. It is valid between 1950 and 2050 with an uncertainty of 0.01 degrees.6 

2.2 Large scale solar irradiation simulations  

An overview of the available solar irradiation datasets and simulation projects is given by Nguyen & Pearce (2010). 
Essential background of irradiation models is covered in Duffie & Beckman (2001).

2.3 Shading algorithms 

Budin & Budin (1982) gives a detailed and mathematically rigorous account of the shading algorithm, which begins 
with fixing a coordinate system at the point of interest on the earth's surface and then describing the sun's position 
through the use of the hour angle ω, site latitude ϕ and solar declination δ. In that way, the relationship of the 
expression of the sun's position in a spherical coordinate system of the local tilted plane undergoing through two 
transformations: (i) transformation from the spherical coordinate system of the local tilted plane to that of the horizontal 
plane; and (ii) transformation from the spherical coordinate system of the horizontal plane to that of the equator. 

Shading calculations were traced back to the consideration of the shadow of an isolated point on the plane surface with 
an arbitrary orientation. Essentially given site latitude ϕ, declination δ, surface azimuth γ, slope β and solar hour angle 
ω for any day, the shadow's position of a particular site at a particular time of hour and day can computed as a 
function of solar altitude θs and solar azimuth γs. From the perspective of a solar PV engineer, this is helpful for site 

5 http://www.urbanclimate.net/E_2TOOLS.HTM
6 http://www.nrel.gov/midc/solpos/
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inspection. However such shading diagrams can only be used for a  pre-determined location, the latitude ϕ, declination 
δ, surface azimuth γ and slope β of which have been pre-determined. Hence the method can not be applied to site 
selection.

On a more universal and theoretical level Horn (1981) narrated the evolution of automatic hill shading techniques 
against the basics of representations of the relief forms in painting, mathematics, physics and the emergence of DTMs 
and the reflectance map. To create a reflectance map is to capture the dependence of the scene brightness on the surface 
orientation, i.e. the local gradient. The components of the gradient are the slopes or the changing of elevation in the 
west-to-east direction and in the south to north direction. The better way to estimate these slopes is by using a weighted 
average of three such central differences over a 3x3 neighborhood centered by the pixel of interest (Horn 1981). Horn 
(1981) then proceeded to discuss relief shading methods in the following groups:

• rotationally symmetric reflectance maps-gray tone depends on slope only
• methods based on varying line spacing or thickness to modulate average reflectance
• ideal diffuse reflectance and various approximations 
• gray tone depends only on the slope of the surface in the direction away from the assumed light source 
• methods depending on more elaborate niodels of diffuse reflectance from porous material, such as that 

covering the lunar surface
• models for gloss and lustrous reflection-smooth surface, extended source and rough surface, point source.

The relief technique adopted by shading commands in GIS packages belongs to the third group. The apparent brightness 
of a surface element depends on its orientation with respect to the viewer and the light source. Further the amount of 
light captured by a surface patch will depend on its inclination relative to the incident beam. It is commonly assumed 
that the radiance (apparent brightness) of the surface patch is also proportional to cos θ although this is generally not the 
case since light may be reflected differently in different directions, as can be seen by considering a specularly reflecting 
material. One can however assume an ideal surface that reflects all light incident on it and appears equally bright from 
all viewing directions. Such a surface is called an ideal diffuser or Lambertian reflector and has the property that its 
radiance equals the irradiation divided by π. In this special case the radiance is proportional to the cosine of the incident 
angle. Thus the amount of shading, S, is given as: 

S= 255∗cosθz∗cos β+sin θz∗sin β∗cos (γ s−γ )               (1)

where 255 is the maximum gradient for a 16-bit color system. The cartographic practice to assume a light source in the 
northwest at a 45º elevation above the horizon has made its way into the default of shading algorithms in GIS packages, 
which can be overwritten by manually entering values for solar altitude and azimuth at specified time and location 
output from the SOLPOS calculator.

The background above suffices to elucidate the basis behind Hillshade7 function which was used by Levinson et al. 
(2009) and which was found to be interchangeable with the open source r.sunmask8. 

2.4 Site data derivation from LiDAR 

A previous work (Nguyen et al., 2011) gave a thorough examination of the background, challenges and existing 
approaches to extract urban texture information from remote sensing data, especially via airborne laser scanning and 
went on to present a methodology to extract, segment and reconstruct roof planes from a given LiDAR point cloud. The 
methodology was used to create the site for simulation in this study (section 3.1).

2.5 Sky view factor (SVF)9

Carneiro et al. (2009) used SVF to scale down the amount of diffuse irradiation received by a roof and SVF is 
calculated from the viewpoint of the roof of interest. By the definition proposed by Souza et al. (2003), SVF is the 
relationship between the visible area of the sky and the portion of the sky covered by surrounding buildings and other 
obstacles viewed from a specific point of observation. This coincides with the use of view factor in an isotropic sky 

7 http://webhelp.esri.com/arcgiSDEsktop/9.3/index.cfm?TopicName=Producing_a_hillshade
8 http://www.phygeo.uni-hannover.de/grass/grass70/manuals/html70_user/r.sunmask.html
9 The ratio of the radiation received (or emitted) by a planar surface to the radiation emitted (or received) by the entire 

hemispheric environment is called the sky view factor (SVF).
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model (Duffie & Beckman, 2001). By inputing a Digital Surface Model (DSM) an increased urban complexity is 
integrated with the sky view factor estimation.

Although a first reading of approaches towards SVF calculations can create an impression that SVF analysis is similar 
to Viewshed or visibility computation, they are not the same because the latter uses the elevation value of each cell of 
the ground data to determine visibility to, or from a particular cell. Viewshed tools allow the user to determine the 
visibility on a surface from point to point along a given line of sight or across the entire surface in a viewshed. This 
method of determining visibility from a cell location is useful for certain applications involving questions of visibility 
from other surface points, but it does not compute visible locations that are off the surface such as objects in space as in 
the case of SVF calculation (Yousef, 2010). Further the visibility computation can be avoided when the objective is 
limited to evaluation of SVF since in this situation it suffices to count the number of the non-cover proxels on the sky 
vault. An open source version of the Sky View Factor Extension has been available as a module inside the System for 
Automated Geoscientific Analyses (SAGA 2.0).10  The accuracy of the SVF is determined by the angular resolution and 
the radius of the hemisphere considered in the sky view (Gal et al., 2009). The use of 5 - 10º in both altitude and 
azimuth directions and 20 – 30m in radius of the sky dome are conventionally used (Gal et al., 2009; Yousef 2010).

3. Methodology
3.1 The choice of site 

The selected site shown in Figure 1 is of comparable size/resolution with previous studies (Kassner et al., 2009; 
Carneiro et al., 2009, Bersenic et al., 2008, Kurochi et al., 2007, Nguyen & Pearce 2011); and has over 60 buildings to 
support the confidence of the novel building extraction accuracy assessment (Nguyen et al. 2011, forthcoming). The site 
shown in Figure 1 covers about 100 buildings of high point density and from a mixture of sectoral (residential and 
commercial) and structural variations (flat/ garbled/ pitched). There are not many trees, albeit tall trees to render the tree 
canopy reconstruction a necessary component in the simulation. The DSM input into r.sun is also shown in Figure 1.

{Insert Fig.1}

The DSM is the product of the process described in Figures 2a-c below. In this study ArcGIS9.3 was used for the steps 
in Figure 2 a,b,c, Matlab in Figure 2b and in Figue 2c the irradiance modeling was done in GRASS. To perform all of 
the steps in open source software Scilab can be used in replacement of Matlab and GRASS for ArcGIS. First, the 
altimetry of the last LiDAR return pulses were used for building detection and extraction. The latter was carried out in 
hybrid with the footprint shapefile. The data noise was reduced by using a buffer zone and an elevation floor limit. 
These steps are summarized in Figure 2a. The remaining error-free data was fit into different planar faces, the procedure 
of which is explained in Figure 2b. Figure 2c shows how the working geometry is transformed from points to grid via 
Delaunay triangulation.11  Accordingly, the resultant area was next converted to raster at a resolution of 0.55m and 
added on top of the existing DTM to create the DSM. It should be pointed out that it is essential that in the mosaic to 
create a new raster command, the same bit (32 or 16) and data type (floating or continuous) with the DTM is specified. 

{Insert Fig. 2a,b,c}

3.2 r.sun 

The use of r.sun on large scale solar photovoltaic assessments was demonstrated by Nguyen and Pearce (2010). The 
script details, with embedded SOLPOS calculator and an option to speed up the simulation time on large grids (via 
r.horizon) are described by Neteler & Mitasova (2008). The package is sophisticated and flexible enough to handle the 
dynamics of solar radiation and the complexity of urban areas (Hofierka & Kanuk, 2009). 

3.3 Insolation

Global horizontal irradiation (GHI) or Igb is defined as:

10 http://www.saga-gis.org/en/index.html
11 Delaunay triangulations maximize the minimum angle of all the angles of the triangles in the triangulation and tend 
to avoid skinny triangles by ensuring that no point in a set of points is inside the circumcircle of any triangle considered. 
(B. Delaunay: Sur la sphère vide, Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk, 
7:793–800, 1934).
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  I gb=I b+I diff∗svf                 (2)
where Igb , Ib (beam), shade and Idiff (diffuse) are all rasters (Wahschning & Hanitsch, 1995; Duffie & Beckman, 2001; 
Hantzschel et al., 2005; Jochem et al., 2009; Carneiro et al., 2009; Merino et al., 2010), the values of which can be 
output hourly by the script r.sun. The raster svf, on the other hand, contains time independent values.  

Only GHI was generated, meaning that the PV output given here will be for panels laid on the same angles as their 
respective roof (0 degrees if flat and otherwise for tilted roofs). This simplified the calculation because the cloud effect 
included in the clear sky index, κ, is given by

κ=
( I gb )

overcast

( I gb )
clear               (3)

This is the convenience of inputting a DSM to the simulation script. The clear sky index also includes the shadowing 
effect of the surrounding terrain (Jochem et al., 2009). As the surface input is a DSM, the terrain in question also 
includes surrounding buildings, trees and other obstacles. The use of a DSM to capture urban morphology has been 
confirmed by Ratti et al. (2005) and sets this work apart from Jochem et al. (2009) since it can incorporate both terrain 
and near surface shadowing effect as seen below in section 4. 

3.4 Shading behavior

If a PV panel is optimized for the summer, this optimal performance will dominate the annual output (Duffie & 
Beckman, 2001). It follows that any loss in the summer will significantly downgrade the suitability of any roof section 
for PV, hence by running shading every hour between the sunset and sunrise for the mean monthly days of the summer 
(May – August) sufficient understanding on the shading occurring on the roof can be developed. To prove this 
hypothesis, two sets of simulations were carried out. In the first set, hourly irradiation was computed for the months of 
May through August without shading and again with shading. In the second set, irradiation at 3 minute time steps was 
computed for all twelve months without shading and again with shading. The goal is to determine whether simulating 
only the summer irradiation loss by shading one can approximate the annual average summer irradiation. If this is the 
case, significant amounts of time and effort can be saved for future simulations of other geographic regions.

Within r.sun there are two ways to incorporate shading into insolation modeling: either by checking the option '-s', 
which is equivalent to choosing Hillshade in ArcGIS,12 or by combining r.sun with r.horizon. The latter is available for 
GRASS version 6.4.0 onwards and is interchangeable with the former approach.13 

For each roof facet, shadows of neighboring objects are variable and are considered by calculating the horizon of each 
pixel in the DSM. All pixels within a defined distance from the pixel of interest are used in this computation. For each 
pair, a line connecting the two pixels are created and called the profile line. For each profile line an angle is created. If 
the maximum of all the possible angles is equal to the profile then the point of interest is not within a shaded area. The 
profile angle αp is defined by Duffie & Beckman to be the angle through which a plane that is initially horizontal must 
rotate around the axis of the plane in question in order to include the sun. Mathematically the profile angle is given as: 

tan α p=tan α s/cos (γ s−γ )               (4)

For each sun position, which corresponds to the time to be simulated, the profile angle is checked to determine whether 
a particular pixel will be set to zero in the reception of beam radiation (its reception of diffuse radiation is, however, still 
considered) and a new raster is output14 (Jochem et al., 2009). The process is scripted as r.horizon which is connected to 
r.sun in GRASS and which can help run r.sun much faster.15 In terms of output, it means that the beam component Ib has  
already incorporated shadowing effects of local terrain and nearby objects. 

The albedo component is negligible (Carneiro et al., 2009; Nguyen & Pearce, 2010) except for snow albedo 
(Andrews & Pearce, 2011, forthcoming). It makes more sense to include this component when data is 3D and NOT 

12 http://manpages.ubuntu.com/manpages/lucid/man1/r.sun.1grass.html
13 http://osgeo-org.1803224.n2.nabble.com/r-sun-and-r-horizon-td3960955.html
14 http://grass.osgeo.org/grass64/manuals/html64_user/r.horizon.html
15 http://grass.osgeo.org/grass64/manuals/html64_user/r.sun.html
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2.5D (Mardazeljevic & Rylatt 2003; Compagnon, 2004). In this case, surface reflectance everywhere is assumed to be 
0.2.

4. Results and Discussion
4.1.Sky View Factor (SVF)

Figure 3 is the output of SVF calculated with 32 sectors or an increment of 11.25 degrees in the azimuthal direction and 
a radius of 20m. Since the site for this study is but one part of the 1km2 tile, it is clear why sky obstruction only 
becomes relevant to the irradiation calculation when it is down to the municipal level. With the terrain (i.e. with a 
Digital Terrain Model (DTM)) the sky view factor is always 1 or complete visibility of the sky vault with little variation 
whereas close to the walls of the the building its fluctuation can be very dramatic: from very high to very low and can 
be down to 0 in the most densely built part of a downtown. Here SVF ranges from 0.83 to 1. The product from SAGA 
version 2.0.0 is made fully compatible with ArcGIS 9.3 and GRASS 6.3.0-416 via the conversion between raster and 
.asc, the latter is the preferred format of grid file for GRASS (Nguyen & Pearce, 2010).

{Insert Fig.3}

The minimum SVF for the site is 0.83, which is within the range of values for urban areas investigated by Souza et al. 
(2003), Carneiro et al. (2009) and Gal et al. (2010). The best sky view, or the maximum of 1, is not surprisingly 
reserved for horizontal roof tops.

4.2. Shading simulation with Hillshade

Figures 4a-b provided a validation of the shading algorithm by comparing the result generated for the times digital 
photographs were taken of Clark Hall (August 17, 2010 at 11:48am and again at 2:40pm). The position and the 'line of 
view' from which the pictures were taken were marked by an oval and a line on the results as seen in Figure 4. It should 
be noted that Hillshade and r.sun's own shading algorithm are equivalent.17

{Insert Fig.4a,b} 

4.3.Yearly yield 

The monthly rasters were used to compute the yearly yield following:

( I gb ) year=(1/365 )∗∑
i=1

12

[ ( I beam )month +svf∗( I diff )
month ]∗(κc )month∗(noday )month            (5)

The (Igb)year raster, which stores the annual global horizontal irradiance, is calculated and visualized in Figures 5 and 6 
for 90m and 0.55m resolutions respectively. A caution should be made regarding a seemingly high value of 4.36 kWh/ 
m2

 
in Figure 6: this is an erratic behavior that occurs in a pixel at the edge of a particular roof. It highlights the 

importance of a proper treatment for roof edges/ breakline (Dorninger & Pfeifer, 2008; Carneiro et al., 2009). An 
alternative reason can also be an erroneous aspect or slope value, indicating that the roof extraction/ reconstruction from 
the LiDAR data should be further refined. In fact this is only a pixel or two among a grid of 1818 by 1818 in the final 
result.

{Insert Fig.5}

{Insert Fig.6}

Both Figures 5 and 6 only show the horizontal incident irradiation and NOT the actual PV module or system output. 
Higher yield can be collected by putting PV modules at the local optimal tilt angle. However not all the area determined 
here as PV relevant will be used. The disadvantage of a medium to small roof lying deep in a densely built block is 
shown by areas with 0 irradiation in Figure 6.

{Insert Fig.7}

16http://grass.osgeo.org/grass63/binary/mswindows/native/
17 http://manpages.ubuntu.com/manpages/lucid/man1/r.sun.1grass.html
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The scaling down in resolution from 90m to 0.55m does not only allow a better integration of local sky obstruction, but 
also reconfirms the effect of low information density (i.e. the use of larger pixel size  overestimates global horizontal 
irradiation) (Cebecauer et al., 2007). Figure7 makes this clear as it shows the annual daily insolation extracted onto the 
same buildings from two different grids: 90m as used by Nguyen & Pearce (2010) for calculations for solar farms and 
0.55m. Although if a particular roof does not perform well with one grid size, it will not perform well with the other 
either, the smoothing up or generalization effect of the coarser grid is exposed. On relative terms, the overestimation 
between 90m and 0.55m is 28.8 %. It is clear from Figure 6 and 7 that higher resolution is necessary to obtain reliable 
data in the urban context on PV potential.

Somewhat non-intuitively, overestimation due to poor resolution is the highest during the summer, as shown in Figure 8 
below. Although the monthly average daily irradiation values (averaged over all the buildings) between two pixel sizes 
follow the same trend: peaking in the summer and dipping in the winter, the absolute gap between the two trends is the 
highest between April and August.

{Insert Fig.8}

To quantify the impact of shading loss, a comparison between monthly shading integrated beam and non-shading 
integrated beam is shown in Figure 9.

{Insert Fig.9}

Table 1 shows the computation cost and result refinement for each factor, keeping every other factor the same: spatial 
resolution (90m or 0.55m), temporal resolution (15 minutes or 3 minutes), with or without shading.

{Insert Table 1}

It should be noted that until 2011 no later version of GRASS, up to and including the newly released 6.4.1 version18 
(April 13th, 2011) can ensure an efficient, crash-free and hassle free simulation better than GRASS 6.3.0-4.19

The treatment of irradiation loss by shading is identical to the approach by Levinson et al. (2009) where the underlying 
assumption is that if the irradiation on that day is closest to the average of the month, then the irradiation loss by 
shading on that day will also be representative of the month. Hence the mean day is chosen to represent each month, 
during which shading will run for each daylight hour during that day. The output is a boolean shading raster where a 
pixel receives a score of 1 if it is occluded by any other pixel and 0 otherwise. The on-hour total, shade fractions of each 
roofing plane were computed by averaging the score of the plane’s cells in the corresponding shadow raster for each 
hour. The fraction by which shading reduces the irradiation on the planes at that hour is the irradiation loss per plane 
(IL/P):

     IL /P=(∑
i=1

n

( I b )
i∗scorei∗A pixel)/(∑

i= 1

n

( I gb )
i∗A pixel)                       (6)

What is not clear from the work by Levinson et al. (2009) is whether computation was external to the irradiation 
simulation. Several things that set the present research apart include (i) the irradiation loss was computed directly with 
irradiation simulation by unchecking the function within r.sun; (ii) direct normal or beam irradiance is computed at a 
time step of 3 minutes, instead of 1 hour; and (iii) in the past the irradiation modeling was via online tools, which are 
only available for the U.S. While here with r.sun any region could be studied.

There is no difference between shading integrated and non-shading diffuse, which confirms the calculation of shade 
losses in Levinson et al. (2009) to use ONLY direct normal solar irradiances. Figure 9 confirmed the expected trends 
Siraki et al. (2009) found from monitoring a single building in Montreal that shadow in relative terms is highest in the 
winter and lowest in the summer. The results plotted in Figure 9 were averaged over 100 buildings in downtown 
Kingston Ontario, hence a numerical agreement should not be expected. It is further shown that the irradiation in the 
winter is low enough that the absolute loss in the winter is not as damaging as that in the summer, observed from the 
opposing trends between shading loss in absolute and relative terms. 

18http://grass.osgeo.org/grass64/binary/mswindows/native/
19 http://grass.osgeo.org/grass63/binary/mswindows/native/
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In Australia, although detailed data on the effects of shading are not available, Rae et al. (1999) have listed sources to 
show that the impact of shading upon rooftop PV output to produce only a 2% drop. For Kingston, shading results in a 
reduction of 25% in PV output, averaged over 12 months. It is also noted that the result is excluding in-row shading 
when the actual panels are installed. With hourly time steps, the losses in PV output due to shading averaged over the 
year and averaged over only the summer months are 27% and 17% respectively. The 17% shading loss during the 
summer should be self explanatory from Figure 9, which shows the opposing trends between shading loss in absolute 
and relative terms and confirms the findings of Siraki et al. (2009)  from monitoring buildings in Montreal. Thus by 
simulating only the summer months and at hourly time steps one can get within 2% of the average month irradiation 
loss by shading over the year obtained by 3 minute time steps simulations for all twelve months.

4.4 Selection of candidate roof sections for PV installation

To optimize the performance of PV modules it is best to orient them due south and tilt them within 15 degrees of the 
local latitude (Duffie & Beckman, 2001). This means that the first two criteria to select candidate roof sections are (i) 
azimuth angles from southeast to southwest i.e. 90 degrees to 270 degrees due north and (ii) slope between 0 degrees 
and 60 degrees (the local latitude of Kingston is 44 degrees) (Carneiro et al., 2009).

As shown by the literature (Paidipati et al., 2009) and from section 4.3, shading loss is the next important limiting factor 
for the uptake of solar PV in the urban environment due to its impact on life cycle economics. 

There is no readily available defined a rule of thumb for the acceptable length of shadow duration for PV deployment. 
Although it should be pointed out that with the new generation of bypass diode enabled modules, the tolerance of PV 
cells up to a certain number of hours in occlusion has been greatly enhanced (Norton et al., 2010) and the rise of 
microinverters allows arrays to produce output from illuminated panels rather than having strings eliminated from a 
single shaded module. Thus it is possible to generate a series of irradiation loss maps for 12 months for a given region.

{Insert Fig. 10}
In addition, it is possible to provide a visualization of roof areas with suitable aspect and slope Apv, which is shown in 
Fig.10. It is clear for this site that aspect is the dominant criterion. That means (i) the data has to be precise or any 
significant error in point cloud processing would lead to error in aspect analysis; and (ii) the construction of a building 
in a neighborhood, especially in the more densely populated areas, will have an effect on the uptake of solar energy both 
of its own and of the surrounding buildings. This will add an important factor into consideration, that of density and 
orientation of houses, for city planners, for which LiDAR data analysis in general and the methodology of this paper is 
being demonstrated to be of great assistance. 

{Indert Fig. 11}

(Apv)site is defined to be the true area of the roof sections selected as suitable for installing PV.
 
(Aroof)site  is defined to be 

the true area of all the roofs considered in the simulation i.e. it is the result of the process described in section 3.1. 
(Aprojroof)site

 
is the projected area of all the roofs considered in the simulation and is calculated directly from the roofprint 

shapefile. In this example site, if only the slope and aspect criteria were taken into account (Apv)site was found to be 
22,086 m2, (Aroof)site is 37,384 m2, and (Aprojroof)site  was found to be 39,246 m2. Wiginton et al. (2010) and Nguyen & 
Pearce (2011) claimed that the ratio of rpv= (Apv)site/ (Aprojroof)site

 
is 0.30 – 0.33 for a region of the same city with primarily 

residential uses. For the latter, all tilted roofs were assumed a universal tilt angle of 45º. When tilt angles were taken as 
true from the surface and hence vary from pixel to pixel, this ratio rpv

  
for the present case is 0.56. Further rroof or 

(Aroof)site / (Aprojroof)site was found to be 0.95. Both are within the range reported from previous literature (Wiginton et al., 
2010).

Carneiro et al. (2009) mentioned additional criteria such as: i) only 80% of horizontal surfaces of roofs are computed 
due to the inclination of panels and, ii) areas that have a SVF smaller than 60% should also be discarded, in order to 
consider the effects generated by the mutual shadings casted by buildings that otherwise would not be addressed. As 
shown in Figure 3 the minimum SVF value for the case study site is 0.83. In addition the minimum roof area is 71 m2. 
Hence these additional conditions are more suitable for a residential areas rather than a downtown as analyzed here. 
Another threshold mentioned in the literature is the minimum annual daily GHI for solar systems to be mounted on 
roofs is 2.74 kWh/m2 (Compagnon, 2004). However this choice is arbitrary and was not justified. In the U.S., shading 
other than tree shading reduces the PV access factor for residential houses by 90% in both warm and cool climates and 
by 65-75% for commercial buildings in both warm and cool climates (Paidipati et al., 2008). Again to apply this rule it 
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is necessarily to classify the buildings according to civic use purposes and there is a clear potential for a wide variation 
in a given region.

rpv can be refined further since (i) the roof extent has been trimmed down twice: the first time by the buffer to 
get rid of the edges and the second time by the side effect of roof segmentation; and (ii) although efforts have been 
made to eliminate the vegetation points from roof points, noise persists where the canopy lies directly on the roof face 
or where the laser shots did not reach the surface of the roof and hence the pulses do not represent roof surface. In such 
cases vegetation pulses possess the same statistical characteristics with the point clouds (Jochem et al., 2009). In 
addition, although trees are not overly abundant in the area as observed from the aerial photos, there is still an effect of 
shading from trees, but which has been left for future work. Finally, it is important to note the error within 5 degrees of 
the roof angle after reconstruction could have erroneously rendered some pixels not suitable for PV. 

As for rroof, on one hand the result of 0.95 again reflects the trimmed extent of roof after reconstruction. In reality the 
installation of PV panels always takes into account the structure of the roof and roof surface objects and hence rarely 
covers the whole roof. On the other hand, this is at best only typical for the downtown areas or where flat roofs are 
dominant such as the present case happens to be. When more sloped roofs are available such as in a residential area rroof  
is expected to shift accordingly. 

5. Future Work

These results allow the stakeholders (solar PV engineers, municipal governments, urban planners, utilities operators) to 
answer the questions raised by Carneiro et al. (2009): Can we build denser cities without decreasing the potential for 
solar architecture? What is the incidence of beam versus diffuse insolation contributions in typical urban texture? A 
possible start is by establishing a set of parameters that address the solar admittance of the urban fabric. These are: (a) 
the area of roofs suitable for installing PV modules, also expressed as a ratio to the total area of roofs; (b) the irradiation 
density, i.e. the incident energy per m2; (c) an urban irradiation density, defined as the total net incident irradiation on 
urban roofs divided by the population. This last parameter does not represent a measure that can be converted into 
useful energy and is only possible if data is available, which is a rare case due to urban gentrification and the trend of 
downtown areas becoming increasingly dominated by commercial properties rather than permanent urban dwellers. 
However it will give an indication by proxy of a low hanging benefit for installing PV on rooftops in the city. 

Compagnon (2004) listed several applications towards sustainable urban design that can be built around or in 
combination with this simulation:

• Assessment of the possible consequences of urban planning guidelines or regulations on solar and daylight 
availability prior to implementation

• Quantification of the impact of new urban developments/ tree planting compaigns (Levinson et al., 2009) on 
existing buildings or collector systems

• Irradiation and illuminance calculations in open spaces either to improve solar and daylight access or to ensure 
sufficient shading.

The expansion of the presented workflow to application in a given city can be best exemplified by such programs as 
POLIS20 (Identification and mobilisation of Solar Potentials via Local strategies) and that in New York City21 completed 
in 2010. While the capability of the workflow can be tested in terms of integrating the physical structure of a building or 
a group of buildings and their positions within the urban terrain with local solar development, its functionality can give 
rise to a new computer system devoted to support solar access decision making in a sustainable urban design 
perspective such as the case of POLIS and Townscope II (Teller & Azar, 2001).

5.1 Performance comparisons with existing packages

Several authors have tried to demonstrate the use of such packages as Radiance22 (Mardaljevic & Rylatt, 2003; 
Compagnon, 2004; Kamfp et al., 2010) and Heliodon2TM23 (Beckers et al., 2010; Merino et al., 2010) and situate the 
use of ray tracing techniques in urban solar energy simulation. This was possible because the data for those projects are 

20 http://www.polis-solar.eu
21 http://www.cuny.edu/about/resources/sustainability/solar-america/map.html
22 http://radsite.lbl.gov/radiance/
23 http://www.heliodon.net/heliodon/index.html

10

http://dx.doi.org/10.1016/j.solener.2012.01.017


Published as: Ha T. Nguyen and Joshua M. Pearce, “Incorporating Shading Losses in Solar Photovoltaic Potential Assessment at the Municipal Scale” 
Solar Energy 86(5), pp. 1245–1260 (2012). DOI: http://dx.doi.org/10.1016/j.solener.2012.01.017

fully 3D whereas the data here is 2.5D. The 2.5D nature limits the consideration to only roof mounted systems, but not 
building integration and to direct and diffuse beam components, but not reflectance. When both 2.5D and 3D data for 
the same site is available, future work can include a comparison in terms of the robustness and accuracy between these 
various modules e.g. rtrace (Radiance) and r.sun is useful in determining the optimal choice for a methodology or 
software in simulating irradiation at the meso and microscales.

5.3 Interpolation for daily Linke turbidity values

The methodology developed here introduces the Linke turbidity values for the local coordinates of a given city 
(Kingston) into the module r.sun. These monthly Linke turbidity values were the results of data fusion between highly 
accurate, location specific measurements and grid average values for other quantities, which were later transformed into 
monthly TL

 
maps (Remund et al., 2003) over the world. Although monthly values of the Linke turbidity factor 

worldwide are useful, the dynamics of airborne aerosols in the atmosphere could yield significant variability on the 
daily turbidity pattern  (Polo et al., 2009). A new script developed for interpolating TL down to daily values was 
developed and is being tested, which may be of use. Finally, the integration of g.linkeinterp24 into r.sun can provide 
another refinement for the simulation in the future.

5.4 Sensitivity analysis on  rpv and rroof

Previous literature has returned a wide range of values for rpv  and rroof. However, these ratios were computed under a 
great variety of locations and methods and hence it is impossible to establish a rule of thumb into a calibration between 
loss in accuracy for GHI estimation caused by the sophistication of roof modeling (Beckers et al., 2010). Beckers et al. 
discovered that going from detailed roof modeling to just using projected roof area results in a decrease of 33% in 
summer energy values, an increase of 6% in winter energy values and an overall increment of 1% in annual GHI. 
Hence, by repeating the same process on the same dataset for other parts of the city of Kingston, it is possible to 
generate at least local rule of thumb for a calibration between loss in accuracy for GHI estimation caused by simplicity 
in roof modeling.

In order to evaluate a municipal district for some form of policy intervention (e.g. a feed in tariff), the following can be 
used as a basis. First the buildings are classified according to types of house (residential/ commercial; detached and 
semi-detached/ townhouses and rowhouses/ high rise). Then the values determined from the methodology outlined in 
this paper can be refined by a multiplication with installation ratios proposed by Paidipati et al. (2008) and Ordonez et 
al.(2010). Then from the perspective of a PV developers, the number of PV modules can be calculated by adjusting the 
row spacing (Carneiro et al., 2009; Ordonez et al., 2010).

6. Conclusions

This study took the conceptual and methodological frameworks proposed by Ratti et al. (2005), Jochem et al. (2009) 
and Carneiro et al. (2009) and exceeds them by (i) incorporating both terrain and near surface shadowing effects on the 
beam component; (ii) scaling down the diffuse components of global irradiation; and (iii) introducing the parallel 
commands in the open source and free access GRASS for those who have no access to ArcGIS.

This study has a smaller scale than those in California (Levinson et al., 2009), but is more solid in the approach: semi-
automatic and easy to upgrade or correct (no hand drawn areas); open source (in the shading calculation); detailed 
(neither Levinson et al. nor recent authors on the same topic explain as clearly the operation and choice of the Hillshade 
function or offers an open source equivalent) and provides rules of thumb for PV system design at the municipal level.

The scale of interest was the meso scale where such factors of the urban texture as sky view factor, near object shading 
comes into play and hence a more complicated methodology was created to handle the higher detail requirement. Out of 
a two dimensional extent of approximately 40,000 m2 in building coverage in an example of Kingston, ON, 22,000 m2 

of roof area was found to be suitable and potentially optimal for the purpose of solar PV installations. The criteria used 
in the example, concerning aspect, slope and shadow effect can be relaxed or made more constrained. Additional 
constraints can be added and results instantly visualized, which demonstrates the flexibility and adaptability of the novel 
workflow developed in this paper.

 
With higher integration of urban texture, but without such noise as antenna, chimneys and HVACs, the global horizontal 

24 http://trac.osgeo.org/grass/browser/grass-addons/raster/r.sun.tools/g.linke_by_day.py
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irradiation is lower by 30% with the highest overestimation occurring in the summer. On one hand this can be refined 
further by improving the surface generation scripts, using higher quality LiDAR data and integrating vegetation. On the 
other hand the robustness of r.sun as capable of working with different levels of surface complexity has been confirmed. 
Further the trade off of each computation option (spatial resolution, time step and shading effect) has been quantified. 
The results suggest that by simulating only the summer months and at hourly steps the results are within 2% of the 
average month irradiation loss by shading over the year.

Acknowledgements

The authors would like to acknowledge helpful discussions with R. Harrap and R. Andrews.

References

Beckers, B., Rodriguez, D., Antaluca, E., Batoz, J-L. 2010. About solar energy simulation in the urban framework: The 
model of Compiegne. In: 3rd International Congress Bauhass SOLAR. 10 – 11 November. Erfurt, Germany.

Blanco-Muriel, M., Alarcon-Padilla, D.C., Lopez-Moratalla, T., Lara-Coira, M. 2001. Computing the solar vector. Solar 
Energy 70(5), 431 – 441. 

Branker, K., Pearce, J.M. (2010). Financial Return for Government Support of Large-ScaleThin-Film  Solar 
Photovoltaic Manufacturing in Canada. Energy Policy 38, 4291–4303.  

Budin, R., Budin, L. 1982. A mathematical model for shading calculations. Solar Energy 29(4), 339 - 349.

Carneiro, C., Morello, E., Desthieux, G. Assessment of Solar Irradiance on the Urban Fabric for the Production of 
Renewable Energy using LIDAR Data and Image Processing Techniques. AGILE Conf. 2009, 83 – 112. 

Cebecauer, T., Huld, T., Suri, M. 2007. Using high resolution digital elevation model for improved PV yield estimates. 
In: proceedings of the 22nd European Photovoltaic Solar Energy Conference Italy, pp. 3353 – 3357.

Compagnon, R. 2004. Solar and daylight availability in the urban fabric. Energy and Buildings 36, 321 – 328. 

de Vries, B.J.M., van Vuuren, D.P., Hoogwijk, M.M. 2007. Renewable energy sources: Their global potential for the 
first-half of the 21st century at a global level: An integrated approach. Energy Policy, 35(4), 2590 – 2610.

Doty, G. N., D. L. McCree, J. M. Doty, F. D. Doty. (2010). Deployment Prospects for Proposed Sustainable Energy 
Alternatives in 2020, ASME 2010 Conf. Proc. 171(1),  pp. 171-182. 

Duffie, J.A., Beckman, W.A. 2001. Solar engineering of thermal processes. 3rd Edition. Wiley-Interscience.

d’Estaintot, T. (2000). "European Commission–supported R&D activities in the field of photovoltaics". Proceedings of 
the 28th IEEE Photovoltaic Specialists Conference (15–22 September, Anchorage), 1734–1735.

European Photovoltaic Industry Association. (2003). Photovoltaic Bulletin, 2003(3), 6-8. 

Gal, T., Lindberg, F., Unger, J. 2009. Computing continuous sky view factors using 3D urban raster
and vector databases: comparison and application to urban climate. Theoretical and Applied
Climatology 95, 111-123.

Green, M.A., Emery, K., Yishikawa, H., Warta, W. (2010). Solar cell efficiency tables (Version 35). Short 
communication. Progress in Photovoltaics: Research and Applications, 18(2), 144–150, doi: 10.1002/pip.974.

Grena, R. 2008. An algorithm for the computation of the solar position. Solar Energy 82, 462 – 470. 

Hantzschel, J., Goldberg, V., Bernhofer, C. 2005. GIS-based regionalisation of radiation, tmeperature and coupling 
measures in complex terrain for low moutain ranges. Meteorological Applications 12, 33 – 42. 

12

http://dx.doi.org/10.1016/j.solener.2012.01.017


Published as: Ha T. Nguyen and Joshua M. Pearce, “Incorporating Shading Losses in Solar Photovoltaic Potential Assessment at the Municipal Scale” 
Solar Energy 86(5), pp. 1245–1260 (2012). DOI: http://dx.doi.org/10.1016/j.solener.2012.01.017

Helm, D. (2005). The assessment: the new energy paradigm. Oxford Review of Economic Policy 21.1, 1–18. 

Hoffman, W. (2006). PV solar electricity industry: Market growth and perspective. Solar Energy Materials and Solar 
Cells, 90 (18-19), 3285 – 3311. 14th International Photovoltaic Science and 
Engineering Conference.

Hofierka, J., Kanuk, J. 2009. Assessment of photovoltaic potential in urban areas using open source solar radiation 
tools. Renewable Energy 34, 2206 – 2214.

Hofierka, J., Suri, M. 2002. The solar radiation model for open source gis: implementation and applications. 
Proceedings of Open source GIS - GRASS users conference 2002, Trento, Italy.

Horn, B.K.P. 1981. Hill shading and the Reflectance map. Proceedings of the IEEE, 69(1), 14 – 57.

International Energy Agency. (2010). International Energy Agency (IEA), Technology Roadmap – Solar Photovoltaic 
Energy, October, 2010, pp.1-48.

Jochem, A., Hofle, B., Rutzinger, M., Pfeifer, N. 2009. Automatic roof plan detection and analysis of airborne lidar 
point clouds for solar potential assessment. Sensors 9, 5241 – 5262.

Kenny, R.,  Law, C.,  Pearce, J.M. 2010. Towards Real Energy Economics: Energy Policy Driven by Life-Cycle Carbon 
Emission, Energy Policy 38, 1969–1978. 

Levinson, R., Akbari, H., Pomerantz, M., Gupta, S. 2009. Solar access of residential rooftops in four Californian cities. 
Solar Energy 83, 2010 – 2035.

Mardaljevic, J., Rylatt, M. 2003. Irradiation mapping of urban environments: an image-based approach. Energy and 
Buildings 35, 27 – 35. 

Marvin, S., Graham, S., Guy, S. (1999). Cities, regions and privatised utilities. Progress in Planning. 51(2), 91–165.

Marvin, S. Guy, S. (1997). Infrastructure provision, development processes and the co-production of environmental 
value. Urban Studies. 34(12), 2023–36. 

Matzarakis, A. , Matuschek, O. 2009. Estimation of Sky View Factor in urban environments. Proceedings METTOOLS 
VII. Hamburg, Germany.

Merino, L., Antaluca, E., Akinoglu, B., Beckers, B. 2010. Solar Energy Inputs Estimation for Urban Scales 
Applications. In: 8th International Conference on System Simulation in Building, 13 – 15 December. Liege, Belgium

Michalsky, J.J. 1988. The astronomical almanac's algorithm for approximate solar position (1950 – 2050). Solar Energy 
40(3), 227 – 235.

Mints, P.  (2011). The 12-step solar program: Towards an incentive-less future, Navigant Consulting. Accessed January 
19, 2011, on ElectoIQ, http://www.electroiq.com

Monstad, J. (2007). Urban Governance and the Transition of Energy Systems: Institutional Change and Shifting Energy 
and Climate Policies in Berlin. International Journal of Urban and Regional Research. 31(20), 326 – 343. 

Neteler, M., Mitasova, H. 2008. Open source GIS: a GRASS GIS approach. 3rd Edition.
The International Series in Engineering and Computer Science. Springer, New York.

Nguyen, H.T., Pearce, J.M. 2011. Towards Automated Quantification of Solar Photovoltaic Potential in Large Urban 
Areas for City-based Electric Utility Planning. Proceedings of the International Conference 2011 on Spatial Planning 
and Sustainable Development. Kanazawa, Japan A31-3 (2011).

13

http://dx.doi.org/10.1016/j.solener.2012.01.017


Published as: Ha T. Nguyen and Joshua M. Pearce, “Incorporating Shading Losses in Solar Photovoltaic Potential Assessment at the Municipal Scale” 
Solar Energy 86(5), pp. 1245–1260 (2012). DOI: http://dx.doi.org/10.1016/j.solener.2012.01.017

Nguyen, H.T., Pearce, J.M., Harrap, R., Barber, G. 2011. The Application of LiDAR to Assessment of Rooftop Solar 
Photovoltaic Deployment Potential on a Municipal District Unit. To be published.

Nguyen, H.T., Pearce, J.M. 2010. Estimating Potential Photovoltaic Yield with r.sun and the Open Source Geographical 
Resources Analysis Support System. Solar Energy 84, 831-843.

Norton, B., Eamesb, P.C.,  Mallickc, T.K., Huang, M.J., McCormack, S.J., Mondol, J.D.,  Yohanis, Y.G. 2010. 
Enhancing the performance of building integrated photovoltaics . Solar Energy (In press).

Ordonez, L., Jadraque, E., Alegre, J., Martinez, G. Analysis of the photovoltaic solar energy capacity of residential 
rooftops in Andalusia (Spain). Renewable and Sustainable Energy Reviews 10, 2122 – 2130. 

Paidipati, J., Frantzis, L., Sawyer, H., Kurrasch, A. Rooftop Photovoltaics Market Penetration Scenarios. Subcontract 
Report NREL/SR-581-42306. http://www.gsyenergy.com/documents/Final_Report_PV_MarketsNREL_US_EG.pdf

Pearce, J.M. (2002). "Photovoltaics — A Path to Sustainable Futures". Futures. 34(7), 663–674.

Perpinan, O., Lorenzo, E., Castro, M.A., Eyras, R. 2008. On the complexity of radiation models for PV energy 
production calculation. Solar Energy 82(2), 125 – 131. 

Pitman, C., Vant-Hull, L.L. 1978. Errors in locating the Sun  and their effect on solar intensity predictions. In Meetin of 
the American Section of the International Solar Energy Society. Denver, USA.

Polo, J., Zarzalejo, L.F., Martín, L., Navarro, A.A.,Marchant, R. 2009. Estimation of daily Linke turbidity factor by 
using global irradiance measurements at solar noon. Solar Energy 83(8), 1177 – 1185. 

Price, S., Margolis, R. (2008) Solar technologies market report, Energy Efficiency & Renewable Energy, US 
Department of Energy, January 2010, pp. 1-131.

Ratti, C., Baker, N., Steemers, K. 2005. Energy consumption and urban texture. Energy and Builings 37, 762 – 776. 

Reda, I., Andreas, A. 2004. Solar Position Algorithm for Solar Radiation Applications. Solar Energy 76(5), 577 – 589. 

Remund J., Wald L., Lefevre M., Ranchin T., Page J. 2003. Worldwide Linke turbidity information. Proceedings of 
ISES Solar World Congress. 16 – 19 June. Goteborg, Sweden.

Renewable Energy Policy network for the 21st century (REN21). (2008). Renewables 2007 Global Status Report, pp. 1-
54.

Spencer, J.W. 1971. Fourier series representation of the position of the Sun. Search 2(5).

Solar Energy at the Urban Scale proceedings. http://www.utc.fr/seus/iso_album/abstract_seus.pdf
25-26th May 2010, Compiegne, France. 

Souza, L. C. L., Rodrigues, D. S., Mendes, J. F. 2003. A 3d-gis extension for sky view factors
assessment in urban environment. - Proceedings of the 8th International Conference on Computers
in Urban Planning and Urban Management CUPUM'03, Sendai, Japan.

Suri, M., Hofierka, J. 2004. A new gis-based solar radiation model and its application to photovoltaic assessments. 
Trans. GIS 2004, 8, 175-190.

Teller, J., Azar, S. 2001. Townscope II: A computer system to support solar access decision making. Solar Energy 70(3), 
187 – 200. 

Wahschning, V., Hanitsch, R. 1995. Shade calculations in photovoltaic systems. In ISES Solar World Conference. 
Harare, Zimbabwe. 

14

http://dx.doi.org/10.1016/j.solener.2012.01.017


Published as: Ha T. Nguyen and Joshua M. Pearce, “Incorporating Shading Losses in Solar Photovoltaic Potential Assessment at the Municipal Scale” 
Solar Energy 86(5), pp. 1245–1260 (2012). DOI: http://dx.doi.org/10.1016/j.solener.2012.01.017

Walvaren, R. 1978. Calculating the position of the Sun. Solar Energy 20, 393 – 397.

Rae, M.R. 1, W.E. Lilley 1 and L.J. Reedman. 2009. Estimating the Uptake of Distributed Energy in an Urban Setting. 
In: Proceedings to 18th World IMACS / MODSIM Congress, Cairns, Australia. 
http://www.mssanz.org.au/modsim09/F4/rae.pdf

Wiginton, L.K., Nguyen, H. T.,  Pearce, J.M. 2010. Quantifying Solar Photovoltaic Potential on a Large Scale for 
Renewable Energy Regional Policy. Computers, Environment and Urban Systems 34, 345-357.

Yousef, A.A. 2010. The Use of geographical information systems for 3D Urban models reconstruction from Aerial 
Lidar data. Doctorate thesis.

Table 1: Trade-offs of computation costs as a function of simulation options
Simulation option Computation cost Result refinement

Spatial 
resolution

90m 10 minutes A refinement of 28.8% in 
annual daily insolation (Figure 
7)

0.55m 10 minutes but on an extent of 
1/ 420,000 of the 90m grid

Temporal 
resolution

15 minutes 10 minutes Not a significant improvement 
from 15 minutes downwards as 
inspected in the result (not 
shown here) and suggested by 
Perpinan et al. (2008). 

3 minutes 40 minutes

Shading Yes 8 minutes A refinement of 25% in average 
monthly mean insolation No 1 minute

Figure Captions
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Figure 1. Simulation site. The point clouds correspond to the buildings included in the following simulation.
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Figure 2a. Data processing part 1: Classification of LiDAR points by the objects to which they corresponded.
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Figure 2b. Data processing part 2: Steps showing roof segregation followed by the interpolation and rasterization.
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Figure 2c. Data processing part 3: Final scene construction and irradiance modeling.

Figure 3. The output of the Sky View Factor (SVF) calculated with 32 sectors or an increment of 11.25 degrees in the 
azimuthal direction and a radius of 20m. Taller and flat buidings appear to have the biggest SVF (i.e. total open view to 
the sky), while the adjacent ground and lower, smaller buildings do not, hence a lower SVF or a darker tone.
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Figure 4a. Original digital photograph of Clark Hall at 11:46am August 17, 2010. The shading extent is pointed out 
between the original photo and the inset simulated result. In the inset, the position from which the photo was taken is 
represented by an oval.

Figure 4b. Original digital photograph of Clark Hall at 2:40pm August 17, 2010 with inset of simulated result. The 
important agreement between the original photo and the simulated result is shown as the shadow has not extented over 
the steps down to the biking lane (to the left of the original digial photograph).
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Figure 5. Annual daily irradiation on roof tops of site for a simulation at 90 m resolution.

Figure 6. Annual daily irradiation on roof tops of site for a simulation at 0.55 m resolution.
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Figure 7. Annual daily insolation on buildings for 90m and 0.55m resolutions.

Figure 8. Monthly average daily insolation for 90m and 0.55m resolutions.

Figure 9. Monthly irradiation losses in absolute and relative terms.
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Figure 10. Roof sections of suitable aspects in selected site.

Figure 11. Roof sections most suitable for installing PV systems in selected site.

23

http://dx.doi.org/10.1016/j.solener.2012.01.017

