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This paper deals with the specification and the implementation of multi-level agent-based models, using a formal model, IRM4MLS (an Influence Reaction Model for Multi-Level Simulation), based on the Influence Reaction principle. Proposed examples illustrate forms of top-down control in (multi-level) multi-agent based-simulations.

Introduction

Four main theoretical issues emerge in the literature on multi-level1 agent-based modeling: the conception of a meta-model allowing a non ambiguous characterization of a multi-level model at the conceptual level [START_REF] Maus | Hierarchical modeling for computational biology[END_REF][START_REF] Morvan | IRM4MLS: the influence reaction model for multi-level simulation[END_REF][START_REF] Picault | An interaction-oriented model for multi-scale simulation[END_REF][START_REF] Uhrmacher | Combining micro and macro-modeling in devs for computational biology[END_REF], the introduction of a dynamic level of detail [START_REF] Navarro | Dynamic level of detail for large scale agent-based urban simulations[END_REF][START_REF] Soyez | Multi-agent multi-level modeling -a methodology to simulate complex systems[END_REF], the detection and reification of emergent phenomena [START_REF] Caillou | Simanalyzer : Automated description of groups dynamics in agent-based simulations[END_REF][START_REF] Chen | Identifying multi-level emergent behaviors in agent-directed simulations using complex event type specifications[END_REF][START_REF] David | See emergence as a metaknowledge. a way to reify emergent phenomena in multiagent simulations?[END_REF][START_REF] Moncion | Automatic characterization of emergent phenomena in complex systems[END_REF][START_REF] Prévost | Detection and reification of emerging dynamical ecosystems from interaction networks[END_REF][START_REF] Vo | A modelling language to represent and specify emerging structures in agent-based model[END_REF] and the representation of aggregated entities [START_REF] Parunak | Between agents and mean fields[END_REF]. This paper focuses on the first one, with respect to the Influence Reaction (IR) principle, shortly, action as a two step process: (1) agents produce "influences", i.e., individual decisions, according to their internal state and perceptions (2) the system "reacts", i.e., computes the consequences of influences, according to the state of the world [START_REF] Ferber | Influences and reaction: a model of situated multiagent systems[END_REF]. This model has been extended in several ways, and notably for multi-agent based-simulation (MABS), by adding an explicit representation of time [START_REF] Michel | The IRM4S model: the influence/reaction principle for multiagent based simulation[END_REF]. An IR-based meta-model, IRM4MLS (an Influence Reaction Model for Multi-Level Simulation), and its Java implementation are introduced in the section 2. Using, and then extending a simple example: the Conway's game of life, two toy-models of increasing complexity are presented in the section 3, illustrating forms of top-down control in (multi-level) MABS. Results are discussed in the section 4.

IRM4MLS: an Influence Reaction Model for Multi-Level Simulation

In this section, IRM4MLS, an Influence Reaction Model for Multi-Level Simulation, is introduced [START_REF] Morvan | IRM4MLS: the influence reaction model for multi-level simulation[END_REF]. It extends IRM4S (an Influence Reaction Model for Simulation) in order to deal with multi-level models [START_REF] Michel | The IRM4S model: the influence/reaction principle for multiagent based simulation[END_REF]. From a technical perspective, levels can be viewed as interacting IRM4S simulations 2 .

A multi-level model is defined by a set of levels L and a specification of the relations between levels. Two types of relations are specified: an influence relation (agents in a level l are able to produce influences in a level l = l) and a perception relation (agents in a level l are able to perceive the dynamic state of a level l = l), represented by directed graphs denoted respectively < L, EI > and < L, EP >, where EI and EP are two sets of edges, i.e., ordered pairs of elements of L. Influence and perception relations in a level are systematic and thus not specified in EI and EP (cf. eq. 1 and 2).

The in and out neighborhood in < L, EI > (respectively < L, EP >) are denoted N - I and N + I (resp. N - P and N + P ) and are defined as follows:

∀l ∈ L, N - I (l) (resp. N - P (l)) = {l} ∪ {l ∈ L : l l ∈ EI (resp. EP )}, ( 1 
)
∀l ∈ L, N + I (l) (resp. N + P (l)) = {l} ∪ {l ∈ L : ll ∈ EI (resp. EP )}, (2) 
The set of agents in the system at time t is denoted A(t). ∀l ∈ L, the set of agents belonging to l at t is denoted A l (t) ⊆ A(t). An agent belongs to a level iff a subset of its physical state φa belongs to the state of the level. Thus, an agent belongs to zero, one, or more levels. An environment models the natural dynamics of level properties and can be shared by different levels (fig. 1).

The dynamic state of a level l ∈ L at time t, denoted δ l (t) ∈ ∆ l , is a tuple < σ l (t), γ l (t) >, where σ l (t) ∈ Σ l and γ l (t) ∈ Γ l are the sets of environmental properties and influences of l. The behavior of an agent a ∈ A l is defined as Decision l a • M emorizationa • P erception l a , with P erception l a :

l P ∈N + P (l)
∆ l P → l P ∈N + P (l)

P l P a , (3) 
M emorizationa :

l∈L|a∈A l l P ∈N + P (l)

P l P a × Sa → Sa, (4) 
Decision l a : Sa →

l I ∈N + I (l) Γ l I . (5) 
There is no memorization function specific to a level to preserve the coherence of the internal state of the agents. The environment ω of a level l produces influences through a function:

N atural l ω : ∆ l → l I ∈N + I (l) Γ l I . (6) 
The reaction function computes next level state and time advance:

Reaction l : Σ l × Γ l → ∆ l × T l . (7) 
The time representation is inspired by DEVS (Discrete EVent System specification) [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF]. T = l∈L {T l } denotes the time vector of the simulation, such as ∀l ∈ L, T l =< t l , dt l >, where t l represents when the current event (or step, depending on the simulation model) time and dt l its lifespan. The final simulation time is denoted t f . The algorithm 1 ensures the scheduling of these different functions with respect to temporal constraints of perception and memorization, influence production and reaction [START_REF] Morvan | IRM4MLS: the influence reaction model for multi-level simulation[END_REF].

The implementation of IRM4MLS is based on the idea of micro kernel, taken from MadKit3 [START_REF] Gutknecht | The madkit agent platform architecture[END_REF]. Thus, in this approach, a technical agent, e.g., an observer or a message broker, would be scheduled with respect to the IR principle (cf. algo. 1), the concept of level ensuring a clear separation between system and simulation agents.

The API is minimal (seven high-level abstractions) and specifies only the methods needed to schedule a model (fig. 2). Most methods are generic and then are implemented at an abstract level. Basically, to implement a model one only has to override perception, memorization, influence production, reaction and initialization functions.

Agent and behaviors (such as environment and natural dynamics) are represented by different entities to clearly distinguish the core side of an agent, its state and memorization function, and the level sides (perception and influence production functions) that can change according to simulations. Algorithm 1: simulation model of IRM4MLS

Input: < L, E I , E P >, A, δ, T, t f Output: δ(t f ) 1 while ∃t l ≤ t f do 2 foreach a ∈ A(t) do 3 foreach l ∈ L : a ∈ A l (t) ∧ ∀l P ∈ N + P (l), t l ≥ t l P do 4 p a (t l ) = P erception l a (< δ l P (t l P ) : l P ∈ N + P (l) >); 5 end 6 s a (t l + dt l ) = M emorization a (p a ); 7 end 8 foreach l ∈ L : ∀l I ∈ N + I (l), t l ≤ t l I ∨ t l + dt l < t l I + dt l I do 9 foreach l I ∈ N + I (l) : t l ≤ t l I ∧ t l + dt l > t l I do 10 γ l I ω (t l I ) = N atural l ω (δ l (t l )) ; 11 foreach a ∈ A l (t) do 12 γ l I a (t l I ) = Decision l a (s a (t l + dt l )); 13 end 14 end 15 end 16 foreach l ∈ L : t l + dt l ∈ min(t + dt) do 17 γ l (t) = {γ l (t) l I ∈N - I (l) γ l I ω (t) a∈A l I γ l I a (t)}; 18 <δ l (t l + dt l ), T l >= Reaction l (σ l (t l ), γ l (t l )); 19 end 20 end
3 IRM4MLS in practice: multi-level games of life 3.1 Introducing a macroscopic parameter (top-down control)

In this section, a toy IRM4S (or 1-level IRM4MLS) model, is presented: a modified agent-based version of the Conway's game of life (or simply Life). This simple example illustrates where a macroscopic parameter, should (but should not) be introduced in an agent-based model that relies on the influence reaction principle: in the reaction function (but not in the behavioral functions of agents). Therefore, this parameter has a non-ambiguous semantics that does not depend on the updating scheme of the simulations, even in the case of strong interaction 4 . Each agent represents a cell that can be dead or alive and that has eight neighbors 

Cells evolve in parallel: the reaction function can then simply be defined as "applying agent influences" (algo. 2). If a cell is dead and has three living neighbors or is alive and has two or three living neighbors, it will be alive at the next step; in other cases, it will be dead. Let specify the behavior of the agents:

1. they perceive the number of living cells in their neighborhood (algo. 3), 2. memorize their internal state, i.e., their next state (algo. 4), 3. and then, decide whether or not they will be alive at the next step according to their internal state (algo. 5).

The environment is static: there is no natural dynamics and thus, N aturalω returns ∅.

One cruel and ironic aspect of Life is that a cell has generally little chance to remain alive in the long run (fig. 3 is a board composed of small still lifes and 1-period oscillators. This behavior is predictable knowing the λ parameter of the game of life 5 . λ is a complexity measure of cellular automata introduced by [START_REF] Langton | Computation at the edge of chaos: Phase transitions and emergent computation[END_REF] that depends on the number of cell states K, the neighborhood N and the number n of transitions to a quiescent state Sq in the transition function such as

λ = 1 - n K N , (9) 
with K = 2, N = 9 and n = 8 2 + 2 • i=0,1,4-8 8 i for Life. To improve λ lif e to a value λ + , one needs to change the rules. In this example, λ + is regarded as a macroscopic parameter, explicitly introduced in the model and independent from cell behaviors 6 : influences of dying cells are not taken into account by the reaction function with a probability p such as

n = 8 2 + (2 -p) • i=0,1,4-8 8 i . (10) 
Thus, their is a simple linear relation between p and λ + : p = (λ + -λ lif e )/0.3359. For λ + ∈ [0.48, 0.6], the number of dying cells tends to decrease in time and large structures of vertical or horizontal rows eventually emerge, shaped by moving groups of switching state cells that seem to work at their boundaries, and eventually vanish when the board becomes a dense still life of density ≈ 0.5 (fig. 4). 5 λ lif e = 0.2734375. For λ ≈ 0.25, "structures of period 1 appear. Thus, there are now three different possible outcomes for the ultimate dynamics of the system, depending on the initial state. The dynamics may reach a homogeneous fixed point consisting entirely of state Sq, or it may reach a heterogeneous fixed point consisting mostly of cells in state Sq with a sprinkling of cells stuck in one of the other states, or it may settle down to periodic behavior" [15, p. 17]. 6 An other macroscopic parameter, the asynchrony, has been previously introduced in Life is such way [START_REF] Fatès | Does "life" resist asynchrony?[END_REF]. 

Top-down feedback control

In the previous example, while the macroscopic parameter λ + has an influence on agents, it is not related to the state of the system and therefore, there is no need to observe it. The reaction function can then be viewed as an open-loop controller. In the next example, a top-down feedback control is introduced.

The goal of the multi-scale model presented in this section is to keep Life boards at the desired density (ρ + ), by controlling the proportion of dying cells at the mesoscopic level, to account for the natural variability of density between regions of the grid (fig. 3(b)). Moreover, the control should affect as less as possible simulations at the microscopic level and, to keep it simple, should be tuned by a single linear parameter such as λ + in the previous model.

Two levels are considered: the cell (or microscopic) level, lm and the cell region (or mesoscopic) level, lM . At the mesoscopic level, the model properties are the expected density and the cells in each region:

∀t, σ l M (t) = {ρ + } a l M ∈A l M {cells(a l M )}. ( 11 
)
The cells behave according to the game of life rules (algo. 3, 4 and 5). However, Reaction lm depends on mesoscopic influences (algorithm 6). EP and EI are equal to {lM lm}. Mesoscopic agents have a proportional control behavior. They 1. perceive the density of living cells in a region, 2. memorize their internal state, i.e., the difference between expected and actual densities, 3. and then decide the influence sent to agents of lm: The kP parameter has to be carefully tuned to run realistic simulations: too small simulations do not achieve the desired solution (ρ = ρ + ), too big the board density tends to oscillate around ρ + and the number of micro influences not taken into account by Reaction lm becomes too important. However, for appropriate kP values, this simple linear controller achieves good results and allows to find a good compromise between conflicting micro and meso knowledge (fig. 5).

∀a l M ∈ A l M ∀a lm ∈ cells(a l M ), command(a lm ) = kP • . (12 

Conclusion 4.1 Discussion

An important issue of multi-level agent-based modeling, only briefly discussed here, is to define the adequate methodology. Indeed, the traditional MABS methodology is purely bottom-up: microscopic knowledge is used to construct models while macro- scopic knowledge is used to validate models [START_REF] Drogoul | Multi-agent based simulation: Where are the agents?[END_REF]. Thus, it seems irrelevant in a multilevel context. Three general conclusions can be drawn from the previous examples:

• a parameter should be introduced at its observation level in the model; therefore, each observed level should be explicitly represented in the model,

• an intuitive way to model an external control on a level l is to modify the reaction function of l, i.e., to modify the way influences of agents of l are taken into account (but not agent behavioral functions), according to external influences; an external feedback control implies both observation and influence relations:

N - I (l) = N - P (l),
• such a controller can be viewed as a technical tool that aims to find a compromise between conflicting knowledge from the different studied levels and achieve realistic simulations from different studied points of view [START_REF] Li | Multi-scale compromise and multi-level correlation in complex systems[END_REF].

Pattern oriented modeling (POM) consists in "the multi-criteria design, selection and calibration of models of complex systems" [START_REF] Grimm | Pattern-oriented modelling: a 'multi-scope' for predictive systems ecology[END_REF]. Many aspects of this methodology, developed in the context of ecology, seem particularly relevant for multi-level agentbased models since "patterns" are generally observed at different levels of organization in complex systems. However, the problem is far from being solved. For instance, the introduction of a dynamic level of detail raises several questions regarding, e.g., the validation of the model or the representation of composite agents [START_REF] Navarro | Dynamic level of detail for large scale agent-based urban simulations[END_REF][START_REF] Parunak | Between agents and mean fields[END_REF]. A case study of three real world multi-level agent-based models reveals other interesting methodological issues [START_REF] Gil-Quijano | From biological to urban cells: Lessons from three multilevel agent-based models[END_REF].

Related works

At least three works could be related to this one:

• ML-DEVS is an extension of DEVS that allows the simulation of multi-level models (and not only coupled models in which the behavior of a model is determined by the behaviors of its sub-models) [START_REF] Uhrmacher | Combining micro and macro-modeling in devs for computational biology[END_REF]. Two types of relation between levels are defined: information propagation and event activation which are quite similar to those defined in IRM4MLS. However, ML-DEVS supports only pure hierarchies of models, i.e., interaction graphs are viewed as trees [START_REF] Maus | Hierarchical modeling for computational biology[END_REF]. DEVS, as a generic event-based simulation framework, has also been extended to support agent-based models [START_REF] Müller | Towards a formal semantics of event-based multi-agent simulations[END_REF]. A major design difference between IR and DEVS based approaches is the technical orientation of the latter leading to an important gap between conceptual and computational models.

• PADAWAN (Pattern for Accurate Design of Agent Worlds in Agent Nests) is a multi-scale agent-based meta-model based on a compact matricial representation of interactions: IODA (Interaction-Oriented Design of Agent simulations) [START_REF] Kubera | Interaction-oriented agent simulations: From theory to implementation[END_REF][START_REF] Picault | An interaction-oriented model for multi-scale simulation[END_REF]. Moreover, authors analyze the structure of what is called here interaction graphs in multi-scale models (a relevant issue for IRM4MLS as well), and conclude they should be viewed as upper semilattices and not simply trees as suggested elsewhere. A major design difference between IR and IODA based approaches is that the latter constraints the definition of interactions, leading to a simple but restrictive simulation framework.

• GAMA 7 is a MABS platform with a dedicated modeling language, GAML, that offers multi-level capabilities [START_REF] Taillandier | GAMA: A simulation platform that integrates geographical information data, agent-based modeling and multi-scale control[END_REF]. Moreover, it includes a framework (a set of predefined GAML commands) to agentify emerging structures [START_REF] Vo | A modelling language to represent and specify emerging structures in agent-based model[END_REF]. It is certainly the most advanced platform, from an end-user point of view, that integrates a multi-level approach.

Perspectives

The main perspectives of this work concern the implementation of existing works with IRM4MLS:

• the concept of PolyAgent [START_REF] Parunak | Pheromones, probabilities and multiple futures[END_REF][START_REF] Parunak | Concurrent modeling of alternative worlds with polyagents[END_REF],

• multi-level organizational models widely used in engineering sciences such as holonic multi-agent systems (cf. footnote 2), system of systems and heterarchical control [START_REF] Cossentino | Aspecs: an agent-oriented software process for engineering complex systems[END_REF][START_REF] Maier | Architecting principles for system of systems[END_REF][START_REF] Morvan | Engineering hierarchical complex systems: an agent-based approach -the case of flexible manufacturing systems[END_REF],

• multi-scale tools: generic scaling operators and emergence detection and reification algorithms [START_REF] Chen | Identifying multi-level emergent behaviors in agent-directed simulations using complex event type specifications[END_REF][START_REF] Navarro | Dynamic level of detail for large scale agent-based urban simulations[END_REF].

Moreover, the first model presented in this paper could be used to explore the relations between computational capabilities of a cellular automaton (λ + ), noise (a function of λ + -λ) and entropy. Moreover, finding the conditions under which cells arrange themselves in a steady state could be an interesting way to solve heuristically large instances of the maximum density still life problem [START_REF] Elkies | The still-life density problem and its generalizations. Voronoi's Impact on Modern Science, Book I[END_REF].

The second model illustrates a form of simple proportional top-down feedback control. Such approach could be generalized to model more complex of cross-level feedback control, using integrations and derivates of observed variables.

Figure 1 :

 1 Figure 1: Main concepts of IRM4MLS (as a simplified class diagram)
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 2 Figure 2: Java API of IRM4MLS
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 3 Figure 3: Dynamics of the density of living cells, ρ, starting from a random grid with 100 replications (a) Macroscopic dynamics: expected density and variability of living cells in the whole grid. (b) Mesoscopic dynamics: expected density and variability of living cells in 10 × 10 cell clusters.
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 4656 Figure 4: (a) Mean number of steps needed to converge to a steady state starting from a random grid (100 replications), simulations are stopped after 2 • 10 4 steps (simulations converge in the dark area). (b) Example of still life found for λ + = 0.5.

Figure 5 :

 5 Figure 5: Simulation examples with k P = 10•ρ + and initial density ρ(t 0 ) = 2•ρ + . r represents the rate of microscopic influences not taken into account (in %) by Reaction lm .

  (a)). Moreover, what you get most of the time,

	Algorithm 2: Reaction	Algorithm 4: M emorization a
		Input: σ(t), γ (t)		Input: p a (t), s a (t)
		Output: δ(t + 1)		Output: s a (t + dt)
	1 foreach a ∈ A(t) do		1 if alive(a) ∧ p a (t) ∈ {2, 3}∨
	2	alive(a) = γ a (t) ;		2 ¬alive(a) ∧ p a (t) ∈ {3} then
	3 end		3	s a (t + dt) = 1 ;
				4 else
				5	s a (t + dt) = 0 ;
	Algorithm 3: P erception a	6 end
		Input: δ(t)		Algorithm 5: Decision
		Output: p a (t)	
	1 p a (t) =	alive(n) ;
		n∈neighbors(a)	

a Input: s a (t + dt) Output: γ a (t) 1 γ a (t) = s a (t + dt) ;

The term multi-scale may also be found. Intuitively, a level and scale are similar concepts that both mean viewpoint. However, this notion should be clarified. In the following we assume that two agents are not at the same scale iff they represent processes that have different spatial and/or temporal extents. Two agents are not in the same level iff they cannot interact directly, i.e., with a single interaction function. It should follow from the previous definitions that it exists multi-scale models that are mono-level and conversely.

Therefore, each level has a microscopic side: the agent behaviors, and a macroscopic side: the reaction function. This aspect can also be found in holonic multi-agent systems[START_REF] Cossentino | Aspecs: an agent-oriented software process for engineering complex systems[END_REF].

http://www.madkit.org

Strong interaction implies that agents agree on the outcome of the interaction[START_REF] Michel | Weak interaction and strong interaction in agent based simulations[END_REF]. Thus, such model should not be simulated with a STRIPS-like meta-model, i.e., that views an action as a change of the state of the system. It would lead to problems of result replication[START_REF] Bigbee | Replication of sugarscape using mason[END_REF], but also of parameter and result interpretation[START_REF] Fatès | How important are updating schemes in multi-agent systems? an illustration on a multi-turmite model[END_REF][START_REF] Michel | Weak interaction and strong interaction in agent based simulations[END_REF].