
HAL Id: hal-00685658
https://hal.science/hal-00685658v1

Submitted on 5 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Traffic Patterns of HTTP Applications
Brice Augustin, Abdelhamid Mellouk

To cite this version:
Brice Augustin, Abdelhamid Mellouk. On Traffic Patterns of HTTP Applications. Global Telecom-
munications Conference (GLOBECOM 2011), 2011 IEEE, Dec 2011, United States. pp.1-6. �hal-
00685658�

https://hal.science/hal-00685658v1
https://hal.archives-ouvertes.fr


1

On Traffic Patterns of HTTP Applications
Brice Augustin and Abdelhamid Mellouk

University of Paris-Est Créteil Val de Marne (UPEC)
Image, Signal and Intelligent Systems Lab-LiSSi Lab and Netw. & Telecoms Dept, IUT C/V

Transport Infrastructure and Network Control Group - TINC
122 rue Paul Armangot, 94400 Vitry sur Seine, France

{brice.augustin, mellouk}@u-pec.fr

Abstract—HTTP has been the most popular internet protocol
for 30 years. Until recently, its role has been limited to a
traditional transfer of hypertext documents. However, its flex-
ibility and interoperability cause it to be progressively involved
in a much wider range of applications, from video and audio
streaming to email, chat and documents editing. Understanding
the behavior of modern Web applications is a crucial step
to apply QoS or security policies on this traffic. This paper
studies 20 popular, Web applications that are representative
of 12 application types. We describe a method to isolate and
capture browser-generated traffic and plot time series withan
RRDTool database. We show that modern Web applications
present very diverse traffic patterns, and propose a description
and classification of these patterns.

Index Terms—traffic measurements, HTTP applications, inter-
net

I. I NTRODUCTION

Networked applications traditionally use a dedicated net-
work protocol to communicate. Among many examples, one
can cite HTTP for hypertext documents, POP and SMTP for
email, FTP for file transfer, NNTP for news and discussions,
XMPP for chat, SSH and RDP for remote control. These
protocols are largely tied to the TCP/IP protocol framework
and have their own registered transport layer port number. In
this model, there is a clear separation between the transport
layer (mostly TCP), providing an end-to-end communica-
tion service, and the application layer, providing application-
specific primitives and functionalities.

These applications and their associated protocols have their
own traffic features and volumes, which makes them dis-
tinguishable from one other. [1]. They also have various
QoS requirements and security concerns, therefore network
administrators can choose to prioritize some applications, and
block or throttle others.

We observe an evolution these last years, where an increas-
ing number of application data concentrate and are transmitted
over the sole HTTP(S) protocol. Further, applications also
concentrate around a single user interface –a browser such
as Firefox or Chrome. As a result, the HTTP protocol, which
was designed as an application-layer protocol to browse in
hypertext documents, slowly evolves towards a more generic
usage with transport capabilities. [2] Fig. 1 illustrates the
concentration of applications on top of the HTTP/TCP/IP
protocol stack (the “HTTP hourglass”).

HTTP

M
ai

l

F
ile

s

V
id

eo

M
us

ic

...

TCP/IP
NIC

Browser

P
O

P
F

T
P

...

Fig. 1. Applications concentrate on top of HTTP and a unique user interface,
the browser.

Several reasons explain this evolution. First, normalizing a
network protocol is a long and tedious task made of compro-
mises for consensus (i.e. IETF for RFCs and IANA for port
numbers). Second, network administrators apply restrictive
policies (e.g., port filtering) that block emerging applications
and impede their growth. Third, from a user point of view,
it is not convenient to handle a new user interface for each
application (e.g., browser, MTA for email, FTP client,. . . )and
it contradicts the currentcloud computingtrends, in which
data is stored online to be accessible from any device. HTTP
offers solutions to these issues, thanks to its wide flexibility
and interoperability.

For network administrators, this evolution has serious conse-
quences. Traffic classification tools are generally port-based,
but ports 80 and 443 can now carry much more than just
regular Web documents. As a result, the traffic patterns and
volumes of HTTP traffic now exhibits a wide diversity, de-
pending on the type of Web application. Understanding the
behavior of today’s Web applications is a crucial step to apply
QoS or security policies on this traffic. For instance, a video
application (e.g, YouTube) and a mail reader (e.g., GMail)
have completely different QoS requirements, although both
applications are built on top of the same HTTP protocol. As
a result, this knowledge can help optimizing Web applica-
tions. [3], [4]

This paper is a first step towards an accurate classification
of Web applications. We explore the diversity of the traffic
patterns generated by 20 browser-based applications catego-
rized in 12 classes (video, music, remote control,. . . ). Sec. III
describes a method to isolate and capture browser-generated
traffic and plot time series with anRRDTool database. We



2

describe and characterize the traffic patterns in Sec. IV.
Finally, Sec. V concludes with a preliminary classificationof
applications and proposes directions for future work.

II. RELATED WORK

HTTP has been extensively studied for over a decade. Stud-
ies are based on aggregated traffic captured at internet hubs
or large organizations (e.g., universities) access links.These
studies expose general trends in HTTP usage and workload [5],
[2], or focus on some particular Web 2.0 applications such
as interactive maps. [6], [7], [8], [9], [10] Our work comes
as a complement, by providing a fine-grained study of the
various Web applications. In addition to HTTP, the workload
of other applications has been characterized. Traditionally,
these applications use a dedicated protocol, such as RTSP for
media streaming [11] or RDP for remote desktop control. [12]
In this work, we show that they may also have a Web-based
version that use the sole HTTP protocol.

The concentration of applications over a single protocol
stack has been noticed and predicted for a while. Ethernet and
TCP/IP are flagrant examples of this trend. For instance, Deer-
ing describes various types of “IP hourglass” [13], predicts
a narrowing of Link-level and Network layers, but his work
does not focus on higher layer protocols such as HTTP. HTTP
tunneling [14] is a way to bypass firewalls’ restrictive policies
by encapsulating a blocked application in HTTP requests
and responses. Tunneling is a quite marginal trick used by
computer enthusiasts to use their favorite illegal program. On
the contrary, what we observe here is a general trend followed
by widely-used and legacy Web applications. Note that the
generalization of HTTP usage in all types of applications (non
only browser-based) might speed up with the introduction of
WebSockets. [15]

Methods for internet flow classification can be either port-
based, feature-based or content-based (DPI). [1] However,
these methods usually do not provide a specific breakdown of
applications running on top of HTTP. Several industry band-
width shaping and monitoring tools1 classify some bandwidth-
intensive HTTP content (e.g., YouTube videos) as a specific
category, apart from a generic HTTP category. However, we
believe that all HTTP traffic should be classified into sub-
categories such as the ones we introduce in this paper (e.g.,
video, music,. . . ).

III. M ETHODOLOGY

This section details our methodology to capture, visualize
and analyze the traffic patterns generated by a set of hetero-
geneous and popular Web applications. In the next paragraph,
we will start by presenting the applications under study.

Table I summarizes the Web applications studied in this
work. We selected 20 applications, that we consider to be
representative of the current trends in Web usage. Furthermore,
they are all based on the HTTP(S) protocol, i.e. running on
port 80 or 443 on the server side. The next section describes
a method to isolate, capture and visualize the traffic generated
by these applications.

1Allot: http://www.allot.com/; PacketShaper: http://www.bluecoat.com/
products/packetshaper; SolarWinds: http://www.solarwinds.com/

A. Capturing Web traffic

Capturing Web traffic accurately requires a slightly more
sophisticated method than simply launching a packet capture
tool, such astcpdump, on the test machine. Indeed, in doing
so we might capture traffic generated by other applications
running on the machine. Another solution might be to apply
a packet filter and capture only traffic on the TCP assigned
to HTTP, i.e. 80 and 443. However, other applications, not
running in a browser, are also known to generate Web traffic
in order to bypass firewalls. Remember that we are interested
only in the traffic generated by browser-based applications, so
we ignore these applications (e.g., Skype) in this study.

Therefore, we take the approach of capturing the sole
HTTP traffic generated by the Web browser that is running
the application under study. To label packets and flows with
process information, two various of the same technique are
available. In the GT and Macroscope [16], [17] approach, a
basic packet capture tool sniffs a network interface and saves
all packets in a trace file; periodically and independently of
the packet capture, a script dumps the host’s TCP connection
table into a trace file. The TCP connection table is a list of all
TCP connections that are currently maintained by the system.
For each connection, it lists the remote and local ports, the
IP address of the remote host, and also the identifier of the
process that initiated the connection. Finally, the two datasets
are merged, based on the timestamp and socket informations.
Each packet in the trace is assigned to a TCP connection,
then to the process identifier that created the connection. This
offline approach is not optimal for our needs. It requires to
query the connection table regularly, possibly for no use ifno
new connection was created. Worse, if the query period is too
long, the merging might be unable to assign a short-lived TCP
connection to its corresponding process identifier, because its
entry might have been removed from the connection table
before the script queries it. As a result, there is a risk that
some connections remain unlabeled.

In another variant, packet capture and application assign-
ment are tightly coupled. To the best of our knowledge, the
NetHogs [18] network monitoring tool is the only imple-
mentation of this variant. For each packet that it captures,it
tries to match it with a known connection (and consequently,
to its process identifier), looking in a local copy of the TCP
connection table. If no match is found, it queries the OS
kernel to gather a fresher copy of the table and updates its
own copy for the subsequent packet matching. This variant
has the advantage of reducing the overhead (it performs
only necessary OS queries), while increasing the accuracy (it
always uses the freshest connection table). Therefore we take
this later approach to implement our tool. We ported the Linux
version of NetHogs to Windows, and we use this later version
in our experiments.

B. Capture scenarios

In this paper, we restrict ourselves to a series of capture
scenarios (one per application), in which a user is asked to
use the application for 15-20 minutes and do whatever he/she
would usually do with this application. To make the scenario



3

Type Selected applications Scenario
1 Radio Radioways, Live365 Listen to a few radio stations
2 Music Deezer, Jiwa Listen to the user’s playlist
3 Video YouTube, Dailymotion, Fox News Live Search and watch videos
4 File transfer RapidShare, Microsoft SkyDrive Upload and download user’s files
5 Mail Gmail Check, read and send mails
6 News Google Reader, My Yahoo! Monitor user’s RSS feeds
7 Documents Google Documents, Microsoft Word Web AppsTypeset a short text and save it
8 Maps Google Maps Point to a few locations; calculate an itinerary
9 Photos Picasa View a slide show of user’s pics; upload some pics

10 Remote control LogMeIn, consoleFISH/ajaxterm Launch and control an application remotely
11 Chat Meebo Chat with user’s acquaintances
12 Gaming Runescape Play an adventure game

TABLE I
SUMMARY OF WEB APPLICATIONS STUDIED IN THIS PAPER.

Radioways (Radio) Deezer (Music) YouTube (Video)

SkyDrive (Files) Gmail (Mail) Reader (News)

Google documents (Documents) Google Maps (Maps) Picasa (Photos)

LogMeIn (Remote Control) Meebo (Chat) Runescape (Gaming)

Fig. 2. Traffic times series for selected Web applications.

more realistic, we allow the user to manipulate several Web
applications at the same time (e.g., checking email in a browser
tab while listening to music in another), but we require the
monitored application to be run in a totally separate browser
instance. During this period of time, our tool monitors the
traffic, filters the traffic generated by the monitored application
(using the process identifier of the browser) and maintains
two counters: the number of bytes sent and received by the
application. An RRDTOOL [19] database stores the value of
these counters every 10 seconds and plots the time series at
the end of the monitoring period.

We perform all our experiments from a typical home net-
work located in the suburbs of Paris, France. A speed test
from the test machine indicates a 750 KB/s download speed,
and 110 KB/s upload speed. This benchmark will help us
to calibrate the results, in particular regarding the maximum
bandwidth required by the tested Web applications.

The last column of Table I describes the actions performed
by the users during the capture scenario of each application.



4

C. Describing traffic patterns

We describe the traffic patterns according to three aggregate
traffic features:

• Traffic intensity is the total volume of traffic exchanged
by the application during the measurement period. We
define three levels of intensity:high, mediumor low.

• Traffic symmetry measures the ratio between upstream
and downstream traffic. Traffic issymmetricif the amount
of traffic is similar in both directions, andasymmetric
otherwise.

• Traffic shapedescribes the general aspect of the traffic
pattern. We define four shapes:dirac (short burst periods
followed by zero traffic),rectangle (long burst periods
with constant rate),variable (variable rate) orcontinuous
(rate remains constant during the whole measurement
period).

IV. T RAFFIC PATTERNS

Fig. 2 presents a typical time series for each type of applica-
tions under study. For space reasons we do not show the plots
for all applications, but we rather select one representative
application per type, as defined in Table I (music, video,
documents,. . . ). For each plot, the X axis represents the time
of the day, 2 while the Y axis indicates the traffic rate, in bytes
per second. Downstream traffic is plotted with a (green) plain
area, upstream traffic with a (blue) solid line. Note that theX
and Y ranges vary significantly from one plot to another. Fig.3
presents general traffic statistics for each application (average
and maximum bandwidth, in upstream and downstream).

A first look at the plots show the wide diversity of mod-
ern Web traffic patterns. We now describe some interesting
characteristics that we observe, and explain the underlying
phenomenons that cause these patterns.

Spiky traffic. Music applications (e.g., Deezer and Jiwa)
create very short bursts of traffic at regular intervals. These
bursts happen when the application fetches the next song to
be played in the playlist. The content is downloaded in its
entirety at the highest achievable speed (the download lasts a
few seconds), and buffered in the browser before it is played.
During the play, the application generates no traffic, and the
start of the next download is tied to the end of the current song.
As song tracks are generally formatted to last 3-5 minutes, this
explains the regular traffic bursts that we observe. The traffic
is highly asymmetric, with a medium traffic volume (20KB/s
on average).

Apart musical applications, only News applications exhibit
the “dirac” pattern. Google Reader checks the user’s RSS feeds
every five minutes, which creates brief, low volume traffic
peaks.

Bandwidth-intensive traffic. Video applications present
relatively large periods of constant traffic rate, followed
by silent periods with unpredictable durations. Contrary to
musical applications, where the inter-peaks duration can be
predicted because it depends on the duration of the current

2Although the time of the day may have an impact on traffic patterns, due
to network congestion, we did not take this parameter into account in this
work.

song track, the traffic for video applications (e.g., YouTube)
is mostly regulated by the user, who searches and selects
each video before he/she starts watching it. A more detailed
analysis of YouTube raises two interesting remarks. First,
we notice a short peak of traffic during the first seconds
of a video, followed by a longer period where bandwidth is
clearly throttled.3 We believe that this initial boost helps the
application buffering enough video in order to compensate for
congestion that might occasionally reduce the download speed.
Second, we notice three levels of throttling (40, 60 and 120
KB/s), that might be tied to the video duration or even to its
bit rate. Resolving the question will require further analysis.

Maps and Photos represent two other bandwidth-intensive
Web applications. When a user seeks a new location on Google
Maps, large traffic spikes (up to 100 KB/s) are generated.
During this initial step, the AJAX application fetches the set
of tiles surrounding the location of interest, as well as other
metadata such as city and street names. Traffic then decreases
progressively as the user adjusts the map position to his exact
needs. This effect is particularly visible during the first five
minutes of the time series. Note also the non-negligible upload
traffic (up to 10 KB/s). Indeed, a map is an assemblage of 256
x 256 pixels tiles, and the application fetches each tile oneby
one through an HTTP request. These numerous HTTP requests
are responsible for the increase of the upstream traffic (each
HTTP request weighs about 1KB).

Slide shows and random visualizations in Photo applications
also create variable traffic spikes (up to 200 KB/s). Unlike
Maps, which are composed by a set of small tiles and thus
generate a series of small HTTP requests, Photo applications
manipulate larger Web objects (a photo weighs several MB),
and therefore require less HTTP requests, which explain the
lower upstream traffic during picture visualization. However,
another difference with Maps application is the possibility to
upload photos on the server. We observe a large increase in
upstream traffic (up to 100 KB/s) in the time series, which
corresponds to the user who manually uploads a set of photos.
In this case, bandwidth throttling is due to the limited upstream
bandwidth allocated to the user’s ADSL line, as explained in
Sec. III-B.

Patterns for “File transfer” applications are very similarto
Photos applications, in the sense that they generate high traffic
loads, both in the downstream and upstream directions. In our
example, SkyDrive’s application limits the download speed
to 100 KB/s, but this throttling is applied per downloaded
file. Indeed, towards the end of the scenario, the user started
downloading two, then three files concurrently, which had the
effect of increasing the bandwidth to 300 KB/s. Just like for
Photos, the upload speed is curbed by the user’s ADSL line
speed.

“Background” traffic. Chat, Documents, Mail and text-
based Remote Control (i.e., Web-based SSH, not plotted
here) exhibit very similar patterns with a low, symmetric and
quite variable traffic. We explain this similarity by the fact
that these applications are text-oriented and involve a high

3Additional experiments indicate that bandwidth throttling happens on the
client side, in YouTube’s Flash application.



5

0

100k

200k

300k

400k

Radioways

Deezer

Jiwa
YouTube

DailyM
otion

RapidShare

SkyDrive

GM
ail

Reader

M
y Yahoo!

Google Docs

W
ord W

eb Apps

Google M
aps

Picasa

LogM
eIn

Ajaxterm

M
eebo

Runescape

B
yt

es
 p

er
 s

ec
on

d avg_in
max_in
avg_out
max_out

Fig. 3. Web applications statistics (max: maximum bandwidth;avg: average bandwidth;out: upstream traffic;in: downstream traffic).

level of interaction (typesetting) with the user. Interestingly,
typesetting in Google Documents and Microsoft Word Web
Apps generates quite a large amount of traffic (4-5 KB/s in
both directions), possibly because each key pressed causesthe
emission of a request to the server. GMail generates a low
background traffic due to small (hundreds of bytes) chunks of
data regularly exchanged between the browser and the server.
In order to fetch and display emails as soon as they arrive in
the user’s inbox, the GMail application uses long polls initiated
by the client, that enable the server to notify instantaneously
the client about new emails.

Constant traffic. Constant traffic is unexpected in Web
applications, because of the nature of HTTP itself, that cre-
ates and maintains short-lived TCP connections. However,
we found three application classes that generate continuous,
downstream traffic. Radio streams are capped to about 20
KB/s, and interestingly, the average bandwidth for the Ra-
dioways scenario (Radio) is similar to that of the Deezer
scenario (Music). Perhaps both applications use the same audio
compression ratio and codecs. The only Gaming application
that we studied (Runescape) also generates a somewhat con-
stant download traffic. However, gaming applications clearly
require more examples and analysis to conclude. Note that
a large number of TV channels provide live broadcasts on
their Web site, as well as catch-up TV for popular shows and
series. However, most of these contents are delivered through
RTMP 4, and therefore we ignore them in this study. The
only exception we found is Fox News, whose Live service
broadcasts a 150 KB/s video stream over HTTP.

V. CONCLUSION

Fig. 4 proposes a preliminary draft for a classification
of Web applications according to the three traffic features

4Real Time Messaging Protocol is a protocol developed by Macrome-
dia/Adobe.

Fig. 4. Preliminary draft for a classification of Web applications.

introduced in Sec. III-C. The Y axis represents traffic levels,
and the X axis indicates the shape of the time series. Finally,
unidirectional arrows stand for asymmetric traffic, while the
bidirectional ones depict symmetric traffic. Most applications
are scattered on the figure, which may indicate that an accurate
classification of Web applications is feasible.

However, the work presented in this paper is only a first
step towards a precise classification of the plethora of HTTP
applications available on today’s Web. In particular, our next
step is to collect data from more users, to evaluate how
user diversity impact application usage and the associated
traffic patterns. More sources (with various types of internet
connections), terminal types (e.g., smartphones, tablets) and
measurements at various times of the day, would also perhaps
allow us to observe additional traffic patterns.



6

REFERENCES

[1] H. Kim, D. Barman, M. Faloutsos, M. Fomenkov, and K. Lee, “Internet
Traffic Classification Demystified: The Myths, Caveats and Best Prac-
tices,” in Proc. ACM CoNEXT, December 2008.

[2] G. Maier, A. Feldmann, V. Paxson, and M. Allman, “On dominant
characteristics of residential broadband internet traffic,” in Proc. ACM
SIGCOMM Internet Measurement Conference, November 2009.

[3] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. G. Greenberg, and Y.-M.Wang,
“WebProphet: Automating Performance Prediction for Web Services,”
in Proc. USENIX Symposium on Networked Systems Design and Imple-
mentation, April 2010.

[4] I. Poese, B. Frank, B. Ager, G. Smaragdakis, and A. Feldmann, “Im-
proving Content Delivery using Provider-aided Distance Information,”
in Proc. ACM SIGCOMM Internet Measurement Conference, November
2010.

[5] T. Callahan, M. Allman, and V. Paxson, “A Longitudinal View of HTTP
Traffic,” in Proc. Passive and Active Measurement Workshop, April
2010.

[6] F. Schneider, S. Agarwal, T. Alpcan, and A. Feldmann, “The New Web:
Characterizing AJAX Traffic,” inProceedings of the 9th International
Conference on Passive and Active Network Measurement, April 2008.

[7] S. Lin, Z. Gao, and K. Xu, “Web 2.0 traffic measurement: analysis
on online map applications,” inProceedings of the 18th international
workshop on Network and operating systems support for digital audio
and video, ser. NOSSDAV ’09, 2009.

[8] S. Veres and D. Ionescu, “Measurement-based traffic characterization for
Web 2.0 applications,” inInstrumentation and Measurement Technology
Conference, 2009. I2MTC ’09. IEEE, May 2009.

[9] L. Shuai, G. Xie, and J. Yang, “Characterization of HTTP behavior on
access networks in Web 2.0,” inTelecommunications, 2008. ICT 2008.
International Conference on, June 2008.

[10] P. Nagpurkar, W. Horn, U. Gopalakrishnan, N. Dubey, J. Jann, and
P. Pattnaik, “Workload characterization of selected JEE-based Web 2.0
applications,” inWorkload Characterization, 2008. IISWC 2008. IEEE
International Symposium on, September 2008.

[11] M. C. Alec, A. Wolman, G. M. Voelker, and H. M. Levy, “Measurement
and Analysis of a Streaming-Media Workload,” March 2001.

[12] I. Humar, J. Bešter, and S. Tomažič, “Characterizing graphical desktop
sharing system’s workload in collaborative virtual environments,” in
Proceedings of the 6th IEEE Conference on Consumer Communications
and Networking Conference, ser. CCNC’09, January 2009.

[13] S. Deering, “Watching the Waist of the Protocol Hourglass,” IETF
51, 2001, www.iab.org/documents/docs/hourglass-london-ietf.pdf; Last
access: January 2011.

[14] L. Brinkhoff, “GNU httptunnel,” June 2008, http://www.nocrew.org/
software/httptunnel.html; Last access: January 2011.

[15] I. Hickson, “The WebSocket API,” February 2011, http://dev.w3.org/
html5/websockets/; Last access: March 2011.

[16] F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F. Risso, and k. c.
claffy, “GT: picking up the truth from the ground for internet traffic,”
SIGCOMM Comput. Commun. Rev., vol. 39, October 2009.

[17] L. Popa, B.-G. Chun, I. Stoica, J. Chandrashekar, and N.Taft, “Macro-
scope: End-Point Approach to Networked Application Dependency
Discovery,” in Proc. ACM CoNEXT, December 2009.

[18] A. Engelen, “NetHogs: What program is using that bandwidth?” 2008,
http://nethogs.sourceforge.net/; Last access: January 2011.

[19] T. Oetiker, “RRDTool - Round-Robin Database Tool,” 1999, http://www.
mrtg.org/rrdtool/; Last access: January 2011.


