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ABSTRACT

The “point mass singularity” inherent in Newton’s law for gravitation represents a major difficulty in accurately determining the
potential and forces inside continuous bodies. Here we report a simple and efficient analytical method to bypass the singular Green
kernel 1/|r − r′| inside the source without altering the nature of the interaction. We build an equivalent kernel made up of a “cool
kernel”, which is fully regular (and contains the long-range −GM/r asymptotic behavior), and the gradient of a “hyperkernel”, which
is also regular. Compared to the initial kernel, these two components are easily integrated over the source volume using standard
numerical techniques. The demonstration is presented for three-dimensional distributions in cylindrical coordinates, which are well-
suited to describing rotating bodies (stars, discs, asteroids, etc.) as commonly found in the Universe. An example of implementation
is given. The case of axial symmetry is treated in detail, and the accuracy is checked by considering an exact potential/surface density
pair corresponding to a flat circular disc. This framework provides new tools to keep or even improve the physical realism of models
and simulations of self-gravitating systems, and represents, for some of them, a conclusive alternative to softened gravity.

Key words. gravitation – methods: analytical – methods: numerical

1. Introduction

As a direct consequence of Newton’s law for gravitation
(Newton 1760; Kellogg 1929), the potential of any continuous
distribution of matter inside a volumeV at a point P(r) of space
is given by

ψ(r) = −G
�

V
ρ(r′)d3τ

|r − r′| , (1)

where ρ(r′) is the mass density at P′(r′) ∈ V, and d3τ is the el-
ementary volume1. In general, this is a three-dimensional (3D)
converging integral. The presence of the Green kernel 1/|r − r′|
is known to represent a difficulty in calculating ψ everywhere in-
side and very close to V since this function diverges as r → r′.
This singularity is classically avoided by converting the Green
function into an infinite series (e.g. Kellogg 1929; Cohl &
Tohline 1999). Although exact, series expansions suffer from
a low convergence rate since these are alternating series; be-
sides, the number of integrals increases linearly with the num-
ber of terms considered up to the truncation order. These prob-
lems collectively constitute a real practical difficulty (Clement
1974; Stone & Norman 1992). The proper treatment of the sin-
gularity is the subject of a longstanding challenge. Shifting the
P-grid and the P′-grid relative to each other or raising the nu-
merical resolution around the singularity are the most natural
techniques (Stemwedel et al. 1990), but these are of limited effi-
ciency. When possible, the separate treatment of the asymptotic

1 This form holds in electrostatics, where ρ is the density of electric
charges, and the constant is 1

4πε0
(instead of −G).

form of the singularity gives very good results (e.g. Ansorg et al.
2003; Huré 2005), although this approach renders the global
treatment somewhat complex. The difficulty can also be tack-
led by introducing a “softening length” (Hockney & Eastwood
1988; Adams et al. 1989). This recipe – widespread in disc sim-
ulations – must however be seen as nothing but a crude approx-
imation that cannot be used for accurate modeling under a cer-
tain scale. Whatever the prescription for the softening length,
which is generally linked to the resolution or smallest physi-
cal length scale (e.g. Huré & Pierens 2009), the inferred force
field is globally weaker than in the Newtonian case, and the evo-
lution and stability of gaseous systems is inevitably impacted
in a non-trivial manner (Romeo 1998; Sommer-Larsen et al.
1998; Adams et al. 1989; El-Zant 1998). The Poisson equa-
tion of course provides another other way to derive ψ numeri-
cally (Kellogg 1929; Durand 1953). This approach requires ac-
curate boundary or interior/matching conditions only accessible
through Eq. (1), and complex geometries are not always easy to
manage (Grandclément et al. 2001).

In this paper, we present a new means to evaluate Eq. (1) that
avoids the singularity, and, at the same time, properly accounts
for it. This is achieved by replacing the singular kernel by an
equivalent and regular, two-term form, one term being the gradi-
ent of a new scalar potential2. This is the aim of Sects. 2 and 3.
Kernel equivalence is fundamental to preserving the Newtonian
character of the interaction on all scales, and for any separation
(in particular at long-range). This reformulation is designed to

2 Some aspects of the theory of tensor potentials are developped by
Chandrasekhar (1973) in the context of rotating, self-gravitating fluids.
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Fig. 1. Typical configuration for the gravitating, celestial body, and as-
sociated notations. See note 3 for the definition of points P′′ and Q.

be efficient within sources, and is not expected to surpass usual
methods outside sources. From a practical point of view, the po-
tential easily becomes accessible as diverging kernels have dis-
appeared from the volume integrals.

Although not specific to a given system of coordinates, the
calculus is developed in cylindrical coordinates for which the
equivalent kernel takes a nominal form, in particular under ax-
ial symmetry (this equivalent kernel is probably not unique; see
Sect. 4). It can be applied as it is to all rotating gaseous/solid bod-
ies (stars, discs, planets, asteroids, etc.) in either steady state or
not, and for various applications (Dermott 1979; Hachisu 1986b;
Baruteau & Masset 2008). A basic, six-step algorithm is reported
in Sect. 5, together with a numerical experiment using the most
simple quadrature and differentiation rules. There is no special
assumption about the distribution of matter in space (density
field and geometry or shape), making the method general, and
transposable to domains of physics other than gravitation. Some
interesting perspectives are listed in the last section.

2. Splitting of the Green kernel

We consider a volume of spaceV continuously filled with mat-
ter, as depicted in Fig. 1. Using cylindrical coordinates, with
P′(a, θ′, z) referring to source points, and P(R, θ, Z) to space
points, the above integral for the Newtonian potential becomes

ψ(R, θ, Z) = −G
�

V
1
Δ
ρ(a, θ′, z)d3τ, (2)

where d3τ = adadθ′dz is the elementary volume,

Δ2 = |r − r′|2 (3)

= (a + R)2 + ζ2 − 4aR sin2 φ,

ζ = Z − z, (4)

is the relative altitude, and

2φ = π − (θ − θ′). (5)

Although Δ → 0 inside V, the potential is generally a finite
quantity (i.e. integration is a regularizing process; e.g. Kellogg
1929; Durand 1953). We now set

δ =

√
(a + R)2 + ζ2 ≥ R. (6)
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Fig. 2. Dimensionless Green kernel (left) and cool kernel (right) versus
a/R for ζ = 0 and φ = {0, π4 , 2π

3 ,
π
2 } labeled on the curves. The Green ker-

nel diverges hyperbolically when r → r′ (which corresponds to a → R
and φ→ π

2 here), in contrast to the cool kernel, which remains bounded
(and even vanishes at the singularity).

This quantity is finite everywhere, and non-zero except on the
polar axis (see below). Assuming R > 0, we have

Δ

δ2
=

1
Δ

Δ2

δ2
(7)

=
1
Δ

(
1 − 4aR sin2 φ

δ2

)
,

and so
1
Δ
=

1
Δ�
+ 4aR sin2 φ × 1

Δδ2
, (8)

where we have defined
1
Δ�
≡ Δ
δ2
· (9)

The Green kernel is then split into two terms. The term 1
Δ�

is al-

ways regular3; we call this term the cool kernel in the following.
Figure 2 displays R/Δ and R/Δ� versus a/R around the singu-
larity. We clearly see that the amplitude of Δ� is bounded, in
contrast to Δ. The second term in Eq. (8) is still singular when
Δ → 0, but its integration over the material volume is expected
to produce a regular field. The idea is to generate this singu-
lar kernel from the gradient of a regular function κ (hereafter
called hyperkernel), and to integrate it over the volume V. As
the two spaces (R, θ, Z) and (a, θ′, z) are independent, the deriva-
tive may be drawn before the integral. This reasoning can be
summarized as

singular kernel ≡ ∇ regular hyperkernel

↓�
V

sing. kernel d3τ = ∇
�

V
reg. hyperkernel d3τ,

3 It is the inverse of a distance, and its value can be interpreted geo-
metrically by noting that (see Fig. 1)

Δ

δ2
=
|r − r′|
QP′2

=
|r − r′|
PP′′2

=
|r − r′|

d2
< ∞, (10)

where Q(R, θ′ + π,Z) is a point of space, diametrically opposite to P′,
and P′′(a, θ + π, z) is a point, diametrically opposite to P, that belongs
to a fictitious source.
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where the gradient ∇ is to be taken with respect to one of the
three variables R, θ, or Z. There are then three possible hyperk-
ernels.

The existence of the hyperkernel is not guaranteed a priori,
and it is of interest only if it is available in a closed form. The
investigation indeed shows that the nominal form is obtained by
considering the vertical gradient (i.e. ∇ ≡ ∂Z). This may be due
to the special role that the Z-axis plays a in cylindrical coordi-
nates. We therefore do not discuss in detail any of the other two
options, although these might be useful in certain circumstances.

3. The singular term as the vertical gradient
of a hyperkernel

To get the hyperkernel, we consider the integration of the singu-
lar term in Eq. (8) with respect to Z. By using the intermediate
variable t = ζ/Δ, we find after some algebra∫

dZ
δ2Δ
=

1
(a + R)2

∫
dt

1 − m2 sin2 φ × t2
, (11)

where

m =
2
√

aR
a + R

, (12)

with 0 ≤ m ≤ 1. We finally get

κ ≡ 4aR sin2 φ

∫
dZ
δ2Δ

(13)

= m sinφ atanh

(
ζm sin φ
Δ

)
·

We could obviously add to κ any function of a, R, θ and θ′, but
this is not necessary here as we take its Z-gradient. The Green
kernel is then given by the equivalent form

1
Δ
=

1
Δ�
+ ∂Zκ. (14)

It is necessary to verify that κ is regular. This is straightforward
since Δ > |ζ | as soon as R > 0. In other words, if m → 1 and
φ→ π

2 , then ζ/Δ→ ±1.
If we now multiply Eq. (8) by ρ(a, θ′, z)d3τ – which does not

depend on Z – and integrate over the material volumeV, we find
that�

V
1
Δ
ρd3τ =

�
V

1
Δ�

ρd3τ + ∂Z

�
V
ρκd3τ, (15)

where the partial derivative now operates on the integral. Up to
a factor −G, this expression is precisely the potential defined by
Eq. (1), and it is both exact and general. It depends on neither the
body’s shape nor on the distribution of its mass density. It applies
not only to volume distributions, but also to surface distributions
(see Sect. 6) and linear distributions. The first integral in Eq. (15)
is then the cool potential associated with the cool kernel, and the
second term is the vertical gradient of a hyperpotential.

On the polar axis (i.e. R = 0) Δ = δ, and so Eq. (8) does not
help us to treat the singularity when ζ = 0 and a = 0. In this
case, we have

κ ≡
∫

1
Δ

dZ (16)

= asinh
ζ

a
,

provided that a > 0. The potential can then be written

ψ(0, Z) = −G∂Z

�
V
ρκd3τ, (17)

where here there is no cool kernel. Besides, we see that
lima→0 aκ = 0.

There is no continuity between the two different expressions
for the cool kernel, the one valid at R = 0 and the other valid at
R→ 0 (this is also true for the hyperkernel). This is no problem
as long as we do not have to consider the radial gradient of κ (see
below the numerical experiment).

Finally, we note that, as we work with an equivalent form
of the Green kernel, the potential found from Eq. (15) automati-
cally has the right asymptotic property, and varies like M/r suf-
ficiently far away from the body. At large relative distance (i.e.
R  a and Z  z), we have δ → r =

√
R2 + Z2. At the lowest

order, one finds that�
V

1
Δ�

ρd3τ ≈ M
r
, (18)

which means that the long-range behavior is exclusively con-
tained in the cool kernel.

4. The case of axially-symmetric bodies

Axially-symmetric bodies constitute an important class of
astrophysical objects (Chandrasekhar 1973; Hachisu 1986a).
Interestingly enough, in problems where ∂θ′ρ = 0, we can
rewrite the above expressions in a more compact form in terms
of elliptic integrals. The first integral in the right-hand-side of
Eq. (15) becomes4

�
V

1
Δ�

ρd3τ = 2
�
S
ρ

√
a
R

kE(k)dadz, (19)

where

E(k) =
∫ π/2

0

√
1 − k2 sin2 x dx, (20)

is the complete elliptic integral of the second kind, k = 2
√

aR/δ
is the modulus (with k ∈ [0, 1]), and the double integration runs
over the meridional cross section S of the body. The integration
over the polar angle θ′ of the hyperkernel gives:∫
φ

sin φ atanh

(
ζm sin φ
Δ

)
dφ = − cosφ atanh

(
ζm sinφ
Δ

)

+
ζ

mδ

[
F(φ, k) − m′2Π(φ,m, k)

]
, (21)

where

F(φ, k) =
∫ φ

0

dx√
1 − k2 sin2 x

, (22)

is the incomplete elliptic integral of the first kind, and

Π(φ,m, k) =
∫ φ

0

dx(
1 − m2 sin2 x

) √
1 − k2 sin2 x

, (23)

4 A factor of two is due to dθ′/dφ, and another factor of two contained
in the modulus k comes from symmetry consideration (i.e. matter lo-
cated at θ′ ∈ [θ, θ + π] provides the same contribution as matter located
at θ′ ∈ [θ, θ − π]).
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(c) gradient of hyperkernel
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Fig. 3. Main steps in the computation of the potential from Eqs. (25) and (27) in a typical case: a) the integral of the cool kernel, b) the integral of
the hyperkernel, c) its vertical gradient, and d) the potential as the sum of maps a) and c). Here, the body is an axially symmetric torus with square
cross section (boundary indicated with a white line). As clearly visible in graphs a)–c), the treatment differs slightly on the polar axis (first column
of pixels). See the text for the numerical setup.

is the incomplete elliptic integral of the third kind (m is the
parameter and m′ =

√
1 − m2). Over the whole circle (i.e.

φ ∈ [0, π2 ]), this yields the axially symmetric potential5:

ψ(R, Z) = − 2G
�
S
ρ

√
a
R

kE(k)dadz (25)

− 2G∂Z

[�
S
ρ

√
a
R
ζH(m, k)dadz

]
,

where H is defined for convenience by

H(m, k) = k
[
K(k) − m′2Π(m, k)

]
, (26)

5 If we perform the Z-derivative and rearrange terms, we recover the
well-known expression (Durand 1953), namely

ψ(R,Z) = −2G
�
S
ρ

√
a
R

kK(k)dadz, (24)

whose kernel is logarithmically singular.

with Π(m, k) = Π( π2 ,m, k) and K(k) = F( π2 , k). The presence of
the H-function is actually expected here since ∂zΔ and ∂ZΔ are
linked (Trova et al. 2012).

On the polar axis, we get

ψ(0, Z) = −2πG∂Z

�
S
ρκadadz, (27)

where κ is, in this case, given by Eq. (16). We note that, in
this axially symmetric case, the potential could be determined
through Eq. (19) (i.e. by using the cool kernel only, and no hy-
perkernel), but the integrand still contains a hyperbolic diver-
gence as a → 0 and ζ → 0 which is not easy to manage. This
is why it seems much better to consider Eq. (27), as the loga-
rithmic divergence of the hyperkernel (i.e. the asinh term) is
cancelled out by the elementary volume when a is close to 0 (i.e.
lima→0 aκ = 0).

5. An example of implementation

We now present a first numerical experiment to briefly de-
scribe the main steps of the method, and demonstrate its simple
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implementation. For a full 3D body, the main steps6 of any nu-
merical estimate can be summarized as

1. discretize the material sourceV on a 3D-grid, in the form of
quadruplets {P′(ai, j,k, θ

′
i, j,k, zi, j,k), ρi, j,k};

2. select a point P(R, θ, Z) in space;
3. for each point P′i, j,k of the source, compute the cool kernel,

and the hyperkernel κ from Eqs. (9) and (13) or Eq. (16);
4. perform the volume integrals in Eq. (15) or (17);
5. determine the vertical gradient of the hyperpotential;
6. add this derivative to the cool potential, and multiply by −G,

and reiterate steps 2 to 6 to generate a potential map. The
components of the associated gravitational force are deduced
as usual from the three gradients of ψ.

We have considered a homogeneous, axially symmetric torus
with a square meridional cross section S with (a, z) ∈ [ 1

2 ,
3
2 ] ×

[− 1
2 ,

1
2 ]. The mass density (ρ = 1 inside S and 0 outside) is

defined on a regular mesh, with N nodes in each direction.
The computational grid also consists of a square box (R, Z) ∈
[0, 2] × [−1, 1] with L nodes per direction and regular spac-
ing, therefore encompassing the body. The double integrals in
Eqs. (25) and (27) are computed at each node of the computa-
tional grid through the two-point trapezoidal rule. The partial
derivative of the hyperpotential is estimated through second-
order finite differences. These basic schemes are very easy to
implement and the above six-step procedure contains no pitfall.
We take N = L = 31 here. Figures 3a–d display, respectively,
the integral of the cool kernel, the integral of the hyperkernel κ,
its vertical gradient, and the total potential, obtained by adding
the first and third maps. The boundary of the toroidal body is
superimposed on these maps. We note that the vertical gradient
of the hyperpotential makes the geometrical cross section rise
above the background, and filters the curvature effects (which
are enhanced by the integral of the cool kernel).

The computing time is typical of integral methods. Under
the conditions of the present example, the integration of the cool
kernel and hyperkernel (step 4 above) requires 2N2 elementary
operations per point of space. To get the potential at the nodes
of a L × L square grid, we then find 2N2L2 (the time needed
to determine the vertical gradients is negligible in comparison).
This is therefore much smaller than that is usually obtained from
an expanded Green function by a factor equal to the number of
terms up to the truncation order (which can be as high as a few
hundred; see e.g. Hachisu 1986a; Stone & Norman 1992).

6. Checking the accuracy

The numerical accuracy is sensitive to various ingredients, such
as the quadrature and differentiation schemes. To a lesser extent,
it also depends on the mass density distribution ρ and equation
of the boundary ∂V, which may generate additional difficulties
in the calculations (interpolation of data points, infinite deriva-
tives at edges, etc.). We present a second numerical test illustrat-
ing the accuracy of the method by considering an exact poten-
tial/density pair. Not many configurations correspond to finite
mass and finite size systems (e.g. Binney & Tremaine 1987).
When matter is gathered in a plane (i.e. a flat disc), Eq. (15)
is directly transposable by setting ρ(a, θ′, z) = Σ(a, θ′)δ(z) and

6 Step 1 should be executed once and for all, except for systems that
evolve with time.

integrating over z. Under axial symmetry, we respectively get7

from Eqs. (25) and (27)

ψ(R, Z) = − 2G
∫ aout

ain

Σ

√
a
R

k0E(k0)da (29)

− 2G∂Z

[∫ aout

ain

Σ

√
a
R

ZH(m, k0)da

]
,

for R > 0, and

ψ(0, Z) = −2πG∂Z

∫ aout

ain

Σ asinh
(Z

a

)
ada, (30)

where ain and aout denote the discs inner and outer edges, and

k2
0 =

4aR
(a + R)2 + Z2

· (31)

By setting ain = 0 and Σ ∝ (1 − a2/a2
out)

3/2 for a ∈ [0, aout], one
gets one of the three cases analyzed by Schulz (2009). For such
a distribution, the associated potential, ψe, is known exactly in
a closed-form for any point of space. Figure 4 gives ψe as well
as the error index ε = log10 |1 − ψ/ψe| where ψ is determined
from Eqs. (29) and (30) in the same conditions as above (we set
aout = 1). We see that the potential outside and especially inside
the disc is well-reproduced. The relative error, on the order of
10−3, agrees with the second-order of the schemes at the actual
mesh size of aout−ain

N−1 =
1

30 . The accuracy can be tuned by chang-
ing the quadrature and differentation schemes.

7. Concluding remarks

We have reformulated the Green kernel appearing in potential
problems to circumvent the singularity and, at the same time,
properly account for it. As a consequence, the gravitational po-
tential of any celestial body, regardless of its shape and mat-
ter density distribution, becomes directly accessible through two
“classical” volume integrals, followed by a partial derivative.
The method is applicable to 3D, fully inhomogeneous systems,
as well as to surface and line distributions. It is especially effi-
cient inside distributions where most approaches exhibit a real
practical complexity, converge very slowly, or produce spurious
errors. The presence of regular kernels ensures that the method is
stable and easy to implement. This should encourage modellers
to abandon various integration techniques that do not “faith-
fully” reproduce the Newtonian character of the potential and
forces. In the context of discs for instance, this method appears
to be a real alternative to softened gravity, which remains a free
parameter, non-Newtonian theory. As stressed, it is probably
possible to determine other cool kernel/hyperkernel pairs (for
instance, by considering the hyperkernel as a radial/angular gra-
dient), but the one presented in the body of this paper seems the
simplest one. It is in particular well-suited to axially symmetric
configurations.

This study needs to be continued in several respects, includ-
ing the analysis of the mathematical properties of the cool ker-
nel and hyperkernel and their physical meanings, as well as the

7 These two formulae can be compared with the classical expression
(Durand 1953; Binney & Tremaine 1987):

ψ(R,Z) = −2G
∫ aout

ain

Σ

√
a
R

k0K(k0)da, (28)

which is singular inside the source.
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Fig. 4. Same legend as for Fig. 3 but for the flat, axially symmetric disc with surface density Σ ∝ (1 − a2)3/2, inner edge ain = 0 and outer edge
aout = 1. The disc is indicated with a white line. The exact potential ψe (left) is derived from the formula of Schulz (2009). The associated error
index (right) is determined once ψ is computed from Eqs. (29) and (30). The mesh size is 1

30 corresponding to N = 31 radial points.

derivation of the equivalent kernel in other systems of coordi-
nates (e.g. Cartesian and spherical coordinate systems). In addi-
tion, it would be interesting to expand the two kernels in Eq. (15)
in series, and compare their properties with the expansion of the
Green function in Legendre polynomials, inside as well as out-
side the body. The cool kernel/hyperkernel pair is also interest-
ing as a new starting point to generating various kinds of ap-
proximations. Apart from the astrophysical context where there
are so many applications about gravitation, this technique is also
transposable to other kinds of problems involving improper in-
tegrals. This can be, for instance in electromagnetism, the de-
termination of the potential vector A and associated magnetic
field induced by current densities (Jackson 1998; Cohl & Tohline
1999). These points will be touched on in forthcoming papers.
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