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Abstract. We give some examples of trace-positive non-commutative quater-
nary quartics which are not cyclically equivalent to a sum of hermitian squares.
Since some similar examples of ternary sextics were already known, this settles
a perfect analogy to Hilbert’s results from the commutative context which says
that in general, positive (commutative) polynomials are not necessarily sums
of squares, the first non trivial cases being obtained for ternary sextics and
quaternary quartics.

Introduction

Interests in study of non-negative polynomials and sums of squares go back to
Hilbert and its famous 17-th problem.

At the end of the 19th century, Hilbert showed ([Hi]) that f ∈ R[x, y, z] a ho-
mogeneous polynomial of even degree d in n variables over the reals which is non-
negative on R

n, necessarily is a sum of squares in R[x, y, z] if and only if n ≤ 2 or
d ≤ 2 or (n, d) = (3, 4).

Hence, in general, positive polynomials are not necessarily sums of squares, the
first non trivial cases are obtained (n, d) = (3, 6) and (n, d) = (4, 4). Suprinsingly,
explicit counterexamples in that former cases only appeared much later. The most
celebrated explicit counter-example being the Motzkin polynomial [Mo]:

m = z6 + x2y4 + y2x4 − 6x2y2z2.

Other examples follows in the 1970’s, and for instance due to [CL] the following
quaternary quartics is non-negative but not a sum of squares:

q = w4 + x2y2 + x2z2 + y2z2 − 4xyzw.

Our goal is to study the generalization of theses notions when positivity is con-
sidered when evaluating at operators rather than real numbers. Namely, we may
distinguish several different kinds of positivity than generalize the usual positivity of
polynomials in commuting variables: namely matrix-positivity and trace-positivity.

A symmetric polynomial is matrix-positive if F (A) is positive semidefinite for all
t-uple of symmetric matrices of same size. Beware that to give sense to this evalua-
tion we have to take F in the R-algebra of polynomials in non-commuting variables
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denoted by R〈X1, ..., Xn〉. More precisely R〈X〉 is the monoid ring of 〈X1, ..., Xn〉
over R which is freely generated by the n non-commuting letters (X1, ..., Xn).

Likewise, for trace-positivity: a polynomial F ∈ R〈X〉 is trace-positive if the
trace of F (A) is non-negative for all tuples A of symmetric matrices of same sizes.

These two notions of positivity for non-commutative polynomials are connected
but they describe different sets of polynomials.

A result by [He] says that a matrix-positive non-commutative polynomial F is
a sum of hermitian squares, which means that F can be written as an R-linear
combination of polynomials of the kind P ∗P , where we endow R〈X〉 the R-algebra
involution ∗ that satisfies (XiXj)

∗ = XjXi. Note that this involution is compatible
with the matrix transpose.

Concerning trace-positive polynomials, their investigation and the question of
when they can be written as a sum of hermitian squares and commutators of poly-
nomials is motivated by the connection to two famous conjectures: the BMV con-
jecture from statistical quantum mechanics and the embedding conjecture of Alain
Connes concerning von Neumann algebras (see [Bu] for details).

It has been proved [Bu, Theorem 1.11] the tracial analog of Hilbert’s result on
bivariate quartic polynomials. Namely: any bivariate trace-positive polynomial of
degree at most four has such a representation. Whereas this is false in general if
the degree is at least six. One has some examples of polynomials which are trace-
positive but not a sum of hermitan squares and commutators. For instance the
non-commutative version of the Motzkin polynomial:

M = 1 +X2Y 4 + Y 2X4 − 6X2Y 2.

This is in perfect analogy to Hilbert’s results from the commutative context.
Note that there is still some difference with the commutative case. First, the

polynomial M is a non homogeneous non-commutative version of m. Indeed,
Hilbert results about forms has completely obvious equivalent version for (non-
homogeneous) polynomials. But for non-commutative polynomials, the homoge-
nization operation is even not well defined.

Second, there was not known any example of trace-positive polynomial of degree
4 in 3 variables which is not a sum of hermitian squares and commutators.

We focus on this case, considering the following non-commutative deshomoge-
nized version of q:

Q = 1 +X2Y 2 +X2Z2 + Y 2Z2 − 4XYZ.

Since it is not a sum of squares when we view it in the commutative world, it
cannot be a sum of hermitian squares plus commutators in R〈X,Y, Z〉. We prove in
Theorem 3.4 that it is trace positive by constructing an identity with denominators
coming from commutative forms.

In the last section, we present a general process to obtain trace-positive polyno-
mials (and also trace-positive forms) which are not sum of hermitian squares and
commutators. But this process assume an hypothesis known as the degree bounds
conjecture for trace-positivity. Let us mention that this conjecture is related to the
algebraic formulation of Connes’s embedding conjecture as formulated in [KS].
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1. Preliminaries

The ring of polynomials in n commuting variables x = (x1, ..., xn) is denoted
by R[x]. We denote by 〈X〉 the monoid which is freely generated by the n non-
commuting letters X = (X1, ..., Xn). Let R〈X〉 denote the monoid ring of 〈X〉 over
R. That is, the elements F of R〈X〉 are polynomials in the non-commuting variables
X1, ..., Xn with coefficients in R, i.e. we may write non-commutative polynomials
F ∈ R〈X〉 as

F =
∑

w∈〈X〉
aww ∈ R〈X〉

with aw ∈ R.
Let ˆ : R〈X〉 → R[x] be the algebra homomorphism mapping each Xi to the

commuting variable xi . The image F̂ ∈ R[x] of a given polynomial F ∈ R〈X〉 is
called the commutative collapse of F .

Instead of evaluating a polynomial F ∈ R〈X〉 in tuples of real numbers resulting
in a real number we substitute X by tuples A = (A1, ..., An) of symmetric matrices
of same sizes. We endow R〈X〉 the R-algebra involution ∗ : R〈X〉 → R〈X〉, P 7→ P ∗

that satisfies (XiXj)
∗ = XjXi. This involution is compatible with the matrix

transpose, i.e. F ∗(A) = F (A)T for all tuples A of symmetric matrices of the same
size. A polynomial F ∈ R〈X〉 is symmetric if F ∗ = F .

We say that F is a sum of hermitian squares if F can be writtent as an R-linear
combination of polynomials of the kind P ∗P .

A polynomial F ∈ R〈X〉 is trace-positive if Tr (F (A)) ≥ 0 for all tuples A of
symmetric matrices of same sizes, where Tr denotes the normalized trace of the

canonical matricial trace tr (namely Tr (A) = tr (A)
d when A ∈ R

d×d).

Of course, if F is trace-positive, then F̂ is positive. However the converse impli-
cation does not hold in general.

Since we are interested in the class of trace-positive polynomials, we endow the
free algebra R〈X〉 with an equivalence relation to model the invariance of the trace
under cyclic permutations. Namely, we say that two polynomials F,G ∈ R〈X〉 are
cyclically equivalent (F ∼ G) if F − G is a sum of commutators (elements of the
form [p, q] = pq − qp for p, q ∈ R〈X〉).

See [Bu] for more context about non-commutative polynomials.

2. A positive semi-definite form which is not a sum of squares

Let us consider the following form in R[x]:

q = w4 + x2y2 + x2z2 + y2z2 − 4xyzw.

An easy computation (see [CL]) shows that q is not a sum of squares in R[x].
Let us show now 4 different methods or algebraic certificates showing that q is a
positive form.

2.1. The arithmetico-geometric inequality. An easy application of the arithmetico-
geometric inequality yields:

1 + x2y2 + x2z2 + y2z2

4
≥ 4

√
x2y2x2z2y2z2 = xyz,
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for x ≥ 0, y ≥ 0, z ≥ 0. The other cases of signs for x, y, z are either obvious or
reduce easily to this former case (up to multiplying some variables by −1).

2.2. Comparison to the unity. We have the identity:

q = (xy−z)2+(xz−y)2−y2−z2+1+y2z2 = (xy−z)2+(xz−y)2−(1−y2)(1−z2),

which proves the positivity when y2 ≤ 1, z2 ≤ 1 or y2 ≥ 1, z2 ≥ 1. Note that this
last condition is always satisfied up to permuting the variables x, y, z.

2.3. Substitution with odd powers. Another possibility would be to show that
q(x3, y3, z3) is a sum of squares. The computer algebra system SOSTOOLS answers
that it is the case. This device use the powerfull techniques of interior points method
to show the feasability of a Semi-Definite programm which is the translation of our
sum of squares problem. Unfortunately, it is not clear how to write down an explicit
and “simple” sum of squares expressions since the number of monomials appearing
in each squares is about 84.

2.4. Identity with denominator. It is known form Artin’s Theorem that q is
a sum of squares of rational functions. One may exhibit such an identity with a
“simple” dénominator:

q(x, y, z)(1 + x2) = (1 − xyz)2 + (yz − x)2 + (x2y − xz)2 + (x2z − xy)2

which obviously gives a certificate of positivity for q.

Let us see now if it is possible to extend to non-commutative liftings of q some
of the previous arguments of this section.

3. Non-commutative liftings

In the non-commutative ring of free generated polynomials R〈X,Y, Z,W 〉, one
may now consider the following lifting of the form q:

Q0 = W 4 +X2Y 2 +X2Z2 + Y 2Z2 − 4XYZW.

It is not trace-positive: indeed if

A =

(
2 −2
−2 0

)
B =

(
−2 −1
−1 2

)
C =

(
−2 −2
−2 −2

)
D =

(
2 0
0 −2

)
,

then
Tr (Q0(A,B,C,D)) = −20.

Remark 3.1. Even the symmetrized version

W
4+X

2
Y

2+X
2
Z

2+Y
2
Z

2
−

2

3
(XY ZW +XYWZ +XZYW +XZWY +XWY Z +XWZY )

is not trace-positive.

That is why, we will consider non commutative liftings of the deshomogenized
form q by setting w = 1. Let

Q = 1 +X2Y 2 +X2Z2 + Y 2Z2 − 4XYZ.

Note that we may also have considered the symmetrized version

1 +X2Y 2 +X2Z2 + Y 2Z2 − 2(XYZ +XZY )
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but it has same trace on triples of symmetric matrices since Tr (ABC) = Tr (ACB)
for all triple (A,B,C) of symmetric matrices.

Let us see how to study the trace-positivity of Q.

3.1. Arithmetico-geometric inequality. Since it is not an algebraic certificat, it
seems that we cannot derive any non trivial result about trace-positivity. The only
thing which is clear is the trace-positivity of Q evaluated at a triple of commuting
matrices (A,B,C). In that case (A,B,C) are simultaneously diagonalizable and
we are reduced to the commutative case.

3.2. Trace-positivity for contractions. The identity for commutative polyno-
mials can be lifted in R〈X,Y, Z〉 to

Q ∼ (XY − Z)(XY − Z)∗ + (XZ − Y )(XZ − Y )∗ − (1− Y 2)(1 − Z2),

which proves the Trace-positivity when Y 2 − 1, Z2 − 1 are both positive semi-
definite or both negative semi-definite matrices. To see this, we recall the well
known elementary result (we recall a proof for the convenience of reader) which we
will need also in the following:

Lemma 3.2. If A and B are two positive semi-definite symmetric matrices in
R

d×d, then tr (AB) ≥ 0.

Proof. By density, one may assume that A is positive-definite. Hence, the quadratic
forms defined by A and B are simultaneously diagonalizable : i.e. there is some
matrix U in R

d×d such that A = UTU and B = UTDU where D is a diagonal
matrix whose entries are non-negative.

We get AB = UTUUTDU which is similar to UUTDUUT = V V T where V =
UUT

√
D. Thus, AB is similar to a positive semi-definite matrix and hence trace-

positive. �

Namely, we get the trace-positivity of Q when all eigenvalues of both Y and Z
are in [−1, 1] (Y and Z are both contractions) or are both not in [−1, 1].

3.3. Substitution with odd powers. Another possibility would be to show that
Q(X3, Y 3, Z3) is cyclically equivalent to a sum of hermitian squares. The commu-
tative collapse of Q is surely a sum of squares as said, for instance, by the computer
algebra system SOSTOOLS. Unfortunately, it is not clear how to obtain a ”simple”
identity that might be liftable in R〈X,Y, Z〉.

Another way to handle would be to use the Non-commutative version of computer
programm dealing with hermitian squares. Such a device has been developped in
[CKP].

For instance, concerning the non-commutative Motzkin polynomial, such a cer-
tificate has been given by K. Cafuta for the Motzkin polynomial M (see [Bu]) which
gives another way of proving that it is trace positive.

In our situation the computer programm did not complete to show ifQ(X3, Y 3, Z3)
is cyclically equivalent to a sum of hermitian squares (due to the awesome number
of monomials to handle: about 1093 !).
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3.4. Identity with simple denominator. Remember the commutative identity
that we have previously considered:

q(x, y, z)(1 + x2) = (1− xyz)2 + (yz − x)2 + (x2y − xz)2 + (x2z − xy)2.

Then, let us define the following non-commutative liftings:




F1 = 1−XY Z
F2 = Y Z −X,
F3 = X2Y −XZ
F4 = X2Z −XY.

and

R =

4∑

i=1

Fi(X,Y, Z)F ∗
i (X,Y, Z).

Let also Q1 = 1 + Y Z2Y +XZ2X +XY 2X −XY Z − ZY X −XZY − Y ZX .
Then,

(1) Q1(1 +X2) =

4∑

i=1

FiF
∗
i +

5∑

i=1

Ui

where 



U1 = X2ZYX − ZYX3,
U2 = X2Y ZX − Y ZX3,
U3 = Y Z2Y X2 −XY Z2Y X,
U4 = XZ2X3 −X2Z2X2,
U5 = XY 2X3 −X2Y 2X2.

Before stating the result about our main example, we will need the following

Lemma 3.3. Let u1 = Xa1vXb1 and u2 = Xa2vXb2 where v ∈ R〈X,Y, Z〉 and
a1 + b1 = a2 + b2.

Then, for all univariate polynomial w ∈ R〈X〉, we have u1w ∼ u2w.

Proof. By linearity, it is enough to show that, for all c ∈ N, we have u1X
c ∼ u2X

c.
This is obvious since uiX

c ∼ vXai+bi+c for i = 1, 2. �

We deduce the trace-positivity of Q but also the locus where Tr (Q) vanishes:

Theorem 3.4. The polynomial Q is trace-positive but not cyclycally equivalent to
a sum of hermitian squares.

Moreover Tr (Q(A,B,C)) = 0 if and only if A = Diag (ai)1≤i≤d, B = Diag (bi)1≤i≤d,
C = Diag (ci)1≤i≤d where all the ai’s, bi’s and ci’s are in {−1,+1} and such that
aibici = 1 for all i.

Proof. The polynomial Q is clearly not cyclically equivalent to a sum of hermitian
squares otherwise its commutative collapse and also q would be a sum of squares
in R[x, y, z], which is not the case.

In equation (1), let us substitute (X,Y, Z) by a triple of symmetric matrices
(A,B,C) in R

d×d. Then,

Q1(A,B,C)(Id +A2) =

4∑

i=1

Fi(A,B,C)F ∗
i (A,B,C) +

5∑

i=1

Ui(A,B,C).
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Since Id+A2 is invertible and (Id+A2)−1 is a polynomial in A, we get by Lemma
3.3,

Tr

(
5∑

i=1

Ui(A,B,C) × (Id +A2)−1

)
= 0.

Hence,

(2) Tr (Q1(A,B,C)) = Tr

((
4∑

i=1

Fi(A,B,C)F ∗
i (A,B,C)

)
× (Id +A2)−1

)

which is non negative by Lemma 3.2 since
∑4

i=1 Fi(A,B,C)F ∗
i (A,B,C) is positive

semi-definite and (Id +A2)−1 is positive definite.
This shows the trace-positivity of Q since Tr (Q(A,B,C)) = Tr (Q1(A,B,C))

for all triple (A,B,C) of symmetric matrices (although Q and Q1 are not cyclically
equivalent).

The identity (2) gives also the locus where Tr (Q) vanishes. Indeed, if Tr (Q(A,B,C)) =
0, then for all i, Tr (Fi(A,B,C)F ∗

i (A,B,C)) = 0 which means that Fi(A,B,C) =
0. From this, one easily deduce that A,B,C are invertible and commute. The
result follows. �

4. Some other examples

We may use the techniques given in Section 3.4 to produce other examples of
trace-positive but not sum of hermitian squares.

4.1. Another deshomogenization of Q0. We choose now to deshomogenize Q0

by setting X = 1:

Q̃(Y, Z,W ) = W 4 + Y 2 + Z2 + Y 2Z2 − 4Y ZW.

Let us define the non-commutative liftings:




G1 = W 3 − Y Z
G2 = WYZ −W 2

G3 = Y −WZ
G4 = Z −WY.

and also S =
∑4

i=1 Gi(Y, Z,W )G∗
i (Y, Z,W ).

Let us define also Q2 = W 4 + Y 2 + Z2 + Y Z2Y − 2(Y ZW + ZYW ). Then,

Q2(1 +W 2) = S +
7∑

i=1

Vi

where 



V1 = −Y ZW +WYZ,
V2 = −ZYW +WZY,
V3 = −Y ZW 3 +WYZW 2,
V4 = −2ZYW 3 +W 3ZY +W 2ZYW,
V5 = Y 2W 2 −WY 2W,
V6 = Z2W 2 −WZ2W,
V7 = Y Z2YW 2 −WY Z2YW.
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Proposition 4.1. The polynomial Q̃ is trace-positive but not cyclycally equivalent
to a sum of hermitian squares.

Proof. We proceed as in the proof of Theorem 3.4.
Since (Id +D2)−1 is a polynomial in D, we get by Lemma 3.3,

Tr

(
6∑

i=1

Vi(A,B,C)× (Id +D2)−1

)
= 0.

Hence

Tr (Q2(B,C,D)) = Tr

((
4∑

i=1

Gi(B,C,D)G∗
i (B,C,D)

)
× (Id +D2)−1

)

which is non negative since
∑4

i=1 Gi(B,C,D)G∗
i (B,C,D) is positive semi-definite

and (Id +D2)−1 is positive definite.

This concludes the proof since and Tr (Q̃(A,B,C)) = Tr (Q2(A,B,C)) for all
triple (A,B,C) of symmetric matrices. �

For convenience, one may introduce the following notation, for u ∈ R〈X,Y, Z,W 〉:

C0
u = {v ∈ R〈X,Y, Z,W 〉 | ∀k ∈ N, vuk ∼ 0}.

With this notation, Lemma 3.3 says that Xa1vXb1 − Xa2vXb2 ∈ C0
X where v ∈

R〈X,Y, Z〉 and a1 + b1 = a2 + b2.

4.2. The Motzkin polonymial. It is already known that

M = 1 +X2Y 4 + Y 2X4 − 6X2Y 2.

is trace-positive but not cyclically equivalent to a sum of hermitian squares. See
[Bu] for several different proofs.

Proceeding as in section 3.4, one can give an alternate algebraic certificate to
show that M is trace-positive. Indeed, we start with the commutative identity

(z6+x2y4+y2x4−3x2y2z2)(x2+z2) = (z4−x2y2)2+(x3y−xyz2)2+(xy2z−xz3)2.

and one can show that it is possible to derive a non-commutative identity of the
form

M(1+X2)−
(
(1−X2Y 2)(1−X2Y 2)∗ + (X3Y −XY )(X3Y −XY )∗ + (XY 2

−X)(XY 2
−X)∗

)
∈ C

0

X
.

Likewise, one can show that

M̃ = Z6 + Y 4 + Y 2 − 3Y 2Z2

is trace-positive by given an algebraic certificate of the form

M̃(1+Z2)−
(
(Z4

− Y 2)(Z4
− Y 2)∗ + (Y − Z2Y )(Y − Z2Y )∗ + (ZY 2

− Z3)(ZY 2
− Z3)∗

)
∈ C

0

Z
.
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Remark 4.2. One may would like to try the same technique for some (homogeneous)
form. Let us consider for instance M0 = Z6+X2Y 4 +Y 2X4− 6X2Y 2Z2. Namely,
we are searching for an identity of the form

M0(X
2 + Z2) =

3∑

i=1

PiP
∗
i +MC0

with the additional condition MC0 ∈ C0
X2+W 2 . This last condition, means MC0 ×

(X2 + Z2)k ∼ 0 for any integer k and it seems difficult to satisfy if.

5. Towards some non-commutative homogeneous examples

5.1. Degree bounds Conjecture. One may want to construct examples of (ho-
mogeneous) non-commutative forms which are trace-positive but not cyclically
equivalent to a sum of hermitian squares. We will see that it is possible when
assuming the so-called degree bounds conjecture. The latter can be stated as the
following:

Conjecture 5.1 (Degree bounds conjecture). For all integer g, there is an integer
d = d(g, n) such that: any polynomial P ∈ R〈X1, . . . , Xn〉 of degree g is trace-
positive if and only if Tr (P (A1, . . . , An)) ≥ 0 for all symmetric matrices A1, . . . , An

in R
d×d.

Let us mention that this conjecture is related to the algebraic formulation of
Connes’s embedding conjecture as formulated in [KS].

Here are some elementary known cases when the degree bounds conjecture is
true:

(1) When g = 2, we have d(2, n) = 1. Moreover in that case a trace-positive
polynomial is cyclically equivalent to a sum of hermitian squares.

(2) When g = 4 and n = 2 we have d(4, 2) = 2 (see [BK]). Moreover in
that case a trace-positive polynomial is cyclically equivalent to a sum of
hermitian squares.

Furthermore, If a polynomial is cyclically sorted in 2 variables, it is trace-positive
if and only if its commutative collapse is positive, namely it is enough to check
trace-positivity for matrices of size 1.

Moreover, because of polynomial identities [Ro], one has some lower bound for
d(g, n). For instance, there exists a polynomial of degree 4 in 4 variables which
vanishes on any 4-tuple of symmetric matrices in R

2×2. Hence, even for quaternary
quartics, it is necessary to check trace-positivity at least on 3× 3 matrices, namely
d(4, 4) ≥ 3.

Assuming the degree bounds Conjecture, let us see how to construct some ex-
amples of trace-positive forms which are not sums of hermitian squares.

We need an identity about commutative forms coming from [Ve, (1.13) and
section 3]:

Proposition 5.2. The form qη is positive-semi-definite but not a sum of squares for
any η such that 0 ≤ η < η0 where

√
η0 is the smallest positive root of s3− 1

2s+
1
9 = 0

(
√
η0 ∼ 0.25). Further,

qη0
= (w2−√

η0(x
2+y2+z2))2+

2

9
√
η0

(
3
√
η0wx− yz)2 + (3

√
η0wy − zx)2 + (3

√
η0wz − xy)2

)
.
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Let us consider the following non-commutative liftings:

H0 = W 2 −√
η0(X

2 + Y 2 + Z2)
H1 = 3

√
η0WX − Y Z K1 = 3

√
η0XW − Y Z

H2 = 3
√
η0WY −XZ K2 = 3

√
η0YW −XZ

H3 = 3
√
η0WZ −XY K3 = 3

√
η0ZW −XY

and

Qη0
= H∗

0H0 +
1

9
√
η0

(H∗
1H1 +K∗

1K1 +H∗
2H2 +K∗

2K2 +H∗
3H3 +K∗

3K3)

and finally

Qη = Qη0
+ (η − η0)(X

4 + Y 4 + Z4).

Remark that Qη is also cyclycally equivalent to the following polynomial

Qη ∼ W 4 + η(X4 + Y 4 + Z4) +
(
2η0 +

2
9
√
η0

)
(X2Y 2 +X2Z2 + Y 2Z2)

− 2
3 (XY ZW +XYWZ +XZYW +XZWY +XWY Z +XWZY ).

We have

Proposition 5.3. Let us assume that the degree bounds conjecture 5.1 hold true
for polynomials of degree 4 in 4 variables.

Then, there is an η ∈]0, η0[ such that Qη is trace-positive but not a sum of
hermitian squares.

Proof. Following the notations of 5.1, let us set d = d(4, 4).
Since Qη0

is trace-positive (it is a sum of hermitian squares), it is trace-positive
on matrices of size d.

First of all, note that the only roots of Qη0
are trivial. Indeed, let (A,B,C,D)

be a quadruple of symmetric matrices in R
d×d which is a root of Qη0

. Since
Fi(A,B,C,D) = 0 and Gi(A,B,C,D) = 0 for all i = 1, 2, 3, all the matrices
A,B,C,W pairwise commute ; they are simultaneously diagonalizable. Since qη0

has only trivial roots, we deduce that A = B = C = D = 0.
Let

Sd = {(A,B,C,D) ∈ (SRd×d)4 | Tr (A4 +B4 + C4 +D4) = 1},
where SRd×d denotes the set of all symmetric matrices in R

d×d.
The set Sd is a compact set, and since Tr (Qη0

) does not vanish, we have on Sd

Tr (Qη0
) ≥ ǫ > 0.

Thus, for all (A,B,C,D) ∈ Sd:

Tr (Qη0
(A,B,C,D)) − ǫTr

(
A4 +B4 + C4 +D4

)
≥ 0,

and hence for all (A,B,C,D) ∈ SRd×d

Tr
(
Qη0

(A,B,C,D) − ǫ(A4 +B4 + C4)
)
≥ 0.

In other words Qη0−ǫ(X,Y, Z,W ) is trace-positive since we have assumed the
degree bounds conjecture. Furthermore, it is not cyclically equivalent to a sum
of hermitian squares since qη0−ǫ is not a sum of squares because of Proposition
5.2. �
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Remark 5.4. Let us define the sequence of real numbers mk = infSk Tr (Qη0
). Then,

the decreasing sequence (mk)k∈N is stationary if we have the degree bounds conjec-
ture. By contraposition, if the sequence (mk)k∈N were not stationary, then it would
give a counterexample to the degree bounds conjecture (for the trace-positivity of
Rη0

).

5.2. General procedure. Let p be a commutative form of degree 2d in the vari-
ables x1, . . . , xn. Assume that p is positive but not a sum of squares in R[x1, . . . , xn].

A result by Robinson ([Ro]) says that for a high enough real number η, the form
p+ η

(
x2d
1 + . . .+ x2d

n

)
is a sum of squares. Hence,

qη = p+ η


 ∑

1≤i≤n

x2d
i +

∑

1≤i,j≤n

x2d−2
i x2

j




is a sum of squares in R[x1, . . . , xn]. Let us consider η0 the minimal real number
such that qη0

is a sum of squares. Let us write

qη0
=

r∑

i=1

f2
i .

There is some fk which can be written as

fk = akx
d
1 + bkx

d−2
1 x2

2 + gk

or

fk = ckx
d−1
1 x2 + hk

where ak, bk, ck are non zero real numbers and the monomials in gk and hk have
lexicographic ordering lower than the xd−2

1 x2
2 or xd−1

1 x2 respectively.
Let us consider the non-commutative liftings:

{
Fk,1 = akX

d
1 + bkX

d−2
1 X2

2 +Gk

Fk,2 = akX
d
1 + bkX

2
2X

d−2
1 +Gk

or {
Fk,1 = ckX

d−1
1 X2 +Hk

Fk,2 = ckX2X
d−1
1 +Hk

where Gk and Hk are any liftings of gk and hk.
And we repeat the same lifting procedure for any couple of indexes (i, j) in place

of (1, 2).
Then, after a suitable averaging, we get an identity

Pη0
=

s∑

k=1

FkF
∗
k ∼ P + η0


 ∑

1≤i≤n

X2d
i +

∑

1≤i,j≤n

X2d−2
i X2

j




where P is a non-commuttaive lifting of p.
Then, the argument in the proof of 5.3 follows readily. Indeed, the equali-

ties Fk,1(A1, . . . , An) = Fk,2(A1, . . . , An) = 0 imply that Ad−2
1 and A2

2 commutes.
Hence A1 and A2 commutes. And likewise for any couple of matrices.

Hence, assuming the degree bounds Conjecture, one may conclude that there
exists some 0 < η < η0 such that Pη is trace-positive but not cyclically equivalent
to a sum of hermitian squares.
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5.3. Uniform approximation of operators. To avoid the use of 5.1, one may
try to proceed by approximation.

For any square matrix M = (mi,j)1≤i,j≤d ∈ R
d×d, we consider the normalized

euclidean (or Hilbert-Schmidt) norm

‖M‖ =

√√√√1

d

d∑

i,j=1

a2i,j =
√
Tr (M∗M),

where M∗ denotes the transposed of M .
Roughly speaking, the idea is the following : if Tr (Rη0

(A,B,C,D)) is small for
a quadruple of symmetric matrices in R

d×d then, by the triangular inequality, we
deduce that all the commutators [A,B], [A,C] and [B,C] are small. Hence, one
would like to approximate the quadruple (A,B,C,D) by a pairwise commuting

quadruple (Ã, B̃, C̃, D̃). Noticing that qη0
never vanishes, we have

Tr (Qη0
(Ã, B̃, C̃, D̃)) ≥ m > 0

where

m = inf
{x4+y4+z4+w4=1}

qη0
(x, y, z, w).

If Tr (Qη0
(A,B,C,D)) were close enough to Tr (Qη0

(Ã, B̃, C̃, D̃)) by approximation,
we would get a contradiction showing that Tr (Qη0

) is bounded from below on Sd.

The problem we face is that we need an uniformity with respect to the dimension
d.

There is a deep approximation result by Lin ([Ln]) but with respect to the
operator norm which is denoted by ‖M‖op and is equal to the supremum of the
eigenvalues of M∗M .

In the same spirit, but maybe more accurate for our purpose on trace-positivity
there is a recent result by Glebsky ([Gy]) dealing with normalized Hilbert-Schmidt
norm:

Theorem 5.5 (Glebsky). Let δ > 0. There is ǫ = ǫ(δ, k) for any k ∈ N, such
that if ‖[Ai, Aj ]‖ ≤ ǫ for symmetric matrices A1, . . . , Ak in R

d×d with ‖Ai‖op ≤
1, then there exist parwise commuting symmetric matrices B1, . . . , Bk such that
‖Bj −Aj‖ ≤ δ and ‖Bi‖op ≤ 1.

Unfortunately, we did not succeed to use this result because of the assumption
(natural but not convenient for our example) that the operators should be bounded
for the operator norm. For the moment, we only have the partial result:

Proposition 5.6. For any positive real number M , there exists η > 0 such that
Qη is non cyclically equivalent to a sum of hermitian squares but trace-positive on
any quadruple of symmetric operators whose operator norm is bounded by M .

Proof. Let

Sd
1,M = {(A,B,C,D) ∈ SRd×d | ‖A‖op ≤ M, ‖B‖op ≤ M, ‖C‖op ≤ M, ‖D‖op ≤ M

‖X2‖2 + ‖Y 2‖2 + ‖Z2‖2 + ‖W 2‖2 = 1}.

Note that Tr (A4 +B4 + C4 +D4) = ‖A2‖2 + ‖B2‖2 + ‖C2‖2 + ‖D2‖2.
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And let

Bd
M,3/2 = {(A,B,C,D) ∈ SRd×d | ‖A‖op ≤ M, ‖B‖op ≤ M, ‖C‖op ≤ M, ‖D‖op ≤ M

1/2 ≤ Tr (A4 +B4 + C4 +D4) ≤ 3/2}.
We argue by contradiction. Assume that, for all ǫ > 0, there are d and (A,B,C,D) ∈

Sd
1,M , such that

Tr (Qη0
(A,B,C,D)) < ǫ.

Then,
1

9
√
η0

Tr (F ∗
i Fi)(A,B,C,D) < ǫ

and
1

9
√
η0

Tr (G∗
iGi)(A,B,C,D) < ǫ

for all i = 1, 2, 3.

The triangular inequality gives, up to resizing the ǫ :

‖[B,C]‖ = ‖BC − CB‖ ≤ ‖BC − 3
√
η0DA‖+ ‖3√η0DA− CB‖ < 2ǫ

and likewise for the other commutators.

Since we have assumed that A,B,C,D ∈ Sd
1,M have operator norms less than

M , we may use Theorem 5.5 : there are pairewise commuting A′, B′, C′, D′ whose
operator norm are less than M and such that





‖A′ −A‖ ≤
√
Mδ,

‖B′ −B‖ ≤
√
Mδ,

‖C′ − C‖ ≤
√
Mδ,

‖D′ −D‖ ≤
√
Mδ.

In particular, we may assume that A′, B′, C′, D′ ∈ Bd
3/2 up to resizing δ.

We have the uniform continuity of Tr (Qη0
) on the compact Bd

3/2,M with respect

to the Hilbert-Schmidt norm, moreover this is also uniform with respect to the
dimension d. Namey, there is a constant K(M) only depending on M such that if
(A′, B′, C′, D′) ∈ Bd

3/2,M and (A,B,C,D) ∈ Bd
3/2,M are such that ‖A′ − A‖ ≤ δ,

‖B′ −B‖ ≤ δ, ‖C′ − C‖ ≤ δ and ‖D′ −D‖ ≤ δ, then

| Tr (Qη0
)(A′, B′, C′, D′)− Tr (Qη0

)(A,B,C,D) |≤ K(M)δ.

From all this, we deduce, for small enough δ, that

Tr (Qη0
(A,B,C,D)) ≥ Tr (Qη0

(A′, B′, C′, D′))−m/2.

Since A′, B′, C′, D′ commute, we have Tr (Qη0
(A′, B′, C′, D′)) ≥ m. Then,

Tr (Qη0
(A,B,C,D)) ≥ m/2,

a contradiction.
We have shown the existence of some ǫ > 0 such that for all d and (A,B,C,D) ∈

Sd
1,M , we have

Tr (Qη0
(A,B,C,D)) ≥ ǫ.

Hence, Tr (Qη0−ǫ(A,B,C,D)) ≥ 0 for all quadruple (A,B,C,D) of symmetric ma-
trices whose operator norm is bounded by M . �
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