
HAL Id: hal-00685394
https://hal.science/hal-00685394v1

Submitted on 5 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of a Self-configuration Protocol for
Distributed Applications in the Cloud

Gwen Salaün, Xavier Etchevers, Noël de Palma, Fabienne Boyer, Thierry
Coupaye

To cite this version:
Gwen Salaün, Xavier Etchevers, Noël de Palma, Fabienne Boyer, Thierry Coupaye. Verification of a
Self-configuration Protocol for Distributed Applications in the Cloud. 27th Symposium On Applied
Computing (SAC 2012), Mar 2012, Italy. pp.1278-1283. �hal-00685394�

https://hal.science/hal-00685394v1
https://hal.archives-ouvertes.fr

Verification of a Self-configuration Protocol for Distributed
Applications in the Cloud

Gwen Salaün
Grenoble INP, INRIA, France

gwen.salaun@inria.fr

Xavier Etchevers
Orange Labs, France

xavier.etchevers@orange.com

Noel De Palma
UJF-Grenoble 1, INRIA,

France
Noel.Depalma@inria.fr

Fabienne Boyer
UJF-Grenoble 1, INRIA,

France
Fabienne.Boyer@inria.fr

Thierry Coupaye
Orange Labs, France

thierry.coupaye@orange.com

ABSTRACT

Distributed applications in the cloud are composed of a set
of virtual machines running a set of interconnected software
components. In this context, the task of automatically con-
figuring distributed applications is a very difficult issue. In
this paper, we focus on such a self-configuration protocol,
which is able to configure a whole distributed application
without requiring any centralized server. The high degree of
parallelism involved in this protocol makes its design compli-
cated and error-prone. In order to check that this protocol
works as expected, we specify it in Lotos NT and verify
it using the Cadp toolbox. The use of these formal tech-
niques and tools helped to detect a bug in the protocol, and
served as a workbench to experiment with several possible
communication models.

1. INTRODUCTION

Cloud computing emerged a few years ago as a major
topic in modern programming. It leverages hosting plat-
forms based on virtualization, and promises to deliver re-
sources and applications that are faster and cheaper with
a new software licensing and billing model based on the
pay-per-use concept. For service providers, this means the
opportunity to develop, deploy and sell cloud applications
worldwide without having to invest upfront in expensive IT
infrastructure.

Distributed applications in the cloud are composed of a
set of virtual machines (VMs) running a set of intercon-
nected software components. However, the task of configur-
ing distributed applications is a real burden. Indeed, each
VM includes many software configuration parameters. Some
of them refer to local configuration aspects (e.g., pool size,
authentication data) whereas others contribute to the defi-
nition of the interconnections between the remote elements

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

(e.g., IP address and port to access a server). Therefore,
once it has been instantiated, each VM has to apply a set
of dynamic settings in order to properly configure the dis-
tributed application. On the whole, existing deployment so-
lutions rarely take into account these different configuration
parameters, which are mostly managed by dedicated scripts
that do not work completly automatically (human interven-
tion is needed). Moreover, these solutions are application-
dependent and only work for specific distributed applica-
tions to be deployed. For instance, Google App Engine only
deals with Web services that respect a restricted program-
ming model (e.g., no Java threads).

In this paper, we present the verification of an innova-
tive self-configuration protocol which automates the con-
figuration of distributed applications in the cloud. Once
the VMs are instantiated, the self-configuration protocol
is able to configure the whole application without requir-
ing any centralized server and does not require a complex
scripting effort. The high degree of parallelism involved in
this protocol makes its design complicated and error-prone.
Consequently, we decided to specify the self-configuration
protocol using Lotos NT [6] in order to verify it with the
Cadp toolbox [9]. In this work, these formal techniques and
tools helped to detect a major bug in the protocol, which
was corrected in the reference implementation in Java. The
Lotos NT specification also served as a workbench to ex-
periment with several possible communication models, and
these experiments helped us to avoid an erroneous design.

The rest of this paper is organized as follows. Section 2
introduces the distributed application model and the self-
configuration protocol. We present the Lotos NT speci-
fication of the protocol in Section 3 and its verification in
Section 4. After comparing our experience with related work
in Section 5, we conclude this paper in Section 6.

2. SELF-CONFIGURATION PROTOCOL

Application model. The configuration of a cloud ap-
plication is specified using a global model composed of a
set of interconnected software components running on dif-
ferent VMs. A component is a runtime entity that has some
configuration parameters and one or more interfaces. An
interface is an access point to a component that supports a
finite set of methods. Interfaces can be of two kinds: server
interfaces, which correspond to access points accepting in-

coming method calls, and client interfaces, which correspond
to access points supporting outgoing method calls. Bindings
make explicit connections between components’ client inter-
faces and server interfaces. A binding is local if the com-
ponents involved in the binding are running on the same
VM. A remote binding is a binding between a client inter-
face of a local component and a server interface provided by
a component located in another VM. A client interface is
also characterized by a property named contingency, which
indicates whether this interface is optional or mandatory.
By extension, the contingency of a binding corresponds to
the contingency of its client side. A component has also a
lifecycle that represents its state (started or stopped). Fi-
nally, an application model identifies each VM belonging to
the application, the set of components running on each VM,
and their local/remote bindings. A simple example of appli-
cation model is given in Figure 1 (top), where c stands for
client and s for server.

Figure 1: Example of application configuration (top)
and self-configuration protocol execution (bottom)

Self-configuration design principles. For scalability
purposes, the protocol used to configure distributed appli-
cations is decentralized. Once the VMs are instantiated, the
self-configuration protocol is able to configure the whole ap-
plication without requiring any centralized server. There-
fore, each VM embeds the application model and a config-
urator. The configurator manages the configuration of the
components inside the VM, and participates in the bind-
ing configuration between components and in the applica-
tion start-up. To this end, each configurator has the ability
to create and configure components, send server interfaces
(for binding purposes), bind component client interfaces to
server ones, start components, and send messages to other
VMs indicating that a local component has been started.
To bind a client interface, the local configurator in charge
of the component on the client side needs the corresponding
server interface, that is, the required information to access
to this interface (IP, port, etc.). This server interface can be

local (in this case the local configurator can manage this by
itself), or it can be remote (in this case the remote configu-
rator must send the server interface to the local configurator
of the corresponding remote VM).

The self-configuration protocol is loosely-coupled. Each
VM starts the self-configuration protocol just after the boot
sequence without needing to know about the state of other
VMs. The configuration of the distributed application will
progress each time a VM belonging to the application be-
comes available. This avoids the need for global synchro-
nization between VMs during the configuration protocol.
To ensure this property, the configurators send their server
interfaces and start messages, according to the application
model, through a Message Oriented Middleware [3] (MOM).
MOMs implement a message buffering system that enables
configurators to exchange messages in a reliable and asyn-
chronous way.

Protocol description. Self-configuration is driven by
the configurators within each VM. All configurators evolve in
parallel, and each of them carries out various tasks following
a precise workflow that is summarized in Fig. 2 where boxes
identified using natural numbers (❶, ❷, etc.) correspond to
specific actions (CREATEVM, CREATECOMPO, etc.). Diamonds
stand for choices, and each choice is accompanied by a list
of box identifiers that can be reached from this point.

Based on the application model, the configurator first
starts (❶), successively creates all the components described
in the model for this VM (❷), and binds local components
(❸). Note that diamonds in the workflow propose different
choices, because a VM may not have local bindings for in-
stance, and in such a case, the configurator jumps to the
next step. In order to set up remote bindings, both VMs
need to interact by exchanging messages through the MOM
(❹). For each binding associated to two components C1 and
C2 (involved respectively in the binding between a server in-
terface and a client interface), the configurator K1 (respon-
sible for C1) sends the server interface to configurator K2

(responsible for C2). This server interface includes all infor-
mation required by C2 to interact with C1, that is, when K2

receives a message containing such an interface, it proceeds
with the binding of C2 to C1.

Figure 2: Configurator workflow

Once the configurator has sent all its server interfaces, it
can launch the process for starting the applicative compo-
nents. The configurator first launches the local components
that can be started (❺). At that moment in the protocol
execution, the only components that can be started are com-
ponents without mandatory client interfaces or components
whose mandatory client interfaces are all connected to local

components. For each component Cserver then started, the
configurator sends to every remote component connected to
it through an application binding, a start message (❻) indi-
cating to the remote component that this Cserver component
is started. When the configurator has started all the local
components that can be launched, it starts reading from its
input communication buffer (❼). Two kinds of message can
be received: (i) upon receiving a binding request message,
the configurator binds the local component to the remote
one (❽), (ii) upon receiving a message indicating that a re-
mote component has been started, the configurator keeps
track of this information and goes back to ❺ in order to
check whether other local components can be started (those
with all mandatory client interfaces connected and corre-
sponding server components started).

Fig. 1 provides an application example (top) and the
corresponding self-configuration protocol execution (bot-
tom). This execution scenario shows the communications
exchanged between the VM configurators.

3. SPECIFICATION

Lotos NT is an improved version of Lotos and combines
the best features of imperative programming languages and
value-passing process algebras. It also supports the descrip-
tion of complex data types written using a functional spec-
ification language. Lotos NT has a user-friendly syntax
and a formal operational semantics defined in terms of La-
beled Transition Systems (LTSs). Lotos NT is supported
by the Lnt.Open tool of Cadp, which enables the on-the-fly
exploration of the LTSs corresponding to Lotos NT spec-
ifications. In this section, we will present a few Lotos NT

specification excerpts of the self-configuration protocol.

Data types. They are used to describe the distributed
application model, that is, VMs, components, interfaces
(client and server), bindings between components, messages,
buffers, etc. We show below a few examples of data types.
An application (TApplication) consists of a set of VMs and
a set of bindings. A VM (TVM) consists of an identifier and
a set of components. A component (TComponent) is charac-
terized by an identifier, a set of client interfaces, and a set
of server interfaces. A client interface (TClient) is a cou-
ple (identifier, contingency), the contingency (TClientType)
being either mandatory or optional.

type TApplication is
tapplication (vms: TVMSet, bindings: TBindingSet)

end type

type TVMSet is set of TVM end type

type TVM is
tvm (id: TID, cs: TComponentSet)

end type

type TComponent is
tcompo (id: TID, cs: TClientSet, ss: TServerSet)

end type

type TClient is
tclient (id: TID, contingency: TClientType)

end type

type TClientType is mandatory, optional end type

Functions. They apply on data expressions which de-
scribe the distributed application. These functions are nec-
essary for three kinds of computation: (i) extracting infor-
mation from the application, (ii) describing buffers and basic

operations on them, (iii) keeping track of the started com-
ponents to know when another component can be started,
i.e., when all its mandatory client interfaces are connected
to started components. Functions are also defined to check
that there is no cycle of mandatory client interfaces through
bindings in the initial application, and that all the manda-
tory client interfaces are bound. Let us show, for illustra-
tion purposes, the function add, which adds a message m to
a buffer1 q storing messages in a list with respect to a FIFO
strategy (we add messages at the end of the buffer and read
from the beginning). It is worth observing in this example
that Lotos NT uses the classic ingredients of the functional
programming style, namely pattern matching and recursion.

function add (m: TMessage, q: TBuffer): TBuffer is
case q in
var hd: TMessage, tl: TBuffer in

nil -> return cons(m,nil)
| cons(hd,tl) -> return cons(hd,add(m,tl))

end case

end function

Processes. They are used to specify VMs (configurator,
input and output buffer), the communication layer (MOM),
and the whole system consisting of VMs interacting through
the MOM. Each VM consists of a configurator and two
buffers, namely bufferIn and bufferOut, which store input
and output messages, respectively. The configurator drives
the behaviour of each VM, and encodes most of the protocol
functionality. The MOM process reproduces the communi-
cation media behaviour used to make VMs interact together.
The MOM is equipped with a set of FIFO buffers in order to
store messages being exchanged. There is a buffer for each
VM, and messages transiting by the MOM are temporarily
stored in the buffer corresponding to the VM to which the
message is destinated.

For illustration purposes, we present the Lotos NT pro-
cess (named SELFCONFIG) encoding the behaviour of the
whole protocol. We give in Figure 3 an architectural view
of this process with the MOM and as many instances of the
configurator and buffer processes as there are VMs.

Figure 3: Architectural view of the whole protocol

The SELFCONFIG process applies on an input application
defined in function appli(). A pair of actions (CHECKCYCLE
and CHECKMANDATORY) are introduced at the beginning of the
process body for verification purposes. These actions have
Boolean parameters (returned values of called functions,
e.g., check_cycle_mandatory), which indicate whether the
input application respects some structural constraints (e.g.,
absence of cycle through mandatory client interfaces).

1TBuffer is specified as a list of messages of type TMessage,
equipped with classic constructors cons and nil.

The Lotos NT parallel composition is expressed with the
par construct followed by the list of actions that must syn-
chronize (nothing for pure interleaving). The first process
called in the SELFCONFIG process is the MOM, which is com-
posed in parallel with the rest of the system, and synchro-
nizes with the other processes on BINDMSGi and STARTMSGi

messages (i=1,2). More precisely, the MOM has five pos-
sible behaviours, it can receive a binding (BINDMSG1) or a
start message (STARTMSG1), send a binding (BINDMSG2) or a
start message (STARTMSG2) if one of its buffers is not empty,
or terminate (FINISH). Messages suffixed with 1 correspond
to emissions from a VM to the MOM, and messages suffixed
with 2 correspond to emissions from the MOM to a VM.

After the MOM, a piece of specification (deployer) is in
charge of instantiating the set of VMs (CREATEVM). Finally,
as many VMs as are present in the input application (two
machines VM1 and VM2 in the specification below) are gener-
ated2. Each machine consists of a configurator, which syn-
chronizes with two local buffers (bufferIn and bufferOut)
on messages SEND and RECEIVE. The two buffers as well as
the MOM are initialised empty.

It is worth noting that we use two kinds of action in our
specification: actions which corresponds to communications
between two processes (SEND and RECEIVE for synchroniza-
tions within a VM, BINDMSG and STARTMSG for synchroniza-
tions between VMs), and actions tagging specific moments
of the execution that will be useful in the next section to
analyse the protocol (CHECKCYCLE, CHECKMANDATORY, CRE-

ATEVM, CREATECOMPO, LOCALBIND, REMOTEBIND, STARTCOMPO,
and FINISH). Here is the SELFCONFIG process:

process SELFCONFIG [CREATEVM:any, SEND:any, ..] is
var appli: TApplication in

appli:=appli();
CHECKCYCLE (!check_cycle_mandatory(appli));
CHECKMANDATORY(!check_mandatory_connected(..));
par BINDMSG1, BINDMSG2, STARTMSG1, .. in

MOM[..](vmbuffer(VM1,nil),vmbuffer(VM2,nil))
||

par CREATEVM, FINISH in
par FINISH in (* virtual machine deployer *)

CREATEVM (!VM1) ; FINISH
||

CREATEVM (!VM2) ; FINISH
end par

||
par FINISH in

(* first machine, VM1 *)
par SEND, RECEIVE, FINISH in

configurator [..] (VM1,appli)
||

par FINISH in
bufferOut[SEND,BINDMSG1,..](nil)

||
bufferIn[RECEIVE,BINDMSG2,..](VM1,nil)

end par
end par

||
... (* second virtual machine, VM2 *)

end par end par end par end var
end process

4. VERIFICATION

To verify the protocol, we apply the Lotos NT specifica-

2Since the number of VMs depends on the application, this
Lotos NT process is generated automatically by a Python
program we wrote, for each new application.

tion of the protocol to a set of distributed applications to be
configured. From the specification and the target applica-
tion, Cadp exploration tools generate an LTS describing all
the possible executions of the protocol. In this LTS, tran-
sitions are labelled with the actions introduced previously,
and we use these actions to check that the protocol works
as expected.

First of all, we verify that each input application respects
a few structural properties, such as “there is no cycle in
the application through mandatory client interfaces” or “all
mandatory client interfaces are connected”. This is checked
at the beginning of the protocol using functions which ex-
tract this information from the application model given as
input. These functions return Boolean values which are
then passed as parameters to specific actions (CHECKCYCLE
and CHECKMANDATORY). Then, we use a safety property to
check that these actions do not appear in the LTS with the
wrong Boolean parameter. For instance, we never want the
CHECKCYCLE action to have a TRUE parameter value indicat-
ing that there is a cycle of mandatory client interfaces. This
is written as follows in µ-calculus, the temporal logic used in
Cadp, and such properties are verified automatically using
the Evaluator model-checker [14]:

[true* . "CHECKCYCLE !TRUE"] false

Secondly, we use model-checking techniques to verify that
the application order of actions is respected during the pro-
tocol execution. To do so, we formalise in µ-calculus (and
check) 14 safety and liveness properties that must be pre-
served by the configuration protocol. Here are a few exam-
ples of these properties:

• FINISH is eventually reached in all paths

mu X . (< true > true and [not ’FINISH’] X)

• A STARTMSG2 message cannot appear before a
STARTMSG1 message with the same parameters

[true*.STARTMSG2 ?vm:String ?cx:String ?cy:String.

true*.STARTMSG1 !vm !cx !cy] false

Note that we use the latest version of Evaluator (4.0)
which enables us to formulate properties on actions
and data terms. Here for example, we relate param-
eters in both messages saying that the VM (vm) and
components (cx and cy) concerned by this message
must be the same.

• A component cannot be started before the components
it depends on

[true* . ’STARTCOMPO !.* !C1’ . true* .
’STARTCOMPO !.* !C2’] false

This property is automatically generated from the ap-
plication because it depends on the bindings for each
component. As an example, if a component C1 is con-
nected through a mandatory client interface to a com-
ponent C2, we generate the property above meaning
that we will never find a sequence where C1 is started
before C2.

• All components are eventually started

(mu X . (<true> true and [not ’STARTCOMPO !.*
!C1’] X))

and

(mu X . (< true > true and [not ’STARTCOMPO !.*
!C2’] X))

and ...

This property is also generated because we do not
know the number of components and their identifiers
a priori.

Finally, we check that each VM behaviour isolated from
the whole LTS respects the correct ordering of actions. To do
so, on the one hand, we have specified an LTS corresponding
to the configurator lifecycle. On the other hand, we apply
successively hiding and reduction techniques on the whole
state space to keep configurator actions corresponding to a
specific VM. Then, we check that the resulting LTS is in-
cluded (branching pre-order) into the first one (configurator
lifecycle) using the Bisimulator equivalence checker [4]. For
each application, we also extract the MOM behaviour and
check that it is included in the LTS given in Figure 4.

Figure 4: LTS representing the MOM lifecycle

Experiments. They were conducted on more than 100
applications. Experiments have been carried out on a Xeon
W3550 (3.07GHz, 12GB RAM) running Linux, and it takes
about 15 hours to make all these computations (checking
invariants, properties, and equivalences) on all the examples
of our database. For instance, an application consisting of
3 VMs, 5 components, and 4 (remote) bindings results in
an LTS with about 30,000 states and 110,000 transitions; it
takes about 10 minutes to generate this LTS and check all
the features presented above. Computation times and LTS
sizes grow exponentially as the number of remote bindings,
but above all VMs, increase. Our goal here was not to fight
the state explosion problem, but to find possible bugs in the
protocol. Most bugs do not come from the system’s size,
but from boundary cases where enumerative tools are very
efficient by exploring all the possible execution scenarios.

Issues identified. The specification and verification
helped us to detect a major bug in the protocol and to ex-
periment on the communication model. Firstly, there was
a problem in the way local components are started during
the protocol execution. After reading a message from the
input buffer, the configurator must check all its local com-
ponents, and start those with mandatory client interfaces
bound to started components. However, one traversal of
the local components is not enough. Indeed, launching a lo-
cal component can make other local components startable.
Consequently, starting local components must be done in
successive iterations, the algorithm stops when no more com-
ponents can be started. If this is not implemented as a fix

point, the protocol does not ensure that all components in-
volved in the architectue are eventually started. This bug
was detected thanks to the last property presented above
(all components are eventually started), and was corrected
in both the specification and the Java implementation.

Secondly, there are many ways to implement the MOM.
We used our specification, modifying the MOM process, to
carry out experiments on how communication among VMs
could be implemented (no MOM, MOM with one buffer, two
buffers, MOM with n buffers, 2n buffers, etc.). We found out
that using a single buffer in the MOM is erroneous because
the protocol can get momentarily stuck if a VM is not yet
started, and the first message in the buffer has to be sent out
to that VM. One buffer per machine is necessary to avoid
these blocking issues, and this MOM structure was chosen
after having carried out these experiments.

5. RELATED WORK

The formalisms and mechanisms offered by the industrial
solutions for configuring applications in the cloud are gen-
erally basic, proprietary, not exhaustive and not extensible:
they permit neither a fine-grained description of the dis-
tributed application nor the management of its deployment
process. Moreover, such solutions have often important re-
strictions concerning:

• the programming models like Google App Engine that
only deploys Web applications whose code must con-
form to very specific APIs (e.g., no Java threads)

• the underlying technologies like Microsoft Azure that
is confined to the applications based on Microsoft tech-
nologies

• the business domains they address like Salesforce.com
that focuses on customer relationship management

A few recent results [10, 7, 15] proposed languages and
configuration protocols for distributed applications in the
cloud. However, these protocols do not work in a decen-
tralized fashion, and this harms scalability of applications
that can be deployed with these platforms. In addition,
these works do not consider the reliability of the proposed
protocols, whereas we focused here on the self-configuration
verification and showed its necessity to detect subtle bugs.

There exist many approaches which aim at specifying and
verifying distributed components and component-based ar-
chitectures. In the 90s, several works [11, 12, 1, 17] focused
on dynamic reconfiguration of component-based systems,
and proposed various formal notations (Darwin, Wright,
etc.) to specify component-based systems whose architec-
tures can evolve at run-time (addition/removal of compo-
nents/bindings). Here, our goal was rather to verify the
protocol at hand, to be sure that the corresponding Java
implementation worked as expected. In [12, 13], the authors
show how to formally analyse behavioural models of compo-
nents using Ltsa. Another related work is [8], where the au-
thors verify some temporal properties using model-checking
techniques on a dynamic reconfiguration protocol used in
agent-based applications. Lotos NT enables us to describe
not only behaviours but also data types (e.g., FIFO buffers).
Moreover, Cadp is richer than Ltsa, which does not propose
any tool for equivalence checking for instance. Other tool-
boxes might have been used, such as Mcrl2, but Lotos NT

is more intuitive than the Mcrl2 input language, and Cadp

also provides efficient model checking tools.
In [2], the authors present a formal framework for be-

havioural specification of distributed Fractal components.
This specification relies on the pNet model that serves as a
low-level semantic framework for expressing the behaviour
of various classes of distributed languages. They also pro-
pose a connection to Cadp tools in order to check proper-
ties on these specifications. A graphical toolset for verifying
AADL models is presented in [5]. This platform integrates
several existing tools such as the NuSMV symbolic model-
checker or the MRMC probabilistic model-checker. As far
as autonomic systems are concerned, a few recent solutions
have been proposed to analyse such systems. For example,
in [16], the authors present the application of ASSL (Auto-
nomic System Specification Language) to the NASA Voyager
mission. In their paper, they show how liveness properties
can be checked on ASSL specifications, and also plan to con-
sider safety properties. The verification toolbox we use here
already provides model-checking techniques for liveness and
safety properties, and many more analysis tools.

6. CONCLUDING REMARKS

We have presented in this paper the specification and ver-
ification of a cloud computing protocol self-configuring a set
of components distributed over several VMs. This protocol
is highly parallel, and we applied state-of-the-art verification
tools to check that it ensured some key-properties. During
this verification stage, we found a bug in the protocol, which
was corrected in the Java implementation.

We would like to emphasize three interesting points we
have noticed during this experience: (i) the formal languages
and tools we used here turned out to be suitable for spec-
ifying and verifying such highly parallel protocols that ex-
ist in the lastest generation of component-based autonomic
systems; (ii) Lotos NT makes the formal specification ac-
cessible to non-experts and deeply simplifies the specifica-
tion writing; (iii) formal techniques were used not only to
chase bugs but also as a workbench for experimenting with
different communication features (point-to-point, broadcast,
different ways of implementing buffers, etc). This last point
can particularly be of interest for optimizing an implementa-
tion (e.g., the number of buffers) while preserving the same
behaviour (wrt. a bisimulation notion for example).

Our main perspective is to extend the protocol to take
component failures into account. When a component fails,
it may impact the whole application, yet we want our pro-
tocol to keep on starting and configuring as many VMs and
components as possible. The extended protocol will be ex-
tensively validated using analysis tools to check some new
properties raised by the introduction of failure, e.g., a com-
ponent connected through a mandatory client interface to a
failed component will never be started.

7. REFERENCES
[1] R. Allen, R. Douence, and D. Garlan. Specifying and

Analyzing Dynamic Software Architectures. In Proc.
of FASE’98, volume 1382 of LNCS, pages 21–37.
Springer, 1998.

[2] T. Barros, R. Ameur-Boulifa, A. Cansado, L. Henrio,
and E. Madelaine. Behavioural Models for Distributed
Fractal Components. Annales des
Télécommunications, 64(1-2):25–43, 2009.

[3] L. Bellissard, N. D. Palma, A. Freyssinet,
M. Herrmann, and S. Lacourte. An Agent Platform
for Reliable Asynchronous Distributed Programming.
In Proc. of SRDS’99, pages 294–295. IEEE Computer
Society, 1999.

[4] D. Bergamini, N. Descoubes, C. Joubert, and
R. Mateescu. BISIMULATOR: A Modular Tool for
On-the-Fly Equivalence Checking. In Proc. of
TACAS’05, volume 3440 of LNCS, pages 581–585.
Springer, 2005.

[5] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen,
T. Noll, M. Roveri, and R. Wimmer. A Model Checker
for AADL. In Proc. of CAV’10, volume 6174 of LNCS,
pages 562–565. Springer, 2010.

[6] D. Champelovier, X. Clerc, H. Garavel, Y. Guerte,
V. Powazny, F. Lang, W. Serwe, and G. Smeding.
Reference Manual of the LOTOS NT to LOTOS
Translator (Version 5.4). INRIA/VASY, 2011.

[7] C. Chapman, W. Emmerich, F. G. Márquez,
S. Clayman, and A. Galis. Software Architecture
Definition for On-demand Cloud Provisioning. In
Proc. of HPDC’10, pages 61–72. ACM Press, 2010.

[8] M. A. Cornejo, H. Garavel, R. Mateescu, and N. D.
Palma. Specification and Verification of a Dynamic
Reconfiguration Protocol for Agent-Based
Applications. In Proc. of DAIS’01, volume 198 of IFIP
Conference Proceedings, pages 229–244. Kluwer, 2001.

[9] H. Garavel, F. Lang, R. Mateescu, and W. Serwe.
CADP 2010: A Toolbox for the Construction and
Analysis of Distributed Processes. In Proc. of
TACAS’11, volume 6605 of LNCS, pages 372–387.
Springer, 2011.

[10] P. Goldsack, J. Guijarro, S. Loughran, A. Coles,
A. Farrell, A. Lain, P. Murray, and P. Toft. The
SmartFrog Configuration Management Framework.
SIGOPS Oper. Syst. Rev., 43(1):16–25, 2009.

[11] J. Kramer and J. Magee. The Evolving Philosophers
Problem: Dynamic Change Management. IEEE TSE,
16(11):1293–1306, 1990.

[12] J. Kramer and J. Magee. Analysing Dynamic Change
in Distributed Software Architectures. IEE
Proceedings - Software, 145(5):146–154, 1998.

[13] J. Magee, J. Kramer, and D. Giannakopoulou.
Behaviour Analysis of Software Architectures. In Proc.
of WICSA’99, volume 140 of IFIP Conference
Proceedings, pages 35–50. Kluwer, 1999.

[14] R. Mateescu and D. Thivolle. A Model Checking
Language for Concurrent Value-Passing Systems. In
Proc. of FM’08, volume 5014 of LNCS, pages 148–164.
Springer, 2008.

[15] J. Mirkovic, T. Faber, P. Hsieh, G. Malayandisamu,
and R. Malavia. DADL: Distributed Application
Description Language. USC/ISI Technical Report
ISI-TR-664, 2010.

[16] E. Vassev, M. Hinchey, and A. Quigley. Model
Checking for Autonomic Systems Specified with
ASSL. In Proc. of NFM’09, pages 16–25, 2009.

[17] M. Wermelinger, A. Lopes, and J. L. Fiadeiro. A
Graph Based Architectural (Re)configuration
Language. In Proc. of ESEC / SIGSOFT FSE’01,
pages 21–32. ACM Press, 2001.

