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ABSTRACT

Choreographies allow business and service architects to spec-
ify with a global perspective the requirements of applica-
tions built over distributed and interacting software enti-
ties. While being a standard for the abstract specification of
business workflows and collaboration between services, the
Business Process Modeling Notation (BPMN) has only been
recently extended into BPMN 2.0 to support an interaction
model of choreography, which, as opposed to interconnected
interface models, is better suited to top-down development
processes. An important issue with choreographies is real-
izability, i.e., whether peers obtained via projection from
a choreography interact as prescribed in the choreography
requirements. In this work, we propose a realizability check-
ing approach for BPMN 2.0 choreographies. Our approach
is formally grounded on a model transformation into the LO-
TOS NT process algebra and the use of equivalence check-
ing. It is also completely tool-supported through interaction
with the Eclipse BPMN 2.0 editor and the CADP process
algebraic toolbox.

1. INTRODUCTION
Modern applications are no longer built as monolithic,

stand-alone, programs. Rather, they are constructed out of
the reuse and assembly of distributed and collaborating en-
tities, e.g., business protocols, software components, or ser-
vices. Software engineering processes have adapted to this,
with two different viewpoints over application design and im-
plementation. A first one is orchestration-oriented (Fig. 1).
Given a set of services to be reused and the specification of
the application-to-be in a centralized form, one retrieves a
model of the orchestration and then implements it. Related
issues are how to compose, and possibly adapt, reused ser-
vices [21, 22] and then how to check implementation correct-
ness [4]. This is a bottom-up approach and local perspective
of service composition. However, this is not always desir-
able. Abstraction in the specification process promotes that
the specification of a distributed application is performed
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Figure 1: Orchestration-oriented development

with a global perspective on the interactions between the
entities that compose it. This is the choreography-oriented
viewpoint (Fig. 2).
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Figure 2: Choreography-oriented development

Conformance vs. realizability. In a first case, the ques-
tion is whether a set of peers being reused satisfies or not the
choreography specification. This is conformance checking
(Fig. 2, (A)) and is again a bottom-up approach of service
composition. Let Pi denote the behaviour of some peer i, ||
denote parallel composition of the peers (including commu-
nication), and C denote the expected behaviour. The con-
formance of a set of peers wrt. a choreography corresponds
to checking equation:

P1|| . . . ||Pi|| . . . ||Pn

?
= C (1)

with all Pi and C being given. Different authors have pro-
posed techniques related to this, using different semantics
for communication (||) and equivalence (=), e.g., [8, 19, 3],



depending on the properties to be preserved between the ex-
pected behaviour and the peer composition. However, these
techniques suppose that the peers are available, which is not
suitable in a top-down approach. In the second case (Fig 2,
(1,2,3)), the question is whether the choreography specifica-
tion can be implemented correctly (i.e., keeping the same
behaviour) by projecting it on each peer. This is realizabil-
ity checking [7]. In the case that it is not, there is no need
to further advance in the design process with discovery, se-
lection, and composition of services for peers. Information
should be returned back to the service architect in order to
enable choreography refactoring. This corresponds to check-
ing Equation (1) again but with each Pi being the projection
of C on peer i.

Let us take the choreography in Figure 3, left, de-
scribed with a Choreography Diagram as introduced by the
BPMN 2.0 standard (see Sect. 2 for an introduction and
motivation to BPMN 2.0). It specifies that P1 and P2 must
first interact on message M1 (with P1 being the initiator of
the interaction) and then P3 and P4 will interact on message
M2 (with P3 being the initiator). It is not realizable since
there is no possibility for P3 to know that P1 has sent (or
P2 has received) message M1 before sending M2. In a dis-
tributed setting, implementing P1 (resp. P3) as sending M1

(resp. M2) we could have the case where M2 is sent before
M1 which is prevented by the choreography. Another issue
is that realizability depends on the kind of communication.
Let us take the choreography in Figure 3, right, and suppose
that P3 sends M2 and that P1 is implemented as first send-
ing M1 and then receiving M2. In a synchronous setting,
the choreography is realizable since P3 will be blocked upon
sending M2 until P1 is ready to receive it. However, in an
asynchronous setting, we would have the same problem as
above.
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Figure 3: Examples of unrealizable choreographies

Contributions. The issue addressed in this paper is the fol-
lowing: given the specification of a choreography described
in the BPMN 2.0 standard notation, does there exist a pos-
sible implementation of it, i.e., peer implementations ob-
tained by projection from it, that would perform exactly as
prescribed in the specification. Our first contribution is the
transformation of BPMN 2.0 choreographies into a process
algebra, namely LOTOS NT [10]. This paves the way for
the development of formal tools dedicated to the BPMN 2.0
choreography notation, such as model-checking, testing, au-
tomatic composition, and software adaptation. Our sec-
ond contribution is related to realizability. We propose
techniques to check the realizability of BPMN 2.0 chore-
ographies, thus releasing the burden on service architects
when structural well-formedness constraints are required to
achieve realizability. With our approach, the architect is
totally free to design any desired choreography. Realizabil-
ity analysis is automatically achieved as a subsequent step.
Furthermore, we study realizability in both synchronous and
asynchronous communication frameworks, since the kind of
communication has an important impact on realizability.

This fosters the applicability of the techniques we propose.
Finally, our approach is totally tool-supported, bridging de-
sign (achieved using the Eclipse BPMN 2.0 editor) and veri-
fication (achieved using the CADP verification toolbox [16]).

Organization. The rest of the paper is organized as fol-
lows. In Section 2 we advocate the use of BPMN 2.0 for
the specification of choreographies and present the related
notations. We also make a short introduction to the LO-
TOS NT process algebra. The next three sections detail our
approach for BPMN 2.0 choreography analysis. Section 3
presents our formal model transformation from BPMN 2.0
choreographies to LOTOS NT processes. Section 4 explains
how this encoding can be used to analyze choreographies
and check their realizability, and tool support is addressed
in Section 5. In Section 6 we discuss related work and com-
pare our approach to it. Finally, Section 7 summarizes our
contributions and presents perspectives of our work.

2. BPMN 2.0 CHOREOGRAPHIES AND

LOTOS NT

2.1 BPMN 2.0 Choreographies
The Business Process Modeling Notation, BPMN [25], is

a visual notation that well suits the needs for the specifica-
tion of business processes and their interactions, including
future service implementations. With reference to low-level
notations or languages such as the Web Service Business
Process Execution Language (WS-BPEL), BPMN promotes
a high-level description that enables the service architects to
focus on what services do in a composition, possibly includ-
ing their conversations and interactions, without entering
too much into the details of how they do it.

As classified by [12], there are two interaction models for
choreography: interconnected interface models, where con-
versations are defined at (each) peer level and interactions
are defined by roughly connecting conversations, and inter-
action models, where interactions between peers are the ba-
sic building blocks. The former nicely suits low-level lan-
guages such as WS-BPEL where an orchestration would be
defined for each peer and communications would correspond
to connections between peer models. However, from a de-
signer perspective, and following the separation of concerns
principle, interaction models better suit the needs of chore-
ography specification due to their global perspective.

A drawback of BPMN 1.x was that it supported chore-
ography specifications through an interconnected interface
model only (Collaboration Diagrams). In contrast, the Web
Service Choreography Description Language (WS-CDL) en-
ables a real interaction model for choreography descriptions,
i.e., the basic building blocks of choreographies are peer
interactions. However, WS-CDL is more an implementa-
tion language than a specification notation. The lack of a
standard abstract notation supporting an interaction model
for choreography has been remedied with the introduction
of BPMN 2.0. In addition to Collaboration Diagrams,
BPMN 2.0 introduces Choreography Diagrams to support
conversations with choreography tasks as a first class entity.

The basic building block of BPMN 2.0 (BPMN in the
rest of this paper) Choreography Diagrams is a one-way or
two-way interaction between peers. This is modelled using
a choreography task (Fig. 4). Here we have two peers in-
teracting, A and B, represented by participant bands. A is
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Figure 4: BPMN 2.0 notation – choreography tasks

the initiating peer, i.e., the one that decides the interac-
tion takes place, hence it is represented by a white band
as opposed to a gray filled band for B. Together with the
choreography tasks, come message flows relating the inter-
action with an initiating message (represented by a white
envelope) and, possibly, a return message (represented by
a black envelope). This yields one-way interactions (Fig. 4,
(a,c,d,e)) or two-way interactions (Fig. 4, (b)).

A choreography task may have an internal marker to de-
note whether, and how, the related interaction (one or two
message exchanges) is repeated. In a standard loop (Fig. 4,
(c)), the interaction is performed several times depending
on a Boolean condition. In multi-instance parallel loops, the
interactions are performed by several instances of the chore-
ography task. This can be done in parallel (Fig. 4, (d)) or
in sequence (Fig. 4, (e)). If the exchange is not repeated, no
marker is used (Fig. 4, (a,b)).

BPMN enables one to describe control flows using se-
quence flows for performing two tasks in sequence or gate-
ways for more complex behaviours. In our work we take into
account the main gateways found in BPMN (Fig. 5) that
is: exclusive gateways (decision, alternative paths), inclu-
sive gateways (inclusive decision, alternative but also paral-
lel paths), parallel gateways (creation and merging of paral-
lel flows), and event-based gateways (choice based on events,
i.e., message reception or timeout, like the WS-BPEL pick

construct). We require that gateways are either diverging
(multiple outgoing sequence flows and at most one incoming
sequence flow) or converging (multiple incoming sequence
flows and at most one outgoing sequence flow). Diagrams
that would not cope to this requirement can be transformed
by adding new gateways [25], e.g., a gateway being both con-
verging and diverging can be transformed as the sequence
of a converging one and a diverging one.

start state end state

exclusive gatewayor

or event-based gateway

inclusive gateway parallel gateway

sequence flow

CT2

B

A

CT1

B

A

CT3

B

A

diverging pattern (diverging parallel gateway) 

CT2

B

A

CT1

B

A

CT3

B

A

converging pattern (converging parallel gateway) 

Figure 5: BPMN 2.0 notation – control flow and
gateways

Running example. In this paper, we will use an e-booking
system as running example. This case study involves four

peers: a booking system (bs), a database (db), an on-line
bank service (bk), and a client (cl). Figure 6 gives a BPMN
choreography for the system under construction. In this
specification, we can see that first the client interacts with
the booking system (connect), submits a request to the
booking system (request) and receives a response (reply).
Then, the client can either choose to quit (abort), submit
another request (request), or make a booking (book). In
this last case, the client also pays the bank (pay), and the
booking system stores some information in the database to
keep track of this completed transaction (store).
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Figure 6: Running example – Booking System

2.2 LOTOS NT
LOTOS NT [10] is an improved version of the LOTOS ISO

standard [17] that combines the best features of imperative
programming languages and value-passing process algebras.
LOTOS NT also supports the description of complex data
types written using a functional specification language. LO-
TOS NT has a user-friendly syntax and formal operational
semantics defined in terms of Labeled Transition Systems
(LTSs).

LOTOS NT processes are built from actions, sequential
compositions (;), conditions (if), assignments (:=), looping
behaviours (loop), choices (select), and parallel composi-
tions (par). Communication is carried out by rendezvous on
a set of synchronization actions (multiway synchronization
points) with bidirectional transmission of multiple values.
Synchronizations may also contain optional guards (where)
expressing Boolean conditions on received values. Processes
are parameterized by sets of actions (alphabets) and in-
put/output data variables. In the rest of this paper, we
will show examples of LOTOS NT generated from BPMN
choreographies for realizability checking purposes.

LOTOS NT specifications can be analysed using the
CADP verification toolbox [16]. In particular, LOTOS NT
is supported by the lnt.open tool of CADP, which enables
the on-the-fly exploration and verification of the LTSs cor-
responding to LOTOS NT specifications.

3. ENCODING INTO LOTOS NT
In this section, we present the encoding of BPMN chore-

ographies into LOTOS NT. We chose LOTOS NT, instead
of, e.g., Petri nets encodings or a direct translation into
LTSs, for several reasons. First, LOTOS NT provides ex-
pressive operators for translating BPMN constructs, and a
translation between two high-level languages is much sim-
pler because both languages share similar operators, such as
sequence, choice, interleaving, etc. Second, LOTOS NT is
supported by state-of-the-art verification tools (CADP) that



can be used in order to compile the LOTOS NT specifica-
tion into an LTS, enumerating all the possible behaviours.
The LOTOS NT operators together with the CADP tools
enable us, for instance, to generate peers (Fig. 2, (2)) in a
declarative way, thus avoiding the implementation of low-
level ad-hoc algorithms operating on LTS models.

We encode BPMN choreographies in LOTOS NT follow-
ing the state machine pattern. Each BPMN construct is
encoded as a LOTOS NT process that symbolizes a state in
that state machine. This process translates the behaviour
of the BPMN construct plus a call to the process encoding
the successor state (possibly several process calls if there are
several successors, e.g., in the case of a diverging gateway).
The initial choreography element identified by a start state
in BPMN (e.g., CT1 in Fig. 6) is translated as a LOTOS NT
process called MAIN.

We show below the LOTOS NT process encoding the sec-
ond activity of our running example. This process is named
CT2 and makes explicit the alphabet between squared brack-
ets, that is, all the different messages exchanged in the chore-
ography. These messages can be typed (with the types of
their parameters), but this is optional and we use the key-
word any if no type is specified. Each message is prefixed
with the sender and receiver identifiers. The body of this
process consists of two communications between the client
and the booking system on messages request and reply.
Then the LOTOS NT process (EXCL_1) encoding the next
activity is called:

process CT2 [cl_bs_connect:any, cl_bs_request:any,
bs_cl_reply:any, cl_bs_abort:any, cl_bs_book:any,

cl_bk_pay:any, bs_db_store:any] is
cl_bs_request; bs_cl_reply;

EXCL_1 [cl_bs_connect, cl_bs_request, ..]

end process

A marker may be specified in a choreography task to in-
dicate how the messages are repeated (see Fig. 4). The
standard loop is translated using the LOTOS NT loop con-
struct, which results in a self-loop in the corresponding LTS.
The sequential multi-instance is translated using the LO-
TOS NT sequential composition (;). The parallel multi-
instance is encoded using the LOTOS NT parallel com-
position (par) without synchronization, meaning that all
branches involved in the composition are interleaved.

Diverging and converging gateways are the most compli-
cated part of the translation. Here, we assume that gate-
ways are well-balanced, i.e., that for each gateway with n

diverging branches we have a corresponding gateway with
n converging branches. First of all, exclusive and inclu-
sive gateways are translated using the LOTOS NT choice
(select), whereas parallel gateways are translated using the
LOTOS NT parallel operator (par). Let us show the part of
our running example translating the exclusive gateway made
by the client after each reply sent by the booking system.
There are three possible choices, the first one corresponds
to the decision of making a booking, the second choice cor-
responds to an abort required by the client, and the third
one occurs when the client submits another request to the
booking system. In each case, the process encoding the cor-
responding behaviour is called (CT2, CT3, and CT4 are process
identifiers):

process EXCL_1 [cl_bs_connect:any, ..] is
select

CT2 [cl_bs_connect, cl_bs_request, ..]
[] CT3 [cl_bs_connect, cl_bs_request, ..]

[] CT4 [cl_bs_connect, cl_bs_request, ..]
end select

end process

We recall that diverging inclusive gateways may fire one
or more branches. Consequently, this operator is translated
as a choice (select) between all possible combinations of
the subsequent activities involved in the gateway. Suppose
for instance that we have an inclusive gateway between two
communications M1 and M2 involving three peers A, B, and C

(Fig. 7, left).
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Figure 7: Examples of diverging inclusive gateway
(left), diverging and converging parallel gateways
(right)

The generated LOTOS NT code is as follows:

process INCL_1 [A_B_M1:any, A_C_M2:any] is
select

CT1 [A_B_M1:any, A_C_M2:any] ; CT2 [..]
[]

CT2 [A_B_M1:any, A_C_M2:any] ; CT1 [..]
[]

CT1 [A_B_M1:any, A_C_M2:any]
[]

CT2 [A_B_M1:any, A_C_M2:any]
end select

end process

The encoding of the choreography as a state machine sim-
plifies the translation of looping behaviours, e.g., in our ex-
ample submitting as many requests as the client decides.
The drawback is that some structuring information gets lost,
in particular in order to translate converging gateways; one
no longer knows which branches are executed in parallel
and need to be merged. Therefore, to translate correctly
converging/diverging gateways, we compute and generate
further information. This only concerns parallel and inclu-
sive gateways where several branches can be executed at the
same time, and for which we may need to generate a proper
merge (a single branch is executed in an exclusive gateway).
Let us illustrate this with a simple example where we have
successively a diverging parallel gateway followed by two
interactions M1 and M2, and a converging parallel gateway
(Fig. 7, right). In such a case, we need a synchronization
point to merge the different branches involved in this gate-
way. To do so, when we translate the diverging gateway,
we traverse the specification forward to detect a possible
converging gateway. If there is a converging gateway, we
generate an additional branch in the LOTOS NT parallel
composition with a synchronization on an arbitrary action
sync_1. After this action, we translate the rest of the chore-
ography (process PAR_2 below). Once processes CT1 and CT2

have completed their behaviour, they can synchronize on
sync_1 with the additional branch, and then process PAR_2

is executed. This synchronization is meaningless from an
external point of view, it is why we hide it in process PAR_1



(hide):

process PAR_1 [A_B_M1:any,A_C_M2:any,sync_1:any] is
hide sync_1:any in

par sync_1 in
CT1 [A_B_M1, ..]

|| CT2 [..]
|| sync_1 ; PAR_2 [..]

end par
end hide

end process

process CT1 [A_B_M1:any, A_C_M2:any, sync_1:any] is
A_B_M1; sync_1

end process

process CT2 [A_B_M1:any, A_C_M2:any, sync_1:any] is
A_C_M2; sync_1

end process

process PAR_2 [A_B_M1:any,A_C_M2:any,sync_1:any] is
... // the rest of the choreography

end process

4. REALIZABILITY
From the LOTOS NT encoding of a BPMN choreography,

we can generate the corresponding LTS model (Fig. 8) us-
ing the CADP state space exploration tools. This LTS was
obtained by hiding“sync_”messages (which result in τ tran-
sitions), and by minimizing the resulting LTS using a weak
trace reduction to remove τ transitions and determinize the
LTS, and a strong reduction to suppress identical paths. In

Figure 8: Booking System – LTS model

addition to these reduction techniques, all the CADP verifi-
cation tools can be used to analyze this LTS. For instance,
we can write and check temporal logic properties using the
Evaluator model checker [23]. Concerning our running ex-
ample, we can check that a client can make a booking or
abort only if a request has been issued (safety property):

[ (not ’CL_BS_REQUEST’)* .
(’CL_BS_BOOK’ or ’CL_BS_ABORT’) ] false

As for realizability, intuitively, a choreography is realiz-
able if the set of interactions specified in BPMN and those
executed by the interacting peers (obtained by projection
from the choreography description) are the same. In this pa-
per, we propose to check the realizability by comparing the
choreography model with the model of the system composed
of interacting peers using behavioural equivalences. If these
two models are equivalent, it means that the peer generation
exactly preserves the BPMN communication requirements.
If they are not, it is because peers do not generate the same
interactions as those specified in the choreography, therefore
it is unrealizable. Here, we use strong equivalence [24] be-
cause LTS models for peers are minimized using the same
reductions as for the choreography LTS.

Realizability checking is performed in several steps. First,
we generate the choreography LTS from the LOTOS NT
encoding as presented above. Second, we generate peers’
behaviours. Third, we build the system composed of these

interacting peers; some additional FIFO buffers are neces-
sary if an asynchronous communication model is assumed.
Finally, we check that the choreography LTS and the dis-
tributed version of the system are equivalent.

Synchronous communication. In order to generate peers
declaratively, we extend our LOTOS NT encoding by gen-
erating a LOTOS NT process for each peer. We show below
the LOTOS NT process generated for the booking system.
We can see that each peer process calls the MAIN process en-
coding the choreography in LOTOS NT as presented in Sec-
tion 3. Moreover, we hide all messages in which the peer at
hand is not involved, e.g., we hide the payment (cl_bk_pay)
between the client and the on-line bank in the peer corre-
sponding to the booking system (peer_bs):

process peer_bs [cl_bs_connect:any, ..] is
hide cl_bk_pay:any in

MAIN [cl_bs_connect, cl_bs_request, ..]
end hide

end process

Finally, a LOTOS NT process is generated to specify the
composition of peers and to make explicit the messages on
which they synchronize. Going back to our running example,
we show below how such a composition is obtained. First,
peer bk is synchronized on cl_bk_pay with the rest of the
system. Then, peer db synchronizes on bs_db_store with
the two remaining peers, and so on:

process synchronous_compo [cl_bs_connect:any, ..] is
par cl_bk_pay in

peer_bk [cl_bs_connect, cl_bs_request, ..]
||

par bs_db_store in
peer_db [..]

||
par cl_bs_connect, cl_bs_request,

bs_cl_reply, cl_bs_abort, cl_bs_book in
peer_cl [..] || peer_bs [..]

end par
end par

end par

end process

Asynchronous communication. Asynchronous commu-
nication is not directly supported by LOTOS NT. There-
fore, we generate additional LOTOS NT code to implement
bounded FIFO buffers and support asynchronous commu-
nication while preserving the message ordering (since real-
izability is sensitive to it). Buffers are described using the
functional part of the LOTOS NT specification language,
and handled through specific processes. Each peer process
is associated with a buffer process from which it can consume
messages received beforehand. A buffer process can also re-
ceive messages from other peers, and store them. Note that
a local communication between a peer and its buffer has
the suffix “_REC”, whereas a communication between a peer
(sender) and a buffer does not have a suffix. Finally, as for
synchronous communication, we generate a process corre-
sponding to the composition, which makes explicit the way
peers and buffers interact.

This is demonstrated in Figure 9 for the database (db)
peer. We also show below an excerpt of our running ex-
ample showing how couples (peer,buffer) are generated for
each peer. We see that the peer (apeer_db) and its buffer
(buffer_db) are composed in parallel (par) and can interact
on bs_db_store_REC, meaning that the peer can read this
message from its buffer. The buffer has also the message
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Figure 9: System architecture: communication be-
tween peers and buffers

bs_db_store in its alphabet corresponding to the interac-
tion between the booking system and the database buffer
on that message:

process peer_buffer_db
[bs_db_store:any, bs_db_store_REC:any] is

par bs_db_store_REC in
apeer_db [bs_db_store_REC]

||
buffer_db [bs_db_store, ..] (bbuffer(nil,1))

end par

end process

Many verification problems are undecidable when asyn-
chronous communication is assumed [5]. In our framework,
the user can either choose bounds for buffers (1 in the ex-
ample above), or check for synchronizability [3]: a set of ser-
vices is synchronizable if and only if the ordering of message
exchanges remain the same when asynchronous communica-
tion is replaced with synchronous communication. Hence, if
a system is synchronizable, the verification with CADP can
be done on the synchronous version of the system and the
results hold for the asynchronous case (without requiring
any arbitrary bound).
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Figure 10: Booking System – version 2

Running example. Once we have generated all the re-
quired LOTOS NT processes, we use equivalence checking
to compare on one hand the choreography LTS, and on the
other the LTS generated for the distributed implementa-
tion of the system. As far as our running example is con-
cerned, the equivalence check returns false for both commu-
nication models (synchronous and asynchronous), and indi-
cates that the trace consisting of messages cl_bs_connect,
cl_bs_request, bs_cl_reply, cl_bs_book appears in both
systems, but bs_db_store is then present in the distributed
system (it should not be), and not in the choreography LTS

(see Fig. 8). The problem here is that messages cl_bk_pay

and bs_db_store are executed independently from one an-
other in the distributed system, whereas the choreogra-
phy specification imposes an order between these messages.
Since these two interactions are independent, the simplest
solution is to make it explicit in the BPMN choreography by
using a diverging parallel gateway as shown in Figure 10. In
such a case, our realizability check returns positive results
whatever communication model is chosen.

5. TOOL SUPPORT AND EXPERIMENTS
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Figure 11: Tool support

Our approach is fully tool-supported as shown in Fig-
ure 11. In order to foster the usability of the approach,
we have built it on top of the BPMN 2.0 Editor Eclipse
plug-in1. Business process designers and service architects
can use this plug-in to specify a BPMN choreography. A
transformation from the XML representation of the chore-
ography into an intermediary python format that we have
developed is then performed using BPMN2Py, a .jar java
runnable archive. BPMN2Py also calls Py2LNT, a python
script that generates both the encoding of the choreogra-
phy in LOTOS NT and a CADP SVL script that auto-
mates the remaining steps to be done for verification and
realizability checking. The first step, i.e., the retrieval of
LTS formal models for the peers, for their composition, and
for the intended choreography behaviour, is achieved using
the Caesar compiler and Reductor. The second step, i.e.,
verification, equivalence checking, and hence realizability, is
achieved using Evaluator and Bisimulator. In case where re-
alizability (or verification) does not yield, a counterexample
is passed back to the designer in the form of a sequence of
events x_y_m (x sends message m to y), enabling him/her to
change the choreography. We have developed the BPMN2Py

and Py2LNT tools, and we reuse the SVL script engine, and
CADP state space generation and verification tools (model
checker, equivalence checker, etc.).

Experiments. Table 1 shows experimental results on
some examples of our database. Experiments have been car-
ried out on a Xeon W3550 (3.07GHz, 12GB RAM) running
Linux. For each experiment, the table gives the size of the
BPMN choreography (in terms of number of peers, interac-
tions, and gateways), the size of the LTS generated for the
synchronous and asynchronous versions of the distributed
system, the result of the synchronizability check, the real-
izability results for both communication models, and the
overall execution time necessary to generate these LTSs and

1Eclipse update site: http://codehoop.com/bpmn2.



compute these three checks. If the synchronizability prop-
erty is not satisfied, we use 1-bounded buffers to check the
choreography realizability. Example c0053 corresponds to
the running example presented in this paper. It is worth
observing that the number of peers involved in the compo-
sition as well as the number of parallel gateways used in the
choreography specification increases the parallelism degree
of the system and makes LTS sizes and computation times
augment quickly (c0102).

6. RELATED WORK
Quite some work has already been dedicated to the realiz-

ability issue. The results presented in [9, 26] formalise well-
formedness rules to enforce the specification to be realizable.
More precisely, in [9], Carbone et al. identify three princi-
ples for global description under which they define a sound
and complete end-point projection that is the generation
of distributed processes from the choreography description.
In [26], Qiu et al. propose a choreography language with
new constructs (named dominated choice and loop) in order
to implement unrealizable choreographies. During the pro-
jection of these new operators, communications are added
in order to make peers respect the choreography specifica-
tion. However, these solutions only focus on synchronous
communication, and, similarly to what has been chosen for
BPMN 2.0 choreographies [25], complicate the design by
obliging the designer to make explicit extra-constraints in
the choreography specification, e.g., by associating domi-
nant roles to certain peers.

In [13], Decker and Weske propose a Petri Net-based for-
malism for specifying choreographies, and define realizabil-
ity and local enforceability. They also propose algorithms to
check these two properties. However, they consider only syn-
chronous communication, and have not investigated map-
pings to higher-level interaction modeling languages (such
as BPMN) yet.

Few works focused on the realizability problem assuming
asynchronous communication. Fu et al. [15] proposed three
sufficient conditions (lossless join, synchronous compatible,
autonomous) that guarantee a realizable conversation pro-
tocol. More recently, Basu and Bultan proposed to check
conformance using synchronizability [3]: A set of peers is
synchronizable if systems produced on one hand with syn-
chronous communication, and on the other with 1-bounded
asynchronous communication, are equivalent. If a set of
peers is synchronizable, one can check whether it is con-
formant to a choreography using existing finite state verifi-
cation tools. Synchronizability complements the techniques
proposed here, as presented in Section 4. In [6], Bravetti and
Zavattaro tackle the choreography conformance issue from
a theoretical point of view, and propose notions of contract
refinement and choreography conformance for services that
communicate through message queues.

Bultan and Fu [7] defined sufficient conditions to test real-
izability of choreographies specified with UML collaboration
diagrams (CDs). In [27], Salaün and Bultan refine and ex-
tend this work with techniques to enforce realizability by
adding additional synchronization messages among peers,
and a tool-supported approach to automatically check the
realizability of CDs for bounded asynchronous communica-
tion. The realizability problem for Message Sequence Charts
(MSCs) has also been studied (e.g., [1, 28, 2]). [2] presents
some decidability results on bounded MSC graphs, which are

graphs obtained from MSCs using bounded buffers. These
solutions are limited in the BPMN 2.0 context, because
branching and cyclic behaviours are not well supported by
CDs and MSCs (no choice in CDs, no cyclic behaviours in
MSCs, and only self-loops in CDs). BPMN choreographies
provide a more expressive notation than CDs or MSCs.

Decker and Weske present in [14] an extension of BPMN
(iBPMN) in the direction of interaction modeling. They also
propose a formal semantics for iBPMN in terms of interac-
tion Petri nets. At the end of this paper, the authors men-
tion realizability as a novel challenge, but do not give any
solution for this issue. Lohmann and Wolf [20] show how re-
alizability can be verified by using existing techniques for the
controllability problem, which checks whether a service has
compatible partner processes. They mention several mod-
els that can be used for modeling choreographies, such as
iBPMN, but present their results on multi-peer automata
called choreography automata. Their approach works for
peers interacting via arbitrary bounded buffers, and only
consider finite conversations. Here, we focused on the trans-
lation of high-level notations (BPMN) to a process algebra
(LOTOS NT) for formal analysis purposes. This encoding,
as well as the realizability check, are tricky issues, and even
error-prone if manually done. This is the reason why some
automated techniques and tools are absolutely essential.

7. CONCLUDING REMARKS
In this paper, we have focused on the part of the BPMN

notation dedicated to the choreography design. We have
proposed an encoding of a significative subset of BPMN
choreographies into the LOTOS NT process algebra. This
allows designers to validate their models using the CADP
verification tools. They can also check whether their chore-
ography model is realizable or not. If realizability is not
ensured, a counter-example is returned which identifies a
source of unrealizability. Our approach is fully automated
and has been validated on many examples.

As far as perspectives are concerned, we would like to
extend the subset of BPMN choreographies accepted by
our approach with hierarchical structuring aspects (sub-
choreography). In this work, we chose a strong notion of
realizability based on behavioural equivalence. Looser re-
alizability notions have been investigated [18], and we plan
to integrate them in our framework. We would also like
to use recent compositional aggregation techniques [11] to
reduce the intermediate state spaces size and improve the
realizability checking computation times. We would like to
propose a smart projection in order to enforce realizability.
If a choreography is unrealizable, we would automatically
generate peers extended with the minimum number of syn-
chronization points to make them respect the choreography
requirements. Finally, this work is a proof of concept on the
automatic checking of realizability for the new BPMN 2.0
choreography notation. Within the context of a project on
assisted electronic procedure fulfillment based on local (or-
chestration) and global (choreographic) contracts, we plan
to experiment with our approach on a real-size case-study
in the e-governance domain.
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BPMN Size Sync. compo. Async. compo. Synchronizability Realizability
choreo. peers interactions gateways LTS (st./tr.) LTS (st./tr.) property [3] sync. async. time

c0007 2 6 6 69/151 192/381
√ √ √

19s
c0025 3 4 2 55/112 143/358

√ √ √
24s

c0053 4 7 1 360/1,058 1,058/3,450
√ × × 29s

c0085 5 10 3 6,697/27,818 30,598/148,320 × √ × 2m40s
c0102 6 9 7 29,056/178,360 97,312/625,160 × × × 68m39s

Table 1: Realizability results for some case studies
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