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The boundary integral equation method (BIM) was one of the first methods in grating theory. It has been
used for the investigation of diffraction gratings of extremely different kind as well as for photonic crystal
diffraction gratings. Besides an overview of three of the most important BIMs for in-plane diffraction, we
present a new BIM for gratings in conical mounting with one profile as well as for separated multilayer gratings
with photonics inclusions using a common description for both approaches. In numerical examples, (1) blazing
in conical mounting is demonstrated at a photonic crystal diffraction grating, (2) the excellent conical efficiency
convergence for a plasmonic structure of two stacked silver rod gratings is shown, and (3) the transmission for
conical incidence is studied at a blazed grating with large period to wavelength ratio.

Keywords: integral equation method; conical diffraction; diffraction gratings; photonic crystal gratings;
plasmonic multilayer gratings

1. Introduction

Considering electromagnetic methods for diffractive optics and photonics it is worth noting that
the starting point for these methods were electromagnetic methods for gratings. Gratings exist al-
ready since about 1821 – and after a long time of scalar theories, since the 1970s, there emerged
several different electromagnetic methods for the computation of the polarisation dependent
complex diffraction amplitudes – for several types of gratings. Consequently, electromagnetic
diffraction methods are established for some decades for spectroscopic gratings (1–3), ‘moth
eye’-anti reflective structures (4), non-paraxial beam splitters and gratings with polarisation
dependent optical functions (5), for example. Comprehensive collections with detailed mathe-
matical descriptions and physical interpretations of the state-of-the-art methods for gratings at
that time are given in (6, 7).

In the 1980s and 1990s these methods became more and more popular and have been applied to
a variety of diffraction problems also in diffractive optics. It has been shown that electromagnetic
diffraction methods are useful for the analysis and improvement (i.e. optimisation) as well as for
the synthesis of gratings (8, 9) which have been designed by scalar methods but have been applied
in the region between paraxial and non-paraxial applicability. In the overview (10), several
electromagnetic methods in diffractive optics are summarized and some of their applications are
discussed.

Especially the local linear grating assumption (LLGA) introduced in (11) was a big step
forward to the electromagnetic treatment of large diffractive lenses. Assuming a linear grating
at local positions of curved lines of diffractive lenses made the application of electromagnetic
grating methods possible. Fresnel-lenses, Bragg-Fresnel-lenses, cylindrical lens arrays, but also
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general (holographic as well as digital) beam- and wavefront shaping elements, summarized as
Fresnel-zone plates (FZPs), nowadays have increasing applications in measurement and for the
coupling of laser beams. At first, the LLGA was used in (11) for the description and optimisation
of cylindrical lens arrays and in (12, 13) for the analysis and synthesis of micro Fresnel-lenses,
including the calculation of the polarisation dependent point spread functions in the focus.
Depending on the numerical aperture (NA) of the FZPs, they often possess minimal zone widths
in the range of the wavelength. The prediction of scalar methods may be too inaccurate for an
exact modelling and electromagnetic methods have to be used for zone widths smaller than
about 10 wavelengths (14).

Surely, the LLGA is an approximation and its application introduces errors compared to a
possibly exact modelling. However, this would imply the electromagnetic modelling of a com-
plete FZP at once or at least of a cross section in case of a cylindrical FZP. The following
methods apply to the last item. The far field intensity distribution in reflection has been cal-
culated in (15) for an ideal conducting material (infinite conductivity model) of a cylindrical
non-periodic diffractive structure using a boundary integral method. A coupled finite element
method – boundary element method (FEM–BEM) has been introduced in (16) and some diffrac-
tive elements have been optimized in (17) using this method. Later, a boundary integral method
has been implemented in (18), working for dielectric materials, too. The full NA is considered
in (19) using a volume integral method for the optimisation of the phase distribution in the far
field. All these methods are able to model cross sections of FZPs with a diameter of only some
hundreds of wavelengths in maximum due to a necessary discretisation. Hence, FZPs or Fresnel-
lenses with large diameters or cross sections compared to the wavelength cannot be treated
using these fully electromagnetic methods. Since most FZPs have cross sections or diameters
from thousands to millions of wavelengths this applies to most FZPs and Fresnel-lenses and
particularly to kinoforms.

At that point, one-dimensional electromagnetic methods for grating diffraction come into play
together with a plane wave decomposition of the incident field and the LLGA. Assuming a
sufficiently large number of zones, a slowly varying zone width, and smoothly curved zones,
LLGA allows for the calculation of complex diffraction amplitudes at local zone positions for
each of the plane waves. A phase-correct superposition of all local amplitudes allows for the
calculation of the point spread function or secondary quantities to qualifying an optical system
(12, 13, 20), for example.

In the last ten years, the possibilities for fabrication of structures in the order and below
the order of the wavelength expanded significantly (21, 22). Using photolithographic methods,
for example, 32 nm – 90 nm ‘wide’ structures on the Si-wafer are really mastered, and smaller
structures can be fabricated soon. Hence, electromagnetic methods become more and more
important for the simulation of diffractive and photonic structures.

The boundary integral equation method (BIM) was one of the first methods in grating theory.
It has been used for the investigation of diffraction gratings of extremely different kind includ-
ing photonic crystal diffraction gratings. Our aim is to give an overview on three of the most
important BIMs for in-plane diffraction highlighting the corresponding literature over some four
decades in what is now a fully developed theory (cf. Sect. 3). Afterwards we present extensions
of the integral method to solve the problem of conical (off-plane) diffraction in Sect. 4. In detail
we report on recent results on conical diffraction of a finitely conducting interface in Sect. 4.1
and we present a new solution method for separated multilayer gratings with photonics inclu-
sions using a common description for both approaches in Sects. 4.2 – 4.5. Examples applying
the new methods in Sect. 5 conclude the work. Especially, (1) blazing in conical mounting is
demonstrated at a photonic crystal diffraction grating generalising a result from the literature
achieved for in-plane diffraction, (2) the excellent conical efficiency convergence for a plasmonic
structure of two stacked silver rod gratings is shown, and (3) the transmission for conical inci-
dence is studied at a blazed grating with large ratio of period to wavelength showing the ability
of the new method. We start by defining the physical problem in the next section.
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2. The Physical Problem for one profile

The grating surface Σ × R is given by a d-periodic, non self-intersecting curve Σ in the (x, y)-
plane. Depending on the particular method, there may be additional conditions necessary on
Σ, for instance, it may not have edges if the numerical method does not allow it, or there is
no overhanging profile allowed. We refer to these differences in the description of the particular
method.

PLEASE INSERT FIGURE 1 ABOUT HERE
The surface Σ × R separates two regions G± × R ⊂ R

3 filled with homogeneous and isotropic
materials of arbitrary real or complex electric permittivity ε± and magnetic permeability µ±,
see Figure 1. The (complex) refractive index of the material is given by n± = co(ε±µ±)1/2, with
co the speed of light and co = (εvacuum µvacuum)−1/2.

It is assumed that the light in form of a monochromatic plane wave with wavelength λ and given
polarisation is incident on the grating from G+ × R, which is filled with a lossless material. We
consider the general case of conical diffraction, i.e., we allow that the wave vector k = (α,−β, γ)
of the incident electric field

P exp
(

i(αx− βy + γz)
)

= Ein exp(iγz)

is not in the x0y plane. Then k can be expressed in terms of the incidence angles φ (the angle
between k and its projection on the x0y plane) and θ (the angle of that projection with the 0y
axis):

k = |k|(sin θ cosφ,− cos θ cosφ, sinφ) with |k| = ω(ε+µ+)1/2 , ω =
2π

λ
. (1)

The complex valued vector P is orthogonal to k and it is convenient to specify the polarisation
by the angles

δin = arctan
|(P , s)|

|(P ,p)|
, ψin = − arg

(P , s)

(P ,p)
,

where the unit vector s is orthogonal to the incident plane spanned by k and the grating normal
(0, 1, 0) and p = (s × k)/|k|.

For the following, we introduce the function κ taking two constant values

κ(x, y) =

{

κ+ = (µ+ε+ − ε+µ+ sin2 φ)1/2 (x, y) ∈ G+ ,

κ− = (µ−ε− − ε+µ+ sin2 φ)1/2 (x, y) ∈ G− ,
(2)

where we choose the square root z1/2 = r1/2 exp(iϕ/2) for z = r exp(iϕ), 0 ≤ ϕ < 2π. Under
the assumption κ(x, y) 6= 0 the time-harmonic electromagnetic formulation of conical diffrac-
tion can be transformed to a problem for two scalar functions in the x0y plane. Writing the
electromagnetic field vectors E and H in the form

E(x, y, z) = E(x, y) exp(iγz) , H(x, y, z) = H(x, y) exp(iγz)

and denoting B = (µ+/ε+)1/2 H, the Maxwell system implies that the z-components Ez, Bz of
the vector functions E and B satisfy Helmholtz equations in G±

(∆ + ω2κ2
±)Ez = (∆ + ω2κ2

±)Bz = 0 , (3)
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and that they are coupled at the interface Σ by so-called transmission conditions

[

Ez

]

Σ
=

[

Bz

]

Σ
= 0 ,

[

ε∂nEz

κ2
+ ε+ sinφ

∂tBz

κ2

]

Σ

=

[

µ∂nBz

κ2
− µ+ sinφ

∂tEz

κ2

]

Σ

= 0 , (4)

where
[

f
]

Σ
denotes the jump of a function f across the interface Σ, and ∂n and ∂t are the normal

and tangential derivatives, respectively.
Furthermore, Ez, Bz must be α quasiperiodic in x, i.e. Ez(x + d, y) = exp(iαd)Ez(x, y), and

satisfy the outgoing wave condition, ensuring the finiteness of the scattered field:
If H ∈ R is chosen such that the grating structure is contained in {|y| < H}, i.e. κ(x, y) = κ+

and κ(x,−y) = κ− for y ≥ H, then the representations

(Ez, Bz) − (Ein
z , B

in
z ) =

∑

n∈Z

(E+
n , B

+
n ) exp( i(αnx+ β+

n y)), y ≥ H,

(Ez, Bz) =
∑

n∈Z

(E−
n , B

−
n ) exp( i(αnx− β−n y)), y ≤ −H,

(5)

are valid with complex constants E±
n , B

±
n , the unknown Rayleigh coefficients. Here we use the

notation

αn = α+
2πn

d
, β±n = (ω2κ2

± − α2
n)1/2 , n ∈ Z , (6)

where the square root is defined as in relation (2) and Ein
z exp(iγz), Bin

z exp(iγz) are the z-
components of the incoming plane wave. Since ℑ(β±n ) ≥ 0, the sums in equations (5) remain
bounded for y → ±∞.

3. Integral methods for in-plane diffraction

By experts knowing various electromagnetic methods, boundary integral equation methods
(short: integral methods) are often considered as the ideal electromagnetic method for the inves-
tigation of diffraction gratings (cf. e.g. (3, p. 370)). This surely comes from the high accuracy
and good convergence of the methods in a wide range of diffraction problems. However, the
mathematical complexity of the integral methods is high and several pitfalls exist during math-
ematical formulation and numerical implementation. Hence, for the integral methods, there will
probably never be a publication with a description of the algorithm for the optical engineer as it
exists for the C-method (23). But, if correctly implemented, integral methods belong to the most
general and fastest methods available. We cite from (3, p. 383): ‘As a result of its generality,
the integral theory is able to deal with practically any kind of grating, including some limiting
cases where it is the only available method.’ Examples are especially echelle gratings used in
high orders and at high angles of incidence (24–27).

Interestingly, in spite of its complexity, integral methods belong to the first electromagnetic
methods investigated theoretically and numerically for grating diffraction calculations, starting
in the mid 1960s. This was mainly due to the good convergence of the integral methods especially
for transverse-magnetic (TM) polarisation.

Additionally, the integral formalism has a close physical connection and hence, can be explained
in a very simple and intuitive manner, given in (7, p. 37). The most important and comprehensive
summary on integral methods known until the 1980s is given in (7, 28), including the theoretical
and numerical difficulties. Meanwhile, several new or improved integral methods have been
published:
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• using two integral equations instead of one for one profile including an efficient algorithm
for overcoated gratings (29–31),

• for multilayer gratings with a large number of layers (32, 33),

• with faster and more stable kernel function evaluation (34),

• with better convergence properties for profiles with edges and for thin coatings (34).

However, all these methods treat only in-plane diffraction problems, where φ = 0. Then κ2
j = εjµj

and conditions (4) pass into the well known conditions on the jump through the interface

[

Ez

]

Σ
=

[

Bz

]

Σ
=

[

µ−1∂nEz

]

Σ
=

[

ε−1∂nBz

]

Σ
= 0 . (7)

Together with these jump conditions, the in-plane diffraction problem (3) – (5) splits into sepa-
rate problems for TE (transverse-electric) and TM polarisation, respectively.

Only recently an integral method for real conical diffraction for a single grating has been
published and implemented (35, 36) leading to an inherently coupled integral equation system.
An outline of this method and an extension to multi-profile diffraction gratings is presented in
Sect. 4.

3.1. Potential-theoretic basis

The integral formulation is based on the application of potential-theoretic methods to the under-
lying differential equations. Quasiperiodic solutions of the Helmholtz equation (∆ + ω2κ2

±)u = 0
satisfying outgoing wave conditions of the form of equations (5) can be represented as potentials
of the single layer V± or of the double layer K± defined by

V±ϕ(P ) =

∫

Γ
ϕ(Q)Ψκ±,α(P −Q) dσ(Q) , K±ϕ(P ) =

∫

Γ
ϕ(Q)∂n(Q)Ψκ±,α(P −Q) dσ(Q) (8)

for P ∈ G±. Here ϕ is an unknown density on Γ, which is one period of the profile curve Σ, and
the integral kernel is the fundamental solution of quasiperiodic Helmholtz equations

Ψκ±,α(P ) = lim
N→∞

i

d

N
∑

n=−N

exp( iαnX + iβ±n |Y |)

β±n
, P = (X,Y ) , (9)

where αn, β
±
n are as in equation (6). It is assumed that β±n 6= 0 for all n ∈ Z and j = 0, 1.

Otherwise, the terms of the fundamental solution with β±n = 0 can be replaced by exp( iαnX),
leading formally to the same equations, but some modifications in their analytical and numerical
treatment are necessary. A more practical treatment of the degenerate case consists in using the
original equations but by a small amount modified wavelengths, thus avoiding the singularity
case.

Another representation of those solutions u is given by Green’s formula

u =
1

2

(

V+∂nu−K+u
)

in G+ , u =
1

2

(

K−u− V−∂nu
)

in G− . (10)

The integral equations for the unknown densities or boundary values on Γ are then obtained
from the transmission conditions (4) and from the known jump relations for the layer potentials.

Due to the different integral representations, there have been developed different integral
methods. Three of the most important methods are outlined in the following parts of this section
highlighting some pros and cons. Whereas in (28, 37), the boundary value problem is transformed
into a single integral equation (cf. Sect. 3.2), it is transformed into a special integral equation
system in (29–31) presented in Sect. 3.4 including several improvements (34). Another method
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(38) based on the first approach, which is able to treat multilayer gratings with a large number
of layers (32, 33), is presented in Sect. 3.3.

We try to characterize the following integral methods by e.g.:

• theoretical formulation (one or two equations, first or second kind),

• numerical solution method (trigonometric, splines, collocation, others),

• kernel function evaluation,
• profile representation: functional or arc length,

• treating of edges.

3.2. Single equation integral method

One of the first stable integral methods for finite conductivity, often tried to copy, was the one,
presented in (37, 39, 40) by D. Maystre. This author and his numerous creative publications have
significantly influenced the development of electromagnetic methods and especially of integral
methods for grating theory and photonics in a manifold manner. For a better distinction, let us
name this method simply IEM (integral equation method). When the method was introduced, Σ
should be given by a smooth function, hence overhangings, vertical side walls and profiles with
edges were not allowed and the discretisation was carried out along the x-axis. As described in
(28), it combines single layer potential representations

Ez = V−w , Bz = V−τ , (11)

in the bottom layer G− (cf. Figure 1) and Green’s formula applied to Ez − Ein
z and Bz − Bin

z

in G+. Then the transmission conditions (7) lead to single integral equations for the unknown
densities

(µ+

µ−
V +(I − L−) + (I +K+)V −

)

w = −2Ein
z ,

(ε+
ε−

V +(I − L−) + (I +K+)V −
)

τ = −2Bin
z .

(12)

Here and in the following we use the boundary integrals (P ∈ Γ)

V ±ϕ =

∫

Γ
ϕ(Q)Ψκ±,α(P −Q) dσQ , K

±ϕ =

∫

Γ
ϕ(Q)∂n(Q)Ψκ±,α(P −Q) dσQ ,

L±ϕ =

∫

Γ
ϕ(Q)∂n(P )Ψκ±,α(P −Q) dσQ .

(13)

The formulations (12) of a single equation for TE and TM polarisation, respectively, has
been considered as advantage in (3) although several problems occur with the calculation of the
double integrals, the solution of which has been addressed and solved in (28, 37). Also for highly
conducting gratings the equations (12) work well: when ℑ(n−) → ∞, then they tend towards
the integral equations describing perfectly conducting gratings. Additionally, this formalism has
been generalised to more complicated gratings of practical interest, for instance for metallic or
dielectric gratings covered with a stack of dielectric layers (28, 41–44), or bimetallic gratings,
i.e., gratings whose surface is composed of two alternating metals (44, 45).

Very interesting is the approach for multiprofile gratings presented in (41) as it allows for
a consecutive solution for a large number of layers. For this reason it is used in the modified
integral method (46) (cf. Sect. 3.3). In each step the solution is determined from the field of the
step before starting with the uppermost layer, however, each step requires a matrix inversion of
O(N3) operations with N the dimension of the matrix.
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Already in (7) one finds the first hint that the integral formalism ‘applies as well, provided
that s is used instead of x in the integrals’, with s being the arc length of the profile function,
depending on x and thus describing a profile parametrisation. This has been realised and demon-
strated in (47), the first specific publication on the diffraction at coated echelles with ‘conformal’
layer. The implementation of the new integral method now includes also parametrised profile
curves and refinement of quadrature nodes at edges, which makes it possible to treat echelle
gratings with thin dielectric layers on a deep grating profile having edges and a large period.
Also, profiles with overhangings and vertical side walls can now be treated. This method has
been applied to an extensive investigation of echelle gratings (24) ranging from low (8 ... 13) to
very high (up to 660) diffraction orders and a year later to extremely high orders (25).

Another approach for gratings with multiple profiles without interpenetration is proposed in
(42). It is based on the computation of scattering matrices for each of the profiles and is enhanced
in (48) to a stable algorithm for an arbitrary number of profiles. The extension of this algorithm
to conical diffraction will be outlined in Sect. 4.3. In (48), the method is applied to theoretical
studies of band gaps of two-dimensional photonic crystals which can be modeled by a stack of
rod gratings. The calculation of the matrices of reflection and transmission for each rod grating
leads to equations of the form (12) with several right hand sides, but the integral operators are
given on a closed curve, the boundary of the rod. Another interesting application is the study of
a new kind of diffraction grating in (49), the photonic crystal diffraction grating, where the rod
gratings have different periods. Electromagnetic results predict in-plane blazing, for instance,
which could lead to a break-through in photonics applications. As a generalisation, we present
off-plane blazing for the same example in Sect. 5.1.

Additionally to the aforementioned methods and investigations, there have been reams of
further investigations on diffraction problems not mentioned here often being the first of its
kind. In this way and thanks to the authors creativity, these methods and investigations brought
a significantly deeper insight into grating theory and its applications.

3.3. Modified integral method

The so-called modified integral method (MIM), introduced in (32, 38), uses the same theoret-
ical approach as presented in the previous Sect. 3.2 and hence, is a modification of the ‘single
equation integral method’ IEM. Furthermore, it uses an adapted Nyström collocation method
with piecewise constant basis functions for solving the integral equations over the profile, which
is a robust and universal technique and can be given parametrised as shown in (30). Hence,
overhanging profiles are allowed and a uniform discretisation along the arc length of the profile
is possible. A regularisation of integrals is used even at corner nodes of a non-smooth boundary,
introduced in (29). Quadrature is performed by the rectangular rule with single-term correc-
tions for (a) the Green function by accounting for its logarithmic singularity and for (b) the
normal derivatives of the Green function by accounting for the profile curvature, respectively.
For smooth profiles, this yields an O(N−3)–accuracy for diffraction amplitudes and efficiencies
of both polarisations. For a faster calculation of the slow converging series of the several kernel
functions in equations (12), a convergence acceleration technique is applied according to the
Euler method like described in (50), for example.

Due to the nature of the boundary method itself, the path of integration for the surface current
density coincides with real surfaces of the grating layer boundaries. Hence, the MIM takes all
variations of the profile functions into account including the fine structure of the profiles. Since
additionally, the MIM also uses the approach to multi-profile gratings mentioned in Sect. 3.2
it can treat bulk and multilayer gratings with real groove profiles in the EUV and X-ray range
with a large number of layers including its stray light from random micro-roughness (32, 33, 51)
which is very important for multilayer applications and is noteworthy for integral methods.
Fourier expansion methods, in contrast, represent groove profiles in a distorted form yielding
artificial field enhancements (52) and a smoothing of edges (6). The MIM enables one to deal with
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almost all kinds of grating problems, including such difficult cases like the investigation of echelle
gratings in low, medium, and very high (up to 1431) diffraction orders (26), with the deviation
to measured data being less than two percent, a very noteworthy result as well. In addition
to the ‘conformal’ coating type studied in (47), a new type of coating called ‘non-conformal’
layer was introduced in (53). The apex of both, the conformal and the non-conformal layers, are
translationally displaced normal to the grating plane, whereas the profile of the non-conformal
layer is additionally tilted with the apex of the coating profile as pivotal point, so that tapered
coatings on the two facets of the echelle are created. As stated in (53), it is true that a part of
the Green function values on the upper profile for conformal layers can be reused from the lower
profile, speeding up the numerical computation. This realisation was already proposed in (29)
and it has also been implemented in the integral method described in the following Sect. 3.4
from the beginning. However, such a re-use is not possible for non-conformal layers.

Clearly, the MIM can deal with nearly all kinds of grating diffraction problems. Its greatest
benefit, however, seems to be the fast treatment of multilayer gratings with real groove profiles
in the EUV and X-ray range with a large number of layers including micro-roughness.

3.4. Integral equation system method with parametrisation

The algorithm and method (29–31, 54), implemented from 1984 to 1986, is the first boundary
integral method using a parametrisation of the grating profile from the beginning, whereas the
IEM described in Sect. 3.2 started with a discretisation along the x-axis and a parametrisation
was implemented later (47). This also reflects the name of the method: Integral Equation System
Method with Parametrisation (IESMP). Thus, all types of profiles could be treated with the
IESMP from the beginning including profiles with vertical side walls and overhangings occurring
in the fabrication of holographic gratings by overdevelopment or by underetching of lithographic
structures. The first publication of the IESMP (29) uses a general operator calculus for describing
the extension to overcoated gratings, for the faster solution of multiple coated gratings, and for
the treatment of partially overcoated gratings.

For the one-profile case the system of integral equations

V +w − (I +K+)τ = 2uin

cV −w + (I −K−)τ = 0
(14)

is solved, where for TE polarisation, c = 1, uin = Ein
z and

w = ∂n(Ez − Ein
z )+ = ∂nE

−
z , τ = (Ez − Ein

z )+ = E−
z ,

whereas for TM polarisation, c = ε+/ε−, uin = Bin
z and

w = ∂n(Bz −Bin
z )+ = c−1∂nB

−
z , τ = (Bz −Bin

z )+ = B−
z .

Initially, the arising linear equations were solved by a direct method, later an iterative method
(55) was used reducing the numerical complexity of the solution to O(N2) for smooth profiles.

Additionally, the numerical tools are applied also to single coated gratings, where an alternative
method compared to (28) leads to an integral equation system similar to equation (14), but with
products of operators. This approach needs only the (iterative) solution of the resulting linear
equation system and no matrix inversion is necessary speeding up the numerical calculation.
Additionally, a part of the Green function values on the upper profile are reused from the lower
profile for conformal layers as already mentioned in Sect. 3.3.

Moreover, an efficient summation method for the integral kernels and special treatment of the
integrals V ± having logarithmic singularities (30, 31) ensured O(N−3)–accuracy of the IESMP
for smooth profiles. The summation method consists in a power series representation of the kernel
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functions by a polynomial approximation of the coefficients to the fifth order (31, Appendix
A). Soon, theoretical as well as practical investigations on the effects of grating diffraction
have been performed (56–58). The IESMP was explained in more detail and compared with
other electromagnetic methods and with measurements in (30, 31) from infrared to synchrotron
radiation applications (59).

Further improvements of the IESMP are reported in (34) demonstrating the power of the
method for echelle gratings with very thin coatings in a high diffraction order. Besides trigono-
metric functions also splines can now be used as trial functions for the collocation method,
which together with a suitable mesh refinement towards profile corners allows to preserve the
high convergence rates also for profiles with edges (as e.g. echelles). An iterative solver for the
discrete systems was implemented with a preconditioner constructed such that the number of
iterations is almost independent on the number of unknowns. This reduces the numerical com-
plexity to O(N2) in all cases including problems with high wave numbers (large ratios of period
to wavelength) which formerly, due to the oscillatory behaviour of the kernel functions, caused
serious troubles for the iterative solver. Another important improvement is the implementation
of an exponentially convergent quadrature rule with graded meshes for integrals with weakly
singular or almost singular kernels, occurring in the treatment of corners or very thin coatings.
Therefore, a summation algorithm for the integral kernels based on Ewalds method is used (60)
which is better suited to small moduli |y|, occurring more frequently in the new quadrature rule
due to the graded meshes. Altogether, the improvements resulted in one of the most accurate
and fastest diffraction methods available, especially for large numbers of discretisation points
necessary for applications with large ratios of grating period to wavelength, for example.

4. Integral equations for conical diffraction

The integral method for in-plane diffraction has been implemented very early, whereas conical
diffraction of a finitely conducting interface has not been tackled for a long time. This was
one of the real deficiencies of the method. Other methods like the differential, Fourier modal,
coordinate transformation, and finite element method implemented conical diffraction much
earlier and often from the introduction of the particular method. The conical diffraction for a
perfectly conducting grating is relatively simple and can be determined from the two fundamental
polarisations for a modified in-plane diffraction case (cf. e.g. (28, Sect. 3.7)). A first theoretical
derivation of the integral method for conical diffraction of a finitely conducting interface has
been given in (40) as referenced in (7), but has not been published otherwise and seemed not to
be implemented. A boundary integral method for conical diffraction of three dimensional finitely
conducting lithographic grating structures has been published in (61, 62). However, an electrical
engineer’s approximate approach (63) has been used to avoid the singularity issue and the
mathematical problems connected therewith, rather than the rigorous approach, addressed here.
Other interesting integral methods dealing with conical diffraction are e.g. (64, 65), avoiding the
evaluation of the quasi-periodic Greens functions by Neumann-to-Dirichlet maps.

In this section, we present the generalisation of Maystre’s in-plane integral formulation to the
conical diffraction case. Based on the integral equations for one interface given in Sect. 4.1, it
is rather straightforward to extend the method to gratings with stacks of interfaces in a com-
mon description. This is demonstrated in Sects. 4.2 – 4.5 for multilayer gratings with separated
interfaces of arbitrary finite conductivity, including photonic crystal and plasmonic diffraction
gratings. The extension of this approach to the other interesting case of stacks of possibly inter-
penetrating layers has been studied theoretically and implemented quite recently. It is actually
tested and will be discussed in a forthcoming paper.
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4.1. Gratings with one profile

At first a formulation for one profile is considered (cf. Sect. 2 for the notation). It extends
the approach described in Sect. 3.2 and was introduced in (35). Using the single layer potential
representations (11) for Ez, Bz in the bottom layer G− (cf. Figure 1), the transmission conditions
(4) lead to a system of integral equations for the unknown densities w and τ on Γ:

(ε−κ
2
+

ε+κ2
−

V +(I − L−) + (I +K+)V −
)

w − sinφ
κ2
− − κ2

+

κ2
−

V +∂tV
−τ = −2Ein

z ,

sinφ
κ2
− − κ2

+

κ2
−

V +∂tV
−w +

(µ−κ
2
+

µ+κ
2
−

V +(I − L−) + (I +K+)V −
)

τ = −2Bin
z ,

(15)

where the boundary integrals are defined in equation (13). Obviously, the main theoretical and
numerical difficulty is the product V +∂tV

− of three operators. Formal integration by parts gives

V +∂tϕ =

∫

Γ

∂tϕ(Q)Ψκ+,α(P −Q) dσQ = −

∫

Γ

ϕ(Q)∂t(Q)Ψκ+,α(P −Q) dσQ .

The integral on the right, denoted by H+ϕ, does not exist in usual sense, since the tangential
derivative ∂t(Q)Ψωκ0,α(P −Q) has a strong singularity for Q→ P . But it can be interpreted as
singular integral

H+ϕ(P ) = lim
δ→0

∫

Γ\Γ(P,δ)

ϕ(Q)∂t(Q)Ψκ+,α(P −Q) dσQ , (16)

where Γ(P, δ) is the sub-arc of Γ of length 2δ with the mid point P . Therefore, one has to apply
mathematical and numerical methods for singular integral equations in order to analyse and
solve the system (15). Roughly spoken, in the case of a smooth interface Σ the system is solvable
and provides a solution of the conical diffraction problem if ε− 6= −ε+ and µ− 6= −µ+. If the
profile has corners, then the solvability of the system (15) can be guaranteed if the ratios ε−/ε+
and µ−/µ+ do not belong to a closed interval [ρ, ρ−1] for some ρ < −1 depending on the angles
at corners of Σ.

These results are valid also for rod gratings, where in contrast to the relief gratings considered
above, the d-periodic profile Σ is not continuous, but consists of a union of non-intersecting closed
curves {Γ+nd(1, 0)}n∈Z. Then the dielectric region G+×R is unbounded also for y → −∞, and
the region G− × R contains rods of material coefficients ε−, µ−. Consequently, the differential
formulation (3), (4) for Ez, Bz holds, only the second radiation condition in equation (5) changes
to

(Ez, Bz) =
∑

n∈Z

(E−
n , B

−
n ) exp( i(αnx− β+

n y)), y ≤ −H. (17)

Representing Ez, Bz in the interior of Γ as single layer potentials (11), conditions (4) lead, as
before, to the integral equation system (15), but now the integrals are defined over the closed
curve Γ.

Moreover, trigonometric collocation methods for solving system (15) converge under the as-
sumptions made above. Some numerical results for gratings with continuous interface are re-
ported in (36). For profiles with corners the algorithm uses a hybrid spline-trigonometric method
on graded meshes. The obtained results confirm that the code is accurate and efficient for solv-
ing off-plane diffraction problems including high-conductive gratings, surfaces with edges, real
profiles, and gratings working at short wavelengths.
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4.2. Multi-profile gratings with separated interfaces

Let us now consider a multilayer diffraction grating with period d formed by a stack of N relief
and/or rod gratings characterized by grating profiles Σj , j = 0, . . . , N − 1.

PLEASE INSERT FIGURE 2 ABOUT HERE
More precisely, the structure consists of material layers which are separated by continuous

profiles and may contain rod gratings. The different media are numbered from top to bottom,
see Figure 2, G0 and GN are the semi-infinite top and bottom layers. To apply a scattering matrix
approach we assume that the interfaces Σ0, . . . ,ΣN−1 between the N + 1 homogeneous material
domains G0, . . . , GN are separated, i.e. between adjacent interfaces Σj and Σj−1 there exists
a strip {uj < y < dj−1} not crossing the interfaces. The structure of the multi-profile grating
is characterized by the permittivity and permeability functions ε(x, y) and µ(x, y), which are
constant on the domains Gj . Its values in G0 and GN are denoted by ε0, εN and µ0, µN ,
respectively. Further we denote

κ2
0 = ε0µ0 cos2 φ , κ2

N = εNµN − ε0µ0 sin2 φ .

As in the case of one interface the z-components Ez, Bz = (µ0/ε0)
1/2Hz satisfy Helmholtz

equations

(

∆ + ω2(εµ− ε0µ0 sin2 φ)
)

Ez =
(

∆ + ω2(εµ− ε0µ0 sin2 φ)
)

Bz = 0 (18)

in the domains Gj and the transmission conditions at the interfaces Σj

[

Ez

]

Σj
=

[

Bz

]

Σj
=

[

ε∂nEz

κ2
+ ε0 sinφ

∂tBz

κ2

]

Σj

=

[

µ∂nBz

κ2
− µ0 sinφ

∂tEz

κ2

]

Σj

= 0 . (19)

The light is incident from G0 and we are interested in the Rayleigh coefficients E±
n , B

±
n of the

series expansions

(Ez, Bz) = (Ein
z , B

in
z ) +

∑

n∈Z

(E+
n , B

+
n ) exp( i(αnx+ β(0)

n y)), y ≥ H,

(Ez, Bz) =
∑

n∈Z

(E−
n , B

−
n ) exp( i(αnx− β(N)

n y)), y ≤ −H,
(20)

where β
(j)
n = (ω2κ2

j − α2
n)1/2 and the half spaces {y ≥ H} and {y ≤ −H} are contained in the

semi-infinite layers G0 and GN , respectively.

4.3. Recursive algorithm

We study the off-plane diffraction for gratings with separated interfaces using the algorithm
proposed by Maystre (48) for the in-plane case. In any of the strips {uj < y < dj−1} the
functions ε and µ take constant values and we introduce its wave number κj by

κ2
j = εµ− ε0µ0 sin2 φ .

As quasiperiodic solutions of the Helmholtz equation

(∆ + ω2κ2
j)u = 0
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in the strips {uj < y < dj−1} between Σj and Σj−1, j = 1, . . . , N − 1, the functions Ez, Bz are
smooth and bounded. Hence, for y ∈ (uj , dj−1)

(Ez, Bz) =
∑

n∈Z

(

(aj
n, c

j
n) exp(−iβ(j)

n y) + (bjn, d
j
n) exp(iβ(j)

n y)
)

exp(iαnx) with β(j)
n = (ω2κ2

j − α2
n)1/2 .

Assign to each profile Σj a characteristic y-coordinate yj , for example yj = Yj(0) for a given
parametrisation (Xj(t), Yj(t)) of the profile Σj . Recall that y0 > y1 > . . . > yN−1. Using the
notation

(Aj
n, C

j
n) = exp(−iβ(j)

n yj)(a
j
n, c

j
n) , (Bj

n,D
j
n) = exp(iβ(j)

n yj)(b
j
n, d

j
n) ,

(Aj
n, C

j
n) = exp(−iβ(j+1)

n yj)(a
j+1
n , cj+1

n ) , (Bj
n,D

j
n) = exp(iβ(j+1)

n yj)(b
j+1
n , dj+1

n ) ,
(21)

the field in {uj < y < dj−1} above Σj is given by

(Ez, Bz) =
∑

n∈Z

[(Aj
n, C

j
n) exp(−iβ(j)

n (y − yj)) + (Bj
n,D

j
n) exp(iβ(j)

n (y − yj))] exp(iαnx), (22)

whereas in {uj+1 < y < dj} below Σj

(Ez, Bz) =
∑

n∈Z

[(Aj
n, C

j
n) exp(−iβ(j+1)

n (y − yj)) + (Bj
n,D

j
n) exp(iβ(j+1)

n (y − yj))] exp(iαnx). (23)

The terms (Aj
n, C

j
n) exp(−iβ

(j)
n (y − yj)) exp(iαnx) and (Bj

n,D
j
n) exp(iβ

(j+1)
n (y − yj)) exp(iαnx)

correspond to incident waves on the profile Σj, whereas (Bj
n,D

j
n) exp(−iβ

(j)
n (y − yj)) exp(iαnx)

and (Aj
n, C

j
n) exp(iβ

(j+1)
n (y− yj)) exp(iαnx) represent the diffracted waves. Thus, the coefficients

in equations (22) and (23) are linked by the reflection and transmission matrices of the grating
having only the interface Σj. For a compact notation we introduce the infinite coefficient vectors

Aj = (. . . , Aj
−1, A

j
0, A

j
1, . . . , C

j
−1, C

j
0 , C

j
1 , . . .)

T , Bj = (. . . , Bj
−1, B

j
0, B

j
1, . . . ,D

j
−1,D

j
0,D

j
1, . . .)

T ,

and similarly Aj and Bj, since Ez and Bz cannot be treated independently for conical diffraction.
Then equations (21) can be written in the form

Aj−1 = γ−1
j Aj , Bj−1 = γjBj , (24)

with the infinite diagonal matrix

γj = diag(. . . , exp(iβ
(j)
−1hj), exp(iβ

(j)
0 hj), exp(iβ

(j)
1 hj), . . . , exp(iβ

(j)
−1hj), exp(iβ

(j)
0 hj), . . .),

with

hj = yj−1 − yj > 0 .

Denoting by rj, tj the (infinite) reflection and transmission matrices of the grating with profile
Σj for illumination from above and by r′j , t

′
j the corresponding matrices for illumination of Σj

from below, for j = 1, . . . , N − 2 the coefficient vectors are linked by the relations

Bj = rjAj + t′jBj , Aj = tjAj + r′jBj . (25)
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The same relation for j = 0 is obtained from equation (20) written as

(Ez, Bz) = (A0
0, C

0
0 ) exp( iαx− iβ(y − y0)) +

∑

n∈Z

(B0
n,D

0
n) exp(iβ(0)

n (y − y0)) exp(iαnx) .

The integral method for calculating the reflection and transmission matrices for one-profile
gratings will be considered in the next subsection. Here we provide the formulas for solving the
multi-profile problem with given input A0 and vanishing BN−1, which can be derived similar to
(48). The idea is to look for a recursion for the operators Rj ,Tj such that

Bj = RjAj , AN−1 = TjAj , j = N − 1, . . . , 0.

By writing equation (20) as

(Ez, Bz) =
∑

n∈Z

(AN−1
n , CN−1

n ) exp(−iβ(N)
n (y − yN−1)) exp(iαnx) , y < −H,

one derives the initial values

RN−1 = rN−1 , TN−1 = tN−1 . (26)

As in (48) relations (25) and (24) lead to the recursion formulas for j = N − 1, . . . , 1

Rj−1 = rj−1 + t′j−1γjRj

(

I − γjr
′
j−1γjRj

)−1
γjtj−1 ,

Tj−1 = Tj

(

I − γjr
′
j−1γjRj

)−1
γjtj−1 ,

(27)

and finally one gets the desired coefficient vectors

B0 = R0A0 , AN−1 = T0A0 . (28)

4.4. Determination of the scattering matrices

In order to find the scattering matrices rj, tj and r′j, t
′
j for given j = 0, . . . , N − 1, one has to

solve one-profile grating problems with incident waves from above and below for the profile Σj

shifted by −yj. More precisely, one has to find the Rayleigh coefficients of the diffracted fields
for input waves with z-components

(

u+
δ

v+
δ

)

=

(

1 − δ

δ

)

exp( iαnx− iβ(j)
n y) ,

(

u−δ
v−δ

)

=

(

1 − δ

δ

)

exp( iαnx+ iβ(j+1)
n y) , δ = 0, 1 . (29)

We choose the indices n ∈ [m,M ] such that at least all propagating modes for all one-profile

gratings are covered, i.e. we require that β
(j)
n /∈ R for all n /∈ [m,M ] and j. Then all matrices

appearing in the recursion algorithm (26 - 28) are M×M matrices with M = 2(M −m+ 1).
If we use the ordering

Aj = (Aj
m, . . . , A

j
M , C

j
m, . . . , C

j
M )T , Bj = (Bj

m, . . . , B
j
M , B

j
m, . . . , B

j
M )T , . . .

of the components of the coefficient vectors Aj , . . ., then γj is a diagonal matrix of the form

γj = diag(exp(iβ(j)
m hj), . . . , exp(iβ

(j)
M hj), exp(iβ(j)

m hj), . . . , exp(iβ
(j)
M hj)) .
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First we consider the calculation of the scattering matrices for a continuous interface Σj.
It separates two layers and the one-profile problem corresponds to the situation depicted in
Figure 1. We denote the semi-infinite domains above and below the profile Σ = {(x, y − yj) :
(x, y) ∈ Σj} by G± and by ε±, µ± the material coefficients above and below Σ, respectively.
Thus we keep the notation of Sect. 4.1, but the difference to the problem there is the occurrence
of different incident waves from above and below and the fixed values ε0 and µ0 in condition
(19).

For illumination from above one has to solve the following problem: Setting

Ez =

{

u+ + u+
δ in G+ ,

u− in G− ,
Bz(x, y) =

{

v+ + v+
δ in G+,

v− in G−,

find α-quasiperiodic solutions of the Helmholtz equations

in G+ ∆u+ + ω2κ2
+u+ = ∆v+ + ω2κ2

+v+ = 0 , (30)

in G− ∆u− + ω2κ2
−u− = ∆v− + ω2κ2

−v− = 0 , (31)

where now κ2
± = ε±µ± − ε0µ0 sin2 φ. From equation (19) one gets the jump conditions on Σ

u− = u+ + u+
δ ,

ε− ∂nu−
κ2
−

−
ε+∂n(u+ + u+

δ )

κ2
+

=
ε0 sinφ(κ2

− − κ2
+)

κ2
+κ

2
−

∂tv− ,

v− = v+ + v+
δ ,

µ−∂nv−
κ2
−

−
µ+∂n(v+ + v+

δ )

κ2
+

= −
µ0 sinφ(κ2

− − κ2
+)

κ2
+κ

2
−

∂tu− .

(32)

For illumination from below we set

Ez =

{

u+ in G+ ,
u− + u−δ in G− ,

Bz =

{

v+ in G+,
v− + v−δ in G−.

The α-quasiperiodic functions u±, v± have to satisfy the Helmholtz equations (30), (31) and the
transmission conditions

u− + u−δ = u+ ,
ε−∂n(u− + u−δ )

κ2
−

−
ε+ ∂nu+

κ2
+

=
ε0 sinφ(κ2

− − κ2
+)

κ2
+κ

2
−

∂tv+ ,

v− + v−δ = v+ ,
µ−∂n(v− + v−δ )

κ2
−

−
µ+∂nv+
κ2

+

= −
µ0 sinφ(κ2

− − κ2
+)

κ2
+κ

2
−

∂tu+ .

(33)

Choosing as before u−, v− as single layer potentials (11), we derive from equations (32) and
(33) the system of singular integral equations

(ε−κ
2
+

ε+κ2
−

V +(I − L−) + (I +K+)V −
)

w + sinφ
ε0(κ

2
− − κ2

+)

ε+κ2
−

H+V −τ = U ,

− sinφ
µ0(κ

2
− − κ2

+)

µ+κ2
−

H+V −w +
(µ−κ

2
+

µ+κ2
−

V +(I − L−) + (I +K+)V −
)

τ = V ,

(34)

with the singular integral H+ defined in equation (16). For illumination from above the right-
hand side is given by

U = −2u+
δ , V = −2 v+

δ ,
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whereas in the case of illumination from below

U =
ε−κ

2
+

ε+κ
2
−

V +∂nu
−
δ − (I +K+)u−δ + sinφ

ε0(κ
2
− − κ2

+)

ε+κ
2
−

H+v−δ ,

V =
µ−κ

2
+

µ+κ
2
−

V +∂nv
−
δ − (I +K+)v−δ − sinφ

µ0(κ
2
j+1 − κ2

j )

µ+κ
2
−

H+u−δ .

In the case of a rod grating with a discontinuous profile the domain G− is bounded. Using the
single layer potential ansatz in G−, illumination from above is treated as before. Illumination
from below can be treated by setting

Ez =

{

u+ + u−δ in G+ ,
u− in G− ,

Bz =

{

v+ + v−δ in G+,
v− in G−,

which results in the system (34) with the right-hand side

U = −2u−δ , V = −2 v−δ .

Thus, in all considered cases the system (34) can be used to determine the scattering matrices.
Moreover, it can be shown that the solvability of system (34) does not depend on εo and µo.
Similar to the system (15) the equations are solvable, if the ratios ε−/ε+ and µ−/µ+ do not
belong to an interval on the negative axis. Thus the applicability of the algorithm is independent
of the incidence angles θ and φ as well as of the polarisation.

4.5. Numerical computation of the scattering matrices

The numerical approximation of the scattering matrices is performed by an extension of the
method reported in (36). The integral operators in the system (34) are discretized by collocation
with trigonometric polynomials as trial functions in case of a smooth profile Γj, which gives
approximation order O(N−3), where N is the number of discretisation points. Here one has to
compute the fundamental solutions and their normal and tangential derivatives, which is rather
involved, only for the discretisation points. To retain a similar high convergence rate also for
profiles with corners, it is necessary to choose trial functions better adapted to the singularities of
the solution near corner points, which are in general of the form O(r−ρ), ρ < 1, r is the distance to
a corner point. As discussed in (34), one good choice for solving the integral equations of classical
diffraction are splines as trial functions and mesh refinement towards the profile corners. However,
the accurate computation of the integrals applied to splines requires high order quadrature
rules and therefore the computation of the fundamental solutions and their derivatives for a
large number of quadrature points. To combine the efficient computation of the integrals for
trigonometric polynomials with the good approximation properties of piecewise polynomials on
graded meshes near edges we use a hybrid trigonometric-spline collocation method, where only
a fixed number of trigonometric polynomials is replaced by splines supported in the vicinity of
corner points. More details of this approach and some numerical results for one-profile gratings
are given in (36).

Compared to the case of one-profile gratings the computation of the scattering matrix requires
to solve these equations with several right-hand sides, which correspond to the illumination
modes (29) for a finite number of integers n and δ = 0, 1. The advantage of the proposed integral
formulation is that, after having discretised system (34) and determined the LU factorisation of
the discrete matrix, which is the most time-consuming part of the algorithm, the solutions of
the system with the various right-hand sides can be found immediately. So, the computing time
to determine the scattering matrix of a given profile is comparable to a simple solution of the
equation using a direct solver.
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5. Examples

5.1. Blazing at a photonic crystal diffraction grating in conical mounting

Our first example applies the new theory from Sect. 4.2 and compares simulations of blazing
effects at a photonic crystal diffraction grating (cf. Figure 3) made from dielectric rods with
refractive index n = 3 in air presented in (49).

PLEASE INSERT FIGURE 3 ABOUT HERE
The configuration consists of two parts: a rod grating of period D in −1st order Littrow

mounting and an underlying two-dimensional photonic crystal with hexagonal symmetry and
period d = 1. Littrow mount of −1st order is characterised by the condition sin θL = λ/(2D),
with θL being the Littrow angle. The grating and the photonic crystal have infinite extensions
in the periodic x-direction whereas the extension of the photonic crystal in y-direction is limited
to mPhC = 6 grids separated by a distance h = d

231/2, the same distance, the rod grating is
separated from the photonic crystal. The grating and the photonic crystal are constructed such
that the photonic crystal has a band gap in s–polarisation for wavelengths λ, the grating can
blaze for. Then the photonic crystal acts as lossless mirror and 100% efficiency in one diffraction
order is possible. The radius of the photonic crystal rods is rPhC = 0.2 and the period of the rod
grating is chosen to be D = 2d, corresponding to the results presented in Figure 2 of (49). We
verified all these simulations with various radii for the grating rods.

PLEASE INSERT FIGURE 4 ABOUT HERE
Then the radius of the grating rods has been fixed to be Rg = 0.15 possessing a strong blazing

effect for in–plane diffraction. To check for a blazing effect also in conical mounting, Figure 4
presents efficiency results for the −1st diffraction order for s–polarisation incidence with θ = θL
but φ = 10◦. Obviously, the efficiency is decreased by a small amount due to the deviation of
directions between s–polarisation and rods. This has been compensated in Figure 5 by setting
the polarisation angle δin = 80◦ remembering that s–polarisation corresponds to δin = 90◦.

PLEASE INSERT FIGURE 5 ABOUT HERE
Then, the −1st diffraction order reaches 100% again and hence, we have demonstrated a blazing

effect also in conical mounting. Let us remark that also other geometries, like rhomboids instead
of the rods for the grating or for the photonic crystal can be considered – and the effects are
quite similar.

5.2. Stacked plasmonic gratings in conical incidence and convergence behaviour

The excellent convergence of the new theory from Sect. 4.2 is especially demonstrated for the
case of stacked metallic plasmonic gratings for conical incidence since convergence for conven-
tional gratings with conical incidence has already been presented in (36). In (66) an example is
presented using a plasmonic multilayer structure consisting of two stacked plasmonic gratings
of equal period d = 500 nm and thickness t = 50 nm with a half pitch shift between the two
gratings and a separation distance of w = 20 nm. The slits S2 of the bottom grating are centered
to be in the middle of the metal rods of the upper grating, and vice versa. All metal rods consist
of silver and have a rectangle profile. The widths of the slits are: S1 = 250 nm and S2 = 40 nm.
The proposed structure forms rectangular metal/insulator/metal cavities and a waveguide with
an air gap of w = 20 nm between the gratings.

In the following we show similar properties with elliptical silver rods as shown in Figure 6
instead of rectangular ones.

PLEASE INSERT FIGURE 6 ABOUT HERE
To achieve a similar pronounced resonance peak as for the rectangle profile, the structure

is optimised, resulting in S1 = 150 nm, S2 = 50 nm, and w = 10 nm for the elliptical rods.
Figure 7 presents the in-plane TM polarisation angle dependent zero order reflection of the two
stacked plasmonic grating structures for λ = 785 nm showing a similar behaviour for elliptical
and rectangular silver rods.
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PLEASE INSERT FIGURE 7 ABOUT HERE
Interestingly, the pronounced resonance peak at about θ = 34◦ disappears if one switches over

to conical incidence. This is demonstrated in Figure 8 presenting angle dependent zero order
reflection for the same structures in conical incidence with φ = 30◦ for two polarisation angles
δin = 90◦ and δin = 52◦. None of the polarisations is able to produce a similar pronounced
resonance peak as the in-plane TM polarisation incidence.

PLEASE INSERT FIGURE 8 ABOUT HERE
Our aim is not to discuss the reasons for the disappeared resonance peak, rather we show the

excellent efficiency convergence of the new theory of Sects. 4.2 – 4.5 in Figure 9, especially for
the above investigated silver structures in conical incidence. The solid curve is for elliptical silver
rods, whereas the dashed curve stands for rectangular silver rods.

PLEASE INSERT FIGURE 9 ABOUT HERE
The data documents a convergence according to N−3 meaning that a doubling of N reduces

the error by a factor of 1/8. Obviously, the errors are smaller for the smooth elliptical rods
than for rectangular ones whereas the convergence rate is the same. An accuracy of 10−4 for
the efficiency is easily achieved with N = 50 discretisation points for elliptical rods, whereas for
rectangular rods, about N = 300 discretisation points are necessary. Nevertheless, both cases
take only a fraction of a second up to a few seconds on an usual PC. The CPU times for the
above example on an Intel® Core™ 2 Duo P8400 Processor @ 2.26 GHz are given in Table 1.

PLEASE INSERT TABLE 1 ABOUT HERE

5.3. Blazed diffraction grating in conical incidence

Our third example applies the theory from Sect. 4.1 and deals with a blazed transmission grating
in conical diffraction for the ratio of period to wavelength approaching 180. As mentioned in the
introduction Sect. 1, the LLGA is used to model a kinoform DOE for the correction of longitu-
dinal and transverse chromatic aberrations in broadband optical systems such as photographic
lenses, head mounted displays or infrared lenses. Consequently, the grating represents a local
zone width of the kinoform. Due to the necessary broad visible spectrum from λ0 = 400 nm to
λ0 = 700 nm, the refractive power may not be strong and thus the minimal zone width of the
kinoform becomes large. In typical cases, the zone width d exceeds a value of 80 µm, in rare
cases the smallest zone width is d ≥ 20 µm. Kinoforms are usually characterised by a blazed
surface-relief profile. The groove depth h = λ0/(n− − 1) is determined by the design wavelength
λ0 = 550 nm and n− the refractive index of the kinoform material PMMA with n−(λ0) = 1.49357
and hence h = 1114 nm.

In (67), several scalar approximations for the diffraction efficiency η as a function of various
parameters are compared with rigorous electromagnetic calculations.

PLEASE INSERT FIGURE 10 ABOUT HERE
In Figure 10 we present the dependency of the 1st order diffraction efficiency for unpolarised

light in transmission on the conical angle φ with fixed in-plane angle θ = 0◦ and for two zone
widths d = 20 µm and d = 80 µm for the three wavelengths λ0 = 550 nm, λ = 650 nm, λ =
450 nm. This is compared with the scalar analytical diffraction efficiency expression (4) of (67)
by substituting θ by φ. Please note, that all efficiencies are parts of transmitted light which is
assumed to be 100%. In other words, reflected light is not considered here as it does not directly
influence the image of the lens and can be reduced by anti-reflection coatings, for example.

Comparing the results for conical incidence in Figure 10 with the results in Figures 7–9 of
(67) for in-plane incidence (η1(θ) and φ = 0◦), we observe a quite similar behaviour. Only for
red light, corresponding to λ = 650 nm, the efficiency is better by a few percentages for conical
incidence compared to in-plane incidence.

Let us remark that the presented method can likewise treat larger grating periods of d =
150 µm or d = 200 µm with wavelengths in the visible spectrum as shown in (67), for example.

Also scattering investigations with measured or simulated profiles of surfaces presented in (68)
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for solar cells would be straightforward applications due to the parametrisation property of the
method. As mentioned in (31), problems with dielectric materials can surely be treated by the
method as long as dn−/λ ≤ 500, or even more.

6. Summary

An overview of three of the most important integral equation methods for in-plane diffraction
is given in Sect. 3 and their improvements as well as their pros and cons are highlighted, being
the first overview since the comprehensive work in (7, 28). These are (1): the single equation
integral method (IEM), (2): the modified integral method (MIM), and (3): the integral equation
system method with parametrisation (IESMP), and the methods are discussed from a common
perspective.

Then, in Sect. 4 an integral method for conical diffraction of a finitely conducting grating and
a new method of a multilayer grating with separated interfaces of arbitrary finite conductivity
are given in a common description. The recursive algorithm for the solution of the problems
given in Sect. 4.3 and the determination of the scattering matrices given in Sect. 4.4 generalise
the algorithm proposed by Maystre (48) for in-plane diffraction and are an extension of the
method reported in (36). The numerical approximation of the scattering matrices is likewise an
extension of (36).

The solution of the numerical systems is guaranteed under rather weak conditions: in the case
of a single interface the system is solvable and provides a solution of the conical diffraction
problem, if the ratios ε−/ε+ and µ−/µ+ of the permittivities and the permeabilities of both
materials do not belong to an interval on the negative axis, which degenerates to the point
−1 for a smooth grating profile. Similarly, for multilayer gratings with separated interfaces the
presented algorithm solves off-plane diffraction, if on each interface the adjacent materials fulfil
the above mentioned condition. Hence, one of the last real deficiencies of the integral method
has been resolved for such gratings with inclusions.

The obtained results confirm that the code is accurate and efficient for solving off-plane diffrac-
tion problems from zero order gratings to arbitrary and real profiles of fabricated photonic and
plasmonic structures, including surfaces with edges and gratings possessing a large period to
wavelength ratio.
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(12) Kleemann, B.H.; Güther, R. Zonal diffraction efficiencies and imaging of micro–Fresnel lenses. J. mod. Opt. 1998, 45,

1405–1420.
(13) Sheng, Y.; Feng, D.; Larochelle, S. Analysis and synthesis of circular diffractive lens with local linear grating model

and rigorous coupled-wave theory. J. Opt. Soc. Am. A 1997, 14, 1562–1568.
(14) Shiono, T.; Kitagawa, M.; Setsune, K.; et al. Reflecting micro-Fresnel lenses and their use in an integrated focus sensor.

Appl. Opt. 1989, 28, 3434–3442.



November 9, 2010 7:35 Journal of Modern Optics jmogube˙1109

REFERENCES 19

(15) Prather, D.W.; Mirotznik, M.S.; Mait, J.N. Boundary Element Method for Vector Modeling Diffractive Optical Ele-
ments. In: Holographic and Diffractive Optics Technology II, Proc. SPIE Vol. 2404; pp 28–39.

(16) Mirotznik, M.S.; Prather, D.W.; Mait, J.N. Hybrid Finite Element – Boundary Element Method for Vector Modeling
Diffractive Optical Elements. In: Holographic and Diffractive Optics Technology III, Proc. SPIE Vol. 2689; pp 2–13.

(17) Prather, D.W.; Mirotznik, M.S.; Mait, J.N. Design of Subwavelength Diffractive Optical Elements Using a Hybrid
Finite Element – Boundary Element Method. In: Holographic and Diffractive Optics Technology III, Proc. SPIE Vol.
2689; pp 14–23.

(18) Prather, D.W.; Mirotznik, M.S.; Mait, J.N. Boundary Integral Methods Applied to the Analysis of Diffractive Optical
Elements. J. Opt. Soc. Am. A 1997, 14, 34–43.

(19) Schmitz, M.; Bryngdahl, O. Rigorous concept for the design of diffractive microlenses with high numerical aperture.
J. Opt. Soc. Am. A 1997, 14, 901–906.

(20) Kleemann, B.H.; Ruoff, J.; Seeßelberg, M.; Kaltenbach, J.M.; Dobschal, H.J.; et al. Optical systems design with
integrated rigorous vector diffraction. In: Optical Design and Engineering II, Mazuray, L., Wartmann, R. Eds.; , Proc.
SPIE Vol. 5962; p. 596205.

(21) Herzig, H.P. (Ed.), Micro-Optics: Elements, Systems and Applications. Taylor & Francis: London, 1997.
(22) Turunen, J.; Wyrowski, F. (Eds.), Diffractive optics for industrial and commercial applications. Akademie: Berlin,

1997.
(23) Li, L.; Chandezon, J.; Granet, G.; et al. Rigorous and efficient grating-analysis method made easy for optical engineers.

Appl. Opt. 1999, 38, 304–313.
(24) Loewen, E.G.; Maystre, D.; Popov, E.; et al. Echelles: scalar, electromagnetic and real-groove properties. Appl. Opt.

1995, 34, 1707–1727.
(25) Loewen, E.G.; Maystre, D.; Popov, E.; et al. Diffraction efficiency of echelles working in extremely high orders. Appl.

Opt. 1996, 35, 1700–1704.
(26) Goray, L.I. The modified integral method and real electromagnetic properties of echelles. In: Diffractive and Holo-

graphic Technologies for Integrated Photonic Systems, Sutherland, R.I., Prather, D.W., Cindrich, I. Eds.; , Proc.
SPIE Vol. 4291; pp 13–24.

(27) Kleemann, B.H.; Erxmeyer, J. Independent electromagnetic optimization of the two coating thicknesses of a dielectric
layer on the facets of an echelle grating in Littrow mount. J. mod. Opt. 2004, 51 (14), 2093–2110.

(28) Maystre, D. Integral Methods. In Electromagnetic Theory of Gratings; Petit, R. Ed.; Springer: Berlin, 1980; pp 63–100.
(29) Pomp, A. The integral method for coated gratings: computational cost. J. mod. Opt. 1991, 38, 109–120.
(30) Kleemann, B.H.; Mitreiter, A.; Wyrowski, F. Integral equation method with parametrization of grating profile – Theory

and experiments. J. mod. Opt. 1996, 43, 1323–1349.
(31) Kleemann, B.H. Elektromagnetische Analyse von Oberflächengittern von IR bis XUV mittels einer parametrisierten

Randintegralmethode: Theorie, Vergleich und Anwendungen. Ph.D. thesis, Technische Universität Ilmenau, Fachbe-
reich Technische Optik 2002, Berlin: Mensch & Buch Verlag, 2003.

(32) Goray, L.I. Rigorous integral method in application to computing diffraction on relief gratings working in wavelength
range from microwaves to X-ray. In: Application and Theory of Periodic Structures, Jannson, T. Ed.; , Proc. SPIE Vol.
2532; pp 427–433.

(33) Goray, L.I.; Seely, J.F. Efficiencies of Master, Replica, and Multilayer Gratings for the Soft-X-Ray-Extreme-Ultraviolet
Range: Modeling Based on the Modified Integral Method and Comparisons with Measurements. Appl. Opt. 2002, 41,
1434–1445.

(34) Rathsfeld, A.; Schmidt, G.; Kleemann, B.H. On a fast integral equation method for diffraction gratings. Comm. Comp.
Phys. 2006, 1, 984–1009.

(35) Schmidt, G. Boundary Integral Methods for Periodic Scattering Problems. In Around the Research of Vladimir Maz’ya
II. Partial Differential Equations; International Mathematical SeriesVol. 12 Laptev, A. Ed.; Springer: New York,
Dordrecht, Heidelberg, London, 2010; pp 337–364.

(36) Goray, L.I.; Schmidt, G. Solving conical diffraction grating problems with integral equations. J. Opt. Soc. Am. A
2010, 27, 585–597.

(37) Maystre, D. Sur la diffraction d’une onde plane par un réseau métallique de conductivité finie. Opt. Commun. 1972,
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Table

N CPU time [s]
50 0.1

100 0.3
200 0.5
400 2.2
800 11.1

1600 67.3

Table 1. CPU time for one efficiency calculation for the plasmonic multilayer structures of two stacked plasmonic gratings presented

in Sect. 5.2 on an Intel® Core™ 2 Duo P8400 Processor @ 2.26 GHz.
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Figure captions

Figure 1:
Cross section of a simple grating of period d with incidence direction k, incidence angle θ, and
conical angle φ.

Figure 2:
Cross section of a multilayer grating with inclusions.

Figure 3:
Photonic crystal diffraction grating with circular dielectric rods in air. Grating period D,
photonic crystal period d.

Figure 4:
Efficiency of −1st order for s–polarisation incidence (corresponds to a polarisa-
tion angle δin = 90◦) at a photonic crystal diffraction grating of Figure 3 with
d = 1,D = 2d, rPhC = 0.2, Rg = 0.15, n = 3. Dashed line: in-plane Littrow mount, dot-
ted line: conical incidence with φ = 10◦, θ = θL, solid line: zero order reflection of a pure
photonic crystal without grating and θ = θL.

Figure 5:
Same as in Figure 4 but dotted curve for conical incidence with φ = 10◦, θ = θL and polarisation
angle δin = 80◦.

Figure 6:
Plasmonic multilayer structure consisting of two stacked plasmonic gratings of equal period
d = 500 nm and thickness t = 50 nm with separation distance w = 10 nm. The elliptical silver
rods are horizontally separated by air gaps of widths S1 = 150 nm and S2 = 50 nm.

Figure 7:
In-plane TM polarisation angle dependent reflection of two stacked plasmonic gratings for
λ = 785 nm. Solid curve: stacked rectangular silver rods presented in (66). Dashed curve:
stacked elliptical silver rods.

Figure 8:
Same as in Figure 7 but for conical incidence with φ = 30◦ for two different polarisations. Solid
and dotted curves belong to stacked rectangular silver rods. The two dashed curves belong to
stacked elliptical silver rods. Dotted and long dashes are for polarisation angle δin = 90◦ and
solid and small dashes are for polarisation angle δin = 52◦.

Figure 9:
Conical efficiency convergence for the investigated silver structures of Figure 6 presented in
Sect. 5.2. Solid curve: elliptical rods, dashed curve: rectangular rods.

Figure 10:
Diffraction efficiency η1(φ) of 1st order transmission as function of conical angle φ in air at
three wavelengths. In-plane angle: θ = 0◦, material of blaze grating: PMMA. Figure compares
scalar analytical diffraction efficiency expression (4) of (67) with electromagnetic simulations
for grating periods d = 80 µm and d = 20 µm, respectively. Curves with diamonds (crosses,
unmarked) correspond to wavelengths λ0 = 550 nm (λ = 650 nm, λ = 450 nm). Solid (dashed,
dotted) curves correspond to scalar values (electromagnetic d = 80 µm, electromagnetic
d = 20 µm).
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Figure 3. Photonic crystal
diffraction grating with
circular dielectric rods in air.
Grating period D, photonic
crystal period d.
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Figure 4. Efficiency of −1st order for s–polarisation incidence (corresponds to a polarisation
angle δin = 90◦) at a photonic crystal diffraction grating of Figure 3 with d = 1, D =
2d, rPhC = 0.2, Rg = 0.15, n = 3. Dashed line: in-plane Littrow mount, dotted line: conical
incidence with φ = 10◦, θ = θL, solid line: zero order reflection of a pure photonic crystal
without grating and θ = θL.
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Figure 5. Same as in Figure 4 but dotted curve for conical incidence with φ = 10◦, θ = θL

and polarisation angle δin = 80◦.
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Figure 6. Plasmonic multilayer structure consisting of two stacked plasmonic
gratings of equal period d = 500 nm and thickness t = 50 nm with separation
distance w = 10 nm. The elliptical silver rods are horizontally separated by
air gaps of widths S1 = 150 nm and S2 = 50nm.
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Figure 7. In-plane TM polarisation angle dependent reflection of two stacked plasmonic
gratings for λ = 785 nm. Solid curve: stacked rectangular silver rods presented in (66). Dashed
curve: stacked elliptical silver rods.
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Figure 8. Same as in Figure 7 but for conical incidence with φ = 30◦ for two different polar-
isations. Solid and dotted curves belong to stacked rectangular silver rods. The two dashed
curves belong to stacked elliptical silver rods. Dotted and long dashes are for polarisation
angle δin = 90◦ and solid and small dashes are for polarisation angle δin = 52◦.
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Figure 9. Conical efficiency convergence for the investigated silver structures of Figure 6
presented in Sect. 5.2. Solid curve: elliptical rods, dashed curve: rectangular rods.
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Figure 10. Diffraction efficiency η1(φ) of 1st order transmission as function of conical angle
φ in air at three wavelengths. In-plane angle: θ = 0◦, material of blaze grating: PMMA.
Figure compares scalar analytical diffraction efficiency expression (4) of (67) with electro-
magnetic simulations for grating periods d = 80 µm and d = 20 µm, respectively. Curves
with diamonds (crosses, unmarked) correspond to wavelengths λ0 = 550 nm (λ = 650 nm,
λ = 450 nm). Solid (dashed, dotted) curves correspond to scalar values (electromagnetic
d = 80 µm, electromagnetic d = 20 µm).


