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Maximum principle and bang-bang property of time optimal controls

for Schrödinger type systems

Jérôme Lohéac∗ Marius Tucsnak∗†

April 4, 2012

Abstract

We consider the time optimal control problem, with a point target, for a class of infinite di-
mensional systems with a dynamics governed by an abstract Schrödinger type equation. The main
results establish a Pontryagyn type maximum principle and give sufficient conditions for the bang-
bang property of optimal controls. The results are then applied to some systems governed by partial
differential equations. The paper ends by a discussion of possible extensions and by stating some
open problems.

Key words. Time optimal control, Pontryagyn’s maximum principle, Bang-Bang property,
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1 Introduction

Time optimal control is a classical problem for linear finite dimensional systems. For theses systems,
among the interesting properties of time optimal controls, the facts that they satisfy Pontryagyn’s
maximum principle and that they are bang-bang, are well-known (see Bellman, Glicksberg and Gross
[3]). The first extensions of these results to infinite dimensional linear systems have been given in
Fattorini’s paper [5]. The progress made in this field has been successively reported in the books of
Lions [15] and of Fattorini [7]. In particular, the bang-bang property of time optimal controls has been
quite rapidly established for invertible input operators. In the case of systems governed by PDE’s,
this means, roughly speaking, that the control is active in the entire spatial domain where the PDE is
considered. The situation in which the control is active only in a part of the considered domain (or of
its boundary) has been considered only recently. The results in this direction are limited as far as we
know, to systems governed by linear parabolic equations (see, for instance, Mizel and Seidman [17],
Wang [21], Phung and Wang [18], Kunisch and Wang [13]). The methodology used in most of the
above mentioned works, based on a special L∞ null-controllability property of the considered system,
does not seem applicable to systems which are time reversible, as those governed by wave, Schrödinger
or Euler Bernoulli equations. The first aim of this paper is to show that for some of these systems,
provided that they are exactly controllable in arbitrarily small time, Pontryagyn’s maximum principle
holds in a standard form. Moreover, assuming that the system is approximatively controllable with
controls active only only for times t in a set of positive measure, we prove that time optimal controls

∗E-mail: jerome.loheac@iecn.u-nancy.fr and marius.tucsnak@iecn.u-nancy.fr
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have the bang-bang property and they are unique. We provide several examples of applications of
these results to systems governed by the Schrödinger or the Euler-Bernoulli plate equations.

Let us recall, in order to give the precise statement of our main result, some classical notation and
definitions from control theory.

We first introduce some notation. Let X and Y be Hilbert spaces. If P ∈ L(X; Y ) then the
null-space and the range of P are the subspaces of X and Y respectively defined by

Ker P = {x ∈ X , Px = 0}, Ran P = {Px , x ∈ X} .

Throughout this paper, X and U are complex Hilbert spaces, identified with their duals. The inner
product and the norm in X are denoted by 〈·, ·〉X and ‖ · ‖X , respectively. We denote by T = (Tt)t>0

a strongly continuous semigroup on X generated by an operator A : D(A) → X.
Let B ∈ L(U, X) be a control operator, let z0 ∈ X and let u ∈ L2([0,∞), U). We consider the

infinite dimensional system described by the equation

ż(t) = Az(t) + Bu(t), z(0) = z0 . (1.1)

With the above notation, the solution z of (1.1) is defined by

z(t) = Ttz0 + Φtu
(

t > 0
)

, (1.2)

where Φt ∈ L(L2([0, t], U); X) is given by

Φtu =

∫ t

0
Tt−σBu(σ)dσ (u ∈ L2([0,∞), U)) . (1.3)

The maps (Φt) are called input to state maps.
Recall the following classical definitions (see, for instance, Tucsnak and Weiss [20, Sections 4.2 and

11.1]):

Definition 1.1.

• The pair (A, B) is said approximatively controllable in time τ if Ran Φτ is dense in X.

• The pair (A, B) is exactly controllable in time τ if Ran Φτ = X.

We also need the following (less classical) definition.

Definition 1.2. Let e ⊂ [0, τ ] be a set of positive Lebesgue measure. The pair (A, B) is said ap-
proximatively controllable in time τ from e if the range of the map Φτ,e ∈ L(L2([0, τ ], U), X) defined
by

Φτ,eu =

∫

e

Tτ−σBu(σ) dσ (u ∈ L2([0, τ ], U))

is dense in X.

We are now in position to give a precise definition of time optimal controls.

Definition 1.3. Let z0, z1 ∈ X with z0 6= z1. A function u∗ ∈ L∞([0,∞), U) is said a time optimal
control for the pair (A, B), associated to the initial state z0 and the final state z1, if there exists τ∗ > 0
such that

1. z1 = Tτ∗z0 + Φτ∗u∗ and ‖u∗‖L∞([0,τ∗],U) 6 1;
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2. If τ > 0 is such that there exists u ∈ L∞ ([0, τ ], U) with

z1 = Tτz0 + Φτu, ‖u‖L∞([0,τ ],U) 6 1,

then τ > τ∗.

Our first main result provides a class of infinite dimensional system for which the maximum
principle from the linear finite dimensional case can be extended in its classical form.

Theorem 1.4. Suppose that (A, B) is exactly controllable in any time τ > 0. Then, for every
z0, z1 ∈ X, z0 6= z1, there exists a time optimal control u∗ steering z0 to z1 in time τ∗ = τ∗(z0, z1).
Moreover, there exists η ∈ X, η 6= 0, such that

〈B∗
T
∗
τ∗−tη, u(t)〉U = max

v∈U,
‖v‖U61

〈B∗
T
∗
τ∗−tη, v〉U (t ∈ (0, τ∗) a.e.) . (1.4)

Our second main result shows that, under an extra assumption, the time optimal controls in the
above theorem are bang-bang.

Corollary 1.5. With the notation and the assumptions in Theorem 1.4, assume moreover that the
pair (A, B) is approximatively controllable in time τ∗ from any e ⊂ [0, τ∗] of positive measure. Then
the time optimal control u∗ is bang-bang, in the sense that

‖u∗(t)‖U = 1 (t ∈ [0, τ∗] a.e.) . (1.5)

Moreover, the time optimal control is unique.

2 Some background on infinite dimensional systems

Remark 2.1. Notice that if B is bounded and the pair (A, B) is exactly controllable in time τ then
Φτ (L∞([0, τ ], U)) = X. In other words, we can exactly control the system in time τ by using inputs
in L∞([0, τ ], U) (instead of taking controls in L2([0, τ ], U) as in the Definition 1.1). Indeed, let

Rτ =

∫ τ

0
TtBB∗

T
∗
t dt ∈ L(X),

be the controllability Gramian in time τ for the pair (A, B). Given z0 ∈ X, the exact controllability in
time τ of the pair (A, B) implies that Rτ is invertible and that the function u ∈ L2([0, τ ], U) defined
by

u = Φ∗
τR

−1
τ z0 (t ∈ [0, T ]) , (2.1)

where Φ∗
t ∈ L(X, L2([0, τ ], U)) has the property Φτu = z0. On the other hand, it is well known (see,

for instance [20, Section 4.4]) that, since B is bounded, we have

(Φ∗
τw0)(t) = B∗

T
∗
τ−tw0 (w0 ∈ X, t ∈ [0, τ ]) .

The last two formulas imply that the exact control defined in (2.1) writes

u(t) = B∗
T
∗
τ−tR

−1
τ z0 (t ∈ [0, T ]) ,

so that u ∈ C([0, τ ], X).
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Definition 2.2. The L∞ reachable space at time t of the pair (A, B) is defined as

R∞
t = Φt

(

L∞([0, t], U)
)

. (2.2)

By a slight variation of the argument in [7, Lemma 2.1.1] one can check that, for each t > 0, when
endowed with the norm

‖x‖R∞
t

= inf
{

‖u‖L∞([0,t],U) , Φtu = x
}

(x ∈ X) , (2.3)

R∞
t is a Banach space.

Proposition 2.3. Let 0 6 σ 6 t. Then we have the continuous inclusions

R∞
σ ⊂ R∞

t ⊂ X .

Proof. It is clear that the above inclusions hold. To show that they are continuous, we take x ∈ R∞
t ,

so that there exists u ∈ L∞([0, t], U) with x = Φtu. Since Φt ∈ L(L2([0, t], U), X) it follows that
there exists M > 0 such that ‖x‖X 6 M‖u‖L∞([0,t],U) for every u ∈ L∞([0, t], U) satisfying Φtu = x.
Consequently, we have

‖x‖X 6 M inf
u∈L∞([0,t],U)

Φtu=x

‖u‖L∞([0,t],U) = M‖x‖R∞
t

,

so that the inclusion R∞
t ⊂ X is continuous.

To prove the continuity of the inclusion R∞
σ ⊂ R∞

t , it suffices to note that if x ∈ R∞
σ and

u ∈ L∞([0, σ], U) are such that x = Φσu then ũ ∈ L∞([0, t], U) defined for almost every s ∈ [0, t] by
ũ(s) = χ(t−σ,t)(s)u(s − t + σ), where χ(t−σ,t) denotes the characteristic function of the set (t − σ, t),
has the property x = Φtũ and ‖ũ‖L∞([0,t],U) = ‖u‖L∞([0,σ],U).

From Remark 2.1 it follows that if (A, B) is exactly controllable in some time τ > 0 then R∞
τ = X.

This fact, combined with Proposition 2.3 and with the closed graph theorem clearly imply the result
below.

Corollary 2.4. Assume that (A, B) is exactly controllable in some time τ > 0. Then the norms
‖ · ‖R∞

τ
and ‖ · ‖X are equivalent.

Remark 2.5. If R∞
t = X, the control cost Ct in time t is defined by

Ct = sup
x 6=0

‖x‖R∞
t

‖x‖X

(t > 0) . (2.4)

It is easily seen that the map t 7→ Ct is non-increasing.

We also need some concepts of observability theory. Let Y be another Hilbert space and let
C ∈ L(X, Y ) be an observation operator for the semigroup T. For τ > 0 we Consider the initial state
to output map Ψτ defined by

(Ψτz0)(t) = CTtz0 (z0 ∈ X, t ∈ [0, τ ]) .

The operators Ψτ are briefly called output maps corresponding to the pair (A, C). If e ⊂ [0, τ ] is a set
of positive measure, we consider the restriction of the above defined initial state to output map to a
set of positive measure e ⊂ [0, τ ], which is defined by

Ψτ,e ∈ L(X, L2([0, τ ], U)), Ψτ,e = χeΨτ ,
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where χe is the characteristic function of e.

We denote by Ψd
τ (respectively Ψd

τ,e) the output maps corresponding (respectively the restriction
to a set of positive measure e ⊂ [0, τ ] of these output maps) corresponding to the pair (A∗, B∗), i.e.,
we set

(Ψd
τz0)(t) = B∗

T
∗
t z0 (z0 ∈ X, t ∈ [0, τ ]) , (2.5)

Ψd
τ,e ∈ L(X, L2([0, τ ], U)), Ψd

τ,e = χeΨ
d
τ .

There are several generalizations of the concept of observability to infinite dimensional linear
systems. In this paper we need only the following one.

Definition 2.6. Let τ > 0 and e ⊂ [0, τ ] be a set of positive measure. The pair (A, C) is said
approximately observable from e if Ker Ψτ,e = {0}.

We have the following duality result, which is a simple consequence of the corresponding result for
e = [0, τ ] (see, for instance [16, Proposition 2.4]).

Proposition 2.7. Let τ > 0, e ⊂ [0, τ ] a set of positive measure and let

e′ = {τ − t | t ∈ e}.

Then

Φτ,e = (Ψd
τ,e′)

∗ Rτ , (2.6)

where (Ψd
τ,e′)

∗ ∈ L(L∞([0, τ ];U), X) is the dual operator of Ψd
τ,e′ and Rτ is the reflection operator on

L2([0, τ ];U), defined by Rτu(t) = u(τ − t) (Notice that Rτ is self-adjoint and also unitary.).

In particular, the pair (A, B) is approximatively controllable in time τ from a set of positive measure
e ⊂ [0, τ ] if and only if

Ker Ψd
τ,e′ = {0}.

Remark 2.8. If e = [0, τ ] then formula (2.6) simply writes

Φτ = (Ψd
τ )

∗ Rτ . (2.7)

3 Main results

In this section we extend the maximum principle, well-known for finite dimensional systems, to a
class of infinite dimensional systems. To this aim, we continue to use all the notation in Section 2.
In particular we denote by X the state space (assumed to be Hilbert), A stands for the semigroup
generator and the control operator (assumed to be bounded) is still denoted by B. We also continue
to use the notation R∞

t , introduced in (2.2), for the space which is reachable by L∞ input functions.
Moreover, for every t > 0, the closed unit ball in R∞

t is:

B∞
t (1) =

{

Φtu , u ∈ L∞([0, t], U) , ‖u‖L∞([0,t],U) 6 1
}

.

Before deriving the maximum principle, we note the following existence result for time optimal
controls. We skip the proof of this result since it can be obtained by simple adaptation of the proofs
in [7, Lemma 3.1.1 and Theorem 3.1.2].
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Proposition 3.1. With the above notation and assumptions, assume moreover that z0, z1 ∈ X, z0 6= z1

are such that there exists t > 0 with

z1 − Ttz0 ∈ B∞
t (1) .

Then there exists τ∗(z0, z1) > 0 such that

τ∗(z0, z1) = min{t > 0 | z1 − Ttz0 ∈ B∞
t (1)} > 0 (3.1)

In other words τ∗ is the minimal time in which z0 can be steered to z1 by controls satisfying
‖u(t)‖ 6 1 for almost every t. Therefore, any u∗ ∈ L∞([0, τ∗], U) satisfying

z1 − Tτ∗z0 = Φτ∗u∗ , (3.2)

is called a time optimal control for the pair (A, B).
Let now give the proof of Theorem 1.4.

Proof of Theorem 1.4. The existence of a time optimal control u∗ is given by Proposition 3.1. To
prove the maximum principle, we first show, in the spirit of [7], that z1 − Tτ∗z0 ∈ ∂B∞

τ∗(1), the
boundary being taken in the sense of the topology of R∞

τ∗ and hence, according to Corollary 2.4, in
the sense of the topology of X. Assume, by contradiction, that z1 − Tτ∗z0 6∈ ∂B∞

τ∗(1). This implies
the existence of r ∈ (0, 1) such that 1

r
(z1 − Tτ∗z0) ∈ B∞

τ∗(1), i.e., the existence of u1 ∈ L∞([0, τ∗], U),
‖u1‖L∞([0,τ∗],U) 6 r < 1 such that z1 − Tτ∗z0 = Φτ∗u1. Let t < τ∗. Then

z1 − Ttz0 = Tτ∗z0 − Ttz0 + Φτ∗u1 =

= Φtu1 + Tτ∗z0 − Ttz0 +

∫ t

0
(Tτ∗−σ − Tt−σ)Bu1(σ) dσ +

∫ τ∗

t

Tτ∗−σBu1(σ) dσ .

Let

ϕ(t, τ∗) = Tτ∗z0 − Ttz0 +

∫ t

0
(Tτ∗−σ − Tt−σ)Bu1(σ) dσ +

∫ τ∗

t

Tτ∗−σBu1(σ) dσ (t ∈ (0, τ∗) ,

so that

z1 − Ttz0 = Φtu1 + ϕ(t, τ∗) . (3.3)

It is easily seen that lim
t→τ∗

ϕ(t, τ∗) = 0 in X. From Remark 2.5, we have that ‖ϕ(t, τ∗)‖R∞
t

6

Ct‖ϕ(t, τ∗)‖X , with t 7→ Ct a non-increasing function. This means that for t close enough to τ∗

there exists a control u2 ∈ L∞([0, t], U) with

‖u2‖L∞([0,t],U) 6 1 − r, Φtu2 = ϕ(t, τ∗) .

The above formula and (3.3) imply, denoting u = u1 + u2, that

z1 − Ttz0 = Φtu, ‖u‖L∞([0,t],U) 6 1 ,

which contradicts the fact the that τ∗ is minimal in the sense of (3.1). We have thus shown that
indeed z1 −Tτ∗z0 ∈ ∂B∞

τ∗(1). This implies, using a consequence of the Hahn-Banach theorem (see, for
instance, [1, Theorem 1.13]) and the fact that the interior of B∞

τ∗(1) is non empty, that there exists
η ∈ X, η 6= 0 such that

〈η, z1 − Tτ∗z0〉X > 〈η, x〉X (x ∈ B∞
τ∗(1)) .
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The above formula, combined to the definition (3.2) of the time optimal control implies that

〈η,Φτ∗u∗〉X > 〈η,Φτ∗v〉X (v ∈ L∞([0, τ∗], U), ‖v‖L∞([0,τ∗],U) 6 1) . (3.4)

Using next (2.5) and (2.7) it follows that

∫ τ∗

0
〈B∗

T
∗
τ∗−tη, u∗(t)〉U dt >

∫ τ∗

0
〈B∗

T
∗
τ∗−tη, v(t)〉U dt (‖v‖L∞([0,τ∗],U) 6 1) . (3.5)

Using Lemma 2.2.1 of [7] and the fact that t 7→ B∗
T
∗
τ∗−tη is U -weakly measurable, we obtain that

sup
v∈L∞([0,τ∗],U),
‖v‖L∞([0,τ∗],U)61

∫ τ∗

0
〈B∗

T
∗
τ∗−tη, v(t)〉U dt =

∫ τ∗

0
‖B∗

T
∗
τ∗−tη‖U dt ,

and hence we have
∫ τ∗

0
〈B∗

T
∗
τ∗−tη, u∗(t)〉U dt =

∫ τ∗

0
‖B∗

T
∗
τ∗−tη‖U dt .

On the other hand, we clearly have

〈B∗
T
∗
τ∗−tη, u∗(t)〉U 6 ‖B∗

T
∗
τ∗−tη‖U (t ∈ [0, τ∗] a.e.) .

The last estimate and (3.5) imply that

〈B∗
T
∗
τ∗−tη, u∗(t)〉U = ‖B∗

T
∗
τ∗−tη‖U (t ∈ [0, τ∗] a.e.) ,

which implies (1.4).

We conclude this Section by giving the proof of Corollary 1.5.

Proof of Corollary 1.5. We know from Theorem 1.4 that there exists η ∈ X, η 6= 0, such that we have
(1.4). On the other hand, the fact that the pair (A, B) is approximatively controllable in time τ∗

from any e ⊂ [0, τ∗] of positive measure, together with Proposition 2.7, ensures that B∗
T
∗
τ∗−tη 6= 0 for

almost every t ∈ [0, τ∗]. Therefore, (1.4) implies that the time optimal control is given by

u∗(t) =
1

‖B∗T∗
τ∗−tη‖U

B∗
T
∗
τ∗−tη (t ∈ [0, τ∗] a.e.) ,

which clearly implies (1.5).

The uniqueness of u∗ is can be proved in a standard way, using the strict convexity of U and
the bang-bang property of every time optimal control. Indeed, assume by contradiction that there
exist two time optimal controls u∗

1 6= u∗
2. Then for u∗ = 1

2(u∗
1 + u∗

2) ∈ L∞([0, τ∗], U), we have
‖u∗‖L∞([0,τ∗],U) 6 1, ‖u∗(t)‖U < 1 for t in some set of positive measure and Φτ∗u∗ = z1 −Tτ∗z0. Thus
u∗ is a time optimal control which does not satisfy the bang-bang property, so that we have obtained
a contradiction.
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4 Application to the Schrödinger equation

We first give a preliminary lemma for which, although the result seems quite simple, we did not find
the exact statement in the literature. The idea of this lemma, using a unique continuation result of
Privalov, is borrowed from Reifler and Vogt [19] (see also Hante, Sigalotti and Tucsnak [8])

Lemma 4.1. Let I ⊂ Z, (λn)n∈I be a sequence of real numbers bounded from below (or from above),
let e ⊂ R a bounded set of positive measure and let (an)n∈I ∈ ℓ1(I, C). Assume that

∑

n∈I

aneiλnt = 0 (t ∈ e) .

Then
∑

n∈I

aneiλnt = 0 (t ∈ R) .

Proof. Let C+ = {s ∈ C | Ims > 0}. We define the map

f : C+ → C

s 7→
∑

n∈I

aneiλns

Since (an) is in ℓ1 and (λn) is bounded from below, we clearly have that f is complex analytic on
C+ and continuous up to the boundary (i.e., up to the real axis). Using the fact that f vanishes on
e ⊂ R of positive measure and Privalov’s uniqueness Theorem, [22, Vol. II, ch. XIV, Theorem 1.9],
we obtain that f vanishes on C+, thus on R.

From the above Lemma, we can derive the following result:

Lemma 4.2. Let X and Y be Hilbert spaces, let A0 be a self-adjoint and diagonalisable operator on
X with domain D(A0) and let C ∈ L(X, Y ). Moreover, assume that that the spectrum σ(A0) of A0

satisfies σ(A0) ⊂ [m,∞) for some m ∈ R. Let z0 ∈ X and z ∈ C0(R, X), y ∈ C0(R, Y ) satisfying

ż(t) = iA0z(t) (t ∈ R), z(0) = z0 , (4.1)

y(t) = Cz(t) (t ∈ R) . (4.2)

If
y(t) = 0 (t ∈ e) ,

for some set e ⊂ R of positive measure, then

y(t) = 0 (t ∈ R) .

Proof. Since A0 is assumed to be self-adjoint and diagonalisable, there exists an orthonormal basis of
eigenvectors (ϕn)n∈I of A0, with I ⊂ Z and a corresponding sequence of eigenvalues (λn)n∈I , where
(λn)n∈I is a sequence with values in [m,∞). The solution z of (4.1) writes

z(t) =
∑

n∈I

aneiλntϕn (t ∈ R) ,

where an = 〈z0, ϕn〉X for every n ∈ I. Hence y in (4.2) writes

y(t) =
∑

n∈I

aneiλntCϕn (t ∈ R) .
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For any v ∈ Y , we have

〈y(t), v〉Y =
∑

n∈I

aneiλnt〈Cϕn, v〉Y =
∑

n∈I

aneiλnt〈C∗v, ϕn〉X (t ∈ R) .

Since (an)n ∈ ℓ2(I, C) and (〈C∗v, ϕn〉X)n ∈ ℓ2(I, C), it follows that (an〈C
∗v, ϕn〉X)n ∈ ℓ1(I, C).

Moreover, we know that 〈y(t), v〉Y = 0 for every t ∈ e and that the sequence (λn)n∈I is bounded from
bellow, hence, using Lemma 4.1, we deduce that 〈y(t), v〉Y = 0 for every t ∈ R. Since this property is
true for every v ∈ Y , we conclude that y(t) = 0 for every t ∈ R.

We next study a Schrödinger equation with distributed internal control. More precisely, we consider
the system

ż(x, t) = −i∆z(x, t) + ia(x)z(x, t) + u(x, t)χO(x) (x ∈ Ω, t > 0) , (4.3)

z(x, t) = 0 (x ∈ ∂Ω, t > 0), (4.4)

where Ω ⊂ R
n is an open set, O is an open subset of Ω, χO is the characteristic function of O and the

control u is such that ‖u(·, t)‖L2(O) 6 1 for almost every t > 0.

Proposition 4.3. Assume that one of the assumptions

1. The open set Ω is bounded, ∂Ω is of class C2, a ∈ L∞(Ω, R) and O satisfies the geometric optics
condition, as descibed in Bardos, Lebeau and Rauch [2];

2. The open set Ω is a rectangular domain, a is a constant and O is an arbitrary nonempty open
subset of Ω,

holds. Then for every z0, z1 ∈ L2(Ω), with z0 6= z1, there exists an unique time optimal control u∗

steering the solution of (4.3)-(4.4) from z0 (at t = 0) to z1 (at t = τ∗ = τ∗(z0, z1)). Moreover, there
exists η ∈ L2(Ω), η 6= 0, such that

∫

O
w(x, t)u∗(x, t) dx = max

v∈L2(O),
‖v‖

L2(O)61

∫

O
w(x, t)v(x) dx (t ∈ [0, τ∗] a.e.), (4.5)

where w is the solution of the adjoint problem

ẇ(x, t) = −i∆w(x, t) + ia(x)w(x, t) (x ∈ Ω, t > 0) , (4.6)

w(x, t) = 0 (x ∈ ∂Ω, t > 0) , (4.7)

w(x, τ∗) = η(x) (x ∈ Ω) . (4.8)

Finally, u∗ has the bang-bang property

‖u∗(·, t)‖ = 1 (t ∈ [0, τ∗] a.e.) . (4.9)

Proof. Note first that, in the case in which the first assumption holds, it suffices to consider the case
a > 0. Similarly, when the second assumption holds, it suffices to consider the case a = 0. Indeed,
the case of an arbitrary a ∈ L∞(Ω, R) (respectively an arbitrary a ∈ C) can be reduced to the case
a(x) > 0 (respectively a = 0) by an obvious change of variables.

The result is a consequence of Theorem 1.4 and Corollary 1.5, with a particular choice of spaces
and operators. More precisely let X = L2(Ω), U = L2(O) and let the operator A be defined by

D(A) = H2(Ω) ∩ H1
0 (Ω) , (4.10)
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Aϕ = −i∆ϕ + ia(x)ϕ (ϕ ∈ D(A)) . (4.11)

The operator A is clearly skew-adjoint and diagonalisable.

The control operator B ∈ L(U, X) is defined by

Bu = χOu (u ∈ L2(O)) .

We note that, with the above defined spaces of operators, the system (4.3), (4.4) writes in the form
ż = Az + Bu. Moreover, in order to apply Theorem 1.4, it suffices to check that the pair (A, B) is
exactly controllable in any time τ > 0 . Under the first assumption of the present proposition, this
fact is classical (it suffices, for instance, to combine Remark 7.4.4 and Theorem 6.7.2 from [20]). Under
the second assumption in the present proposition, the exact controllability in any time of (A, B) has
been proved in Jaffard [9] and Komornik [10]. Consequently, we can apply Theorem 1.4, so that we
obtain (4.5).

In order to apply Corollary 1.5, we have to check that (A∗, B∗) is approximatively observable from
any set of positive measure e ⊂ [0, τ∗]. In PDE terms this means that we have to show that if a
solution of (4.6) is such that

w(x, t) = 0 (x ∈ O, t ∈ e) ,

then

w(x, t) = 0 (x ∈ Ω, t ∈ R) .

To accomplish this goal, we note that, due to the fact that a ∈ L∞(Ω), the operator A in (4.10),
(4.11) writes A = iA0 with A0 self-adjoint, diagonalisable and with a spectrum bounded from below.
Hence, we can apply Lemma 4.2 to obtain that w(x, t) = 0 for x ∈ O and t ∈ R. Consequently, using
again the exact controllability in any time of the pair (A, B) (thus the exact observability in any time
of (A∗, B∗)), it follows that w(x, t) = 0 for x ∈ Ω and t ∈ R. Finally, we can apply Corollary 1.5 to
obtain (4.9).

5 Concluding remarks and open questions

Our results in the previous section are, as far as we know, the first establishing the maximum principle
and the bang-bang property for the time optimal controls in the case of a class of time reversible
systems (of Schrödinger type) with controls localized in a strict subset of the spatial domain. If we
take controls active in the whole spatial domain, one can easily adapt our methods to the wave or
Euler-Bernoulli plate equation. More generally, the results in the previous can be easily adapted to
systems of the form

ẅ + A0w = u, (5.12)

where A0 is a positive operator in a Hilbert space H and u is the input function. We can easily
check that the above equation can be written as a first order system satisfying the assumptions in
Theorem 1.4 and Corollary 1.5, so that we have the maximum principle and the bang-bang property
for the associated time optimal control problem. Since this question has been tackled directly, by
quite similar methods, in Fattorini [6] and Krabs [11] we do not give the detailed argument here.
Note that, taking H = L2(Ω), where Ω ⊂ R

n is bounded and with a smooth boundary, and A0 to be
the Dirichlet Laplacian (respectively the square of the Dirichlet Laplacian) in Ω, (5.12) becomes the
wave (respectively the Euler-Bernoulli plate) equation, with control active in all of Ω. We also refer
to Kunisch and Wachsmuth [12] for a theoretical and numerical study of the time optimal control
problem for the wave equation.
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An interesting and partially open question consists in obtaining the maximum principle and the
bang-bang property of time optimal controls for systems governed by the Euler-Bernoulli plate equa-
tion with localized distributed control. The question is challenging, in particular, since most of the
control theoretic results known for the Schrödinger equation have a natural counterpart for the Euler-
Bernoulli plate equation (at least for hinged boundary conditions). It turns out that the situation
seems unclear in the case of time optimal control problems, at least as far as the bang-bang property
is concerned. More precisely, consider the one dimensional case (Euler-Bernoulli beam equation) with
locally distributed control. The main technical obstacle (within our method) in obtaining the bang-
bang property of time optimal controls consists in the fact that, in order to apply Corollary 1.5, one
would need a counterpart of the uniqueness result in Lemma 4.1, with the sequence (±n2)n>1 (which is
bounded neither from below nor from above) instead of (λn). Therefore, even in one space dimension,
establishing the uniqueness of time optimal controls and their bang-bang property are open questions.

However, we have a partial result, asserting that the maximum principle holds for the time optimal
control problem for a system governed by the Euler-Bernoulli plate equation with locally distributed
control. More precisely, consider the system

z̈(x, t) = −∆2z(x, t) + χO(x)u(x, t) (x ∈ Ω, t > 0) , (5.13)

z(x, t) = ∆z(x, t) = 0 (x ∈ ∂Ω, t > 0) , (5.14)

where Ω ⊂ R
n is an open set, O is an open subset of Ω, χO is the characteristic function of O and the

control u is such that ‖u(·, t)‖L2(O) 6 1 for almost every t > 0.

Proposition 5.1. Assume that one of the assumptions

1. The open set Ω is bounded, ∂Ω is of class C2 and O satisfies the geometric optics condition;

2. The open set Ω is a rectangular domain and O is an arbitrary nonempty open subset of Ω,

holds. Then for every f0, f1 ∈ H2(Ω)∩H1
0 (Ω) and g0, g1 ∈ L2(Ω), with (f0, g0) 6= (f1, g1), there exists

a time optimal control u∗ steering the solution of (5.13)-(5.14) from (f0, g0) (at t = 0) to (f1, g1) (at
t = τ∗). Moreover, there exists (η0, η1) ∈ [H2(Ω) ∩ H1

0 (Ω)] × L2(Ω), with (η0, η1) 6= (0, 0) such that

∫

O
ẇ(x, t)u∗(x, t) dx = max

v∈L2(O),
‖v‖

L2(O)61

∫

O
ẇ(x, t)v(x) dx , (5.15)

where w is the solution of the adjoint problem,

ẅ(x, t) = −∆2w(x, t) (x ∈ Ω , t ∈ R) , (5.16)

w(x, t) = ∆w(x, t) = 0 (x ∈ ∂Ω , t ∈ R) , (5.17)

w(x, τ∗) = η0(x), ẇ(x, τ∗) = η1(x) (x ∈ Ω) . (5.18)

Proof. The proof follows closely the reasoning used in the first part of the proof of Proposition 4.3.
More precisely, it suffices to apply Theorem 1.4, with a particular choice of spaces and operators. Take
X =

[

H2(Ω) ∩ H1
0 (Ω)

]

× L2(Ω), U = L2(O) and consider the operator A defined by

D(A) =
{

f ∈ H4(Ω) ∩ H1
0 (Ω) , ∆f = 0 on ∂Ω

}

×
(

H2(Ω) ∩ H1
0 (Ω)

)

,

A

[

f

g

]

=

[

0 I

−∆2 0

] [

f

g

]

=

[

g

−∆2f

] ([

f

g

]

∈ D(A)

)

.
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The control operator B ∈ L(U, X) is defined by

Bu =

[

0
χOu

]

(u ∈ L2(O)) .

We note that, with the above defined spaces of operators, the system (5.13), (5.14) writes in the

form Ż = AZ + Bu, where Z =

[

z

ż

]

.

In order to apply Theorem 1.4, it suffices to check that the pair (A, B) is exactly controllable in any
time τ > 0. This fact is classical and follows from known (already used above) exact controllability
results for the Schrödinger equation (see, for instance, [20, Proposition 7.5.1] or [14, Section 5]).
Consequently, we can apply Theorem 1.4, so that we obtain (5.15).

Another possible extension of the results in this work consists in studying the case of unbounded
control operators. It is not difficult to see that our result in Theorem 1.4 can be extended to admissible
(possibly unbounded) control operators, provided that we replace the exact controllability assumption
with the condition R∞

t = X for every t > 0. Note that, for unbounded control operators, this condition
is no longer a consequence of the exact controllability in arbitrarily small time. However, we did not
include this generalization in our work for two reasons. Firstly, this would require more preliminaries
and notation. Secondly, and more importantly, we found no relevant examples coming from PDE’s
with boundary control satisfying the condition R∞

t = X for every t > 0. Checking this condition is an
open question, even for very simple examples such as the Schrödinger equation in one space dimension
with Dirichlet boundary control.

Besides the theoretical open questions raised above, the numerical analysis of the time optimal
control problem for infinite dimensional systems is an essentially open field, at least for point targets.
An interesting track to tackle these issues could consist in adapting some of the results on the numerical
approximation of norm optimal controls (see, for instance, Ervedoza and Zuazua [4] and references
therein).
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