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ABSTRACT
This paper proposes an analytic model for dimensioning
OFDMA based networks like WiMAX and LTE systems.
In such a system, users require a number of subchannels
which depends on their SNR, hence of their position and
the shadowing they experience. The system is overloaded
when the number of required subchannels is greater than the
number of available subchannels. We give an exact though
not closed expression of the loss probability and then give
an algorithmic method to derive the number of subchan-
nels which guarantees a loss probability less than a given
threshold. We show that Gaussian approximation lead to
optimistic values and are thus unusable. We then introduce
Edgeworth expansions with error bounds and show that by
choosing the right order of the expansion, one can have an
approximate dimensioning value easy to compute but with
guaranteed performance. As the values obtained are highly
dependent from the parameters of the system, which turned
to be rather undetermined, we provide a procedure based
on concentration inequality for Poisson functionals, which
yields to conservative dimensioning. This paper relies on re-
cent results on concentration inequalities and establish new
results on Edgeworth expansions.
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1. INTRODUCTION
Future wireless systems will widely rely on OFDMA (Or-
thogonal Frequency Division Multiple Access) multiple ac-
cess technique. OFDMA can satisfy end user’s demands in
terms of throughput. It also fulfills operator’s requirements
in terms of capacity for high data rate services. Systems
such as 802.16e and 3G-LTE (Third Generation Long Term
Evolution) already use OFDMA on the downlink. Dimen-
sioning of OFDMA systems is then of the utmost importance
for wireless telecommunications industry.

OFDM (Orthogonal Frequency Division Multiplex) is a multi
carrier technique especially designed for high data rate ser-
vices. It divides the spectrum in a large number of frequency
bands called (orthogonal) subcarriers that overlap partially
in order to reduce spectrum occupation. Each subcarrier has
a small bandwidth compared to the coherence bandwidth of
the channel in order to mitigate frequency selective fading.
User data is then transmitted in parallel on each sub car-
rier. In OFDM systems, all available subcarriers are affected
to one user at a given time for transmission. OFDMA ex-
tends OFDM by making it possible to share dynamically
the available subcarriers between different users. In that
sense, it can then be seen as multiple access technique that
both combines FDMA and TDMA features. OFDMA can
also be possibly combined with multiple antenna (MIMO)
technology to improve either quality or capacity of systems.

Figure 1: OFDMA principle : subcarriers are allo-
cated according to the required transmission rate

In practical systems, such as WiMAX or 3G-LTE, subcarri-
ers are not allocated individually for implementation reasons
mainly inherent to the scheduler design and physical layer
signaling. Several subcarriers are then grouped in subchan-
nels according to different strategies specific to each system.
In OFDMA systems, the unit of resource allocation is mainly
the subchannels. The number of subchannels required by a
user depends on his channel’s quality and the required bit
rate. If the number of demanded subchannels by all users
in the cell is greater than the available number of subchan-
nel, the system is overloaded and suffer packet losses. The
questions addressed here can then be stated as follows: how
many subchannels must be assigned to a BS to ensure a



small overloading probability ? Given the number of avail-
able subchannels, what is the maximum load, in terms of
mean number of customers per unit of surface, that can be
tolerated ? Both questions rely on accurate estimations of
the loss probability.

The objectives of this paper are twofold: First, construct
and analyze a general performance model for an isolated
cell equipped with an OFDMA system as described above.
We allows several classes of customers distinguished by their
transmission rate and we take into account path-loss with
shadowing. We then show that for a Poissonian configura-
tion of users in the cell, the required number subchannels
follows a compound Poisson distribution. The second ob-
jective is to compare different numerical methods to solve
the dimensioning problem. In fact, there exists an algorith-
mic approach which gives the exact result potentially with
huge memory consumption. On the other hand, we use and
even extend some recent results on functional inequalities
for Poisson processes to derive some approximations formu-
las which turn to be rather effective at a very low cost.
When it comes to evaluate the performance of a network,
the quality of such a work may be judged according to sev-
eral criteria. First and foremost, the exactness is the most
used criterion: it means that given the exact values of the
parameters, the real system, the performances of which may
be estimated by simulation, behaves as close as possible to
the computed behavior. The sources of errors are of three
kinds: The mathematical model may be too rough to take
into account important phenomena which alter the perfor-
mances of the system, this is known as the epistemic risk.
Another source may be in the mathematical resolution of
the model where we may be forced to use approximate al-
gorithms to find some numerical values. The third source
lies in the lack of precision in the determination of the pa-
rameters characterizing the system: They may be hard, if
not impossible, to measure with the desired accuracy. It is
thus our point of view that exactness of performance analy-
sis is not all the matter of the problem, we must also be able
to provide confidence intervals and robust analysis. That is
why, we insist on error bounds in our approximations.

Resources allocation on OFDMA systems have been exten-
sively studied over the last decade, often with joint power
and subcarriers allocation, see for instance [1, 8, 14, 15].
The problem of OFDMA planning and dimensioning have
been more recently under investigation. In [7], the authors
propose a dimensioning of OFDMA systems focusing on
link outage but not on the other parameters of the sys-
tems. In [11], the authors give a general methodology for
the dimensioning of OFDMA systems, which mixes a simu-
lation based determination of the distribution of the signal-
to-interference-plus-noise ratio (SINR) and a Markov chain
analysis of the traffic. In [3, 9], the authors propose a di-
mensioning method for OFDMA systems using Erlang’s loss
model and Kaufman-Roberts recursion algorithm. In [4],
the authors study the effect of Rayleigh fading on the per-
formance of OFDMA networks.

The article is organized as follows. In Section 2, we describe
the system model and set up the problem. In Section 3,
we examine four methods to derive an exact, approximate
or robust value of the number of subchannels necessary to

ensure a given loss probability. In Section 4, we apply these
formulas to the particular situation of OFDMA systems. A
new bound for the Edgeworth expansion is in Section B and
Section C contains a new proof of the concentration inequal-
ity established for instance in [16].

2. SYSTEM MODEL
In practical systems, such as WiMAX or 3G-LTE, resource
allocation algorithms work at subchannel level. The subcar-
riers are grouped into subchannels that the system allocates
to different users according to their throughput demand and
mobility pattern. For example, in WiMAX, there are three
modes available for building subchannels: FUSC (Fully Par-
tial Usage of Subchannels), PUSC (Partial Usage of Sub-
Channels) and AMC (Adaptive modulation and coding). In
FUSC, subchannels are made of subcarriers spread over all
the frequency band. This mode is generally more adapted
to mobile users. In AMC, the subcarriers of a subchannel
are adjacent instead of being uniformly distributed over the
spectrum. AMC is more adapted to nomadic or stationary
users and generally provides higher capacity.

The grouping of subcarriers into subchannels raises the prob-
lem of the estimation of the quality of a subchannel. The-
oretically channel quality should be evaluated on each sub-
carrier of the corresponding subchannel to compute the as-
sociated capacity. This work assumes that it is possible to
consider a single channel gain for all the subcarriers making
part of a subchannel (for example via channel gains evalu-
ated on pilot subcarriers).

We consider a circular cell C of radius R with a base sta-
tion (BS for short) at its center. The transmission power
dedicated to each subchannel by the base station is denoted
by P . Each subchannel has a total bandwidth W (in kHz).
The received signal power for a mobile station at distance d
from the BS can be expressed as

P (d) =
PKγ

dγ
GF := PγGd

−γ , (1)

where Kγ is a constant equal to the attenuation at a refer-
ence distance, denoted by dref, that separates far field from
near field propagation. Namely,

Kγ =

(

c

4πfdref

)2

dγref,

where f is the radio-wave frequency. The variable γ is the
path-loss exponent which indicates the power at which the
path loss increases with distance. Its depends on the spe-
cific propagation environment, in urban area, it is in the
range from 3 to 5. It must be noted that this propagation
model is an approximate model, difficult to calibrate for real
life situations. In particular, it might be reasonable to en-
vision models where γ depends on the distance so that the
attenuation would be proportional to dγ(d). Because of the
complexity of such a model, γ is often considered as constant
but the path-loss is multiplied by two random variables G
and F which represent respectively the shadowing, i.e. the
attenuation due to obstacles, and the Rayleigh fading, i.e.
the attenuation due to local movements of the mobile. Usu-
ally, G is taken as a log-normal distribution: G = 10S/10,
where S ∼ N (κ, v2). As to F , it is customary to choose an



exponential distribution with parameter 1. Both, the shad-
owing and the fading experienced by each user are supposed
to be independent from other users’ shadowing and fading.
For the sake of simplicity, we will here treat the situation
where only shadowing is taken into account, the computa-
tions would be pretty much like the forthcoming ones and
the results rather similar should we consider Rayleigh fad-
ing.

All active users in the cell compete to have access to some of
theNavail available subchannels. There areK classes of users
distinguished by the transmission rate they require: Ck is
the rate of class k customers and τk denotes the probability
that a customer belongs to class k. A user, at distance d
from the BS, is able to receive the signal only if the signal-

to-interference-plus-noise ratio SNR = P (d)
I

is above some
constant βmin where I is the noise plus interference power
and P (d) is the received signal power at distance d, see (1). If
the SNR is below the critical threshold, then the user is said
to be in outage and cannot proceed with his communication.

To avoid excess demands, the operator may impose a max-
imum number Nmax of allocated subchannels to each user
at each time slot. According to the Shannon formula, for a
user demanding a service of bit rate Ck, located at distance
d from the BS and experiencing a shadowing g, the number
of requires subchannels is thus the minimum of Nmax and of

Nuser =







⌈

Ck

W log2 (1 + Pγgd−γ/I)

⌉

if Pγgd
−γ/I ≥ βmin,

0 otherwise,

where ⌈x⌉ means the minimum integer number not smaller
than x.

We make the simplifying assumption that the allocation is
made at every time slot and that there is no buffering neither
in the access point nor in each mobile station. All the users
have independently from others a probability p to have a
packet to transmit at each slot. This means, that each user
has a traffic pattern which follows a geometric process of
intensity p. We also assume that users are dispatched in the
cell according to a Poisson process of intensity λ0. According
to the thinning theorem for Poisson processes, this induces
that active users form a Poisson process of intensity λ =
λ0p. This intensity is kept fixed over the time. That may
result from two hypothesis: Either we consider that for a
small time scale, users do not move significantly and thus
the configuration does not evolve. Alternatively, we may
consider that statistically, the whole configuration of active
users has reached its equilibrium so that the distribution of
active users does not vary through time though each user
may move.

From the previous considerations, a user is characterized by
three independent parameters: his position, his class and
the intensity of the shadowing he is experiencing. We model
this as a Poisson process on E = B(0, R)×{1, · · · , K}×R+

of intensity measure

λ dν(x) := λ( dx⊗ dτ (k) ⊗ dρ(g))

where B(0, R) = {x ∈ R2, ‖x‖ ≤ R}, τ is the probability
distribution of classes given by τ ({k}) = τk and ρ is the
distribution of the random variable G defined above. We

set

f(x, k, g) = min (Nmax,

1{Pγg‖x‖−γ≥Iβmin}
⌈

Ck

W log2 (1 + Pγg‖x‖−γ/I)

⌉)

.

With the notations of Section B,

Ntot =

∫

cell

f(x, k, g) dω(x, k, g).

We are interested in the loss probability which is given by

P(Ntot ≥ Navail).

We first need to compute the different moment of f with
respect to ν in order to apply Theorem 2 and Theorem 3.
For, we set

lk = Nmax ∧
⌈

Ck

W log2(1 + βmin)

⌉

,

where a ∧ b = min(a, b). Furthermore, we introduce βk, 0 =
∞,

βk, l =
I

P

(

2Ck/Wl − 1
)

, 1 ≤ k ≤ K, 1 ≤ l ≤ lk − 1,

and βk, lk = Iβmin/P.

By the very definition of the ceiling function, we have

∫

E

fp dν

=
K
∑

k=1

τk

lk
∑

l=1

lp
∫

cell

∫

R

1[βk, l; βk, l−1)(g‖x‖
−γ) dρ(g) dx.

According to the change of variable formula, we have

∫

cell

1[βk, l; βk, l−1)(g‖x‖
−γ) dx

= π(β
−2/γ
k, l ∧R2 − β

−2/γ
k, l−1 ∧R2)g2/γ .

Thus, we have

∫

cell

∫

R

1[βk, l; βk, l−1)(g‖x‖
−γ) dρ(g) dx

= π(β
−2/γ
k, l ∧R2 − β

−2/γ
k, l−1 ∧R2)E

[

10S/5γ
]

= π(β
−2/γ
k, l ∧R2 − β

−2/γ
k, l−1 ∧R2) 10(κ+ v2

10γ
ln 10)/5γ := ζk, l.

We thus have proved the following theorem.

Theorem 1. For any p ≥ 0, with the same notations as
above, we have:

∫

fp dν =

K
∑

k=1

τk

lk
∑

l=1

lp ζk, l. (2)

3. LOSS PROBABILITY

3.1 Exact method
Since f is deterministic, Ntot follows a compound Poisson
distribution: it is distributed as

K
∑

k=1

lk
∑

l=1

l Nk, l



where (Nk, l, 1 ≤ k ≤ K, 1 ≤ l ≤ lk) are independent Pois-
son random variables, the parameter of Nk, l is λτkζk, l. Us-
ing the properties of Poisson random variables, we can re-
duce the complexity of this expression. Let L = max(lk, 1 ≤
k ≤ K) and for l ∈ {1, · · · , L}, let Kl = {k, lk ≥ l}. Then,
Ntot is distributed as

L
∑

l=1

lMl

where (Ml, 1 ≤ l ≤ lk) are independent Poisson random
variables, the parameter of Ml being ml :=

∑

k∈Kl
λτkζk, l.

For each l, it is easy to construct an array which represents
the distribution of lMl by the following rule:

pl(w) =

{

0 if w mod l 6= 0,

exp(−ml)m
q
l /q! if w = ql.

By discrete convolution, the distribution of Ntot and then its
cumulative distribution function, are easily calculable. The
value of Navail which ensures a loss probability below the
desired threshold is found by inspection. The only difficulty
with this approach is to determine where to truncate the
Poisson distribution functions for machine representation.
According to large deviation theory [6],

P(Poisson(θ) ≥ aθ) ≤ exp(−θ(a ln a+ 1 − a)).

When θ is known, it is straightforward to choose a(θ) so
that the right-hand-side of the previous equation is smaller
than the desired threshold. The total memory size is thus
proportional to max(mla(ml)l, 1 ≤ l ≤ lk). This may be
memory (and time) consuming if the parameters of some
Poisson random variables or the threshold are small. This
method is well suited to estimate loss probability since it
gives exact results within a reasonable amount of time but
it is less useful for dimensioning purpose. Given Navail, if we
seek for the value of λ which guarantees a loss probability
less than the desired threshold, there is no better way than
trial and error. At least, the subsequent methods even im-
precise may help to evaluate the order of magnitude of λ for
the first trial.

3.2 Approximations
We begin by the classical Gaussian approximation. It is
clear that

P(

∫

E

f dω ≥ Navail) = P(

∫

E

fσ( dω − λ dν) ≥ Nσ)

= Eλν

[

1[Nσ ,+∞)(

∫

E

fσ( dω − λ dν))

]

where Nσ = (Navail −
∫

fλ dν)/σ. Since the indicator func-
tion 1[Nσ,+∞) is not Lipschitz, we can not apply the bound
given by Theorem 2. However, we can upper-bound the in-
dicator by a continuous function whose Lipschitz norm is
not greater than 1. For instance, taking

φ(x) = min(x+, 1) and φN (x) = φ(x−N),

we have

1[Nσ+1,+∞) ≤ φNσ+1 ≤ 1[Nσ ,+∞) ≤ φNσ−1 ≤ 1[Nσ−1,+∞).

Hence,

1 −Q(Nσ + 1) − 1

2

√

2

π

m(3, 1)√
λ

≤ P(

∫

E

f dω ≥ Navail) ≤

1 −Q(Nσ − 1) +
1

2

√

2

π

m(3, 1)√
λ

, (3)

where Q is the cumulative distribution function of a stan-
dard Gaussian random variable.

According to Theorem 3, one can proceed with a more accu-
rate approximation. Via polynomial interpolation, it is easy
to construct a C3 function ψl

N such that

‖(ψl
N )(3)‖∞ ≤ 1 and 1[Nσ+3.5,+∞) ≤ ψl

Nσ
≤ 1[Nσ,+∞)

and a function ψr
N such that

‖(ψr
N )(3)‖∞ ≤ 1 and 1[Nσ ,+∞) ≤ ψr

Nσ
≤ 1[Nσ−3.5,+∞)

From (10), it follows that

1 −Q(Nσ + 3.5) − m(3, 1)

6
√
λ

Q(3)(Nσ + 3.5) −Eλ

≤ P(

∫

E

f dω ≥ Navail) ≤

1 −Q(Nσ − 3.5) +
m(3, 1)

6
√
λ

Q(3)(Nσ − 3.5) +Eλ (4)

where Eλ is the right-hand-side of (13) with ‖F (3)‖∞ = 1.

Going again one step further, following the same lines, ac-
cording to (15), one can show that

P(

∫

E

f dω ≥ Navail) ≤ 1 −Q(Nσ − 6.5)

+
m(3, 1)

6
√
λ

Q(3)(Nσ − 6.5) +
m(3, 1)2

72λ
Q(5)(Nσ − 6.5)

+
m(4, 1)

24λ
Q(3)(Nσ − 6.5) + Fλ (5)

where Fλ is bounded above in (16).

For all the approximations given above, for a fixed value of
Navail, an approximate value of λ can be obtained by solving
numerically an equation in

√
λ.

3.3 Robust upper-bound
If we seek for robustness and not precision, it may be inter-
esting to consider the so-called concentration inequality. We
remark that in the present context, f is non-negative and
bounded by L = maxk lk so that we are in position to apply
Theorem 4. We obtain that

P(

∫

E

f dω ≥
∫

E

f dν + a)

≤ exp

(

−
∫

E
f2λ dν

L2
g(

aL
∫

E
f2λ dν

)

)

, (6)

where g is defined in Section C.



4. APPLICATIONS TO OFDMA AND LTE
In such systems, there is a huge number of physical param-
eters with a wide range of variations, it is thus rather hard
to explore the while variety of sensible scenarios. For illus-
tration purposes, we chose a circular cell of radius R = 300
meters equipped with an isotropic antenna such that the
transmitted power is 1 W and the reference distance is 10
meters. The mean number of active customers per unit of
surface, denoted by λ, was chosen to vary between 0, 001
and 0.000 1, this corresponds to an average number of ac-
tive customers varying from 3 to 30, a realistic value for
the systems under consideration. The minimum SINR is
0.3 dB and the random variable S defined above is a cen-
tered Gaussian with variance equal to 10. There are two
classes of customers, C1 = 1, 000 kb/s and C2 = 400 kb/s.
It must be noted that our set of parameters is not universal
but for the different scenarios we tested, the numerical facts
we want to point out were always apparent. Since the time
scale is of the order of a packet transmission time, the traf-
fic is defined as the mean number of required subchannels
at each slot provided that the time unit is the slot duration,
that is to say that the load is defined as ρ = λ

∫

cell
f dν.

Figure 2: Impact of γ and τ on the loss probability
(Navail = 92, λ = 0.0001)

Figure 2 shows, the loss probability may vary up to two
orders of magnitude when the rate and the probability of
each class change even if the mean rate

∑

k τkCk remains
constant. Thus mean rate is not a sufficient parameter to
predict the performances of such a system. The load ρ is
neither a pertinent indicator as the computations show that
the loads of the various scenarios differs from less than 3%.

Comparatively, Figure 2 shows that variations of γ have
tremendous effects on the loss probability: a change of a
few percents of the value of γ induces a variation of several
order of magnitude for the loss probability. It is not sur-
prising that the loss probability increases as a function of γ:
as γ increases, the radio propagation conditions worsen and
for a given transmission rate, the number of necessary sub-
channels increases, generating overloading. Beyond a certain
value of γ (apparently around 3.95 on Figure 2), the radio
conditions are so harsh that a major part of the customers
are in outage since they do not satisfy the SNR criterion any

longer. We remark here that the critical value of γ is almost
the same for all configurations of classes. Indeed, the criti-
cal value γc of γ can be found by a simple reasoning: When
γ < γc, a class k customer uses less than the allowed lk sub-
channels because the radio conditions are good enough for

β
1/γ
k, j ≥ R for some j < lk so that the load increases with γ.

For γ > γc, all the β
−1/γ
k, l are lower than R and the larger γ,

the wider the gap. Hence the number of customers in outage
increases as γ increases and the load decreases. Thus,

γc ≃ inf{γ, β−1/γ
s, ls−1 ≤ R} for s = arg maxklk.

If we proceed this way for the data of Figure 2, we retrieve
γc = 3.95. This means that for a conservative dimensioning,
in the absence of estimate of γ, computations may be done
with this value of γ.

For a threshold given by ǫ = 10−4, we want to find Navail

such that P(Ntot ≥ Navail) ≤ ǫ. As said earlier, the exact
method gives the result at the price of a sometimes lengthy
process. In view of 3, one could also search for α such that

1 −Q(α) +
1

2

√

2

π
m(3, λ) = ǫ (7)

and then consider ⌈1 +
∫

E
f dν + ασ⌉ as an approximate

value of Navail. Unfortunately and as was expected since the
Gaussian approximation is likely to be valid for large values
of λ, the corrective term in (7) is far too large (between 30
and 500 depending on γ) for (7) to have a meaning. Hence,
we must proceed as usual and find α such that 1−Q(α) = ǫ,
i.e. α ≃ 3.71. The approximate value of Navail is thus given
by ⌈

∫

E
f dν + 3.71σ⌉. The consequence is that we do not

have any longer any guarantee on the quality of this ap-
proximation, how close it is to the true value and even more
basic, whether it is greater or lower than the correct value.
In fact, it is absolutely impossible to choose a dimension-
ing value lower than the true value since there is no longer
a guarantee that the loss probability is lower than ǫ. As
shows Figure 3, it turns out that the values returned by the
Gaussian method are always under the true value. Thus this
annihilates any possibility to use the Gaussian approxima-
tion for dimensioning purposes.

Going one step further, according to (4), one may find α
such that

1 −Q(α) − m(3, λ)

6
Q(3)(α) + Eλ = ǫ

and then use

⌈3.5 +

∫

E

f dν + ασ⌉

as an approximate guaranteed value of Navail. By guaran-
teed, we mean that according to (4), it holds for sure that
the loss probability with this value of Navail is smaller than ǫ
even if there is an approximation process during its compu-
tation. Since the error in the Edgeworth approximation is of
the order of 1/λ, instead of 1/

√
λ for the Gaussian approxi-

mation, one may hope that this method will be efficient for
smaller values of λ. It turns out that for the data sets we
examined, Eλ is of the order of 10−7/λ, thus this method
can be used as long as 10−7/λ ≪ ǫ. Otherwise, as for the



Gaussian case, we are reduced to find α such that

1 −Q(α) − m(3, λ)

6
Q(3)(α) = ǫ

and consider ⌈3.5 +
∫

E
f dν + ασ⌉ but we no longer have

any guarantee on the validity of the value. As Figure 3
shows, for the considered data set, Edgeworth methods leads
to an optimistic value which is once again absolutely not
acceptable. One can pursue the development as in (15) and
use (5), thus we have to solve

1 −Q(α) − m(3, λ)

6
Q(3)(α)

− m(3, 1)2

72λ
Q(5)(α) +

m(4, 1)

24λ
Q(3)(α) − Fλ = ǫ.

For the analog of 4 to hold, we have to find Ψ a C5
b func-

tion greater than 1[x,∞) but smaller than 1[x−lag,∞) with
a fifth derivative smaller than 1. Looking for Ψ in the set
of polynomial functions, we can find such a function only if
lag is greater than 6.5 (for smaller value of the lag, the fifth
derivative is not bounded by 1) thus the dimensioning value
has to be chosen as:

⌈6.5 +

∫

E

f dν + ασ⌉.

For the values we have, it turns out that Fλ is of the order
of 10−9λ−3/2 which is negligible compared to ǫ = 10−4, so
that we can effectively use this method for λ ≥ 10−4. As it
is shown in Figure 3, the values obtained with this develop-
ment are very close to the true values but always greater as
it is necessary for the guarantee. The procedure should thus
be the following: compute the error bounds given by (3),
(13) and (5) and find the one which gives a value negligible
with respect to the threshold ǫ, then use the corresponding
dimensioning formula. If none is suitable, use a finer Edge-
worth expansion or resort to the concentration inequality
approach.

Note that the Edgeworth method requires the computations
of the first three (or five) moments, whose lengthiest part is
to compute the ζk, l which is also a step required by the exact
method. Thus Edgeworth methods are dramatically simpler
than the exact method and may be as precise. However,
both the exact and Edgeworth methods suffer from the same
flaw: There are precise as long as the parameters, mainly λ
and γ, are perfectly well estimated. The value of γ is often
set empirically (to say the least) so that it seems important
to have dimensioning values robust to some estimate errors.
This is the goal of the last method we propose.

According to (6), if we find α such that

g(
αL

∫

E
f2λ dν

) = − log(ǫ)L2

∫

E
f2λ dν

and

Navail =

∫

E

f dν +
α

L2

∫

E

f2λ dν, (8)

we are sure that the loss probability will fall under ǫ. How-
ever, we do not know a priori how larger this value of Navail

than the true value. It turns out that the relative oversizing
increases with γ from a few percents to 40% for the large
value of γ and hence small values of Navail. For instance, for

γ = 4.2, the value of Navail given by (8) is 40 whereas the
exact value is 32 hence an oversizing of 25%. However, for
γ = 4.12, which is 2% away from 4.2, the required number of
subchannels is also 40. The oversizing is thus not as bad as
it may seem since it may be viewed as a protection against
traffic increase, epistemic risk (model error) and estimate
error.

Figure 3: Estimates of Navail as a function of γ by
the different methods
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APPENDIX

A. HERMITE POLYNOMIALS
Let Φ be the Gaussian probability density function: Φ(x) =
exp(−x2/2)/

√
2π and µ the Gaussian measure on R. Her-

mite polynomials (Hk, k ≥ 0) are defined by the recursion
formula:

Hk(x)Φ(x) =
dk

dxk
Φ(x).

For the sake of completness, we recall that

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3, H5(x) = x5 − 10x3 + 15x.

Thus, for F ∈ Ck
b , using integration by parts, we have

∫

R

F (k)(x) dµ(x) =

∫

R

F (x)Hk(x) dµ(x). (9)

Let Q(x) =
∫ x

−∞
Φ(u) du =

∫

R
1(−∞; x](u)Φ(u) du. Then,

Q′ = Φ and

∫

R

1(−∞; x](u)Hk(u) dµ(u)

=

∫

R

1(−∞; x](u)
dk+1

dxk+1
Q(u) du

= Q(k)(x) = Hk−1(x)Φ(x). (10)

B. EDGEWORTH EXPANSION

For details on Poisson processes, we refer to [2, 5]. For E a
Polish space equipped with a Radon measure ν, ΓE denotes
the set of locally finite discrete measures on E. The generic
element ω of ΓE may be identified with a set ω = {xn, n ≥
1} such that ω ∩ K has finite cardinal for any K compact
in E. We denote by

∫

E
f dω the sum

∑

x∈ω f(x) provided
that it exists as an element of R∪{+∞}. A Poisson process
of intensity ν is a probability Pν on ΓE, such that for any
f ∈ CK(E, R),

Eν

[

exp(−
∫

E

f dω)

]

= exp(−
∫

E

1 − e−f(x) dν(x)).

For f ∈ L1(ν), the Campbell formula states that

Eν

[∫

f dω

]

=

∫

f dν.

We introduce the discrete gradient D defined by

DxF (ω) = F (ω ∪ {x}) − F (ω), for all x ∈ E.

In particular, for f ∈ L1(ν), we have

Dx

∫

E

f dω = f(x).

The domain of D, denoted by Dom D is the set of function-
als F : ΓE → R such that

Eν

[∫

E

|DxF (ω)|2 dν(x)

]

<∞.

The integration by parts then says that, for any F ∈ Dom D,
any u ∈ L2(ν),

Eν

[

F

∫

E

u(x)( dω(x) − dν(x))

]

= Eν

[∫

E

DxF u(x) dν(x)

]

. (11)

We denote by σ = ‖f‖L2(ν)

√
λ and fσ = f/σ. Note that

‖fσ‖L2(ν) = 1/λ and that

m(p, λ) :=

∫

E

|fσ(x)|pλ dν(x) = ‖f‖−p

L2(ν)
‖f‖pLp(ν)λ

1−p/2.

The proof of the following theorem may be found in [5, 12,
13].

Theorem 2. Let f ∈ L2(ν). For λ > 0, let

Nλ =

∫

E

fσ(x)( dω(x) − λ dν(x)).

Then, for any Lipschitz function F from R to R, we have
∣

∣

∣

∣

Eλν

[

F (Nλ)
]

−
∫

R

F dµ

∣

∣

∣

∣

≤ 1

2

√

π

2
m(3, λ) ‖F‖Lip.

To prove the Edgeworth expansion and its error bound,
we introduce some notions of Gaussian calculus. For F ∈
C2
b (R; R), we consider

AF (x) = xF ′(x) − F ′′(x), for any x ∈ R.

The Ornstein-Uhlenbeck semi-group is defined by

PtF (x) =

∫

R

F (e−tx+
√

1 − e−2ty) dµ(y) for any t ≥ 0.



The infinitesimal generator A and Pt are linked by the fol-
lowing identity

F (x) −
∫

R

F (y) dµ(y) = −
∫ ∞

0

APtF (x) dt. (12)

Theorem 3. For F ∈ C3
b (R, R),

∣

∣

∣

∣

Eλν

[

F (Nλ)
]

−
∫

R

F (y) dµ(y)

−1

6
m(3, λ)

∫

R

F (y)H3(y) dµ(y)

∣

∣

∣

∣

≤
(

m(3, 1)2

6
+
m(4, 1)

9

√

2

π

)

‖F (3)‖∞
λ

· (13)

Proof. According to the Taylor formula,

DxG(Nλ) = G(Nλ + fσ(x)) −G(Nλ)

= G′(Nλ)fσ(x) +
1

2
f2
σ(x)G′′(Nλ)

+
1

2
fσ(x)3

∫ 1

0

r2G(3)(rNλ + (1 − r)fσ(x)) dr. (14)

Hence, according to (11) and (14),

Eλν

[

Nλ(PtF )′(Nλ)
]

= Eλν

[∫

E

fσ(x)Dx(PtF )′(Nλ)λ dν(x)

]

= Eλν

[

(PtF )′′(Nλ)
]

+
1

2

∫

E

f3
σ(x)λ dν(x)Eλν

[

(PtF )(3)(Nλ)
]

+
1

2

∫

E

f4
σ(x)λ dν(x)

×Eλν

[∫ 1

0

(PtF )(4)(rNλ + (1 − r)fσ(x))r2 dr

]

= A1 + A2 + A3.

It is well known that for F ∈ Ck, (x 7→ PtF (x)) is k + 1-
times differentiable and that we have two expressions of the
derivatives (see [10]):

(PtF )(k+1)(x)

=
e−(k+1)t

√
1 − e−2t

∫

R

F (k)(e−tx+
√

1 − e−2ty)y dµ(y).

and (PtF )(k+1)(x) = e−(k+1)tPtF
(k)(x). The former equa-

tion induces that

‖(PtF )(k+1)‖∞ ≤ e−(k+1)t

√
1 − e−2t

‖F (k)‖∞
∫

R

|y| dµ(y)

=
e−(k+1)t

√
1 − e−2t

√

2

π
‖F (k)‖∞.

Hence,

|A3| ≤ e−4t

6
√

1 − e−2t

√

2

π
m(4, λ) ‖F (3)‖∞.

Moreover, according to Theorem 2,

∣

∣

∣

∣

Eλν

[

(PtF )(3)(Nλ)
]

−
∫

R

(PtF )(3)(x) dµ(x)

∣

∣

∣

∣

≤ 1

2

√

π

2
m(3, λ)‖(PtF )(4)‖∞

=
1

2

√

π

2
m(3, λ)e−3t‖(PtF

(3))′‖∞

≤ 1

2
m(3, λ)

e−4t

√
1 − e−2t

‖F (3)‖∞.

Then, we have,

|A2 − 1

2
m(3, λ)

∫

R

(PtF )(3)(x) dµ(x)|

≤ 1

4
m(3, λ)2

e−4t

√
1 − e−2t

‖F (3)‖∞.

Hence,

Eλν

[

Nλ(PtF )′(Nλ) − (PtF )′′(Nλ)
]

=
1

2
m(3, λ)

∫

R

(PtF )(3)(x) dµ(x) +R(t),

where

R(t) ≤
(

m(3, λ)2

4
+
m(4, λ)

6

√

2

π

)

‖F (3)‖∞ e−4t

√
1 − e−2t

·

Now then,

∫

R

(PtF )(3)(x) dµ(x)

= e−3t

∫

R

∫

R

F (3)(e−tx+
√

1 − e−2ty) dµ(y)

= e−3t

∫

R

F (3)(y) dµ(y)

= e−3t

∫

R

F (y)H3(y) dµ(y),

since the Gaussian measure on R2 is rotation invariant and
according to (9). Remarking that

∫ ∞

0

e−4t(1 − e−2t)−1/2 dt = 2/3

and applying (12) to x = Nλ, the result follows.

This development is not new in itself but to the best of our
knowledge, it is the first time that there is an estimate of the
error bound. Following the same lines, we can pursue the
expansion up to any order provided that F be sufficiently
differentiable. Namely, for F ∈ C5

b , we have

Eλν

[

F (Nλ)
]

=

∫

R

F (y) dµ(y)

+
m(3, 1)

6
√
λ

∫

R

F (3)(y) dµ(y) +
m(3, 1)2

72λ

∫

R

F (5)(y) dµ(y)

+
m(4, 1)

24λ

∫

R

F (4)(y) dµ(y) + Fλ‖F (5)‖∞. (15)



where

Fλ ≤ m(3, 1)

λ3/2

(

2

45
m(3, 1)2

+(
4

135
+

π2

128
)

√

2

π
m(4, 1)

)

. (16)

C. CONCENTRATION INEQUALITY
We are now interested in an upper bound, which is called
concentration inequality.

Theorem 4. Let M, a > 0. Assume that |f(z)| ≤ M
ν−a.s and f ∈ L2(E, ν), then

P(F > E [F ] + a) ≤ exp

{

− M2

V [F ]
g

(

a.M

V [F ]

)}

(17)

where g(u) = (1 + u) ln(1 + u) − u.

The above theorem can be directly derived from [16]. How-
ever let us take this opportunity to prove this theorem in a
very nice, simple and elementary fashion, exactly the same
way as Bennett built his concentration inequality for the
sum of n i.i.d random variables.

Proof. Using Chernoff’s bound we have:

P(F > E [F ] + a) ≤ E
[

eθF
]

/eθ(E[F ]+a)

= e
∫
E(eθf(z)−1−θf(z)) dν(z)−θa

Now assume that |f(z)| ≤ M ν−a.s . Observe that the
function (ex − 1 − x)/x2 is increasing on R (the value at 0
is 1/2), we have that

eθf(z) − θf(z) − 1 ≤ eθM − 1 − θM

M2
f2(z) ν a.s.

Thus,

P(F > E [F ] + a)

≤ exp

{
∫

E

(

eθM − θM − 1

M2
f2(z)

)

dν(z) − θa

}

= exp

{

eθM − 1 − θM

M2
V [F ] − θa

}

·

We find that θ = ln (1 + aM/V [F ]) /M minimizes the right-
hand-side and thus we obtain (17).


