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Abstract

This paper deals with the design of an efficient open boundary condition
(OBC) for fluid dynamics problems. Such problematics arise, for instance, when
one solves a local model on a fine grid that is nested in a coarser one of greater
extent. Usually the local solution U loc is computed from the coarse solution
U ext thanks to an OBC formulated as BhU

loc = BHU ext, where Bh and BH

are discretizations of the same differential operator B (Bh being defined on the
fine grid and BH on the coarse grid). In this paper we show that such an OBC
cannot lead to the exact solution, and we propose a generalized formulation
BhU

loc = BHU ext + g, where g is a correction term. When Bh and BH are dis-
cretizations of a transparent operator, g can be computed analytically, at least
for simple equations. Otherwise we propose to approximate g by a Richard-
son extrapolation procedure. Numerical test cases on a 1-D Laplace equation
and on a 1-D shallow water system illustrate the improved efficiency of such a
generalized OBC compared to usual ones.

Keywords : Open boundary conditions, nested grids, transparent boundary
conditions, Richardson extrapolation, shallow water equations, fluid dynamics.

1 Introduction

In order to limit their computational cost, numerical simulations are frequently
performed on a limited domain of interest which is only a portion of the full
area in which the phenomenon takes place. This is the case, for instance, in
a number of fluid dynamics applications, especially in geophysical ones, e.g.
meteorology or oceanography. One then has to deal with the treatment of
a fluid boundary artificially limiting the computational domain. This is the so
called open boundary problem. The difficulty is then to prescribe open boundary
conditions (OBCs) that are able both to evacuate the outgoing information and
to take into account the incoming part of the available external information
generally provided by some previous large scale low resolution simulation.
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There exists a huge literature dealing with this problem in the context of
various applications (see, e.g., the review papers [2, 7, 8, 19]). In the specific
context of ocean modelling, several kinds of OBCs have been proposed, such
as damped radiation or Flather conditions (see, e.g., [3] and references therein
for a review) and this question remains an active field of research (e.g. the
recent papers [9, 13, 14, 15, 16, 17]). As pointed out in [3], the conditions that
seem to lead to the best numerical performances rely more or less directly on
the mathematical notion of Transparent Boundary Conditions (TBCs). This is
also consistent with several recent works that derive OBCs closely connected to
TBCs (e.g. [10, 11, 12, 16, 17]). The problematic of TBC consists in finding
an adequate boundary condition, such that solving Lwloc = f̃ in Ωloc ⊂ Ω
with this boundary condition leads to wloc = w|Ωloc , where Lw = f̃ in Ω. In [5]

transparent conditions are derived for several linear equations when the support
of f̃ is included in Ωloc. Such conditions are used in actual OBC problems.

In this paper, we show that in the context of open boundary conditions,
since the local problem is solved on a fine grid but uses exterior data that
were obtained on a coarser grid (and/or even with a simplified physics), then
the problem is related to a discrete TBC formulation with a right hand side f̃
which is non compactly supported in Ωloc. A consequence of this specific aspect
is that an additional correction term is needed in the usual OBCs, in order
to improve their efficiency (Section 2). In [1, 4] the case of f̃ non compactly
supported in Ωloc is treated in the discrete case. But in the context of OBCs,
particular behaviors may appear, like for instance an oscillating behavior of the
right hand side at the grid scale (see example below). As a consequence such
r.h.s can not be considered on the coarse grid only. Our strategy is then to
interpret the correction term at the continuous level which makes it possible to
discretize it on the coarse exterior domain only (Section 3). We also propose in
Section 4 another strategy to derive the correction term based on a Richardson
extrapolation procedure. The efficiency of such generalized OBCs with regard
to usual ones is assessed in the simple test cases of a 1-D Laplace equation and
a 1-D shallow water system.

2 Formal analysis of the open boundary prob-

lem

Let Ω be an open set in R
n. We consider the following model:

{

Lu = f in Ω
Cu = g on ∂Ω

(1)

where L is a (system of) partial differential equation(s), and C is a boundary
operator. We are interested in obtaining an accurate approximation of the
solution of this (system of) equation(s) in a local region included in Ω. Ideally,
if there were no limitations in terms of computer resources, one would first
solve (1) accurately on the fine mesh Ωh:

{

LhU
ref = fh in Ωh

ChU
ref = gh on ∂Ωh (2)

where Lh and Ch (resp. fh and gh) are high resolution discretizations of L and
C (resp. f and g). Then we would focus on the restriction of U ref to the zone of
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interest Ωloc ⊂ Ωh (see Figure 1). However such a global accurate computation
is unaffordable. That is why one solves instead the local problem:







LhU
loc = fh in Ωloc

ChU
loc = gh on ∂Ωloc ∩ ∂Ωh

+ a boundary condition at the open boundary Γ
(3)

where Γ is the artificial interface between Ωloc and Ωh \ Ωloc.
The boundary condition that appears in (3) is called an open boundary con-

dition (OBC) and should be ideally such that U loc coincides with the reference
solution U ref in Ωloc. To this end, since the source term f is not equal to zero
in Ω \ Ωloc, it is necessary to supply information on the behavior of U ref in
this exterior region in the OBC. Since U ref is unknown, it is obvious that only
approximate information is available. In the actual context of oceanic or atmo-
spheric simulations, a coarse approximation U ext of U ref is generally available,
either from some climatological database or from a previous coarse resolution
calculation on Ω. This coarse solution U ext will then be used in the OBC.

Figure 1: Example of configuration. Left: reference mesh Ωh; right: exterior
coarse mesh Ωext and local fine mesh Ωloc.

Many existing OBCs are formulated under the usual form

BhU
loc = BHU ext, (4)

where the boundary operators Bh and BH are discretizations of the same differ-
ential operator B (Bh being defined on the fine grid Ωloc and BH on the coarse
grid where U ext is available). For instance, the simplest choice is of course
a Dirichlet condition (B = Id). Another example is the Flather condition [6],
which is frequently used in oceanic and atmospheric modelling, and is generally
quite efficient. As pointed out in [3], Bu corresponds in this case to the incom-
ing characteristic variable of the hyperbolic shallow water equations, and is an
approximation of the exact transparent boundary condition (see, e.g., [5]). Let
us now see if this usual form (4) can lead to the exact solution U loc = U ref

|Ωloc .

We will assume in the following that every considered boundary operator Bh

is admissible, which means that solving (3) with the OBC BhU
loc = z for any

right hand side z, yields a unique solution. Moreover we will assume that we
are in the simple case where all the operators (L, C,B and their discretizations)
are linear.

By subtracting (3) from (2), let us write the equations for the error U ref
|Ωloc −
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U loc:






Lh(U
ref
|Ωloc − U loc) = 0 in Ωloc

Ch(U
ref
|Ωloc − U loc) = 0 on ∂Ωloc ∩ ∂Ωh

Bh(U
ref − U loc) = BhU

ref −BHU ext on Γ.

(5)

Since the problem is linear and Bh is admissible, the solution is exact (i.e.
U ref
|Ωloc − U loc = 0) if and only if the right hand side of the OBC is zero. Un-

fortunately BhU
ref −BHU ext, although probably small, is certainly not exactly

zero. This means that, in the context of the usual form of OBC (4), it is not
possible to obtain the exact solution, whatever the choices for Bh and BH .

We propose thus to introduce an additional term in the usual OBC, which
leads to the generalized OBC:

BhU
loc = BHU ext + g. (6)

In that case, the error satisfies the boundary condition Bh(U
ref − U loc) =

BhU
ref − BHU ext − g, in which the right hand side may vanish, provided that

g is well chosen. We have then proved the following lemma:

Lemma 1 If the two discrete operators Bh and BH and the correction term g
are such that

BhU
ref = BHUext + g (7)

then solving (3) with the generalized OBC (6) provides the exact solution U loc =

U ref

|Ωloc.

Note that this property does not imply the uniqueness of the OBC: for each
choice of Bh and BH , a convenient g can be built (at least theoretically) such
that (7) is satisfied.

In the rest of this paper, we will propose two different strategies to derive
such a generalized OBC, and implement them numerically in simple 1-D test
cases.

3 Generalized OBC based on Transparent Bound-

ary Condition

In this section we will illustrate how one can build a generalized OBC based on
the use of a transparent boundary condition (TBC). Our strategy is to derive
this TBC at the continuous level, and to discretize it afterwards. Since we intend
here to make the derivation explicit, we will focus on the simple 1-D diffusion
problem:







Lu = −d2u

dx2
+ αu = f in (0, 1)

u(0) = u(1) = 0
(8)

with α a positive scalar, and f in C2([0, 1]) (note that other linear boundary
conditions could be considered without changing the main results of the pa-
per). The generalization to more complex equations will be discussed in the
conclusion.
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3.1 Transparent boundary condition for an equation with

a non local source term

In Section 3.2 we will be confronted to the building of a TBC at x = xloc for a
problem similar to (8) when the support of the right hand side is not included
in (0, xloc). If it were, the derivation would follow the strategy presented in [5].
In the case of a right hand side non compactly supported in (0, xloc) TBCs have
been derived [1, 4] in the discrete case. The following theorem is the continuous
formulation of these last results.

Theorem 1 Let w0 be a real number and f̃ be in L2(xloc, 1). If w is the solution
of











Lw = f̃ in (xloc, 1)

w(xloc) = w0

w(1) = 0

(9)

then w satisfies the boundary condition:

Bw := w′(xloc) + λw(xloc) = p (10)

where λ = −z′(xloc)

z(xloc)
, p =

∫ 1

xloc
f̃(σ)z(σ)dσ

z(xloc)
and z(x) = e

√
α(1−x) − e−

√
α(1−x).

Proof: The exact expression of the solution w can be obtained by using a
decomposition w = w1 + w2 with











Lw1 = 0 in (xloc, 1)

w1(xloc) = w0

w1(1) = 0,

and











Lw2 = f̃ in (xloc, 1)

w2(xloc) = 0

w2(1) = 0.

The solutions of these second order ODEs are w1(x) = w0
z(x)

z(xloc)
and

w2(x) = − 1

2
√
α

z(x)

z(xloc)

∫ xloc

1

f̃(σ)
(

e
√
α(σ−xloc) − e−

√
α(σ−xloc)

)

dσ

+
1

2
√
α

∫ x

1

f̃(σ)
(

e
√
α(σ−x) − e−

√
α(σ−x)

)

dσ.

Hence (10) by differentiation.

3.2 Strategy for building an improved OBC

As described in Section 2, we are now looking for a local high resolution ap-
proximation of the solution of (8), with the assumption that we have access to
a global coarse approximation.

In order to compute a finite difference approximation of the solution of (8),
the interval [0, 1] is discretized using a uniform mesh (xi)0≤i≤2N with xi = ih
and h = 1

2N . We also consider the coarse mesh (x2i)0≤i≤N . We denote by LH

(resp. Lh) the usual three-point discrete operator corresponding to (8) on the
coarse (resp. fine) grid. These two operators are consistent with L and are
second order accurate.
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Using the notations introduced in Section 2, let us assume that we are in-
terested in obtaining an accurate solution U loc on a local domain [0, x2i0 ]. This
local solution U loc = (U loc

0 , U loc
1 , · · · , U loc

2i0−1, U
loc
2i0 ) ∈ R

2i0+1 will be obtained by
solving

{

LhU
loc = fh

U loc
0 = 0

(11)

with some convenient boundary condition at x = x2i0 . Ideally this boundary
condition should be such that U loc coincides with the reference solution U ref =
(U ref

0 , U ref
1 , · · · , U ref

2N) ∈ R
2N+1 defined by











LhU
ref = fh

U ref
0 = 0

U ref
2N = 0.

(12)

As pointed out in Section 2, the boundary condition at x = x2i0 must use
some exterior information, provided by a less accurate solution U ext. We will
assume here that U ext = (U ext

0 , · · · , U ext
2i , · · · , U ext

2N ) ∈ R
N+1 is a coarse grid

approximation of u, which has been previously computed by solving











LHU ext = fH

U ext
0 = 0

U ext
2N = 0.

(13)

In order to find Bh, BH and g that we will use in our generalized OBC, we have to
find a relationship of the form of the ideal one (7). At the continuous level, such
a relationship can be obtained by making w = uref−uext and f̃ = L(uref−uext)
in Theorem 1. This provides indeed, at least theoretically, a boundary operator
B and a correction term p such that Buref = Buext + p. Our approach consists
at the discrete level in introducing I, the linear interpolation operator from the
coarse grid to the fine grid, and making U ref − IU ext play the role of w, and
Fh = Lh(U

ref − IU ext) play the role of f . Then we choose Bh (resp. BH) to
be a discretization of the continuous transparent boundary operator B on the
fine (resp. coarse) grid, and g to be an approximation of p. We now describe
the discrete implementation of the different ingredients that we have proposed
in the previous section for the generalized OBC (6).

Regarding the boundary operators Bh and BH , we have chosen two second
order approximations of B. Since BH is applied to U ext which is defined on both
sides of the open boundary location x2i0 , we have used the standard second order
centered scheme:

BHU ext =
1

4h

(

U ext
2i0+2 − U ext

2i0−2

)

+ λU ext
2i0 . (14)

The problem is different for Bh, since it is applied to U loc which is defined only
left from x2i0 . Therefore we must use a one-sided scheme. Using the fact that,
if u is solution of Lu = f , then u′(xi) can be approximated with second order
accuracy by 1

h (Ui − Ui−1) +
h
2 (αUi − f(xi)), we have chosen the scheme:

BhU
loc =

1

h
(U loc

2i0 − U loc
2i0−1) +

h

2
(αU loc

2i0 − f(x2i0 )) + λU loc
2i0 . (15)
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The most complicated task is the approximation of the correction term p oc-
curring in (10). If Fh = Lh(U

ref − IU ext), Theorem 2 (see Appendix) gives the
expansion Fh = F +O(h4) and p will be approximated by

gh =
Th(F̃ )

z(x2i0)
(16)

where (F̃i)2i0≤i≤2N = (Fi z(xi))2i0≤i≤2N and Th(Z) is the trapezoidal rule to

integrate the vector Z: Th(Z) = h(Z2i0 + Z2N ) + 2h
∑2N−1

i=2i0+1 Zi.

Its approximation for small values of h is given by gh = g +O(h4) with

g =
h2

4z(x2i0)

( [ α

2h
(U ext

2N − U ext
2N−2) + αh(αU ext

2N − f(x2N ))− f ′(x2N )
]

z(x2N )

+
[

αU ext
2N − f(x2N )

]

z′(x2N )

−
[ α

4h

(

U ext
2i0+2 − U ext

2i0−2

)

− f ′(x2i0)
]

z(x2i0)−
[

αU ext
2i0 − f(x2i0 )

]

z′(x2i0 )

− α2Th((U
ext
2i z(x2i))i0≤i≤N ) + αTh((f(x2i)z(x2i))i0≤i≤N )

)

.

(17)

See Appendix for the detailed calculations leading to this approximation.

Finally a candidate for an efficient OBC is the generalized boundary condi-
tion (6) with BH , Bh and g defined respectively in (14), (15) and (17).

Remark 1 In [1, 4], the equivalent of Theorem 1 is given at the discrete level
and could be a priori used in our context. It would give an expression of g
computed on the fine exterior grid, leading to the exact OBC. However, because
of the oscillating nature of F (between u′′ and −u′′, see Theorem 2 in the Ap-
pendix), it is not straightforward to express this term on the coarse grid. With
our strategy which consists in understanding the global behavior of the right hand
side at the continuous level, we are free to discretize it on the coarse grid.

3.3 Numerical results

We will present now some numerical results in order to illustrate the actual
performance of this generalized OBC. The experiments were conducted with
α = 10, and with f chosen such that u(x) = sin(2πx) is the exact solution of
(8). Three different locations of the open boundary were considered: xloc = 0.24,
0.4 and 0.64.

The generalized OBC has been compared to two other OBCs written in the
usual form (4), i.e. without correction term. The first one is a simple Dirichlet
condition (Bh = BH = Id), while the second one uses the discretized transparent
boundary operators (14) and (15), like the generalized OBC.

The errors with regard to the reference solution are displayed on Figure 2,
for a mesh size h = 1/200. Three main remarks emerge: (i) the OBCs without
correction term hardly improve the results w.r.t. the external coarse resolution
solution U ext; (ii) the results are not systematically improved when transparent
operators (with no correction term) are used instead of Dirichlet operator; (iii)
the use of the correction term in the generalized OBC definitely improves the
accuracy of the local solution, by several orders of magnitude.
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Figure 2: Error with regard to the reference solution for the external coarse res-
olution solution (|U ref− IU ext|) (Ext) and for the local solution (|U ref

|Ωloc −U loc|)
computed with a Dirichlet OBC (Dir), a transparent OBC with no correction
term (TBC), and the generalized OBC (TBCg). The open boundary location
is x2i0 = 0.24 (top left), x2i0 = 0.4 (top right) and x2i0 = 0.64 (bottom).

To analyse more precisely the previous points, we have displayed the L2

norms of the preceding errors in Figure 3 as a function of the mesh size h. We
can notice important differences between the methods. As expected (due to
the finite difference scheme) the error of the coarse resolution solution is O(h2).
The Dirichlet and transparent conditions with no correction term lead to an
error which is also O(h2), while the generalized OBC significantly improves
the error estimate, which becomes O(h4). Here is an explanation. Since the
numerical scheme is second order, then U ext

2i0 = u(x2i0) + 4h2c(x2i0 ) + O(h4)

and U ref
2i0

= u(x2i0 ) + h2c(x2i0 ) + O(h4) for some continuous function c. As a
consequence the exterior solution satisfies:

BHU ext = u′(x2i0 )+λu(x2i0)+h2
(

2u(3)(x2i0 )/3 + 4c′(x2i0 ) + 4λc(x2i0 )
)

+O(h4),

whereas the reference solution satisfies:

BhU
ref = u′(x2i0 ) + λu(x2i0 ) + h2

(

u(3)(x2i0 )/6 + c′(x2i0 ) + λc(x2i0 )
)

+O(h4).

Hence imposing the OBC : BhU
loc = BHU ext + g leads to an error which

satisfies:

Bh(U
loc − U ref) = h2

(

u(3)(x2i0 )/2 + 3c′(x2i0 ) + 3λc(x2i0)
)

+ g +O(h4). (18)

Regarding the Dirichlet condition, the error at the interface is:

U loc
2i0 − U ref

2i0 = 3h2c(x2i0 ) +O(h4). (19)
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Considering (18) and (19) we see that with both Dirichlet and transparent con-
ditions without correction an error of order 2 in h is introduced at the interface.
However, in each case the magnitude of the error depends definitely on the solu-
tion u and we have no assurance that the transparent OBC will yield a smaller
error than the Dirichlet OBC. Regarding the generalized OBC with the correc-
tion term g, it absorbs the h2 term, leading to an error of order 4 only on the
boundary. This point is illustrated in Figure 4.
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Figure 3: L2 norm of the errors displayed in Figure 2 as a function of h. The
open boundary is located at x2i0 = 0.24 (top left), x2i0 = 0.4 (top right) and
x2i0 = 0.64 (bottom).

4 Generalized OBC using a Richardson extrap-

olation

The method presented in the previous section leads to very good performances
of the generalized OBC. We were able to compute explicitly the correction term
because of the simplicity of the equation, but this will no longer be the case for
more complex equations. We therefore propose in the present section another
way to get the correction term g in (6), relying on Richardson extrapolation.

4.1 Strategy to approximate an exact OBC

Coming back to the preceding test case (8) described in Section 3, we consider
now a Dirichlet condition, i.e. BhU

loc = U loc
2i0

and BHU ext = U ext
2i0

. Then,

according to Lemma 1, we must choose g = U ref
2i0 −U ext

2i0 . Since U
ref is unknown,

this quantity cannot be directly computed, but we propose to approximate it
by a Richardson extrapolation.
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Figure 4: Residual |Bh(U
loc − U ref) − g| at point x2i0 = 0.4 as a function of

h for the Dirichlet OBC (Dir), the transparent OBC with no correction term
(TBC) and the generalized OBC (TBCg).

The numerical scheme being second order accurate, we have:

U ref
i = u(xi) + h2c(xi) +O(h4)

U ext
i = u(xi) + 4h2c(xi) +O(h4)

which yields g = U ref
2i0 − U ext

2i0 = −3h2c(x2i0 ) + O(h4). If UEXT denotes the
solution of the equation on an even coarser grid with mesh size 4h (which can be
computed at very low cost), then we have U ext

2i0
−UEXT

2i0
= −12h2c(x2i0 )+O(h4).

This implies to approximate g by (U ext
2i0

−UEXT
2i0

)/4. Hence the generalized OBC:

U loc
2i0 = U ext

2i0 +
1

4
(U ext

2i0 − UEXT
2i0 ). (20)

This very simple condition leads to very good performances w.r.t. previous
OBCs, comparable to those obtained with the much more sophisticated gener-
alized OBC derived in Section 3 (see Figure 5). Note that a figure similar to
Figure 3 would show that the error with the reference solution also behaves like
O(h4).

4.2 Application to a 1-D Shallow Water model

In order to further investigate the preceding ideas, we will now consider a test
case which is more complex in terms of the physics, but also closer to actual
applications in oceanography or meteorology. We will use the 1-D linear shallow
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Figure 5: Same as Figure 2, but with the addition of condition (20) (labelled as
Dirg).

water system:











































































∂u

∂t
+ U

∂u

∂x
+ g

∂η

∂x
+ ru = 0 on (−L1, L2)× [0, T ]

∂η

∂t
+ U

∂η

∂x
+D

∂u

∂x
+Bu = 0 on (−L1, L2)× [0, T ]

(

√

D

g
u+ η)(−L1, t) = 0 for t ∈ [0, T ]

(

√

D

g
u− η)(L2, t) = 0 for t ∈ [0, T ]

u(x, 0) = 0 and η(x, 0) =
1

4 + 2 cosh(x+5
0.5 )

for x ∈ (−L1, L2)

(21)

where U,D, g, r and B are constants, corresponding respectively to a velocity
scale, a depth scale, the gravity constant, a friction coefficient and a term related
to the bottom topography gradient. This system is of hyperbolic nature, which
is the dominant nature of ocean and atmosphere dynamics, and which strongly
differs from the elliptic ODE considered in Section 3. We consider the usual
regime where |U | ≪ c =

√
gD, which means that the characteristic w+ =

1
2 (u

√

D/g + η) propagates eastward at the positive velocity U + c, and the

characteristic w− = 1
2 (u

√

D/g−η) propagates westward at the negative velocity
U − c. Note that this reference domain (−L1, L2) is not closed, which explains
our choice for the absorbing boundary conditions: w+(−L1, t) = w−(L2, t) =
0, ∀t.
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We chose the following values for the physical parameters: L1 = 20 m,
L2 = 10 m, D = 25 m, g = 10 m.s−2, c =

√
gD ≃ 16m.s−1, U = 0.1 m.s−1,

r = 3.10−3s−1, and B = 0.095. The open boundary is located at x4i0 = −13, as
shown in Figure 6, which means that a wave enters the local domain (−20,−13)
during the experiment (approximately at t = 0.21).
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Figure 6: Solution of the shallow water model at successive instants t = 0,
t = 0.07, t = 0.21 and t = 0.72.

We are now interested in the finite difference approximation of (21). The
interval (−L1, L2) is uniformly discretized with a mesh size h: (xi)0≤i≤4N , while
the time interval is discretized by a time step dt: (tn)0≤n≤4M . Backward (resp.
forward) Euler scheme is used on the characteristic variable w+ (resp. w−) with
the CFL condition dt = h/max(|U − c|, |U + c|). The solution which should
be computed on this fine grid will be named Zref = (U ref

i,n, η
ref
i,n)0≤i≤4N,0≤n≤4M ,

and is the reference solution. However, as described in the previous sections, we
will solve the fine problem only on the local domain (xi)0≤i≤4i0 × (tn)0≤n≤4M .
This local solution will be named Z loc = (U loc

i,n , η
loc
i,n)0≤i≤4i0,0≤n≤4M . Thus we

need an OBC at x4i0 = −13. This boundary condition will use the coarse
solution Zext = (U ext

2i,2n, η
ext
2i,2n)0≤i≤2N,0≤n≤2M which is computed on the coarse

grid (x2i)0≤i≤2N × (t2n)0≤n≤2M (see Figure 7).
We propose to implement the Richardson method presented in the previ-

ous section. The shallow water model (21) being of hyperbolic nature, we
will consider boundary conditions dealing with the characteristic variables. Let
W−,loc

4i0,n
= U loc

4i0,n

√

D/g − ηloc4i0,n
and W−,ext

4i0,n
= U ext

4i0,n

√

D/g − ηext4i0,n
being the

incoming characteristics from the point of view of the local domain. We propose
the following generalized OBC:

Bn
hZ

loc = Bn
HZext + gn, 0 ≤ n ≤ 4M (22)

12



Figure 7: Fine, coarse and very coarse meshes of (−L1, L2)× (0, T ).

where
Bn

hZ
loc = W−,loc

4i0,n

Bn
HZext =







W−,ext
4i0,n

if n is even

1

2

(

W−,ext
4i0,n−1 +W−,ext

4i0,n+1

)

if n is odd.

The correction term gn must now be designed. Following Lemma 1, the expres-
sion of gn leading to the exact OBC is:

gn =







W−,ref
4i0,n

−W−,ext
4i0,n

if n is even

W−,ref
4i0,n

− 1

2

(

W−,ext
4i0,n−1 +W−,ext

4i0,n+1

)

if n is odd.

Since the scheme is first order accurate, we have the following consistency re-
sults:

W−,ref
4i0,n

= w(x4i0 , t
n) + c1(x4i0 , t

n)dt+ c2(x4i0 , t
n)h+O(dt2) +O(h2)

W−,ext
4i0,2n

= w(x4i0 , t
2n) + 2c1(x4i0 , t

2n)dt+ 2c2(x4i0 , t
2n)h+O(dt2) +O(h2)

where c1 and c2 are two continuous functions. Hence the behavior of gn for
every n:

gn = − c1(x4i0 , t
n)dt− c2(x4i0 , t

n)h+O(dt2) +O(h2).

This correction term will be approximated thanks to a Richardson extrapolation
method using ZEXT = (UEXT

4i,4n, η
EXT
4i,4n)0≤i≤N,0≤n≤M , the solution on the very

coarse grid (x4i)0≤i≤N × (t4n)0≤n≤M . It satisfies:

W−,EXT
4i0,4n

= w(x4i0 , t
4n) + 4c1(x4i0 , t

4n)dt+ 4c2(x4i0 , t
4n)h+O(dt2) +O(h2),

and g4n can be approximated by (W−,ext
4i0,4n

−W−,EXT
4i0,4n

)/2. At time indices 4n+1,

13



4n+ 2 and 4n+ 3, the correction term is approximated by interpolation:

g4n ≃ 1

2
(W−,ext

4i0,4n
−W−,EXT

4i0,4n
)

g4n+1 ≃ 1

4
(W−,ext

4i0,4n
+W−,ext

4i0,4n+2)−
1

8
(3W−,EXT

4i0,4n
+W−,EXT

4i0,4n+4)

g4n+2 ≃ 1

2
W−,ext

4i0,4n+2 −
1

4
(W−,EXT

4i0,4n
−W−,EXT

4i0,4n+4)

g4n+3 ≃ 1

4
(W−,ext

4i0,4n+2 +W−,ext
4i0,4n+4)−

1

8
(W−,EXT

4i0,4n
+ 3W−,EXT

4i0,4n+4).

(23)
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Figure 8: Left panel: errors (
∑4i0

i=0 h|U ref
i,n−IU ext

i,n |2)1/2 (Ext), and (
∑4i0

i=0 h|U ref
i,n−

U loc
i,n |2)1/2 as a function of n dt when (22) is used with gn = 0 (TBC) or with

gn given by (23) (TBCg). Right panel: (
∑4M

n=0

∑4i0
i=0 dt h|U ref

i,n − IU ext
i,n |2)1/2 and

(
∑4M

n=0

∑4i0
i=0 dt h|U ref

i,n − U loc
i,n |2)1/2 for (TBC) and (TBCg) as a function of h.

The improvement due to this correction term is evidenced in Figure 8. While
the usual condition ((22) with gn = 0) hardly improves the solution compared
to the external coarse resolution solution, the error decreases by one order of
magnitude when the corrected condition ((22) with gn given by (23)) is used.
Moreover the addition of this correction term makes the L2 norm of the error in
Ωloc× (0, T ) change from O(h) (consistent with the order of the finite difference
scheme) to O(h2).
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5 conclusion

In many applications such as oceanography and meteorology, OBCs are usu-
ally written under the form BhU

loc = BHU ext. The aim of this paper was to
emphasize the interest in defining a generalized form BhU

loc = BHU ext + g, g
being a correction term. For any Bh and BH operators, if g = BhU

ref−BHU ext,
then U loc coincides with the reference solution. Obviously U ref is unknown and
g needs to be approximated. The obvious question is then to choose Bh and
BH such that a corresponding approximation of g can be (as easily as possible)
computed.

In this paper we have discussed two strategies. When Bh and BH are dis-
cretizations of the transparent boundary operator, g does not depend on U ref.
In that case we succeeded in getting an analytical expression and a good cor-
responding approximation for g in the very simple case of the 1-D Laplace
equation. Numerical experiments have underlined the good performance of this
strategy. However, for more complex equations (e.g. 2-D case, non-linear equa-
tions), the transparent boundary operator cannot be used directly because of its
non local nature, and therefore it must be approximated. This has consequences
for g, which should be studied in a future work.

We also proposed to approximate g numerically by a Richardson extrapo-
lation method. In this case the simplest boundary condition operators Bh and
BH (Dirichlet for parabolic equations or incoming characteristic variables for
hyperbolic equations) are convenient. Provided that several grid solutions with
decreasing resolutions are available, such a strategy seems to improve the lo-
cal solution significantly, at least in the simple 1-D test cases presented in this
paper. The next step would be to implement a generalized OBC using this
Richardson extrapolation strategy in a realistic oceanographic or atmospheric
numerical model. Its actual performance will probably depend on the way the
physical scales are resolved by the successive computation grids. Such an inves-
tigation will be the subject of a future paper.

A Appendix: approximation of the correction

term of the generalized OBC

This appendix presents the detailed calculations leading to the approximation
(17) for the correction term of the generalized OBC, in the test case described in

Section 3. One has to provide an approximation for p =
∫ 1

x2i0

R(σ)z(σ)dσ/z(x2i0),

the discretization of R being Fh = Lh(U
ref − IU ext).

We need first to compute Fh. Let start by recalling some well-known prop-
erties for the finite difference operators Lh and LH .

Lemma 2 Let f be in C2([0, 1]). Then u, solution of (8), is in ∈ C4([0, 1]) and
satisfies:

(LhV)i = −u′′(xi) + αu(xi)−
h2

12
u(4)(xi) +O(h4) (24)

where V = (u(xi))0≤i≤2N . Moreover there exists c in C2([0, 1]) such that, if U
is solution of LhU = fh, then

Ui − u(xi) = h2c(xi) +O(h4). (25)
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Proof: The first result is obtained by Taylor expansion, while the second one
is obtained thanks to properties of the inverse of the Laplacian matrix (e.g. [18]
for more details).

Theorem 2 Let f be in C2([0, 1]). Then the exterior error projected on the
fine grid, U ref − IUext, satisfies:

Lh(U
ref − IUext) = F +O(h4)

with F = F 1 + h2F 2 − h2

2 F 3. The even and odd components of F i are defined
by

F 1 =













...
u′′(x2i)

−u′′(x2i+1)
...













, F 2 =













...
1
3u

(4)(x2i) + 4c′′(x2i)

− 1
3u

(4)(x2i+1)− 4c′′(x2i)
...













and F 3 =













...
0

u(4)(x2i+1) + f ′′(x2i+1)
...













, with c a continuous function.

Proof: Since U ref and U ext are solutions of (12) and (13), we obtain:

Lh(U
ref − IU ext) = fh − ILHU ext − LhIU

ext + ILHU ext

= fh − IfH + (ILH − LhI)U
ext.

The right hand side is the sum of two interpolation errors between the two grids:
the first one measures the error on f and the second one measures the error on
the discrete operator.

Let us now estimate these errors. Computing fh − IfH is straightforward:






(fh − IfH)2i = f(x2i)− f(x2i) = 0

(fh − IfH)2i+1 = f(x2i+1)−
1

2
(f(x2i) + f(x2i+2)) = −h2

2
f ′′(x2i+1) +O(h4).

Let us now estimate (ILH − LhI)U
ext for the even components. Relation (25)

from Lemma 2 gives U ext
2i = u(x2i)+4h2c(x2i)+O(h4) and we use (24) to obtain

[

(ILH − LhI)U
ext

]

2i
= − 1

(2h)2
(2U ext

2i − U ext
2i−2 − U ext

2i+2)

= +u′′(x2i) +
h2

3
u(4)(x2i) + 4h2c′′(x2i) +O(h4).

Similarly the odd terms read:

[

(ILH − LhI)U
ext

]

2i+1
=

α

2
(U ext

2i + U ext
2i+2)−

1

2(2h)2
(−2U ext

2i + U ext
2i−2 + U ext

2i+2)

− 1

2(2h)2
(−2U ext

2i+2 + U ext
2i + U ext

2i+4)

− α

2
(U ext

2i + U ext
2i+2) +

1

h2
(−U ext

2i − U ext
2i+2 + U ext

2i + U ext
2i+2)

= −u′′(x2i+1)−
5h2

6
u(4)(x2i+1)− 4h2c′′(x2i+1) +O(h4).
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Hence the result.

We now have to compute Th(F̃ ) in (16) with F̃i = Fiz(xi). This is the purpose
of Theorem 3. But we first need preliminaries results to integrate F̃ ; vectors
F̃ 1 and F̃ 2 have similar patterns: Lemma 3 explains how to integrate them,
whereas F̃ 3 is integrated thanks to Lemma 4.

Lemma 3 Let w be a C4([a, b]) function and (xi)0≤i≤2N be a mesh of [a, b] with
xi+1−xi = h. Integrating W = (w(x0),−w(x1), w(x2), · · · ,−w(x2N−1), w(x2N ))

by a trapezoidal rule gives h2

4 (w′(x2N )− w′(x0)) +O(h3).

Proof: Applying the trapezoidal rule on W and then a Taylor expansion yields:

Th(W ) =
h

2
(w(x0) + w(x2N )) + h2

N−1
∑

i=1

w(x2i)− w(x2i−1)

h
− hw(x2N−1)

=
h

2
(w(x0) + w(x2N )− 2w(x2N−1)) + h2

N−1
∑

i=1

w′(x2i)

− h3

2

N−1
∑

i=1

w′′(x2i) +O(h4).

However the trapezoidal rule is second order accurate. Using it once again on
the coarse grid we get for any z ∈ C2([a, b]):

∫ x2N

x0

z(t) dt =
2h

2
(z(x0) + z(x2N )) + 2h

N−1
∑

i=1

z(x2i) +O(h2).

As a consequence we have

2h

N−1
∑

i=1

w′(x2i) =

∫ x2N

x0

w′(t) dt− h(w′(x0) + w′(x2N )) +O(h2)

= w(x2N )− w(x0)− h(w′(x0) + w′(x2N )) +O(h2)

and similarly

2h
N−1
∑

i=1

w′′(x2i) = w′(x2N )− w′(x0) +O(h).

We can now compute Th(W ):

Th(W ) =
h

2
(w(x0) + w(x2N )− 2w(x2N−1)) +

h

2
(w(x2N )− w(x0))

− h2

2
(w′(x0) + w′(x2N )) +O(h3)− h2

4
(w′(x2N )− w′(x0)) +O(h3)

= h2w(x2N )− w(x2N−1)

h
− h2

4
(w′(x0) + 3w′(x2N )) +O(h3)

= h2w′(x2N )− h2

4
(w′(x0) + 3w′(x2N )) +O(h3)

=
h2

4
(w′(x2N )− w′(x0)) +O(h3).

(26)
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Lemma 4 Let w be a C4([a, b]) function and (xi)0≤i≤2N be a mesh of [a, b] with
xi+1−xi = h. Integrating W = (0, w(x1), 0, · · · , w(x2N−1), 0) by the trapezoidal

rule gives 1
2

∫ b

a w(t)dt +O(h).

Proof: The proof is similar to the one of Lemma 3.

We can now expand gh = Th(F̃ )/z(x2i0) given in (16) for small values of h.

Theorem 3 The correction term gh given in (16) can be expanded as gh =
g +O(h4) with

g =
h2

4z(x2i0)

( [ α

2h
(Uext

2N − Uext
2N−2) + αh(αUext

2N − f(x2N ))− f ′(x2N )
]

z(x2N )

+
[

αUext
2N − f(x2N )

]

z′(x2N )

−
[ α

4h

(

Uext
2i0+2 − Uext

2i0−2

)

− f ′(x2i0)
]

z(x2i0)−
[

αUext
2i0 − f(x2i0 )

]

z′(x2i0 )

− α2Th((IU
ext
i z(xi))2i0≤i≤N ) + αTh((f(xi)z(xi))2i0≤i≤N )

)

.

(27)

Proof: With obvious notations, we have Th(F̃ ) = Th(F̃
1)+h2

2 Th(F̃
2)−h2

2 Th(F̃
3).

Using Lemmas 3 and 4, we obtain

Th(F̃1) =
h2

4
((u′′z)′(x2N )− (u′′z)′(x0)) +O(h3)

Th(F̃2) = O(h2)

Th(F̃3) =
1

2

∫ 1

x2i0

(u(4)z + f ′′z)(σ)dσ +O(h)

which implies

Th(F̃ ) =
h2

4

(

(u(3)z + u′′z′)(x2N )− (u(3)z + u′′z′)(x2i0 )
)

− h2

4

∫ 1

x2i0

(u(4) + f ′′)z(σ)dσ +O(h3).

Since u′′ = αu − f , we obtain:

Th(F̃ ) =
h2

4
((αu′ − f ′)(x2N )z(x2N ) + (αu− f)(x2N )z′(x2N ))

− h2

4
((αu′ − f ′)(x2i0 )z(x2i0) + (αu− f)(x2i0 )z

′(x2i0 ))

− h2

4

∫ 1

x2i0

α(αu − f)(σ)z(σ)dσ +O(h3).

Since on (x2i0 , 1) we only know U ext , u will be approximated by IU ext in this
formula, which leads to the result.
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[7] Givoli, D. High order local non reflecting boundary conditions: a review.
Wave Motion 39 (2004), 319–326.

[8] Hagstrom, T. Radiation boundary conditions for the numerical simulation
of waves. Acta Numerica 8 (1999), 47–106.

[9] Lavelle, J.W. and Thacker, W.C. A pretty good sponge: Dealing with open
boundaries in limited-area ocean models. Ocean Modelling 20 (2008), no.3,
270–292.

[10] McDonald, A. Transparent boundary conditions for baroclinic waves: a
study of two elementary systems of equations. Tellus A 57 (2005), 171–182.

[11] McDonald, A. Transparent lateral boundary conditions for baroclinic waves
II. Introducing potential vorticity waves. Tellus A. 58 (2006), 210–220.

[12] McDonald, A. Transparent lateral boundary conditions for baroclinic waves
III. Including vertical shear. Tellus A 61 (2009), 227–231.

[13] Mar-Or, A. and Givoli, D. High Order Global-Regional Model Interaction:
Extension of Carpenter?s Scheme. Int. J. Numerical Methods in Engineering
77 (2009), 50–74.

[14] Marsaleix, P., Ulses, C., Pairaud, I., Herrmann, M.J., Floor, J.W., Estour-
nel, C. and Auclair, F. Open boundary conditions for internal gravity wave
modelling using polarization relations. Ocean Modelling 29 (2009), 27–42.

[15] Modave, A., Deleersnijder, E. and Delhez, E.J.M. On the parameters of
absorbing layers for shallow water models. Ocean Dynamics 60 (2010), 65–
79.

19



[16] Neta, B., van Joolen, V., Dea, J.R. and Givoli, D. Application of Hhgh-order
Higdon non-reflecting boundary conditions to linear shallow water models.
Communications in Numerical Methods in Engineering 24 (2008), 1459–
1466.

[17] Nycander, J., Mc Hogg, A. and Frankcombe, L.M. Open boundary condi-
tions for nonlinear channel flow. Ocean Modelling 24 (2008), 108–121.

[18] Strikwerda, J. C. Finite difference schemes and partial differential equa-
tions. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, (2004).

[19] Tsynkhov, S. V. Numerical solutions of problems on unbounded domains.
A review. Appl. Numer. Math. 27 (1998), 456–532.

20


