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Disriminative variable seletion for lusteringwith the sparse Fisher-EM algorithmCharles Bouveyron∗ & Camille Brunet†

∗ Laboratoire SAMM, EA 4543Université Paris 1 Panthéon-Sorbonne † Equipe Modal'X, EA 3454Université Paris Ouest NanterreAbstratThe interest in variable seletion for lustering has inreased reently dueto the growing need in lustering high-dimensional data. Variable seletionallows in partiular to ease both the lustering and the interpretation of theresults. Existing approahes have demonstrated the e�ieny of variable se-letion for lustering but turn out to be either very time onsuming or notsparse enough in high-dimensional spaes. This work proposes to perform aseletion of the disriminative variables by introduing sparsity in the loadingmatrix of the Fisher-EM algorithm. This lustering method has been reentlyproposed for the simultaneous visualization and lustering of high-dimensionaldata. It is based on a latent mixture model whih �ts the data into a low-dimensional disriminative subspae. Three di�erent approahes are proposedin this work to introdue sparsity in the orientation matrix of the disrimina-tive subspae through ℓ1-type penalizations. Experimental omparisons withexisting approahes on simulated and real-world data sets demonstrate theinterest of the proposed methodology. An appliation to the segmentation ofhyperspetral images of the planet Mars is also presented.1 IntrodutionWith the exponential growth of measurement apaities, the observed data are nowa-days frequently high-dimensional and lustering suh data remains a hallengingproblem. In partiular, when onsidering the mixture model ontext, the orre-sponding lustering methods show a disappointing behavior in high-dimensionalspaes. They su�er from the well-known urse of dimensionality [3℄ whih is1



mainly due to the fat that model-based lustering methods are dramatially over-parametrized in high-dimensional spaes. Moreover, even though we dispose of manyvariables to desribe the studied phenomenon, most of the time, only a small subsetof these original variables are in fat relevant.Several reent works have been interested to simultaneously luster data andredue their dimensionality by seleting relevant variables for the lustering task. Aommon assumption to these works is that the true underlying lusters are assumedto di�er only with respet to some of the original features. The lustering taskaims therefore to group the data on a subset of relevant features. This presentstwo pratial advantages: lustering results should be improved by the removing ofnon informative features and the interpretation of the obtained lusters should beeased by the meaning of retained variables. In the literature, variable seletion forlustering is handled in two di�erent ways.On the one hand, some authors suh as [19, 20, 21, 29℄ takle the problemof variable seletion for model-based lustering within a Bayesian framework. Inpartiular, the determination of the role of eah variable is reast as a model seletionproblem. A �rst framework was proposed by Raftery and Dean [29℄ in whih twokinds of subsets of variables are de�ned: a subset of relevant variables and a subsetof irrelevant variables whih are independent from the lustering but whih an beexplained from the relevant variables through a linear regression. An extension ofthe previous work has then been proposed by Maugis et al. [21℄ who onsider twokinds of irrelevant variables: the ones whih an be explained by a linear regressionfrom a subset of the lustering variables and �nally a set of irrelevant variables whihare totally independent of all the relevant variables. The models in ompetition areafterward ompared with the integrated log-likelihood via a BIC approximation.Even though these approahes present good results in most pratial situations,their omputational times are nevertheless very high and an lead to an intratableproedure in the ase of high-dimensional data.On the other hand, penalized lustering riteria have also been proposed to dealwith the problem of variable seletion in lustering. In the Gaussian mixture modelontext, several works, suh as [27, 32, 35, 39℄ in partiular, introdued a penaltyterm in the log-likelihood funtion in order to yield sparsity in the features. Thepenalty funtion an take di�erent forms aording to the onstraints imposed onthe struture of the ovariane matries. The introdution of a penalty term in thelog-likelihood funtion was also used in the mixture of fator analyzers approahes,suh as in [16, 36℄. More reently, Witten and Tibshirani [33℄ proposed a generalnon-probabilisti framework for variable seletion in lustering, based on a general2



penalized riterion, whih governs both variable seletion and lustering. It ap-pears nevertheless that the results of suh proedures are usually not sparse enoughand selet a large number of the original variables, espeially in the ase of high-dimensional data.Other approahes fous on simultaneously lustering the data and reduing theirdimensionality by feature extration rather than feature seletion. We an ite inpartiular, the subspae lustering methods [9, 17, 24, 23, 26, 37℄ whih are basedon probabilisti frameworks and model eah group in a spei� and low-dimensionalsubspae. Even though these methods are very e�ient in pratie, they presentnevertheless several limitations regarding the understanding and the interpretationof the lusters. Indeed, in most of subspae lustering approahes, eah group ismodeled in its spei� subspae whih makes di�ult a global visualization of thelustered data. Even though some approahes [2, 26℄ model the data in a om-mon and low-dimensional subspae, they hoose the projetion matrix suh as thevariane of the projeted data is maximum and this an not be su�ient to athdisriminative information about the group struture.To overome these limitations, Bouveyron and Brunet [6℄ reently proposed anew statistial framework whih aims to simultaneously luster the data and pro-due a low-dimensional and disriminative representation of the lustered data. Theresulting lustering method, named the Fisher-EM algorithm, lusters the data intoa ommon latent subspae of low dimensionality whih best disriminates the groupsaording to the urrent fuzzy partition of the data. It is based on an EM proe-dure from whih an additional step, named F-step, is introdued to estimate theprojetion matrix whose olumns span the disriminative latent spae. This pro-jetion matrix is estimated at eah iteration by maximizing a onstrained Fisher'sriterion onditionally to the urrent soft partition of the data. As reported in [6℄,the Fisher-EM algorithm turned out to outperform most of the existing lusteringmethods while providing a useful visualization of the lustered data. However, thedisriminative latent spae is de�ned by �latent variables� whih are linear ombina-tions of the original variables. As a onsequene, the interpretation of the resultinglusters aording to the original variables is usually di�ult. An intuitive way toavoid suh a limitation would be to keep only large loadings variables, by thresh-olding for instane. Even though this approah is ommonly used in pratie, it hasbeen partiularly ritiized by Cadima [10℄ sine it indues some misleading infor-mation. Furthermore, it often happens when dealing with high-dimensional datathat a large number of noisy or non-informative variables are present in the set ofthe original variables. Sine the latent variables are de�ned by a linear ombination3



of the original ones, the noisy variables may remain in the loadings of the projetionmatrix and this may produe a deterioration of the lustering results.To overome these shortomings, three di�erent approahes are proposed in thiswork for introduing sparsity in the Fisher-EM algorithm and thus selet the dis-riminative variables among the set of original variables. The remainder of thisdoument is organized as follows. Setion 2 reviews the disriminative latent mix-ture model of [6℄ and the Fisher-EM algorithm whih was proposed for its inferene.Setion 3 develops three di�erent proedures based on ℓ1 penalties for introduingsparsity into the Fisher-EM algorithm. The �rst approah looks for the best sparseapproximate of the solution of the F-step of the Fisher-EM algorithm. The seondone reasts the optimization problem involved of the F-step as a lasso regression-typeproblem. The last approah is based on a penalized singular value deomposition(SVD) of the matrix involved in the onstrained Fisher riterion of the F-step.Numerial experiments are then presented in Setion 4 to highlight the pratial be-havior of the three sparse versions of the Fisher-EM algorithm and to ompare themto existing approahes. In setion 5, a sparse version of the Fisher-EM algorithmis applied to the segmentation of hyperspetral images. Setion 6 �nally providessome onluding remarks and ideas for further works.2 The DLM model and the Fisher-EM algorithmIn this setion, we brie�y review the disriminative latent mixture (DLM) model [6℄and its inferene algorithm, named the Fisher-EM algorithm, whih models andlusters the data into a ommon latent subspae. Conversely to similar approahes,suh as [8, 24, 25, 26, 37℄, this latent subspae is assumed to be disriminative andits intrinsi dimension is stritly bounded by the number of groups.2.1 The DLM modelLet {y1, . . . , yn} ∈ R
p denote a dataset of n observations that one wants to lus-ter into K homogeneous groups, i.e. adjoin to eah observation yi a value zi ∈

{1, . . . , K} where zi = k indiates that the observation yi belongs to the kth group.On the one hand, let us assume that {y1, . . . , yn} are independent observed real-izations of a random vetor Y ∈ R
p and that {z1, . . . , zn} are also independentrealizations of a random variable Z ∈ {1, . . . , K}. On the other hand, let E ⊂ R

pdenote a latent spae assumed to be the most disriminative subspae of dimension
d ≤ K − 1 suh that 0 ∈ E and K < p. Moreover, let {x1, . . . , xn} ∈ E denote theatual data, desribed in the latent spae E of dimension d, whih are in addition4
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ΨFigure 1: Graphial summary of the DLM[Σkβ] model.presumed to be independent realizations of an unobserved random vetor X ∈ E.Finally, the observed variable Y ∈ R
p and the latent variable X ∈ E are assumedto be linked through a linear transformation:

Y = UX + ε, (1)where U is a p × d orthonormal matrix ommon to the K groups and satisfying
U tU = Id. The p-dimensional random vetor ε stands for the noise term whihmodels the non disriminative information and whih is assumed to be distributedaording to a entered Gaussian density funtion with a ovariane matrix Ψ (ε ∼
N (0,Ψ)). Besides, within the latent spae, X is assumed, onditionally to Z = k,to be Gaussian :

X|Z=k ∼ N (µk,Σk) (2)where µk ∈ R
d and Σk ∈ R

d×d are respetively the mean vetor and the ovarianematrix of the kth group. Given these distribution assumptions and aording toequation (1),
Y|X,Z=k ∼ N (UX,Ψ), (3)and its marginal distribution is therefore a mixture of Gaussians:

f(y) =
K
∑

k=1

πkφ(y;mk, Sk), (4)where πk is the mixing proportion of the kth group and φ(.;mk, Sk) denotes themultivariate Gaussian density funtion parametrized by the mean vetor mk = Uµkand the ovariane matrix Sk = UΣkU
t+Ψ of the kth group. Furthermore, we de�nethe p × p matrix W = [U, V ] suh that W tW = WW t = Ip, where the (p − d) × p5



matrix V is an orthogonal omplement of U . Finally, the noise ovariane matrix
Ψ is assumed to satisfy the onditions VΨV t = βIp−d and UΨU t = 0d, suh that
∆k = W tSkW has the following form:
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(p− d)These last onditions imply that the disriminative and the non-disriminative sub-spaes are orthogonal, whih suggests in pratie that all the relevant lusteringinformation remains in the latent subspae. This model is referred to by DLM[Σkβ]in [6℄ and a graphial summary is given in Figure 1.2.2 A family of parsimonious modelsSeveral other models an be obtained from the DLM[Σkβ] model by relaxing or addingonstraints on model parameters. Firstly, it is possible to onsider a more generalase than the DLM[Σkβ] by relaxing the onstraint on the variane term of the nondisriminative information. Assuming that ε|Z=k ∼ N (0,Ψk) yields the DLM[Σkβk]model whih an be useful in some pratial ases. From this extended model, 10parsimonious models an be obtained by onstraining the parameters Σk and βk tobe ommon between and within the groups. For instane, the ovariane matries
Σ1, . . . ,ΣK in the latent spae an be assumed to be ommon aross the groupsand this sub-model is referred to by DLM[Σβk]. Similarly, in eah group, Σk an beassumed to be diagonal, i.e. Σk = diag(αk1, . . . , αkd). This sub-model is referredto by DLM[αkjβk]. These sub-models an also be delined by onsidering that theparameter β is ommon to all lasses (∀k, βk = β). A list of the 12 di�erent DLMmodels is given by Table 1 and detailed desriptions an be found in [6℄. Suh afamily yields very parsimonious models and allows, in the same time, to �t intovarious situations. In partiular, the omplexity of the DLM[Σkβk] model mainlydepends on the number of lusters K sine the dimensionality of the disriminativesubspae is suh that d ≤ K−1. Notie that the omplexity of the DLM[Σkβk] growslinearly with p ontrary to the traditional Gaussian models in whih the omplexityinreases with p2. As an illustration, if we onsider the ase where p = 100, K = 46



Model Nb. of parameters K = 4 and
p = 100

DLM[Σkβk] (K − 1) +K(K − 1) + (K − 1)(p−K/2) +K2(K − 1)/2 +K 337
DLM[Σkβ] (K − 1) +K(K − 1) + (K − 1)(p−K/2) +K2(K − 1)/2 + 1 334
DLM[Σβk] (K − 1) +K(K − 1) + (K − 1)(p−K/2) +K(K − 1)/2 +K 319
DLM[Σβ] (K − 1) +K(K − 1) + (K − 1)(p−K/2) +K(K − 1)/2 + 1 316
DLM[αkjβk] (K − 1) +K(K − 1) + (K − 1)(p−K/2) +K2 325
DLM[αkjβ] (K − 1) +K(K − 1) + (K − 1)(p−K/2) +K(K − 1) + 1 322
DLM[αkβk] (K − 1) +K(K − 1) + (K − 1)(p−K/2) + 2K 317
DLM[αkβ] (K − 1) +K(K − 1) + (K − 1)(p−K/2) +K + 1 314
DLM[αjβk] (K − 1) +K(K − 1) + (K − 1)(p−K/2) + (K − 1) +K 316
DLM[αjβ] (K − 1) +K(K − 1) + (K − 1)(p−K/2) + (K − 1) + 1 313
DLM[αβk] (K − 1) +K(K − 1) + (K − 1)(p−K/2) +K + 1 314
DLM[αβ] (K − 1) +K(K − 1) + (K − 1)(p−K/2) + 2 311Full-GMM (K − 1) +Kp+Kp(p+ 1)/2 20603Com-GMM (K − 1) +Kp+ p(p+ 1)/2 5453Diag-GMM (K − 1) +Kp+Kp 803Sphe-GMM (K − 1) +Kp+K 407MFA (K − 1) +Kp+Kd[p− (d− 1)/2)] +Kp 1991 (d = 3)Mixt-PPCA (K − 1) +Kp+K[d(p− (d+ 1)/2) + d+ 1] + 1 1198 (d = 3)PGMM-CUU (K − 1) +Kp+ d[p− (d+ 1)/2] +Kp 1100 (d = 3)MCFA (K − 1) +Kd+ p+ d[p− (d+ 1)/2] +Kd(d+ 1)/2 4330 (d = 3)MCUFSA (K − 1) +Kd+ 1 + d[p− (d+ 1)/2] +Kd 3220 (d = 3)Table 1: Number of free parameters to estimate when d = K − 1 for the DLMmodels and some lassial models (see text for details).and d = 3, then the number of parameters to estimate for the DLM[Σkβk] is 337whih is drastially less than in the ase of the Full-GMM (20 603 parameters toestimate). For a omparison purpose, Table 1 presents also the omplexity of otherlustering methods, suh as Mixt-PPCA [31℄, MFA [23℄, PGMM [24℄, MCFA [1℄ andMCUFSA [38℄ for whih the omplexity grows linearly with p as well.2.3 The Fisher-EM algorithmAn estimation proedure, alled the Fisher-EM algorithm, is also proposed in [6℄ inorder to estimate both the disriminative spae and the parameters of the mixturemodel. This algorithm is based on the EM algorithm from whih an additional step isintrodued, between the E and the M-step. This additional step, named F-step, aimsto ompute the projetion matrix U whose olumns span the disriminative latentspae. The Fisher-EM algorithm has therefore the following form, at iteration q:
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The E-step This step omputes the posterior probabilities t(q)ik that the observa-tions belong to the K groups using the following update formula:
t
(q)
ik = π̂

(q−1)
k φ(yi, θ̂

(q−1)
k )/

K
∑

ℓ=1

π̂
(q−1)
ℓ φ(yi, θ̂

(q−1)
ℓ ), (5)with θ̂k = {µ̂k, Σ̂k, β̂k, Û}.The F-step This step estimates, onditionally to the posterior probabilities, theorientation matrix U (q) of the disriminative latent spae by maximizing the Fisher'sriterion [13, 15℄ under orthonormality onstraints:

Û (q) = max
U

trace
(

(U tSU)−1U tS
(q)
B U

)

,w.r.t. U tU = Id, (6)where S stands for the ovariane matrix of the whole dataset and S
(q)
B , de�ned asfollows:

S
(q)
B =

1

n

K
∑

k=1

n
(q)
k (m

(q)
k − ȳ)(m

(q)
k − ȳ)t, (7)denotes the soft between ovariane matrix with n(q)

k =
∑n

i=1 t
(q)
ik ,m(q)

k = 1/n
(q)
k

∑n

i=1 t
(q)
ik yiand ȳ = 1/n

∑n

i=1 yi. This optimization problem is solved in [6℄ using the oneptof orthonormal disriminant vetor developed by [14℄ through a Gram-Shmidt pro-edure. Suh a proess enables to �t a disriminative and low-dimensional subspaeonditionally to the urrent soft partition of the data while providing orthonormaldisriminative axes. In addition, aording to the rank of the matrix S
(q)
B , the di-mensionality of the disriminative spae d is stritly bounded by the number oflusters K.The M-step This third step estimates the parameters of the mixture model inthe latent subspae by maximizing the onditional expetation of the omplete log-likelihood:

Q(θ) = −1

2

K
∑

k=1

n
(q)
k

[-2 log(πk) + trace(Σ−1
k Û (q)tC

(q)
k Û (q)) + log(|Σk|)

+ (p-d) log(βk) + trace(C
(q)
k )-∑d

j=1 û
(q)t
j C

(q)
k û

(q)
j

βk
+ p log(2π)

]

. (8)where C
(q)
k = 1

n
(q)
k

∑n

i=1 t
(q)
ik (yi −m

(q)
k )(yi −m

(q)
k )t is the empirial ovariane matrixof the kth group and û

(q)
j is the jth olumn vetor of Û (q), n(q)

k =
∑n

i=1 t
(q)
ik . Hene,8



maximizing Q onditionally to Û (q) leads to the following update formula for themixture parameters of the model DLM[Σkβk]:
π̂
(q)
k =

n
(q)
k

n
, (9)

µ̂
(q)
k =

1

n
(q)
k

n
∑

i=1

t
(q)
ik Û

(q)tyi, (10)
Σ̂

(q)
k = Û (q)tCkÛ

(q), (11)
β̂
(q)
k =

trace(Ck)-∑d

j=1 û
(q)t
j Ckû

(q)
j

p− d
. (12)The Fisher-EM proedure iteratively updates the parameters until the Aitken ri-terion is satis�ed (see paragraph 4.5 of [6℄). The onvergene properties of theFisher-EM algorithm have been studied in [7℄. It is also proposed in this workto use a stopping riterion based on the Fisher riterion involved in the F-step toimprove the lustering performane. Finally, sine the latent subspae has a lowdimension and ommon to all groups, the lustered data an be easily visualized byprojeting them into the estimated latent subspae.3 Sparse versions of the Fisher-EM algorithmEven though the Fisher-EM algorithm turns out to be e�ient both for modelingand lustering data, the interpretation of lustering results regarding the originalvariables remains di�ult. In this setion, we propose therefore three di�erent waysto introdue sparsity into the loadings of the projetion matrix estimated in theF-step of the Fisher-EM algorithm.3.1 A two-step approahIn this �rst approah, we propose to proeed in two steps. First, at iteration q,the traditional F-step of the Fisher-EM algorithm omputes an estimate Û (q) of theorientation matrix of the disriminative latent spae onditionally to the posteriorprobabilities t(q)ik . Then, the matrix Û (q) is approximated by a sparse one Ũ (q) usingthe following result.Proposition 3.1. The best sparse approximation Ũ (q) of Û (q) at the level λ is the
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solution of the following penalized regression problem:
min
U

∥

∥X(q)t − Y tU
∥

∥

2

F
+ λ

d
∑

j=1

|Uj |1 ,where U = [U1, ...,Ud], Uj ∈ R
p is the jth olumn vetor of U , ‖.‖F is the Frobeniusnorm and X(q) = Û (q)tY .Proof. Let Û (q) be the orientation matrix of the disriminative latent spae estimatedby the F-step at iteration (q) and let us de�ne X(q) = Û (q)tY ∈ R

d×n the matrix ofthe projeted data into the subspae spanned by Û (q), where Y ∈ R
p×n denotes theoriginal data matrix. Sine X(q) is generated by Û (q), then Û (q) is solution of theleast square regression of X(q) on Y :

min
U

∥

∥X(q)t − Y tU
∥

∥

2

F
,where U = [U1, ...,Ud], Uj ∈ R

p is the jth olumn vetor of U , ‖.‖F is the Frobeniusnorm. A penalized version of this regression problem an be obtained by adding a
ℓ1-penalty term as follows:

min
U

∥

∥X(q)t − Y tU
∥

∥

2

F
+ λ

d
∑

j=1

|Uj |1 ,and the solution of this penalized regression problem is therefore the best sparseapproximation of Û (q) at the level λ.The previous result allows to provide a sparse approximation Ũ (q) of Û (q) but wehave no guarantee that the Ũ (q) is orthogonal as required by the DLM model. Thefollowing proposition solves this issue.Proposition 3.2. The best orthogonal approximation of Ũ (q) is Ū (q) = u(q)v(q)twhere u(q) and v(q) are respetively the left and right singular vetors of the SVD of
Ũ (q).Proof. Let us onsider the matrix Ũ (q). Searhing the best orthogonal approximationof the matrix Ũ (q) is equivalent to solving the following optimization problem:

min
U

∥

∥

∥
Ũ (q) − U

∥

∥

∥

2

F
w.r.t. U tU = Id.This problem is a nearest orthogonal Prorustes problem whih an be solved by asingular value deomposition [18℄. Let u(q)Λ(q)v(q)t be the singular value deomposi-tion of Ũ (q), then u(q)v(q)t is the best orthogonal approximation of Ũ (q).10



From an pratial point of view, the penalized regression problem of Proposi-tion 3.1 an be solved by alternatively regressing eah olumn vetor of the projetedmatrix Û (q). The sparse and orthogonal approximation Ū (q) of Ũ (q) is obtained af-terward through a SVD of Ũ (q). The following algorithm summarizes these steps.Algorithm 1 � F-step of the sparseFEM-1 algorithm1. At iteration q, ompute the matrix Û (q) by solving (6).2. Compute X(q) = Û (q)tY .3. For j ∈ {1, . . . , d}, solve d independent penalized regression problems with theLARS algorithm [12℄:
Ũ

(q)
j = argmin

Uj

∥

∥

∥
x
(q)t
j − Y tUj

∥

∥

∥

2

+ λ |Uj |1 ,4. Repeat step 3 several times until onvergene.5. Let Ũ (q) = [Ũ
(q)
1 , ..., Ũ

(q)
d ], ompute the SVD of Ũ (q) = u(q)Λ(q)v(q)t and let

Ū (q) = u(q)v(q)t.Let us remark that this problem an be extended to a more general penalizedregression by adding a ridge penalty term. This allows in partiular to handlethe n < p ase whih ours frequently nowadays. In suh a ase, the elasti-netalgorithm [41℄ has to be used instead of the LARS algorithm in Algorithm 1.Nevertheless, a limitation of suh a proedure may be the disonnetion betweenthe estimation of the disriminative subspae and the introdution of the sparsity inthe loadings of the projetion matrix. To avoid that, the two following approahesaim to propose penalized Fisher riteria for whih the solutions �t diretly a sparseand disriminative latent subspae.3.2 A penalized regression riterionWe therefore propose here to reformulate the onstrained Fisher riterion (6) in-volved in the F-step of the Fisher-EM algorithm as a penalized regression problem.Consequently, the solution of this penalized regression problem will �t diretly asparse and disriminative latent subspae. To this end, let us introdue the softmatries H(q)
W and H

(q)
B whih will be omputed, onditionally to the E-step, at eahiteration q of the sparse F-step as follows:De�nition 3.1. The soft matries H

(q)
W ∈ R

p×n and H
(q)
B ∈ R

p×K are de�ned,11



onditionally to the posterior probabilities t(q)ik omputed in the E-step at iteration q,as follows:
H

(q)
W =

1√
n

[

Y −
K
∑

k=1

t
(q)
1k m

(q)
k , . . . , Y −

K
∑

k=1

t
(q)
nkm

(q)
k

]

∈ R
p×n (13)

H
(q)
B =

1√
n

[
√

n
(q)
1 (m

(q)
1 − ȳ), . . . ,

√

n
(q)
K (m

(q)
K − ȳ)

]

∈ R
p×K, (14)where n

(q)
k =

∑n

i=1 t
(q)
ik and m

(q)
k = 1

n

∑n

i=1 t
(q)
ik yi is the soft mean vetor of the lus-ter k.Aording to these de�nitions, the matries H(q)

W and H
(q)
B satisfy:

H
(q)
W H

(q)t
W = S

(q)
W and H

(q)
B H

(q)t
B = S

(q)
B , (15)where S

(q)
W = 1/n

∑K

k=1 n
(q)
k Ck stands for the soft within ovariane matrix om-puted at iteration q and S
(q)
B denotes the soft between ovariane matrix de�ned inequation (7). A penalized version of the optimization problem (6) an be thereforeformulated as a penalized regression-type problem:Proposition 3.3. The best sparse approximation Ũ (q) of the solution of (6) at thelevel λ is the solution B̂(q) of the following penalized regression problem:
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∥

∥
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|βj |1 ,w.r.t. AtA = Id,where A = [α1, . . . , αd] ∈ R
p×d, B = [β1, . . . , βd] ∈ R

p×d, R(q)
W ∈ R

p×p is a uppertriangular matrix resulting from the Cholesky deomposition of S
(q)
W , i.e. S

(q)
W =
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(q)t
W R

(q)
W , H(q)

B,k is the kth olumn of H(q)
B and ρ > 0.Proof. First, let us onsider that the matrix A is �xed at iteration q . Then, opti-mizing :
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with B = [β1, . . . , βd]. Solving this problem is equivalent to solving d independentridge regression problem and the solution B̂(q) is :
B̂(q) =

(

S
(q)
B + ρS

(q)
W

)−1

S
(q)
B R

(q)−1
W A. (17)By substituting B̂(q) in Equation (16), optimizing the objetive funtion (16) over

A, given AtA = Id and B̂(q) �xed, is equivalent to maximize the quantity:
max
A

trace
(

B̂(q)tH
(q)
B H

(q)t
B R

(q)−1
W A

)

,w.r.t. AtA = Id.Aording to Lemma 1 of [28℄, this is a Prorustes problem [18℄ whih has an ana-lytial solution by omputing the singular value deomposition of the quantity:
R

(q)−t

W (H
(q)
B H

(q)t
B )B̂(q) = u(q)Λ(q)v(q)t,where the olumn vetors of the p× d matrix u(q) are orthogonal and v(q) is a d× dorthogonal matrix. The solution is Â(q) = u(q)v(q)t. Substituting Â(q) into (17) gives:

B̂(q) = R
(q)−1
W

(

R
(q)−t

W S
(q)
B R

(q)−1
W + ρIp

)−1

R
(q)−t

W S
(q)
B R

(q)−1
W Â(q)
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Λ(q)v(q)t.By remarking that the d eigenvetors assoiated to the non-zero eigenvalues of thegeneralized eigenvalue problem (6) are the olumns of R(q)−1
W u(q), it follows that B̂(q)spans the same linear subspae than the solution Û (q) of (6). Therefore, the solutionof the penalized optimization problem:

min
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|βj |1 ,w.r.t. AtA = Id,is the best sparse approximation of the solution of (6) at the level λ.However and as in the previous ase, the orthogonality of the olumn vetorsof B̂(q) is not guaranteed but this issue an be takled by Proposition 3.2. From apratial point of view, the optimization problem of Proposition 3.3 an be solvedusing the algorithm proposed by [28℄ in the supervised ase by optimizing alterna-tively over B with A �xed and over A with B �xed. This leads to the following13



algorithm in our ase:Algorithm 2 � F-step of the sparseFEM-2 algorithm1. At iteration q, ompute the matries H
(q)
B and H

(q)
W from Equations (13)and (14). Let S(q)

W = H
(q)
W H

(q)t
W and S

(q)
B = H
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(q)t
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(q)
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W + γ/p trace(S
(q)
W ) =

R
(q)t
W R

(q)
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W S
(q)
B B̂(q) = u(q)Λ(q)v(q)t andlet A(q) = u(q)v(q)t.6. Compute the SVD of B̂(q) = u′(q)Λ′(q)v′(q)t and let Ū (q) = u′(q)v′(q)t.7. Repeat steps several times until onvergene.3.3 A penalized singular value deompositionIn this last approah, we reformulate the onstrained Fisher riterion (6) involved inthe F-step of the Fisher-EM algorithm as a regression problem whih an be solvedby doing the SVD of the matrix of interest in this regression problem. A sparseapproximation of the solution of this regression problem will be obtained by doinga penalized SVD [34℄ instead of the SVD. To that end, let us onsider the followingresult.Proposition 3.4. The solution of (6) is also solution of the following onstrainedoptimization problem:
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where S
(q)
B,ℓ is the ℓth olumn of the soft between ovariane matrix S

(q)
B omputed atiteration q.Proof. Let us �rst prove that minimizing the quantity ∑p

ℓ=1 ||S
(q)
B,ℓ − UU tS
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B,ℓ||2 isequivalent to maximize trace(U tS
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B U) aording to U . Let us now onsider the SVD ofthe n × p matrix S

(q)
B = uΛvt where u and v stands for respetively the left andright singular vetors of S(q)

B and Λ is a diagonal matrix ontaining its assoiatedsingular values. Sine the matrix S
(q)
B has a rank d at most equal to K−1 < p, with

K the number of lusters, then only d singular values of the matrix S
(q)
B are nonzeros, whih enables us to write S(q)

B = uΛdv
t, where Λd = diag(λ1, . . . , λd, 0, . . . , 0).Moreover, by letting U = ud the d �rst left eigenvetors of SB, then:
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j .Consequently, the p × d orthogonal matrix Û suh that ∑p

ℓ=1 ||S
(q)
B,ℓ − UU tS

(q)
B,ℓ||2is minimized, is the matrix made of the d �rst left eigenvetors of S(q)

B . Besides,sine S
(q)
B is symmetri and semi-de�nite positive, the matrix Û ontains also theeigenvetors assoiated with the d largest eigenvalues of S(q)2

B and therefore the onesof S(q)
B . Therefore, assuming without loss of generality that S = Ip, Û is also solutionof the onstrained optimization problem (6) involved in the original F-step.The optimization problem of Proposition (3.4) an be seen as looking for theprojetion matrix U suh that the bak-projetion UU tS

(q)
B,ℓ is as lose as possibleto S

(q)
B,ℓ. In [34℄, Witten et al. have onsidered suh a problem with a onstraint of15



sparsity on U . To solve this problem, they proposed an algorithm whih performsa penalized SVD of the matrix of interest in the onstrained optimization problem.Therefore, it is possible to obtain a sparse approximation Ũ (q) of the solution of (6)by doing a penalized SVD of S(q)
B with the algorithm of [34℄. As previously, theorthogonality of the olumn vetors of Ũ (q) is not guaranteed but this issue an beagain takled by Proposition 3.2. From a pratial point of view, this third approahan be implemented as follows:Algorithm 3 � F-step of the sparseFEM-3 algorithm1. Let M1 = S

(q)
B and d = rank (SB) .2. For j ∈ {1, . . . , d}:(a) Solve û
(q)
j = argmaxuj

ut
jMjvj w.r.t. ‖uj‖22 ≤ 1, ‖vj‖22 ≤ 1 and

∑p

ℓ=1

∣

∣

∣
u
(q)
jℓ

∣

∣

∣
≤ λ1 using the penalized SVD algorithm of [34℄.(b) Update Mj+1 = Mj − λju

(q)
j vtj.3. Û (q) = [û

(q)
1 , . . . , û

(q)
d ].4. Compute the SVD of Û (q) = u(q)Λ(q)v(q)t and let Ũ (q) = u(q)v(q)t.3.4 Pratial aspetsThe introdution of sparsity in the Fisher-EM algorithm presents several pratialaspets among whih the ability to interpret the disriminative axes. However, twoquestions remain: the hoie of the hyper-parameter whih determines the level ofsparsity and the implementation strategy in the Fisher-EM algorithm. Both aspetsare disussed below.Choie of the tuning parameter The hoie of the threshold λ is an importantproblem sine the number of zeros in the d disriminative axes depends diretlyon the degree of sparsity. In [40℄, Zou et al. hose the hyper-parameter of theirsparse PCA with a riterion based on the explanation of the variane approximatedby the sparse prinipal omponents. In [33℄, Witten and Tibshirani proposed fortheir sparse-kmeans to base the hoie of the tuning parameter on a permutationmethod losely related to the gap statisti previously proposed by Tibshirani etal. [30℄ for estimating the number of omponents in standard kmeans. Sine ourmodel is de�ned in a Gaussian mixture ontext, we propose to use the BIC riterion16



to selet the threshold λ. Aording to the onsisteny results obtained by Zou etal. [42℄ and the fat that the sparsity onstraint is applied on the projetion matrix
U , the e�etive number of parameters to estimate in the DLM[Σkβk] model is:

γe = (K − 1) +Kd+ (d[p=(d+ 1)/2]− de) +Kd(d+ 1)/2 +Kwhere de is the number of zeros in the loading matrix. In the same manner, thise�etive number of parameters to estimate an be delined for the 11 other sub-models of the DLM family.Implementation of the sparse Fisher-EM algorithm We identi�ed two dif-ferent ways to implement the sparse versions of the Fisher-EM algorithm. First,it ould be possible to replae the usual F-step of the Fisher-EM algorithm by asparse F-step developed previously. The resulting algorithm would sparsify at eahiteration the projetion matrix U before estimating the model parameters. Thisan however leads to some drawbaks sine an early introdution of the ℓ1 penaltyould penalize too muh the loadings of the projetion matrix, in partiular if theinitialization is far away from the optimal situation. An alternative implementationwould be to, �rst, exeute the traditional Fisher-EM algorithm until onvergeneand, then, initialize the sparse Fisher-EM algorithm with the result of the Fisher-EMalgorithm. This strategy should ombine the e�ieny of the standard Fisher-EMalgorithm with the advantage of having a sparse seletion of disriminative vari-ables. We therefore reommend this seond implementation and it will be used inthe experiments presented in the following setions.4 Experimental omparisonThis setion presents omparisons with existing variable seletion tehniques onsimulated and real-world data sets.4.1 Comparison on simulated dataThis �rst experiment aims to ompare on simulated data the performanes of theproposed sparseFEM algorithms (sparseFEM-1, sparseFEM-2, sparseFEM-3) to sev-eral ompetitors: Selvarlust of Raftery and Dean [29℄, Clustvarsel of Maugis etal. [22℄ and sparse-kmeans of Witten and Tibshirani [33℄. For this experiment,we repliated the simulation proposed in Setion 3.3 of [33℄. We simulated K = 3Gaussian omponents of n observations in a 25-dimensional observation spae whose17



Simulation Method Clustering error non-zero variables
n = 30 µ = 0.6 kmeans 0.48± 0.05 25.0± 0.0sparse-kmeans 0.47± 0.07 19.0± 6.6Selvarlust 0.62± 0.06 22.2± 1.2Clustvarsel 0.40± 0.03∗ 8.1± 1.9∗sparseFEM-1 0.47± 0.06 2.6± 0.9sparseFEM-2 0.48± 0.07 4.7± 1.8sparseFEM-3 0.48± 0.03 2.0± 0.0

n = 30 µ = 1.7 kmeans 0.14± 10.2 25.0± 0.0sparse-kmeans 0.08± 0.06 23.6± 0.8Selvarlust 0.41± 0.10 16.6± 10.4Clustvarsel 0.08± 0.08∗ 6.8± 1.4∗sparseFEM-1 0.14± 0.13 3.5± 0.8sparseFEM-2 0.20± 0.12 5.4± 2.2sparseFEM-3 0.17± 0.11 2.0± 0.0

n = 300 µ = 0.6 kmeans 0.43± 0.03 25.0± 0.0sparse-kmeans 0.46± 0.03 24.0± 0.5Selvarlust 0.42± 0.03 25.0± 0.0Clustvarsel 0.34± 0.02∗ 7.0± 1.7*sparseFEM-1 0.42± 0.03 2.4± 1.0sparseFEM-2 0.43± 0.03 5.2± 2.7sparseFEM-3 0.43± 0.04 2.3± 1.1

n = 300 µ = 1.7 kmeans 0.05± 0.06 25.0± 0.0sparse-kmeans 0.05± 0.01 15.0± 0.0Selvarlust 0.05± 0.01 25.0± 2.0Clustvarsel 0.05± 0.01∗ 5.6± 0.9∗sparseFEM-1 0.04± 0.01 10.2± 2.4sparseFEM-2 0.05± 0.01 8.8± 1.7sparseFEM-3 0.04± 0.01 5.6± 1.6Table 2: Clustering errors and numbers of non-zero variables averaged over 20 sim-ulations for several lustering methods with p = 25 and q = 5. The results ofClustvarsel are reported from [11℄.
18



omponents di�er only on q = 5 features. The used parameters were µkj = µ ×
(1k=1,j≤q,−1k=2,j≤q), ∀k ∈ {1, 2, 3} and ∀j ∈ {1, . . . , p} for the mean omponentsand σ2

kj = 1 for the variane terms. Moreover, four di�erent situations are on-sidered: n = 30 or 300 and µ = 0.6 or 1.7. Eah simulation was repliated 25times.Table 2 presents the means and standard deviations for both the lustering er-ror and the number of non-zero variables for kmeans, sparse-kmeans, Selvarlust,Clustvarsel and the 3 proedures of sparseFEM. Note that the results of Clustvarselorresponds to lustering errors and non-zero variable rates found in [11℄. Moreover,the reported results onerning the 3 sparse Fisher-EM algorithms were obtainedwith the DLM[αkβ] model for a sparsity level orresponding to the highest BIC valueobtained at eah trial.Two main remarks an be done on the results presented in Table 2. First,by onsidering either the most di�ult lustering ases (n = 30 and µ = 0.6) orthe easiest one (n = 300 and µ = 0.6 or 1.7), all approahes present approxima-tively the same results in terms of lustering error rate. The methods di�er how-ever in the number of variables they retain to perform the lustering: Clustevarsel,sparseFEM-1, sparseFEM-2 and sparseFEM-3 turn out to selet signi�antly lessvariables than sparse-kmeans and Selvarlust. In partiular, Clustevarsel and thesparseFEM algorithms selet a number of useful variables onsistent with the atualnumber of meaningful variables (q = 5). Seond, in the situation where n = 30and µ = 1.7, Clustvarsel and sparse-kmeans present the lowest mislassi�ation rate(0.08), even though the lustering error of sparseFEM-1 and kmeans remains rel-atively low (0.14). However, as previously, only Clustevarsel and the sparseFEMalgorithms selet a number of variables lose to the right number of disriminativefeatures.4.2 Comparison on real data setsReal-world data sets are now used to ompare the e�ieny of the sparseFEMalgorithms to its ompetitors for both the lustering and variable seletion tasks.We onsidered 7 di�erent benhmark data sets oming mostly from the UCI mahinelearning repository. We seleted these data sets beause they represent a wide rangeof situations in term of number of observations n, number of variables p and numberof groups K. These harateristis are given in the top row of Table 3 and a detaileddesription of these data sets an be found in [6℄.For this experiment, we used the 3 sparseFEM algorithms and the 3 sparse meth-ods introdued previously (sparse-kmeans, Selvarlust and Clustvarsel). Sine the19



evaluation of the lustering performane is a omplex and very disussed problem,we hose to evaluate the lustering performane as the adequay between the re-sulting partition of the data and the known labels for these data. For eah dataset, the sparseFEM algorithms were initialized with a ommon random partitiondrown from a multinomial distribution with equal prior probabilities. For Selvar-lust, Clustvarsel and sparse-kmeans, the initialization was done with their owndeterministi proedure. Moreover, for eah method, the number K of groups hasbeen �xed to the atual one. For Selvarlust, Clustvarsel and sparse-kmeans, thedetermination of the other free parameters was done aording to the tools providedby eah approah. For the sparseFEM algorithms, we used the penalized BIC ri-terion to selet the model and the level of sparsity. More preisely, we �rst hosethe model presenting the highest average BIC value on 20 repliations. Then, giventhe seleted model, we seleted the level of sparsity assoiated with the highest BICvalue.Table 3 presents the average lustering auraies and the assoiated standard de-viations obtained for the 6 approahes. The average number of non-zero variables isalso reported within brakets in the table. The results assoiated to the sparseFEMalgorithms have been obtained by averaging over 20 trials with random initializa-tions. The lak of standard deviations for Selvarlust, Clustvarsel and sparse-kmeansis due to the deterministi initializations they use. It �rst appears that the threesparse versions of the Fisher-EM algorithm perform rather similarly both in termof lustering and variable seletion. It also appears learly that the sparseFEMalgorithms are ompetitive to existing methods regarding both the lustering per-formanes and the seletion of variables. Indeed, the sparseFEM algorithms obtainthe best lustering auraies on 4 of the 7 data sets whereas sparse-kmeans andClustvarsel obtain the best lustering auraies on respetively 2 and 1 data sets.The sparseFEM algorithms di�er also from sparse-kmeans regarding the number ofvariables retained to perform the lustering. Indeed, sparse-kmeans turns out tofrequently selet a large number of variables whereas sparseFEM is usually rathersparse in the number of seleted variables. Finally, Selvarlust and Clustvarsel turnout to selet most of the time few variables, partiularly in high-dimensional spaes,whih seems to obstrut their lustering performane. To summarize, this experi-ment has shown that the sparseFEM algorithms seem to be good ompromises be-tween sparse-kmeans and Selvarlust /Clustvarsel in term of variable seletion and,ertainly thanks to this harateristi, they also provide good lustering results.
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iris wine hiro zoo glass satimage usps358(p=4,K=3) (p=13,K=3) (p=17,K=3) (p=16,K=7) (p=9,K=7) (p=36,K=6) (p=256,K=3)Approahes (n=150) (n=178) (n=178) (n=101) (n=214) (n=4435) (n=1726)sparseFEM-1 96.5±0.3 97.8±0.2 84.2±11 71.4±8.5 50.2±1.9 69.6±0.1 84.7±3.2(2.0±0.0) (2.0±0.0) (2.3±0.5) (13±2.5) (6.0±1.0) (36±0.0) (5.5±0.7)sparseFEM-2 89.9±0.4 98.3±0.0 84.8±12 70.1±12.2 48.4±3.0 67.5±1.6 82.8±9.1(4.0±0.0) (4.0±0.0) (2.0±0.6) (14±3.6) (6.6±0.7) (36±.0.0) (15.5±16)sparseFEM-3 96.5±0.3 97.8±0.0 82.9±12 72.0±4.3 48.2±2.7 71.8±2.3 79.1±7.4(2.0±0.3) (2.0±0.0) (2.0±0.0) (10±2.8) (7.0±0.0) (36±0.0) (6.0±1.3)sparse-kmeans 90.7 94.9 95.3 79.2 52.3 71.4 74.7(4.0) (13.0) (17.0) (16.0) (6.0) (36.0) (213)Selvarlust 96.0 92.7 71.1 75.2 48.6 58.7 48.3(3.0) (5.0) (6.0) (3.0) (3.0) (19.0) (6.0)Clustvarsel 96.0 94.4 92.6 92.1 43.0 56.4 36.7(3.0) (5.0) (8.0) (5.0) (6.0) (22.0) (5.0)Table 3: Clustering auraies and their standard deviations (in perentage) on 7 UCI datasets (iris, wine, hironomus, zoo, glass,satimage, usps358) averaged on 20 trials. The average number of nonzero variables is reported in brakets. No standard deviation isreported for Selvarlust/Clustvarsel and sparse-kmeans sine their initialization proedure is deterministi and always provides thesame initial partition.
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4.3 Comparison on the usps358 data setWe fous now on the usps358 dataset to stress the role of variable seletion in theinterpretation of lustering results. The original dataset is made of 7 291 imagesdivided in 10 lasses orresponding to the digits from 0 to 9. Eah digit is a 16× 16gray level image represented as a 256-dimensional vetor. For this experiment, weextrated a subset of the data (n = 1 756) orresponding to the digits 3, 5 and 8whih are the three most di�ult digits to disriminate. This smaller dataset ishereafter alled usps358. Figure 2 depits the group mean images obtained from thetrue labels in the usps358 dataset. For this experiment, we used the three sparse-FEM algorithms with the model and the level of sparsity seleted in the previousexperiment for this data set. For Selvarlust, Clustvarsel and sparse-kmeans, thelevel of sparsity was again seleted with their own seletion proedure.Figures 3 illustrates, as images, the features seleted respetively by sparse-kmeans (Figure 3.a), Selvarlust (Figure 3.b) and Clustvarsel (Figure 3.). In Fig-ure 3.a, the weight assigned by sparse-kmeans to eah feature is represented by graylevels: lighter is the pixel, weaker is the absolute value of the weight of the assoiatedfeature. For Selvarlust and Clustvarsel, only the seleted variables are depited andare assoiated to blak pixels as it is illustrated in Figures 3.b and 3. respetively.These representations are assoiated to the following lustering auraies 74.7%,
48.3% and 36.7% for sparse-kmeans, Selvarlust and Clustvarsel respetively. Forthe 3 sparseFEM algorithms, we superimposed in a same �gure the absolute values ofthe loadings of the two disriminative axes �tted by the sparseFEM-1, sparseFEM-2and sparseFEM-3 proedures. The assoiated lustering auraies are respetively
84.7%, 82.8% and 79.1%.First of all, it appears that Selvarlust and Clustvarsel selet signi�antly fewervariables than both sparse-kmeans or the sparseFEM proedures. Furthermore,most of the seleted variables by Selvarlust and Clustvarsel turn out to be irrelevantto disriminate the digit 3 from the digits 5 and 8. For instane, in Figures 3.band 3., we an observe that the blak pixels loated in right bottom orner, do notorrespond to any disriminative variable. This ertainly explain the poor lusteringperformanes (48.3% for Selvarlust and 36.7% for Clustvarsel) observed on this dataset for these methods. On the ontrary, sparse-kmeans turns out to perform wellin term of lustering performane (74.7% of lustering auray). Nevertheless, thenumber of seleted variables remains higher (213 seleted variables amongst 256original ones) than we would expet to ease the interpretation of results. Finally,sparseFEM-1 and sparseFEM-2 seem to answer quite well to both the lustering taskand the task of feature seletion. Indeed, on the one hand, the subset of seleted22



(a) (b) ()Figure 2: Group means obtained from the true labels in the USP358 datasets.
(a) Sparse-kmeans (b) Selvarlust () ClustvarselFigure 3: Variable seletion obtained from (a) the sparse-kmeans algorithm, (b) theSelvarlust approah and () the Clustvarsel approah.
(a) sparseFEM-1 (b) sparseFEM-2 () sparseFEM-3Figure 4: Variable seletion obtained from (a) the sparseFEM-1, (b) the sparseFEM-2 and () the sparseFEM-3 proedures with sparsity levels seleted by the penal-ized BIC.
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Approahes: Proedure time (se) Approahes: Proedure time (se)sparseFEM-1 729.04 sparse-kmeans 1 567.75sparseFEM-2 387.12 Selvarlust 2 957.70sparseFEM-3 409.61 Clustvarsel 9 257.10Table 4: Computing times for the 3 versions of the sparseFEM algorithm, sparse-kmeans, Selvarlust and Clustvarsel on the USPS358 data (for a given model andwith λ and K �xed).pixels remains small for both algorithms: 6 and 15 pixels are seleted amongst 256for sparseFEM-1 and sparseFEM-2 respetively. Furthermore, the seleted pixelsappear to be relevant to disriminate the lasses assoiated with the three digits.For instane, the darker pixel on the bottom right orner of Figure 4.b disriminatesthe digit 8 from the digits 3 and 5. On the other hand, and ertainly due tothis relevant seletion of variables, both algorithms perform partiularly well onthis high-dimensional data set (84.7% for sparseFEM-1 and 82.8% for sparseFEM-2). However, on this data set, the sparseFEM-3 proedure shows a disappointingbehavior regarding the variable seletion even though its lustering performaneremains satisfying. The fat that sparseFEM-3 sueeds in lustering the data seteven with a bad seletion of variables is ertainly due to the nature of the DLMmodel whih models also the non disriminative information through the parameter
βk. Table 4 presents the omputing time of the studied lustering methods (for agiven model and with λ and K �xed) for lustering the usps358 data set. As wean remark, our proedures are muh faster than the sparse-kmeans, Selvarlust andClustvarsel algorithms. Consequently, the sparseFEM algorithms appear one againto be good ompromises, in pratie, to luster high-dimensional data and selet aset of disriminative variables in a reasonable time.5 Appliation to the segmentation of hyperspetralimagesHere, we propose to use sparseFEM to segment hyperspetral images of the Mar-tian surfae. Visible and near infrared imaging spetrosopy is a key remote sensingtehnique to study the system of the planets. Imaging spetrometers, whih are in-board of an inreasing number of satellites, provide high-dimensional hyperspetralimages. In Marh 2004, the OMEGA instrument (Mars Express, ESA) [4℄ has ol-leted 310 Gbytes of raw images. The OMEGA imaging spetrometer has mapped24



Figure 5: Image of the studied zone of the Martian surfae.
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Figure 6: Some of the 38 400 measured spetra desribed on 256 wavelengths (seetext for details).
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the Martian surfae with a spatial resolution varying between 300 to 3000 metersdepending on the spaeraft altitude. It aquired for eah resolved pixel the spe-trum from 0.36 to 5.2 µm in 256 ontiguous spetral hannels. OMEGA is designedto haraterize the omposition of surfae materials, disriminating between vari-ous lasses of siliates, hydrated minerals, oxides and arbonates, organi frosts andies. For this experiment, a 300 × 128 image of the Martian surfae is onsideredand a 256-dimensional spetral observation is therefore assoiated to eah of the38 400 pixels. Figure 5 presents an image of the studied zone and Figure 6 showssome of the 38 400 measured spetra. Aording to the experts, there are K = 5mineralogial lasses to identify.The sparseFEM-1 algorithmwas applied to this dataset using the modelDLM[αkjβ]and a sparsity ratio equals to 0.1 (it refers to the ratio of the ℓ1 norm of the oe�-ient vetor relative to the norm at the full least square solution). The sparseFEMalgorithm was initialized with the results of the Fisher-EM algorithm and the wholesegmentation proess took 18 hours on a 2.6 Ghz omputer. Figure 7 presents, onthe right panel, the segmentation into 5 mineralogial lasses of the studied zonewith the sparseFEM algorithm. In omparison, the left panel of Figure 7 shows thesegmentation obtained by experts of the domain using a physial model. It �rst ap-pears that the two segmentations agree globally on the mineralogial nature of thesurfae of the studied zone (60.30% of agreement). We reall that both segmenta-tions do not exploit the spatial information. When looking at the top-right quarterof the image, we an notie that sparseFEM seems to provide a �ner segmentationthan the segmentation based on the physial model. Indeed, sparseFEM segmentsbetter than the physial model the �ne �rivers� whih an be seen on Figure 5.Finally, Figure 8 shows the mean spetra of the 5 groups formed by sparseFEMand the seletion of the disriminative wavelengths. SparseFEM seleted 8 originalvariables (wavelengths) as disriminative variables, i.e. the rows assoiated to thesevariables were non-zero in the loading matrix U . Looking losely at the seletion,we indeed notie that the �rst seleted variable (from left to right) disriminates theblue group from the others. The seond seleted variable disriminates the red andgreen groups from the blak, blue and light blue groups whereas the third seletedvariable allows to disriminate the red, green and blak groups from the blue andlight blue groups. Similarly, the fourth and �fth seleted variables disriminate thered and green groups from the blak, blue and light blue groups whereas the sixth,seventh and eighth seleted variable allows to disriminate the red, green and lightblue groups from the blue and blak groups.A possible interest of suh a seletion ould be the measurement of only a tens26



Expert segmentation SparseFEM segmentationFigure 7: Segmentation of the hyperspetral image of the Martian surfae using aphysial model build by experts (left) and sparseFEM (right).
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Figure 8: Mean spetra of the 5 groups formed by sparseFEM and seletion of thedisriminative wavelengths (indiated by gray retangles).
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of wavelengths for future aquisitions instead of the 256 urrent ones for a resultexpeted to be similar. This ould in partiular redue the aquisition time for eahpixel from a few tens of seonds to less than one seond.6 ConlusionThis artile has foused on variable seletion for lustering with the Fisher-EM al-gorithm whih has been reently proposed in [6℄. The aim of this work was tointrodue sparsity in the Fisher-EM algorithm and thus selet the disriminativevariables among the set of original variables. We have proposed three di�erent pro-edures based on a ℓ1-penalty term. Experiments on simulations and real data setshave shown that the three sparse versions of the Fisher-EM algorithm are highlyompetitive with existing approahes of the literature. In partiular, the sparseFEMproedures present several assets regarding existing approahes. On the one hand,they tend to selet an intermediate number of disriminative variables whereas ex-isting approahes tend to selet either too few (Selvarlust and Clustvarsel) or toomuh variables (sparse-kmeans). On the other hand, the sparseFEM proeduresperform both the lustering and the variable seletion in a reasonable time ompar-ing to existing approahes in the ase of high-dimensional data. The sparseFEMalgorithms have been also applied with suess to the segmentation of hyperspetralimages of the planet Mars and relevant parts of the spetra whih well disriminatethe groups have been identi�ed.Among the possible extensions of this work, it may be �rst interesting to usedi�erent ℓ1-penalty values aording to the relevane of eah disriminative axis es-timated in the Fisher-EM algorithm. Suh an approah ould identify di�erent levelsof relevany among the original variables. Seond, we used in this work a penalizedBIC riterion to selet the sparsity level by evaluating the model omplexity in re-gard to the non-zero values as proposed by [27℄. Although Zou et al. [42℄ showedthat the number of non-zero oe�ients is an unbiased estimate of the degrees offreedom and is asymptotially onsistent in the ase of penalized regression prob-lem, this result has no theoretial justi�ation in the penalized GMM ontext. Itwould be therefore interesting to obtain theoretial guarantees of suh a result inour ontext. Finally, sine the ICL riterion [5℄ is also used to selet the number ofomponents, it would be a natural extension to onsider a penalized ICL for seletingthe sparsity level in the sparseFEM algorithms.
28



AknowledgmentsThe authors would like to thank Cathy Maugis for providing the results of Clust-varsel on the zoo, glass, satimage and usps358 data sets.Referenes[1℄ J. Baek and G. MLahlan. Mixtures of fator analyzers with ommon fatorloadings: appliations to the lustering and visualisation of high-dimensionaldata. Transations on Pattern Analysis and Mahine Intelligene, 2009.[2℄ J. Baek, G. MLahlan, and L. Flak. Mixtures of Fator Analyzers withCommon Fator Loadings: Appliations to the Clustering and Visualisation ofHigh-Dimensional Data. IEEE Transations on Pattern Analysis and MahineIntelligene, pages 1�13, 2009.[3℄ R. Bellman. Dynami Programming. Prineton University Press, 1957.[4℄ J.-P. Bibring and 42 o-authors. Mars Surfae Diversity as Revealed by theOMEGA/Mars Express Observations. Siene, 307(5715):1576�1581, 2005.[5℄ C. Biernaki, G. Celeux, and G. Govaert. Assessing a mixture model for lus-tering with the integrated ompleted likelihood. IEEE Transations on PatternAnalysis and Mahine Intelligene, 22(7):719�725, 2001.[6℄ C. Bouveyron and C. Brunet. Simultaneous model-based lustering and vi-sualization in the Fisher disriminative subspae. Statistis and Computing,22(1):301�324, 2012.[7℄ C. Bouveyron and C. Brunet. Theoretial and pratial onsiderations on theonvergene properties of the Fisher-EM algorithm. Journal of MultivariateAnalysis, 109:29�41, 2012.[8℄ C. Bouveyron, S. Girard, and C. Shmid. High-Dimensional Data Clustering.Computational Statistis and Data Analysis, 52(1):502�519, 2007.[9℄ C. Bouveyron, S. Girard, and C. Shmid. High Dimensional Disriminant Anal-ysis. Communiations in Statistis : Theory and Methods, 36(14):2607�2623,2007.[10℄ J. Cadima and I. Jolli�e. Loadings and orrelations in the interpretation of theprinipal omponents. Journal of Applied Statistis, 22:203�214, 1995.29



[11℄ G. Celeux, M.-L. Martin-Magniette, C. Maugis, and A. Raftery. Letter to theeditor. Journal of the Amerian Statistial Assoiation, 106(493), 2011.[12℄ B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression.Annals of Statisis, 32:407�499, May 2004.[13℄ R.A. Fisher. The use of multiple measurements in taxonomi problems. Annalsof Eugenis, 7:179�188, 1936.[14℄ D.H. Foley and J.W. Sammon. An optimal set of disriminant vetors. IEEETransations on Computers, 24:281�289, 1975.[15℄ K. Fukunaga. Introdution to Statistial Pattern Reognition. Aademi. Press,San Diego, 1990.[16℄ G. Galimberti, A. Montanari, and C. Viroli. Penalized fator mixture analy-sis for variable seletion in lustered data. Computational Statistis & DataAnalysis, 53(12):4301�4310, Otober 2009.[17℄ Z. Ghahramani and G.E. Hinton. The EM algorithm for fator analyzers. Teh-nial report, University of Toronto, 1997.[18℄ J.C. Gower and G.B. Dijksterhuis. Prorustes Problems. Oxford UniversityPress, 2004.[19℄ M. Law, M. Figueiredo, and A. Jain. Simultaneous Feature Seletion and Clus-tering Using Mixture Models. IEEE Trans. on PAMI, 26(9):1154�1166, 2004.[20℄ J. Liu, J.L. Zhang, M.J. Palumbo, and C.E. Lawrene. Bayesian lustering withvariable and transformation seletion. Bayesian Statistis, 7:249�276, 2003.[21℄ C. Maugis, G. Celeux, and M.-L. Martin-Magniette. Variable seletion forClustering with Gaussian Mixture Models. Biometris, 65(3):701�709, 2009.[22℄ C. Maugis, G. Celeux, and M.-L. Martin-Magniette. Variable seletion inmodel-based lustering: A general variable role modeling. ComputationalStatistis and Data Analysis, 53:3872�3882, 2009.[23℄ G. MLahlan, D. Peel, and R. Bean. Modelling high-dimensional data by mix-tures of fator analyzers. Computational Statistis and Data Analysis, (41):379,2003.[24℄ P. MNiholas and B. Murphy. Parsimonious Gaussian mixture models. Statis-tis and Computing, 18(3):285�296, 2008.30



[25℄ A. Montanari and C. Viroli. Dimensionally redued mixtures of regression mod-els. Eletroni Proeedings of KNEMO, Knowledge Extration and Modelling,2006.[26℄ A. Montanari and C. Viroli. Heterosedasti Fator Mixture Analysis. Statis-tial Modeling: An International journal, 10(4):441�460, 2010.[27℄ W. Pan and X. Shen. Penalized model-based lustering with appliation tovariable seletion. Journal of Mahine Learning Researh, 8:1145�1164, 2007.[28℄ Z. Qiao, L. Zhou, and J.Z. Huang. Sparse linear disriminant analysis withappliations to high dimensional low sample size data. International Journalof Applied Mathematis, 39(1), 2009.[29℄ A. Raftery and N. Dean. Variable seletion for model-based lustering. Journalof the Amerian Statistial Assoiation, 101(473):168�178, 2006.[30℄ R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of lusters ina dataset via the gap statisti. Journal of the Royal Statistial Soiety, SeriesB, 32(2):411�423, 2001.[31℄ E. Tipping and C. Bishop. Mixtures of Probabilisti Prinipal ComponentAnalysers. Neural Computation, 11(2):443�482, 1999.[32℄ S. Wang and J. Zhou. Variable seletion for model-based high dimensionallustering and its appliation to miroarray data. Biometris, 64:440�448, 2008.[33℄ D.M. Witten and R. Tibshirani. A framework for feature seletion in lustering.Journal of the Amerian Statistial Assoiation, 105(490):713�726, 2010.[34℄ D.M. Witten, R. Tibshirani, and T. Hastie. A penalized matrix deomposi-tion, with appliations to sparse prinipal omponents and anonial orrelationanalysis. Biostatisti, 10(3):515�534, 2009.[35℄ B. Xie, W. Pan, and X. Shen. Penalized model-based lustering with luster-spei� diagonal ovariane matries and grouped variables. Eletrial Journalof Statistis, 2:168�212, 2008.[36℄ B. Xie, W. Pan, and X. Shen. Penalized mixtures of fator analyzers withappliation to lustering high-dimensional miroarray data. Bioinformatis,26(4):501�508, 2010.
31



[37℄ R. Yoshida, T. Higuhi, and S. Imoto. A mixed fator model for dimensionredution and extration of a group struture in gene expression data. IEEEComputational Systems Bioinformatis Conferene, 8:161�172, 2004.[38℄ R. Yoshida, T. Higuhi, S. Imoto, and S. Miyano. Array luster: an analyti toolfor lustering, data visualization and model �nder on gene expression pro�les.Bioinformatis, 22:1538�1539, 2006.[39℄ Z. Zhang, G. Dai, and M.I. Jordan. A �exible and e�ient algorithm for regu-larized �sher disriminant analysis. In Proeedings of the European Confereneon Mahine Learning and Knowledge Disovery in Databases, pages 632�647,2009.[40℄ H. Zou and R. Hastie, T.and Tibshirani. Sparse Prinipal Component Analysis.Journal of Computational and Graphial Statistis, 15(2):265�286, June 2006.[41℄ H. Zou and T. Hastie. Regularization and variable seletion via the elasti net.Journal of the Royal Statistial Soiety, 67:301�320, 2005.[42℄ H. Zou, T. Hastie, and R. Tibshirani. On the degrees of freedom of the Lasso.Annals of Statistis, 35(5):2173�2192, 2007.

32


