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Dis
riminative variable sele
tion for 
lusteringwith the sparse Fisher-EM algorithmCharles Bouveyron∗ & Camille Brunet†

∗ Laboratoire SAMM, EA 4543Université Paris 1 Panthéon-Sorbonne † Equipe Modal'X, EA 3454Université Paris Ouest NanterreAbstra
tThe interest in variable sele
tion for 
lustering has in
reased re
ently dueto the growing need in 
lustering high-dimensional data. Variable sele
tionallows in parti
ular to ease both the 
lustering and the interpretation of theresults. Existing approa
hes have demonstrated the e�
ien
y of variable se-le
tion for 
lustering but turn out to be either very time 
onsuming or notsparse enough in high-dimensional spa
es. This work proposes to perform asele
tion of the dis
riminative variables by introdu
ing sparsity in the loadingmatrix of the Fisher-EM algorithm. This 
lustering method has been re
entlyproposed for the simultaneous visualization and 
lustering of high-dimensionaldata. It is based on a latent mixture model whi
h �ts the data into a low-dimensional dis
riminative subspa
e. Three di�erent approa
hes are proposedin this work to introdu
e sparsity in the orientation matrix of the dis
rimina-tive subspa
e through ℓ1-type penalizations. Experimental 
omparisons withexisting approa
hes on simulated and real-world data sets demonstrate theinterest of the proposed methodology. An appli
ation to the segmentation ofhyperspe
tral images of the planet Mars is also presented.1 Introdu
tionWith the exponential growth of measurement 
apa
ities, the observed data are nowa-days frequently high-dimensional and 
lustering su
h data remains a 
hallengingproblem. In parti
ular, when 
onsidering the mixture model 
ontext, the 
orre-sponding 
lustering methods show a disappointing behavior in high-dimensionalspa
es. They su�er from the well-known 
urse of dimensionality [3℄ whi
h is1



mainly due to the fa
t that model-based 
lustering methods are dramati
ally over-parametrized in high-dimensional spa
es. Moreover, even though we dispose of manyvariables to des
ribe the studied phenomenon, most of the time, only a small subsetof these original variables are in fa
t relevant.Several re
ent works have been interested to simultaneously 
luster data andredu
e their dimensionality by sele
ting relevant variables for the 
lustering task. A
ommon assumption to these works is that the true underlying 
lusters are assumedto di�er only with respe
t to some of the original features. The 
lustering taskaims therefore to group the data on a subset of relevant features. This presentstwo pra
ti
al advantages: 
lustering results should be improved by the removing ofnon informative features and the interpretation of the obtained 
lusters should beeased by the meaning of retained variables. In the literature, variable sele
tion for
lustering is handled in two di�erent ways.On the one hand, some authors su
h as [19, 20, 21, 29℄ ta
kle the problemof variable sele
tion for model-based 
lustering within a Bayesian framework. Inparti
ular, the determination of the role of ea
h variable is re
ast as a model sele
tionproblem. A �rst framework was proposed by Raftery and Dean [29℄ in whi
h twokinds of subsets of variables are de�ned: a subset of relevant variables and a subsetof irrelevant variables whi
h are independent from the 
lustering but whi
h 
an beexplained from the relevant variables through a linear regression. An extension ofthe previous work has then been proposed by Maugis et al. [21℄ who 
onsider twokinds of irrelevant variables: the ones whi
h 
an be explained by a linear regressionfrom a subset of the 
lustering variables and �nally a set of irrelevant variables whi
hare totally independent of all the relevant variables. The models in 
ompetition areafterward 
ompared with the integrated log-likelihood via a BIC approximation.Even though these approa
hes present good results in most pra
ti
al situations,their 
omputational times are nevertheless very high and 
an lead to an intra
tablepro
edure in the 
ase of high-dimensional data.On the other hand, penalized 
lustering 
riteria have also been proposed to dealwith the problem of variable sele
tion in 
lustering. In the Gaussian mixture model
ontext, several works, su
h as [27, 32, 35, 39℄ in parti
ular, introdu
ed a penaltyterm in the log-likelihood fun
tion in order to yield sparsity in the features. Thepenalty fun
tion 
an take di�erent forms a

ording to the 
onstraints imposed onthe stru
ture of the 
ovarian
e matri
es. The introdu
tion of a penalty term in thelog-likelihood fun
tion was also used in the mixture of fa
tor analyzers approa
hes,su
h as in [16, 36℄. More re
ently, Witten and Tibshirani [33℄ proposed a generalnon-probabilisti
 framework for variable sele
tion in 
lustering, based on a general2



penalized 
riterion, whi
h governs both variable sele
tion and 
lustering. It ap-pears nevertheless that the results of su
h pro
edures are usually not sparse enoughand sele
t a large number of the original variables, espe
ially in the 
ase of high-dimensional data.Other approa
hes fo
us on simultaneously 
lustering the data and redu
ing theirdimensionality by feature extra
tion rather than feature sele
tion. We 
an 
ite inparti
ular, the subspa
e 
lustering methods [9, 17, 24, 23, 26, 37℄ whi
h are basedon probabilisti
 frameworks and model ea
h group in a spe
i�
 and low-dimensionalsubspa
e. Even though these methods are very e�
ient in pra
ti
e, they presentnevertheless several limitations regarding the understanding and the interpretationof the 
lusters. Indeed, in most of subspa
e 
lustering approa
hes, ea
h group ismodeled in its spe
i�
 subspa
e whi
h makes di�
ult a global visualization of the
lustered data. Even though some approa
hes [2, 26℄ model the data in a 
om-mon and low-dimensional subspa
e, they 
hoose the proje
tion matrix su
h as thevarian
e of the proje
ted data is maximum and this 
an not be su�
ient to 
at
hdis
riminative information about the group stru
ture.To over
ome these limitations, Bouveyron and Brunet [6℄ re
ently proposed anew statisti
al framework whi
h aims to simultaneously 
luster the data and pro-du
e a low-dimensional and dis
riminative representation of the 
lustered data. Theresulting 
lustering method, named the Fisher-EM algorithm, 
lusters the data intoa 
ommon latent subspa
e of low dimensionality whi
h best dis
riminates the groupsa

ording to the 
urrent fuzzy partition of the data. It is based on an EM pro
e-dure from whi
h an additional step, named F-step, is introdu
ed to estimate theproje
tion matrix whose 
olumns span the dis
riminative latent spa
e. This pro-je
tion matrix is estimated at ea
h iteration by maximizing a 
onstrained Fisher's
riterion 
onditionally to the 
urrent soft partition of the data. As reported in [6℄,the Fisher-EM algorithm turned out to outperform most of the existing 
lusteringmethods while providing a useful visualization of the 
lustered data. However, thedis
riminative latent spa
e is de�ned by �latent variables� whi
h are linear 
ombina-tions of the original variables. As a 
onsequen
e, the interpretation of the resulting
lusters a

ording to the original variables is usually di�
ult. An intuitive way toavoid su
h a limitation would be to keep only large loadings variables, by thresh-olding for instan
e. Even though this approa
h is 
ommonly used in pra
ti
e, it hasbeen parti
ularly 
riti
ized by Cadima [10℄ sin
e it indu
es some misleading infor-mation. Furthermore, it often happens when dealing with high-dimensional datathat a large number of noisy or non-informative variables are present in the set ofthe original variables. Sin
e the latent variables are de�ned by a linear 
ombination3



of the original ones, the noisy variables may remain in the loadings of the proje
tionmatrix and this may produ
e a deterioration of the 
lustering results.To over
ome these short
omings, three di�erent approa
hes are proposed in thiswork for introdu
ing sparsity in the Fisher-EM algorithm and thus sele
t the dis-
riminative variables among the set of original variables. The remainder of thisdo
ument is organized as follows. Se
tion 2 reviews the dis
riminative latent mix-ture model of [6℄ and the Fisher-EM algorithm whi
h was proposed for its inferen
e.Se
tion 3 develops three di�erent pro
edures based on ℓ1 penalties for introdu
ingsparsity into the Fisher-EM algorithm. The �rst approa
h looks for the best sparseapproximate of the solution of the F-step of the Fisher-EM algorithm. The se
ondone re
asts the optimization problem involved of the F-step as a lasso regression-typeproblem. The last approa
h is based on a penalized singular value de
omposition(SVD) of the matrix involved in the 
onstrained Fisher 
riterion of the F-step.Numeri
al experiments are then presented in Se
tion 4 to highlight the pra
ti
al be-havior of the three sparse versions of the Fisher-EM algorithm and to 
ompare themto existing approa
hes. In se
tion 5, a sparse version of the Fisher-EM algorithmis applied to the segmentation of hyperspe
tral images. Se
tion 6 �nally providessome 
on
luding remarks and ideas for further works.2 The DLM model and the Fisher-EM algorithmIn this se
tion, we brie�y review the dis
riminative latent mixture (DLM) model [6℄and its inferen
e algorithm, named the Fisher-EM algorithm, whi
h models and
lusters the data into a 
ommon latent subspa
e. Conversely to similar approa
hes,su
h as [8, 24, 25, 26, 37℄, this latent subspa
e is assumed to be dis
riminative andits intrinsi
 dimension is stri
tly bounded by the number of groups.2.1 The DLM modelLet {y1, . . . , yn} ∈ R
p denote a dataset of n observations that one wants to 
lus-ter into K homogeneous groups, i.e. adjoin to ea
h observation yi a value zi ∈

{1, . . . , K} where zi = k indi
ates that the observation yi belongs to the kth group.On the one hand, let us assume that {y1, . . . , yn} are independent observed real-izations of a random ve
tor Y ∈ R
p and that {z1, . . . , zn} are also independentrealizations of a random variable Z ∈ {1, . . . , K}. On the other hand, let E ⊂ R

pdenote a latent spa
e assumed to be the most dis
riminative subspa
e of dimension
d ≤ K − 1 su
h that 0 ∈ E and K < p. Moreover, let {x1, . . . , xn} ∈ E denote thea
tual data, des
ribed in the latent spa
e E of dimension d, whi
h are in addition4
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al summary of the DLM[Σkβ] model.presumed to be independent realizations of an unobserved random ve
tor X ∈ E.Finally, the observed variable Y ∈ R
p and the latent variable X ∈ E are assumedto be linked through a linear transformation:

Y = UX + ε, (1)where U is a p × d orthonormal matrix 
ommon to the K groups and satisfying
U tU = Id. The p-dimensional random ve
tor ε stands for the noise term whi
hmodels the non dis
riminative information and whi
h is assumed to be distributeda

ording to a 
entered Gaussian density fun
tion with a 
ovarian
e matrix Ψ (ε ∼
N (0,Ψ)). Besides, within the latent spa
e, X is assumed, 
onditionally to Z = k,to be Gaussian :

X|Z=k ∼ N (µk,Σk) (2)where µk ∈ R
d and Σk ∈ R

d×d are respe
tively the mean ve
tor and the 
ovarian
ematrix of the kth group. Given these distribution assumptions and a

ording toequation (1),
Y|X,Z=k ∼ N (UX,Ψ), (3)and its marginal distribution is therefore a mixture of Gaussians:

f(y) =
K
∑

k=1

πkφ(y;mk, Sk), (4)where πk is the mixing proportion of the kth group and φ(.;mk, Sk) denotes themultivariate Gaussian density fun
tion parametrized by the mean ve
tor mk = Uµkand the 
ovarian
e matrix Sk = UΣkU
t+Ψ of the kth group. Furthermore, we de�nethe p × p matrix W = [U, V ] su
h that W tW = WW t = Ip, where the (p − d) × p5



matrix V is an orthogonal 
omplement of U . Finally, the noise 
ovarian
e matrix
Ψ is assumed to satisfy the 
onditions VΨV t = βIp−d and UΨU t = 0d, su
h that
∆k = W tSkW has the following form:

∆k =
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(p− d)These last 
onditions imply that the dis
riminative and the non-dis
riminative sub-spa
es are orthogonal, whi
h suggests in pra
ti
e that all the relevant 
lusteringinformation remains in the latent subspa
e. This model is referred to by DLM[Σkβ]in [6℄ and a graphi
al summary is given in Figure 1.2.2 A family of parsimonious modelsSeveral other models 
an be obtained from the DLM[Σkβ] model by relaxing or adding
onstraints on model parameters. Firstly, it is possible to 
onsider a more general
ase than the DLM[Σkβ] by relaxing the 
onstraint on the varian
e term of the nondis
riminative information. Assuming that ε|Z=k ∼ N (0,Ψk) yields the DLM[Σkβk]model whi
h 
an be useful in some pra
ti
al 
ases. From this extended model, 10parsimonious models 
an be obtained by 
onstraining the parameters Σk and βk tobe 
ommon between and within the groups. For instan
e, the 
ovarian
e matri
es
Σ1, . . . ,ΣK in the latent spa
e 
an be assumed to be 
ommon a
ross the groupsand this sub-model is referred to by DLM[Σβk]. Similarly, in ea
h group, Σk 
an beassumed to be diagonal, i.e. Σk = diag(αk1, . . . , αkd). This sub-model is referredto by DLM[αkjβk]. These sub-models 
an also be de
lined by 
onsidering that theparameter β is 
ommon to all 
lasses (∀k, βk = β). A list of the 12 di�erent DLMmodels is given by Table 1 and detailed des
riptions 
an be found in [6℄. Su
h afamily yields very parsimonious models and allows, in the same time, to �t intovarious situations. In parti
ular, the 
omplexity of the DLM[Σkβk] model mainlydepends on the number of 
lusters K sin
e the dimensionality of the dis
riminativesubspa
e is su
h that d ≤ K−1. Noti
e that the 
omplexity of the DLM[Σkβk] growslinearly with p 
ontrary to the traditional Gaussian models in whi
h the 
omplexityin
reases with p2. As an illustration, if we 
onsider the 
ase where p = 100, K = 46



Model Nb. of parameters K = 4 and
p = 100

DLM[Σkβk] (K − 1) +K(K − 1) + (K − 1)(p−K/2) +K2(K − 1)/2 +K 337
DLM[Σkβ] (K − 1) +K(K − 1) + (K − 1)(p−K/2) +K2(K − 1)/2 + 1 334
DLM[Σβk] (K − 1) +K(K − 1) + (K − 1)(p−K/2) +K(K − 1)/2 +K 319
DLM[Σβ] (K − 1) +K(K − 1) + (K − 1)(p−K/2) +K(K − 1)/2 + 1 316
DLM[αkjβk] (K − 1) +K(K − 1) + (K − 1)(p−K/2) +K2 325
DLM[αkjβ] (K − 1) +K(K − 1) + (K − 1)(p−K/2) +K(K − 1) + 1 322
DLM[αkβk] (K − 1) +K(K − 1) + (K − 1)(p−K/2) + 2K 317
DLM[αkβ] (K − 1) +K(K − 1) + (K − 1)(p−K/2) +K + 1 314
DLM[αjβk] (K − 1) +K(K − 1) + (K − 1)(p−K/2) + (K − 1) +K 316
DLM[αjβ] (K − 1) +K(K − 1) + (K − 1)(p−K/2) + (K − 1) + 1 313
DLM[αβk] (K − 1) +K(K − 1) + (K − 1)(p−K/2) +K + 1 314
DLM[αβ] (K − 1) +K(K − 1) + (K − 1)(p−K/2) + 2 311Full-GMM (K − 1) +Kp+Kp(p+ 1)/2 20603Com-GMM (K − 1) +Kp+ p(p+ 1)/2 5453Diag-GMM (K − 1) +Kp+Kp 803Sphe-GMM (K − 1) +Kp+K 407MFA (K − 1) +Kp+Kd[p− (d− 1)/2)] +Kp 1991 (d = 3)Mixt-PPCA (K − 1) +Kp+K[d(p− (d+ 1)/2) + d+ 1] + 1 1198 (d = 3)PGMM-CUU (K − 1) +Kp+ d[p− (d+ 1)/2] +Kp 1100 (d = 3)MCFA (K − 1) +Kd+ p+ d[p− (d+ 1)/2] +Kd(d+ 1)/2 4330 (d = 3)MCUFSA (K − 1) +Kd+ 1 + d[p− (d+ 1)/2] +Kd 3220 (d = 3)Table 1: Number of free parameters to estimate when d = K − 1 for the DLMmodels and some 
lassi
al models (see text for details).and d = 3, then the number of parameters to estimate for the DLM[Σkβk] is 337whi
h is drasti
ally less than in the 
ase of the Full-GMM (20 603 parameters toestimate). For a 
omparison purpose, Table 1 presents also the 
omplexity of other
lustering methods, su
h as Mixt-PPCA [31℄, MFA [23℄, PGMM [24℄, MCFA [1℄ andMCUFSA [38℄ for whi
h the 
omplexity grows linearly with p as well.2.3 The Fisher-EM algorithmAn estimation pro
edure, 
alled the Fisher-EM algorithm, is also proposed in [6℄ inorder to estimate both the dis
riminative spa
e and the parameters of the mixturemodel. This algorithm is based on the EM algorithm from whi
h an additional step isintrodu
ed, between the E and the M-step. This additional step, named F-step, aimsto 
ompute the proje
tion matrix U whose 
olumns span the dis
riminative latentspa
e. The Fisher-EM algorithm has therefore the following form, at iteration q:

7



The E-step This step 
omputes the posterior probabilities t(q)ik that the observa-tions belong to the K groups using the following update formula:
t
(q)
ik = π̂

(q−1)
k φ(yi, θ̂

(q−1)
k )/

K
∑

ℓ=1

π̂
(q−1)
ℓ φ(yi, θ̂

(q−1)
ℓ ), (5)with θ̂k = {µ̂k, Σ̂k, β̂k, Û}.The F-step This step estimates, 
onditionally to the posterior probabilities, theorientation matrix U (q) of the dis
riminative latent spa
e by maximizing the Fisher's
riterion [13, 15℄ under orthonormality 
onstraints:

Û (q) = max
U

trace
(

(U tSU)−1U tS
(q)
B U

)

,w.r.t. U tU = Id, (6)where S stands for the 
ovarian
e matrix of the whole dataset and S
(q)
B , de�ned asfollows:

S
(q)
B =

1

n

K
∑

k=1

n
(q)
k (m

(q)
k − ȳ)(m

(q)
k − ȳ)t, (7)denotes the soft between 
ovarian
e matrix with n(q)

k =
∑n

i=1 t
(q)
ik ,m(q)

k = 1/n
(q)
k

∑n

i=1 t
(q)
ik yiand ȳ = 1/n

∑n

i=1 yi. This optimization problem is solved in [6℄ using the 
on
eptof orthonormal dis
riminant ve
tor developed by [14℄ through a Gram-S
hmidt pro-
edure. Su
h a pro
ess enables to �t a dis
riminative and low-dimensional subspa
e
onditionally to the 
urrent soft partition of the data while providing orthonormaldis
riminative axes. In addition, a

ording to the rank of the matrix S
(q)
B , the di-mensionality of the dis
riminative spa
e d is stri
tly bounded by the number of
lusters K.The M-step This third step estimates the parameters of the mixture model inthe latent subspa
e by maximizing the 
onditional expe
tation of the 
omplete log-likelihood:

Q(θ) = −1

2

K
∑

k=1

n
(q)
k

[-2 log(πk) + trace(Σ−1
k Û (q)tC

(q)
k Û (q)) + log(|Σk|)

+ (p-d) log(βk) + trace(C
(q)
k )-∑d

j=1 û
(q)t
j C

(q)
k û

(q)
j

βk
+ p log(2π)

]

. (8)where C
(q)
k = 1

n
(q)
k

∑n

i=1 t
(q)
ik (yi −m

(q)
k )(yi −m

(q)
k )t is the empiri
al 
ovarian
e matrixof the kth group and û

(q)
j is the jth 
olumn ve
tor of Û (q), n(q)

k =
∑n

i=1 t
(q)
ik . Hen
e,8



maximizing Q 
onditionally to Û (q) leads to the following update formula for themixture parameters of the model DLM[Σkβk]:
π̂
(q)
k =

n
(q)
k

n
, (9)

µ̂
(q)
k =

1

n
(q)
k

n
∑

i=1

t
(q)
ik Û

(q)tyi, (10)
Σ̂

(q)
k = Û (q)tCkÛ

(q), (11)
β̂
(q)
k =

trace(Ck)-∑d

j=1 û
(q)t
j Ckû

(q)
j

p− d
. (12)The Fisher-EM pro
edure iteratively updates the parameters until the Aitken 
ri-terion is satis�ed (see paragraph 4.5 of [6℄). The 
onvergen
e properties of theFisher-EM algorithm have been studied in [7℄. It is also proposed in this workto use a stopping 
riterion based on the Fisher 
riterion involved in the F-step toimprove the 
lustering performan
e. Finally, sin
e the latent subspa
e has a lowdimension and 
ommon to all groups, the 
lustered data 
an be easily visualized byproje
ting them into the estimated latent subspa
e.3 Sparse versions of the Fisher-EM algorithmEven though the Fisher-EM algorithm turns out to be e�
ient both for modelingand 
lustering data, the interpretation of 
lustering results regarding the originalvariables remains di�
ult. In this se
tion, we propose therefore three di�erent waysto introdu
e sparsity into the loadings of the proje
tion matrix estimated in theF-step of the Fisher-EM algorithm.3.1 A two-step approa
hIn this �rst approa
h, we propose to pro
eed in two steps. First, at iteration q,the traditional F-step of the Fisher-EM algorithm 
omputes an estimate Û (q) of theorientation matrix of the dis
riminative latent spa
e 
onditionally to the posteriorprobabilities t(q)ik . Then, the matrix Û (q) is approximated by a sparse one Ũ (q) usingthe following result.Proposition 3.1. The best sparse approximation Ũ (q) of Û (q) at the level λ is the

9



solution of the following penalized regression problem:
min
U

∥

∥X(q)t − Y tU
∥

∥

2

F
+ λ

d
∑

j=1

|Uj |1 ,where U = [U1, ...,Ud], Uj ∈ R
p is the jth 
olumn ve
tor of U , ‖.‖F is the Frobeniusnorm and X(q) = Û (q)tY .Proof. Let Û (q) be the orientation matrix of the dis
riminative latent spa
e estimatedby the F-step at iteration (q) and let us de�ne X(q) = Û (q)tY ∈ R

d×n the matrix ofthe proje
ted data into the subspa
e spanned by Û (q), where Y ∈ R
p×n denotes theoriginal data matrix. Sin
e X(q) is generated by Û (q), then Û (q) is solution of theleast square regression of X(q) on Y :

min
U

∥

∥X(q)t − Y tU
∥

∥

2

F
,where U = [U1, ...,Ud], Uj ∈ R

p is the jth 
olumn ve
tor of U , ‖.‖F is the Frobeniusnorm. A penalized version of this regression problem 
an be obtained by adding a
ℓ1-penalty term as follows:

min
U

∥

∥X(q)t − Y tU
∥

∥

2

F
+ λ

d
∑

j=1

|Uj |1 ,and the solution of this penalized regression problem is therefore the best sparseapproximation of Û (q) at the level λ.The previous result allows to provide a sparse approximation Ũ (q) of Û (q) but wehave no guarantee that the Ũ (q) is orthogonal as required by the DLM model. Thefollowing proposition solves this issue.Proposition 3.2. The best orthogonal approximation of Ũ (q) is Ū (q) = u(q)v(q)twhere u(q) and v(q) are respe
tively the left and right singular ve
tors of the SVD of
Ũ (q).Proof. Let us 
onsider the matrix Ũ (q). Sear
hing the best orthogonal approximationof the matrix Ũ (q) is equivalent to solving the following optimization problem:

min
U

∥

∥

∥
Ũ (q) − U

∥

∥

∥

2

F
w.r.t. U tU = Id.This problem is a nearest orthogonal Pro
rustes problem whi
h 
an be solved by asingular value de
omposition [18℄. Let u(q)Λ(q)v(q)t be the singular value de
omposi-tion of Ũ (q), then u(q)v(q)t is the best orthogonal approximation of Ũ (q).10



From an pra
ti
al point of view, the penalized regression problem of Proposi-tion 3.1 
an be solved by alternatively regressing ea
h 
olumn ve
tor of the proje
tedmatrix Û (q). The sparse and orthogonal approximation Ū (q) of Ũ (q) is obtained af-terward through a SVD of Ũ (q). The following algorithm summarizes these steps.Algorithm 1 � F-step of the sparseFEM-1 algorithm1. At iteration q, 
ompute the matrix Û (q) by solving (6).2. Compute X(q) = Û (q)tY .3. For j ∈ {1, . . . , d}, solve d independent penalized regression problems with theLARS algorithm [12℄:
Ũ

(q)
j = argmin

Uj

∥

∥

∥
x
(q)t
j − Y tUj

∥

∥

∥

2

+ λ |Uj |1 ,4. Repeat step 3 several times until 
onvergen
e.5. Let Ũ (q) = [Ũ
(q)
1 , ..., Ũ

(q)
d ], 
ompute the SVD of Ũ (q) = u(q)Λ(q)v(q)t and let

Ū (q) = u(q)v(q)t.Let us remark that this problem 
an be extended to a more general penalizedregression by adding a ridge penalty term. This allows in parti
ular to handlethe n < p 
ase whi
h o

urs frequently nowadays. In su
h a 
ase, the elasti
-netalgorithm [41℄ has to be used instead of the LARS algorithm in Algorithm 1.Nevertheless, a limitation of su
h a pro
edure may be the dis
onne
tion betweenthe estimation of the dis
riminative subspa
e and the introdu
tion of the sparsity inthe loadings of the proje
tion matrix. To avoid that, the two following approa
hesaim to propose penalized Fisher 
riteria for whi
h the solutions �t dire
tly a sparseand dis
riminative latent subspa
e.3.2 A penalized regression 
riterionWe therefore propose here to reformulate the 
onstrained Fisher 
riterion (6) in-volved in the F-step of the Fisher-EM algorithm as a penalized regression problem.Consequently, the solution of this penalized regression problem will �t dire
tly asparse and dis
riminative latent subspa
e. To this end, let us introdu
e the softmatri
es H(q)
W and H

(q)
B whi
h will be 
omputed, 
onditionally to the E-step, at ea
hiteration q of the sparse F-step as follows:De�nition 3.1. The soft matri
es H

(q)
W ∈ R

p×n and H
(q)
B ∈ R

p×K are de�ned,11




onditionally to the posterior probabilities t(q)ik 
omputed in the E-step at iteration q,as follows:
H

(q)
W =

1√
n

[

Y −
K
∑

k=1

t
(q)
1k m

(q)
k , . . . , Y −

K
∑

k=1

t
(q)
nkm

(q)
k

]

∈ R
p×n (13)

H
(q)
B =

1√
n

[
√

n
(q)
1 (m

(q)
1 − ȳ), . . . ,

√

n
(q)
K (m

(q)
K − ȳ)

]

∈ R
p×K, (14)where n

(q)
k =

∑n

i=1 t
(q)
ik and m

(q)
k = 1

n

∑n

i=1 t
(q)
ik yi is the soft mean ve
tor of the 
lus-ter k.A

ording to these de�nitions, the matri
es H(q)

W and H
(q)
B satisfy:

H
(q)
W H

(q)t
W = S

(q)
W and H

(q)
B H

(q)t
B = S

(q)
B , (15)where S

(q)
W = 1/n

∑K

k=1 n
(q)
k Ck stands for the soft within 
ovarian
e matrix 
om-puted at iteration q and S
(q)
B denotes the soft between 
ovarian
e matrix de�ned inequation (7). A penalized version of the optimization problem (6) 
an be thereforeformulated as a penalized regression-type problem:Proposition 3.3. The best sparse approximation Ũ (q) of the solution of (6) at thelevel λ is the solution B̂(q) of the following penalized regression problem:

min
A,B

K
∑

k=1

∥

∥

∥
R

(q)−t

W H
(q)
B,k −ABtH

(q)
B,k

∥

∥

∥

2

F
+ ρ

d
∑

j=1

βt
jS

(q)
W βj + λ

d
∑

j=1

|βj |1 ,w.r.t. AtA = Id,where A = [α1, . . . , αd] ∈ R
p×d, B = [β1, . . . , βd] ∈ R

p×d, R(q)
W ∈ R

p×p is a uppertriangular matrix resulting from the Cholesky de
omposition of S
(q)
W , i.e. S

(q)
W =

R
(q)t
W R

(q)
W , H(q)

B,k is the kth 
olumn of H(q)
B and ρ > 0.Proof. First, let us 
onsider that the matrix A is �xed at iteration q . Then, opti-mizing :

min
A,B

K
∑

k=1

∥

∥

∥
R

(q)−t

W H
(q)
B,k −ABtH

(q)
B,k

∥

∥

∥

2

F
+ ρ

d
∑

j=1

βt
jS

(q)
W βj (16)
onditionally to A leads to 
onsider the following regularized regression problem:

min
B

d
∑

j=1

[

∥

∥

∥
H

(q)t
B R

(q)−t

W αj −H
(q)t
B βj

∥

∥

∥

2

F
+ ρβt

jS
(q)
W βj

]

,12



with B = [β1, . . . , βd]. Solving this problem is equivalent to solving d independentridge regression problem and the solution B̂(q) is :
B̂(q) =

(

S
(q)
B + ρS

(q)
W

)−1

S
(q)
B R

(q)−1
W A. (17)By substituting B̂(q) in Equation (16), optimizing the obje
tive fun
tion (16) over

A, given AtA = Id and B̂(q) �xed, is equivalent to maximize the quantity:
max
A

trace
(

B̂(q)tH
(q)
B H

(q)t
B R

(q)−1
W A

)

,w.r.t. AtA = Id.A

ording to Lemma 1 of [28℄, this is a Pro
rustes problem [18℄ whi
h has an ana-lyti
al solution by 
omputing the singular value de
omposition of the quantity:
R

(q)−t

W (H
(q)
B H

(q)t
B )B̂(q) = u(q)Λ(q)v(q)t,where the 
olumn ve
tors of the p× d matrix u(q) are orthogonal and v(q) is a d× dorthogonal matrix. The solution is Â(q) = u(q)v(q)t. Substituting Â(q) into (17) gives:

B̂(q) = R
(q)−1
W

(

R
(q)−t

W S
(q)
B R

(q)−1
W + ρIp

)−1

R
(q)−t

W S
(q)
B R

(q)−1
W Â(q)

= R
(q)−1
W u(q)

(

Λ(q) + ρIp
)−1

Λ(q)v(q)t.By remarking that the d eigenve
tors asso
iated to the non-zero eigenvalues of thegeneralized eigenvalue problem (6) are the 
olumns of R(q)−1
W u(q), it follows that B̂(q)spans the same linear subspa
e than the solution Û (q) of (6). Therefore, the solutionof the penalized optimization problem:

min
A,B

K
∑

k=1

∥

∥

∥
R

(q)−t

W H
(q)
B,k −ABtH

(q)
B,k

∥

∥

∥

2

F
+ ρ

d
∑

j=1

βt
jS

(q)
W βj + λ

d
∑

j=1

|βj |1 ,w.r.t. AtA = Id,is the best sparse approximation of the solution of (6) at the level λ.However and as in the previous 
ase, the orthogonality of the 
olumn ve
torsof B̂(q) is not guaranteed but this issue 
an be ta
kled by Proposition 3.2. From apra
ti
al point of view, the optimization problem of Proposition 3.3 
an be solvedusing the algorithm proposed by [28℄ in the supervised 
ase by optimizing alterna-tively over B with A �xed and over A with B �xed. This leads to the following13



algorithm in our 
ase:Algorithm 2 � F-step of the sparseFEM-2 algorithm1. At iteration q, 
ompute the matri
es H
(q)
B and H

(q)
W from Equations (13)and (14). Let S(q)

W = H
(q)
W H

(q)t
W and S

(q)
B = H

(q)
B H

(q)t
B .2. Compute R

(q)
W by using a Cholesky de
omposition of S(q)

W + γ/p trace(S
(q)
W ) =

R
(q)t
W R

(q)
W .3. Initialization:Let B(q) be the eigenve
tors of S−1S

(q)
B .Compute the SVD R

(q)−t

W S
(q)
B B(q) = u(q)Λ(q)v(q)t and let A(q) = u(q)v(q)t.4. Solve d independent penalized regression problems. For j = 1, . . . , d:

β̂
(q)
j = argmin

βj

(

βt
jW

(q)tW (q)βj − 2Ỹ (q)tW (q)βj + λ1 ‖βj‖1
)

,where W (q) =

(

H
(q)t
B√
ρR

(q)
W

) and Ỹ (q) =

(

H
(q)t
B R

(q)−1
W α

(q)
j

Op

).5. Let B̂(q) = [β̂1, . . . , β̂d]. Compute the SVD of R(q)−t

W S
(q)
B B̂(q) = u(q)Λ(q)v(q)t andlet A(q) = u(q)v(q)t.6. Compute the SVD of B̂(q) = u′(q)Λ′(q)v′(q)t and let Ū (q) = u′(q)v′(q)t.7. Repeat steps several times until 
onvergen
e.3.3 A penalized singular value de
ompositionIn this last approa
h, we reformulate the 
onstrained Fisher 
riterion (6) involved inthe F-step of the Fisher-EM algorithm as a regression problem whi
h 
an be solvedby doing the SVD of the matrix of interest in this regression problem. A sparseapproximation of the solution of this regression problem will be obtained by doinga penalized SVD [34℄ instead of the SVD. To that end, let us 
onsider the followingresult.Proposition 3.4. The solution of (6) is also solution of the following 
onstrainedoptimization problem:

min
U

p
∑

ℓ=1

∥

∥

∥
S
(q)
B,ℓ − UU tS

(q)
B,ℓ

∥

∥

∥

2w.r.t. U tU = Id,14



where S
(q)
B,ℓ is the ℓth 
olumn of the soft between 
ovarian
e matrix S

(q)
B 
omputed atiteration q.Proof. Let us �rst prove that minimizing the quantity ∑p

ℓ=1 ||S
(q)
B,ℓ − UU tS

(q)
B,ℓ||2 isequivalent to maximize trace(U tS

(q)
B S

(q)t
B U). To that end, we 
an write down thefollowing equalities:

p
∑

ℓ=1

∥

∥

∥S
(q)
B,ℓ − UU tS

(q)
B,ℓ

∥

∥

∥

2

=

p
∑

ℓ=1

trace
(

S
(q)t
B,ℓ (Ip − UU t)t(Ip − UU t)S

(q)
B,ℓ

)

= trace

(

(Ip − UU t)t(Ip − UU t)

p
∑

ℓ=1

S
(q)
B,ℓS

(q)t
B,ℓ

)

= trace
(

S
(q)t
B (Ip − UU t)S

(q)
B

)

= trace(S
(q)t
B S

(q)
B )− trace(U tS

(q)
B S

(q)t
B U).Consequently, minimizing over U the quantity∑p

ℓ=1 ||S
(q)
B,ℓ−UU tS

(q)
B,ℓ||2 is equivalentto maximize trace(U tS

(q)
B S

(q)t
B U) a

ording to U . Let us now 
onsider the SVD ofthe n × p matrix S

(q)
B = uΛvt where u and v stands for respe
tively the left andright singular ve
tors of S(q)

B and Λ is a diagonal matrix 
ontaining its asso
iatedsingular values. Sin
e the matrix S
(q)
B has a rank d at most equal to K−1 < p, with

K the number of 
lusters, then only d singular values of the matrix S
(q)
B are nonzeros, whi
h enables us to write S(q)

B = uΛdv
t, where Λd = diag(λ1, . . . , λd, 0, . . . , 0).Moreover, by letting U = ud the d �rst left eigenve
tors of SB, then:

trace
(

U tSBS
t
BU
)

= trace
(

U t(uΛdv
t)(uΛdv

t)tU
)

,

= trace
(

U tuΛdΛ
t
du

tU
)

,

=
d
∑

j=1

λ2
j .Consequently, the p × d orthogonal matrix Û su
h that ∑p

ℓ=1 ||S
(q)
B,ℓ − UU tS

(q)
B,ℓ||2is minimized, is the matrix made of the d �rst left eigenve
tors of S(q)

B . Besides,sin
e S
(q)
B is symmetri
 and semi-de�nite positive, the matrix Û 
ontains also theeigenve
tors asso
iated with the d largest eigenvalues of S(q)2

B and therefore the onesof S(q)
B . Therefore, assuming without loss of generality that S = Ip, Û is also solutionof the 
onstrained optimization problem (6) involved in the original F-step.The optimization problem of Proposition (3.4) 
an be seen as looking for theproje
tion matrix U su
h that the ba
k-proje
tion UU tS

(q)
B,ℓ is as 
lose as possibleto S

(q)
B,ℓ. In [34℄, Witten et al. have 
onsidered su
h a problem with a 
onstraint of15



sparsity on U . To solve this problem, they proposed an algorithm whi
h performsa penalized SVD of the matrix of interest in the 
onstrained optimization problem.Therefore, it is possible to obtain a sparse approximation Ũ (q) of the solution of (6)by doing a penalized SVD of S(q)
B with the algorithm of [34℄. As previously, theorthogonality of the 
olumn ve
tors of Ũ (q) is not guaranteed but this issue 
an beagain ta
kled by Proposition 3.2. From a pra
ti
al point of view, this third approa
h
an be implemented as follows:Algorithm 3 � F-step of the sparseFEM-3 algorithm1. Let M1 = S

(q)
B and d = rank (SB) .2. For j ∈ {1, . . . , d}:(a) Solve û
(q)
j = argmaxuj

ut
jMjvj w.r.t. ‖uj‖22 ≤ 1, ‖vj‖22 ≤ 1 and

∑p

ℓ=1

∣

∣

∣
u
(q)
jℓ

∣

∣

∣
≤ λ1 using the penalized SVD algorithm of [34℄.(b) Update Mj+1 = Mj − λju

(q)
j vtj.3. Û (q) = [û

(q)
1 , . . . , û

(q)
d ].4. Compute the SVD of Û (q) = u(q)Λ(q)v(q)t and let Ũ (q) = u(q)v(q)t.3.4 Pra
ti
al aspe
tsThe introdu
tion of sparsity in the Fisher-EM algorithm presents several pra
ti
alaspe
ts among whi
h the ability to interpret the dis
riminative axes. However, twoquestions remain: the 
hoi
e of the hyper-parameter whi
h determines the level ofsparsity and the implementation strategy in the Fisher-EM algorithm. Both aspe
tsare dis
ussed below.Choi
e of the tuning parameter The 
hoi
e of the threshold λ is an importantproblem sin
e the number of zeros in the d dis
riminative axes depends dire
tlyon the degree of sparsity. In [40℄, Zou et al. 
hose the hyper-parameter of theirsparse PCA with a 
riterion based on the explanation of the varian
e approximatedby the sparse prin
ipal 
omponents. In [33℄, Witten and Tibshirani proposed fortheir sparse-kmeans to base the 
hoi
e of the tuning parameter on a permutationmethod 
losely related to the gap statisti
 previously proposed by Tibshirani etal. [30℄ for estimating the number of 
omponents in standard kmeans. Sin
e ourmodel is de�ned in a Gaussian mixture 
ontext, we propose to use the BIC 
riterion16



to sele
t the threshold λ. A

ording to the 
onsisten
y results obtained by Zou etal. [42℄ and the fa
t that the sparsity 
onstraint is applied on the proje
tion matrix
U , the e�e
tive number of parameters to estimate in the DLM[Σkβk] model is:

γe = (K − 1) +Kd+ (d[p=(d+ 1)/2]− de) +Kd(d+ 1)/2 +Kwhere de is the number of zeros in the loading matrix. In the same manner, thise�e
tive number of parameters to estimate 
an be de
lined for the 11 other sub-models of the DLM family.Implementation of the sparse Fisher-EM algorithm We identi�ed two dif-ferent ways to implement the sparse versions of the Fisher-EM algorithm. First,it 
ould be possible to repla
e the usual F-step of the Fisher-EM algorithm by asparse F-step developed previously. The resulting algorithm would sparsify at ea
hiteration the proje
tion matrix U before estimating the model parameters. This
an however leads to some drawba
ks sin
e an early introdu
tion of the ℓ1 penalty
ould penalize too mu
h the loadings of the proje
tion matrix, in parti
ular if theinitialization is far away from the optimal situation. An alternative implementationwould be to, �rst, exe
ute the traditional Fisher-EM algorithm until 
onvergen
eand, then, initialize the sparse Fisher-EM algorithm with the result of the Fisher-EMalgorithm. This strategy should 
ombine the e�
ien
y of the standard Fisher-EMalgorithm with the advantage of having a sparse sele
tion of dis
riminative vari-ables. We therefore re
ommend this se
ond implementation and it will be used inthe experiments presented in the following se
tions.4 Experimental 
omparisonThis se
tion presents 
omparisons with existing variable sele
tion te
hniques onsimulated and real-world data sets.4.1 Comparison on simulated dataThis �rst experiment aims to 
ompare on simulated data the performan
es of theproposed sparseFEM algorithms (sparseFEM-1, sparseFEM-2, sparseFEM-3) to sev-eral 
ompetitors: Selvar
lust of Raftery and Dean [29℄, Clustvarsel of Maugis etal. [22℄ and sparse-kmeans of Witten and Tibshirani [33℄. For this experiment,we repli
ated the simulation proposed in Se
tion 3.3 of [33℄. We simulated K = 3Gaussian 
omponents of n observations in a 25-dimensional observation spa
e whose17



Simulation Method Clustering error non-zero variables
n = 30 µ = 0.6 kmeans 0.48± 0.05 25.0± 0.0sparse-kmeans 0.47± 0.07 19.0± 6.6Selvar
lust 0.62± 0.06 22.2± 1.2Clustvarsel 0.40± 0.03∗ 8.1± 1.9∗sparseFEM-1 0.47± 0.06 2.6± 0.9sparseFEM-2 0.48± 0.07 4.7± 1.8sparseFEM-3 0.48± 0.03 2.0± 0.0

n = 30 µ = 1.7 kmeans 0.14± 10.2 25.0± 0.0sparse-kmeans 0.08± 0.06 23.6± 0.8Selvar
lust 0.41± 0.10 16.6± 10.4Clustvarsel 0.08± 0.08∗ 6.8± 1.4∗sparseFEM-1 0.14± 0.13 3.5± 0.8sparseFEM-2 0.20± 0.12 5.4± 2.2sparseFEM-3 0.17± 0.11 2.0± 0.0

n = 300 µ = 0.6 kmeans 0.43± 0.03 25.0± 0.0sparse-kmeans 0.46± 0.03 24.0± 0.5Selvar
lust 0.42± 0.03 25.0± 0.0Clustvarsel 0.34± 0.02∗ 7.0± 1.7*sparseFEM-1 0.42± 0.03 2.4± 1.0sparseFEM-2 0.43± 0.03 5.2± 2.7sparseFEM-3 0.43± 0.04 2.3± 1.1

n = 300 µ = 1.7 kmeans 0.05± 0.06 25.0± 0.0sparse-kmeans 0.05± 0.01 15.0± 0.0Selvar
lust 0.05± 0.01 25.0± 2.0Clustvarsel 0.05± 0.01∗ 5.6± 0.9∗sparseFEM-1 0.04± 0.01 10.2± 2.4sparseFEM-2 0.05± 0.01 8.8± 1.7sparseFEM-3 0.04± 0.01 5.6± 1.6Table 2: Clustering errors and numbers of non-zero variables averaged over 20 sim-ulations for several 
lustering methods with p = 25 and q = 5. The results ofClustvarsel are reported from [11℄.
18




omponents di�er only on q = 5 features. The used parameters were µkj = µ ×
(1k=1,j≤q,−1k=2,j≤q), ∀k ∈ {1, 2, 3} and ∀j ∈ {1, . . . , p} for the mean 
omponentsand σ2

kj = 1 for the varian
e terms. Moreover, four di�erent situations are 
on-sidered: n = 30 or 300 and µ = 0.6 or 1.7. Ea
h simulation was repli
ated 25times.Table 2 presents the means and standard deviations for both the 
lustering er-ror and the number of non-zero variables for kmeans, sparse-kmeans, Selvar
lust,Clustvarsel and the 3 pro
edures of sparseFEM. Note that the results of Clustvarsel
orresponds to 
lustering errors and non-zero variable rates found in [11℄. Moreover,the reported results 
on
erning the 3 sparse Fisher-EM algorithms were obtainedwith the DLM[αkβ] model for a sparsity level 
orresponding to the highest BIC valueobtained at ea
h trial.Two main remarks 
an be done on the results presented in Table 2. First,by 
onsidering either the most di�
ult 
lustering 
ases (n = 30 and µ = 0.6) orthe easiest one (n = 300 and µ = 0.6 or 1.7), all approa
hes present approxima-tively the same results in terms of 
lustering error rate. The methods di�er how-ever in the number of variables they retain to perform the 
lustering: Clustevarsel,sparseFEM-1, sparseFEM-2 and sparseFEM-3 turn out to sele
t signi�
antly lessvariables than sparse-kmeans and Selvar
lust. In parti
ular, Clustevarsel and thesparseFEM algorithms sele
t a number of useful variables 
onsistent with the a
tualnumber of meaningful variables (q = 5). Se
ond, in the situation where n = 30and µ = 1.7, Clustvarsel and sparse-kmeans present the lowest mis
lassi�
ation rate(0.08), even though the 
lustering error of sparseFEM-1 and kmeans remains rel-atively low (0.14). However, as previously, only Clustevarsel and the sparseFEMalgorithms sele
t a number of variables 
lose to the right number of dis
riminativefeatures.4.2 Comparison on real data setsReal-world data sets are now used to 
ompare the e�
ien
y of the sparseFEMalgorithms to its 
ompetitors for both the 
lustering and variable sele
tion tasks.We 
onsidered 7 di�erent ben
hmark data sets 
oming mostly from the UCI ma
hinelearning repository. We sele
ted these data sets be
ause they represent a wide rangeof situations in term of number of observations n, number of variables p and numberof groups K. These 
hara
teristi
s are given in the top row of Table 3 and a detaileddes
ription of these data sets 
an be found in [6℄.For this experiment, we used the 3 sparseFEM algorithms and the 3 sparse meth-ods introdu
ed previously (sparse-kmeans, Selvar
lust and Clustvarsel). Sin
e the19



evaluation of the 
lustering performan
e is a 
omplex and very dis
ussed problem,we 
hose to evaluate the 
lustering performan
e as the adequa
y between the re-sulting partition of the data and the known labels for these data. For ea
h dataset, the sparseFEM algorithms were initialized with a 
ommon random partitiondrown from a multinomial distribution with equal prior probabilities. For Selvar-
lust, Clustvarsel and sparse-kmeans, the initialization was done with their owndeterministi
 pro
edure. Moreover, for ea
h method, the number K of groups hasbeen �xed to the a
tual one. For Selvar
lust, Clustvarsel and sparse-kmeans, thedetermination of the other free parameters was done a

ording to the tools providedby ea
h approa
h. For the sparseFEM algorithms, we used the penalized BIC 
ri-terion to sele
t the model and the level of sparsity. More pre
isely, we �rst 
hosethe model presenting the highest average BIC value on 20 repli
ations. Then, giventhe sele
ted model, we sele
ted the level of sparsity asso
iated with the highest BICvalue.Table 3 presents the average 
lustering a

ura
ies and the asso
iated standard de-viations obtained for the 6 approa
hes. The average number of non-zero variables isalso reported within bra
kets in the table. The results asso
iated to the sparseFEMalgorithms have been obtained by averaging over 20 trials with random initializa-tions. The la
k of standard deviations for Selvar
lust, Clustvarsel and sparse-kmeansis due to the deterministi
 initializations they use. It �rst appears that the threesparse versions of the Fisher-EM algorithm perform rather similarly both in termof 
lustering and variable sele
tion. It also appears 
learly that the sparseFEMalgorithms are 
ompetitive to existing methods regarding both the 
lustering per-forman
es and the sele
tion of variables. Indeed, the sparseFEM algorithms obtainthe best 
lustering a

ura
ies on 4 of the 7 data sets whereas sparse-kmeans andClustvarsel obtain the best 
lustering a

ura
ies on respe
tively 2 and 1 data sets.The sparseFEM algorithms di�er also from sparse-kmeans regarding the number ofvariables retained to perform the 
lustering. Indeed, sparse-kmeans turns out tofrequently sele
t a large number of variables whereas sparseFEM is usually rathersparse in the number of sele
ted variables. Finally, Selvar
lust and Clustvarsel turnout to sele
t most of the time few variables, parti
ularly in high-dimensional spa
es,whi
h seems to obstru
t their 
lustering performan
e. To summarize, this experi-ment has shown that the sparseFEM algorithms seem to be good 
ompromises be-tween sparse-kmeans and Selvar
lust /Clustvarsel in term of variable sele
tion and,
ertainly thanks to this 
hara
teristi
, they also provide good 
lustering results.
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iris wine 
hiro zoo glass satimage usps358(p=4,K=3) (p=13,K=3) (p=17,K=3) (p=16,K=7) (p=9,K=7) (p=36,K=6) (p=256,K=3)Approa
hes (n=150) (n=178) (n=178) (n=101) (n=214) (n=4435) (n=1726)sparseFEM-1 96.5±0.3 97.8±0.2 84.2±11 71.4±8.5 50.2±1.9 69.6±0.1 84.7±3.2(2.0±0.0) (2.0±0.0) (2.3±0.5) (13±2.5) (6.0±1.0) (36±0.0) (5.5±0.7)sparseFEM-2 89.9±0.4 98.3±0.0 84.8±12 70.1±12.2 48.4±3.0 67.5±1.6 82.8±9.1(4.0±0.0) (4.0±0.0) (2.0±0.6) (14±3.6) (6.6±0.7) (36±.0.0) (15.5±16)sparseFEM-3 96.5±0.3 97.8±0.0 82.9±12 72.0±4.3 48.2±2.7 71.8±2.3 79.1±7.4(2.0±0.3) (2.0±0.0) (2.0±0.0) (10±2.8) (7.0±0.0) (36±0.0) (6.0±1.3)sparse-kmeans 90.7 94.9 95.3 79.2 52.3 71.4 74.7(4.0) (13.0) (17.0) (16.0) (6.0) (36.0) (213)Selvar
lust 96.0 92.7 71.1 75.2 48.6 58.7 48.3(3.0) (5.0) (6.0) (3.0) (3.0) (19.0) (6.0)Clustvarsel 96.0 94.4 92.6 92.1 43.0 56.4 36.7(3.0) (5.0) (8.0) (5.0) (6.0) (22.0) (5.0)Table 3: Clustering a

ura
ies and their standard deviations (in per
entage) on 7 UCI datasets (iris, wine, 
hironomus, zoo, glass,satimage, usps358) averaged on 20 trials. The average number of nonzero variables is reported in bra
kets. No standard deviation isreported for Selvar
lust/Clustvarsel and sparse-kmeans sin
e their initialization pro
edure is deterministi
 and always provides thesame initial partition.
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4.3 Comparison on the usps358 data setWe fo
us now on the usps358 dataset to stress the role of variable sele
tion in theinterpretation of 
lustering results. The original dataset is made of 7 291 imagesdivided in 10 
lasses 
orresponding to the digits from 0 to 9. Ea
h digit is a 16× 16gray level image represented as a 256-dimensional ve
tor. For this experiment, weextra
ted a subset of the data (n = 1 756) 
orresponding to the digits 3, 5 and 8whi
h are the three most di�
ult digits to dis
riminate. This smaller dataset ishereafter 
alled usps358. Figure 2 depi
ts the group mean images obtained from thetrue labels in the usps358 dataset. For this experiment, we used the three sparse-FEM algorithms with the model and the level of sparsity sele
ted in the previousexperiment for this data set. For Selvar
lust, Clustvarsel and sparse-kmeans, thelevel of sparsity was again sele
ted with their own sele
tion pro
edure.Figures 3 illustrates, as images, the features sele
ted respe
tively by sparse-kmeans (Figure 3.a), Selvar
lust (Figure 3.b) and Clustvarsel (Figure 3.
). In Fig-ure 3.a, the weight assigned by sparse-kmeans to ea
h feature is represented by graylevels: lighter is the pixel, weaker is the absolute value of the weight of the asso
iatedfeature. For Selvar
lust and Clustvarsel, only the sele
ted variables are depi
ted andare asso
iated to bla
k pixels as it is illustrated in Figures 3.b and 3.
 respe
tively.These representations are asso
iated to the following 
lustering a

ura
ies 74.7%,
48.3% and 36.7% for sparse-kmeans, Selvar
lust and Clustvarsel respe
tively. Forthe 3 sparseFEM algorithms, we superimposed in a same �gure the absolute values ofthe loadings of the two dis
riminative axes �tted by the sparseFEM-1, sparseFEM-2and sparseFEM-3 pro
edures. The asso
iated 
lustering a

ura
ies are respe
tively
84.7%, 82.8% and 79.1%.First of all, it appears that Selvar
lust and Clustvarsel sele
t signi�
antly fewervariables than both sparse-kmeans or the sparseFEM pro
edures. Furthermore,most of the sele
ted variables by Selvar
lust and Clustvarsel turn out to be irrelevantto dis
riminate the digit 3 from the digits 5 and 8. For instan
e, in Figures 3.band 3.
, we 
an observe that the bla
k pixels lo
ated in right bottom 
orner, do not
orrespond to any dis
riminative variable. This 
ertainly explain the poor 
lusteringperforman
es (48.3% for Selvar
lust and 36.7% for Clustvarsel) observed on this dataset for these methods. On the 
ontrary, sparse-kmeans turns out to perform wellin term of 
lustering performan
e (74.7% of 
lustering a

ura
y). Nevertheless, thenumber of sele
ted variables remains higher (213 sele
ted variables amongst 256original ones) than we would expe
t to ease the interpretation of results. Finally,sparseFEM-1 and sparseFEM-2 seem to answer quite well to both the 
lustering taskand the task of feature sele
tion. Indeed, on the one hand, the subset of sele
ted22



(a) (b) (
)Figure 2: Group means obtained from the true labels in the USP358 datasets.
(a) Sparse-kmeans (b) Selvar
lust (
) ClustvarselFigure 3: Variable sele
tion obtained from (a) the sparse-kmeans algorithm, (b) theSelvar
lust approa
h and (
) the Clustvarsel approa
h.
(a) sparseFEM-1 (b) sparseFEM-2 (
) sparseFEM-3Figure 4: Variable sele
tion obtained from (a) the sparseFEM-1, (b) the sparseFEM-2 and (
) the sparseFEM-3 pro
edures with sparsity levels sele
ted by the penal-ized BIC.
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Approa
hes: Pro
edure time (se
) Approa
hes: Pro
edure time (se
)sparseFEM-1 729.04 sparse-kmeans 1 567.75sparseFEM-2 387.12 Selvar
lust 2 957.70sparseFEM-3 409.61 Clustvarsel 9 257.10Table 4: Computing times for the 3 versions of the sparseFEM algorithm, sparse-kmeans, Selvar
lust and Clustvarsel on the USPS358 data (for a given model andwith λ and K �xed).pixels remains small for both algorithms: 6 and 15 pixels are sele
ted amongst 256for sparseFEM-1 and sparseFEM-2 respe
tively. Furthermore, the sele
ted pixelsappear to be relevant to dis
riminate the 
lasses asso
iated with the three digits.For instan
e, the darker pixel on the bottom right 
orner of Figure 4.b dis
riminatesthe digit 8 from the digits 3 and 5. On the other hand, and 
ertainly due tothis relevant sele
tion of variables, both algorithms perform parti
ularly well onthis high-dimensional data set (84.7% for sparseFEM-1 and 82.8% for sparseFEM-2). However, on this data set, the sparseFEM-3 pro
edure shows a disappointingbehavior regarding the variable sele
tion even though its 
lustering performan
eremains satisfying. The fa
t that sparseFEM-3 su

eeds in 
lustering the data seteven with a bad sele
tion of variables is 
ertainly due to the nature of the DLMmodel whi
h models also the non dis
riminative information through the parameter
βk. Table 4 presents the 
omputing time of the studied 
lustering methods (for agiven model and with λ and K �xed) for 
lustering the usps358 data set. As we
an remark, our pro
edures are mu
h faster than the sparse-kmeans, Selvar
lust andClustvarsel algorithms. Consequently, the sparseFEM algorithms appear on
e againto be good 
ompromises, in pra
ti
e, to 
luster high-dimensional data and sele
t aset of dis
riminative variables in a reasonable time.5 Appli
ation to the segmentation of hyperspe
tralimagesHere, we propose to use sparseFEM to segment hyperspe
tral images of the Mar-tian surfa
e. Visible and near infrared imaging spe
tros
opy is a key remote sensingte
hnique to study the system of the planets. Imaging spe
trometers, whi
h are in-board of an in
reasing number of satellites, provide high-dimensional hyperspe
tralimages. In Mar
h 2004, the OMEGA instrument (Mars Express, ESA) [4℄ has 
ol-le
ted 310 Gbytes of raw images. The OMEGA imaging spe
trometer has mapped24



Figure 5: Image of the studied zone of the Martian surfa
e.
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Figure 6: Some of the 38 400 measured spe
tra des
ribed on 256 wavelengths (seetext for details).
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the Martian surfa
e with a spatial resolution varying between 300 to 3000 metersdepending on the spa
e
raft altitude. It a
quired for ea
h resolved pixel the spe
-trum from 0.36 to 5.2 µm in 256 
ontiguous spe
tral 
hannels. OMEGA is designedto 
hara
terize the 
omposition of surfa
e materials, dis
riminating between vari-ous 
lasses of sili
ates, hydrated minerals, oxides and 
arbonates, organi
 frosts andi
es. For this experiment, a 300 × 128 image of the Martian surfa
e is 
onsideredand a 256-dimensional spe
tral observation is therefore asso
iated to ea
h of the38 400 pixels. Figure 5 presents an image of the studied zone and Figure 6 showssome of the 38 400 measured spe
tra. A

ording to the experts, there are K = 5mineralogi
al 
lasses to identify.The sparseFEM-1 algorithmwas applied to this dataset using the modelDLM[αkjβ]and a sparsity ratio equals to 0.1 (it refers to the ratio of the ℓ1 norm of the 
oe�-
ient ve
tor relative to the norm at the full least square solution). The sparseFEMalgorithm was initialized with the results of the Fisher-EM algorithm and the wholesegmentation pro
ess took 18 hours on a 2.6 Ghz 
omputer. Figure 7 presents, onthe right panel, the segmentation into 5 mineralogi
al 
lasses of the studied zonewith the sparseFEM algorithm. In 
omparison, the left panel of Figure 7 shows thesegmentation obtained by experts of the domain using a physi
al model. It �rst ap-pears that the two segmentations agree globally on the mineralogi
al nature of thesurfa
e of the studied zone (60.30% of agreement). We re
all that both segmenta-tions do not exploit the spatial information. When looking at the top-right quarterof the image, we 
an noti
e that sparseFEM seems to provide a �ner segmentationthan the segmentation based on the physi
al model. Indeed, sparseFEM segmentsbetter than the physi
al model the �ne �rivers� whi
h 
an be seen on Figure 5.Finally, Figure 8 shows the mean spe
tra of the 5 groups formed by sparseFEMand the sele
tion of the dis
riminative wavelengths. SparseFEM sele
ted 8 originalvariables (wavelengths) as dis
riminative variables, i.e. the rows asso
iated to thesevariables were non-zero in the loading matrix U . Looking 
losely at the sele
tion,we indeed noti
e that the �rst sele
ted variable (from left to right) dis
riminates theblue group from the others. The se
ond sele
ted variable dis
riminates the red andgreen groups from the bla
k, blue and light blue groups whereas the third sele
tedvariable allows to dis
riminate the red, green and bla
k groups from the blue andlight blue groups. Similarly, the fourth and �fth sele
ted variables dis
riminate thered and green groups from the bla
k, blue and light blue groups whereas the sixth,seventh and eighth sele
ted variable allows to dis
riminate the red, green and lightblue groups from the blue and bla
k groups.A possible interest of su
h a sele
tion 
ould be the measurement of only a tens26



Expert segmentation SparseFEM segmentationFigure 7: Segmentation of the hyperspe
tral image of the Martian surfa
e using aphysi
al model build by experts (left) and sparseFEM (right).

0 50 100 150 200 250

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 8: Mean spe
tra of the 5 groups formed by sparseFEM and sele
tion of thedis
riminative wavelengths (indi
ated by gray re
tangles).
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of wavelengths for future a
quisitions instead of the 256 
urrent ones for a resultexpe
ted to be similar. This 
ould in parti
ular redu
e the a
quisition time for ea
hpixel from a few tens of se
onds to less than one se
ond.6 Con
lusionThis arti
le has fo
used on variable sele
tion for 
lustering with the Fisher-EM al-gorithm whi
h has been re
ently proposed in [6℄. The aim of this work was tointrodu
e sparsity in the Fisher-EM algorithm and thus sele
t the dis
riminativevariables among the set of original variables. We have proposed three di�erent pro-
edures based on a ℓ1-penalty term. Experiments on simulations and real data setshave shown that the three sparse versions of the Fisher-EM algorithm are highly
ompetitive with existing approa
hes of the literature. In parti
ular, the sparseFEMpro
edures present several assets regarding existing approa
hes. On the one hand,they tend to sele
t an intermediate number of dis
riminative variables whereas ex-isting approa
hes tend to sele
t either too few (Selvar
lust and Clustvarsel) or toomu
h variables (sparse-kmeans). On the other hand, the sparseFEM pro
eduresperform both the 
lustering and the variable sele
tion in a reasonable time 
ompar-ing to existing approa
hes in the 
ase of high-dimensional data. The sparseFEMalgorithms have been also applied with su

ess to the segmentation of hyperspe
tralimages of the planet Mars and relevant parts of the spe
tra whi
h well dis
riminatethe groups have been identi�ed.Among the possible extensions of this work, it may be �rst interesting to usedi�erent ℓ1-penalty values a

ording to the relevan
e of ea
h dis
riminative axis es-timated in the Fisher-EM algorithm. Su
h an approa
h 
ould identify di�erent levelsof relevan
y among the original variables. Se
ond, we used in this work a penalizedBIC 
riterion to sele
t the sparsity level by evaluating the model 
omplexity in re-gard to the non-zero values as proposed by [27℄. Although Zou et al. [42℄ showedthat the number of non-zero 
oe�
ients is an unbiased estimate of the degrees offreedom and is asymptoti
ally 
onsistent in the 
ase of penalized regression prob-lem, this result has no theoreti
al justi�
ation in the penalized GMM 
ontext. Itwould be therefore interesting to obtain theoreti
al guarantees of su
h a result inour 
ontext. Finally, sin
e the ICL 
riterion [5℄ is also used to sele
t the number of
omponents, it would be a natural extension to 
onsider a penalized ICL for sele
tingthe sparsity level in the sparseFEM algorithms.
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