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Abstract

The interest in variable selection for clustering has increased recently due

to the growing need in clustering high-dimensional data. Variable selection

allows in particular to ease both the clustering and the interpretation of the

results. Existing approaches have demonstrated the efficiency of variable se-

lection for clustering but turn out to be either very time consuming or not

sparse enough in high-dimensional spaces. This work proposes to perform a

selection of the discriminative variables by introducing sparsity in the loading

matrix of the Fisher-EM algorithm. This clustering method has been recently

proposed for the simultaneous visualization and clustering of high-dimensional

data. It is based on a latent mixture model which fits the data into a low-

dimensional discriminative subspace. Three different approaches are proposed

in this work to introduce sparsity in the orientation matrix of the discrimina-

tive subspace through ℓ1-type penalizations. Experimental comparisons with

existing approaches on simulated and real-world data sets demonstrate the

interest of the proposed methodology. An application to the segmentation of

hyperspectral images of the planet Mars is also presented.

1 Introduction

With the exponential growth of measurement capacities, the observed data are nowa-

days frequently high-dimensional and clustering such data remains a challenging

problem. In particular, when considering the mixture model context, the corre-

sponding clustering methods show a disappointing behavior in high-dimensional

spaces. They suffer from the well-known curse of dimensionality [3] which is
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mainly due to the fact that model-based clustering methods are dramatically over-

parametrized in high-dimensional spaces. Moreover, even though we dispose of many

variables to describe the studied phenomenon, most of the time, only a small subset

of these original variables are in fact relevant.

Several recent works have been interested to simultaneously cluster data and

reduce their dimensionality by selecting relevant variables for the clustering task. A

common assumption to these works is that the true underlying clusters are assumed

to differ only with respect to some of the original features. The clustering task

aims therefore to group the data on a subset of relevant features. This presents

two practical advantages: clustering results should be improved by the removing of

non informative features and the interpretation of the obtained clusters should be

eased by the meaning of retained variables. In the literature, variable selection for

clustering is handled in two different ways.

On the one hand, some authors such as [19, 20, 21, 29] tackle the problem

of variable selection for model-based clustering within a Bayesian framework. In

particular, the determination of the role of each variable is recast as a model selection

problem. A first framework was proposed by Raftery and Dean [29] in which two

kinds of subsets of variables are defined: a subset of relevant variables and a subset

of irrelevant variables which are independent from the clustering but which can be

explained from the relevant variables through a linear regression. An extension of

the previous work has then been proposed by Maugis et al. [21] who consider two

kinds of irrelevant variables: the ones which can be explained by a linear regression

from a subset of the clustering variables and finally a set of irrelevant variables which

are totally independent of all the relevant variables. The models in competition are

afterward compared with the integrated log-likelihood via a BIC approximation.

Even though these approaches present good results in most practical situations,

their computational times are nevertheless very high and can lead to an intractable

procedure in the case of high-dimensional data.

On the other hand, penalized clustering criteria have also been proposed to deal

with the problem of variable selection in clustering. In the Gaussian mixture model

context, several works, such as [27, 32, 35, 39] in particular, introduced a penalty

term in the log-likelihood function in order to yield sparsity in the features. The

penalty function can take different forms according to the constraints imposed on

the structure of the covariance matrices. The introduction of a penalty term in the

log-likelihood function was also used in the mixture of factor analyzers approaches,

such as in [16, 36]. More recently, Witten and Tibshirani [33] proposed a general

non-probabilistic framework for variable selection in clustering, based on a general
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penalized criterion, which governs both variable selection and clustering. It ap-

pears nevertheless that the results of such procedures are usually not sparse enough

and select a large number of the original variables, especially in the case of high-

dimensional data.

Other approaches focus on simultaneously clustering the data and reducing their

dimensionality by feature extraction rather than feature selection. We can cite in

particular, the subspace clustering methods [9, 17, 24, 23, 26, 37] which are based

on probabilistic frameworks and model each group in a specific and low-dimensional

subspace. Even though these methods are very efficient in practice, they present

nevertheless several limitations regarding the understanding and the interpretation

of the clusters. Indeed, in most of subspace clustering approaches, each group is

modeled in its specific subspace which makes difficult a global visualization of the

clustered data. Even though some approaches [2, 26] model the data in a com-

mon and low-dimensional subspace, they choose the projection matrix such as the

variance of the projected data is maximum and this can not be sufficient to catch

discriminative information about the group structure.

To overcome these limitations, Bouveyron and Brunet [6] recently proposed a

new statistical framework which aims to simultaneously cluster the data and pro-

duce a low-dimensional and discriminative representation of the clustered data. The

resulting clustering method, named the Fisher-EM algorithm, clusters the data into

a common latent subspace of low dimensionality which best discriminates the groups

according to the current fuzzy partition of the data. It is based on an EM proce-

dure from which an additional step, named F-step, is introduced to estimate the

projection matrix whose columns span the discriminative latent space. This pro-

jection matrix is estimated at each iteration by maximizing a constrained Fisher’s

criterion conditionally to the current soft partition of the data. As reported in [6],

the Fisher-EM algorithm turned out to outperform most of the existing clustering

methods while providing a useful visualization of the clustered data. However, the

discriminative latent space is defined by “latent variables” which are linear combina-

tions of the original variables. As a consequence, the interpretation of the resulting

clusters according to the original variables is usually difficult. An intuitive way to

avoid such a limitation would be to keep only large loadings variables, by thresh-

olding for instance. Even though this approach is commonly used in practice, it has

been particularly criticized by Cadima [10] since it induces some misleading infor-

mation. Furthermore, it often happens when dealing with high-dimensional data

that a large number of noisy or non-informative variables are present in the set of

the original variables. Since the latent variables are defined by a linear combination
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of the original ones, the noisy variables may remain in the loadings of the projection

matrix and this may produce a deterioration of the clustering results.

To overcome these shortcomings, three different approaches are proposed in this

work for introducing sparsity in the Fisher-EM algorithm and thus select the dis-

criminative variables among the set of original variables. The remainder of this

document is organized as follows. Section 2 reviews the discriminative latent mix-

ture model of [6] and the Fisher-EM algorithm which was proposed for its inference.

Section 3 develops three different procedures based on ℓ1 penalties for introducing

sparsity into the Fisher-EM algorithm. The first approach looks for the best sparse

approximate of the solution of the F-step of the Fisher-EM algorithm. The second

one recasts the optimization problem involved of the F-step as a lasso regression-type

problem. The last approach is based on a penalized singular value decomposition

(SVD) of the matrix involved in the constrained Fisher criterion of the F-step.

Numerical experiments are then presented in Section 4 to highlight the practical be-

havior of the three sparse versions of the Fisher-EM algorithm and to compare them

to existing approaches. In section 5, a sparse version of the Fisher-EM algorithm

is applied to the segmentation of hyperspectral images. Section 6 finally provides

some concluding remarks and ideas for further works.

2 The DLM model and the Fisher-EM algorithm

In this section, we briefly review the discriminative latent mixture (DLM) model [6]

and its inference algorithm, named the Fisher-EM algorithm, which models and

clusters the data into a common latent subspace. Conversely to similar approaches,

such as [8, 24, 25, 26, 37], this latent subspace is assumed to be discriminative and

its intrinsic dimension is strictly bounded by the number of groups.

2.1 The DLM model

Let {y1, . . . , yn} ∈ R
p denote a dataset of n observations that one wants to clus-

ter into K homogeneous groups, i.e. adjoin to each observation yi a value zi ∈
{1, . . . , K} where zi = k indicates that the observation yi belongs to the kth group.

On the one hand, let us assume that {y1, . . . , yn} are independent observed real-

izations of a random vector Y ∈ R
p and that {z1, . . . , zn} are also independent

realizations of a random variable Z ∈ {1, . . . , K}. On the other hand, let E ⊂ R
p

denote a latent space assumed to be the most discriminative subspace of dimension

d ≤ K − 1 such that 0 ∈ E and K < p. Moreover, let {x1, . . . , xn} ∈ E denote the

actual data, described in the latent space E of dimension d, which are in addition
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Figure 1: Graphical summary of the DLM[Σkβ] model.

presumed to be independent realizations of an unobserved random vector X ∈ E.

Finally, the observed variable Y ∈ R
p and the latent variable X ∈ E are assumed

to be linked through a linear transformation:

Y = UX + ε, (1)

where U is a p × d orthonormal matrix common to the K groups and satisfying

U tU = Id. The p-dimensional random vector ε stands for the noise term which

models the non discriminative information and which is assumed to be distributed

according to a centered Gaussian density function with a covariance matrix Ψ (ε ∼
N (0, Ψ)). Besides, within the latent space, X is assumed, conditionally to Z = k,

to be Gaussian :

X|Z=k ∼ N (µk, Σk) (2)

where µk ∈ R
d and Σk ∈ R

d×d are respectively the mean vector and the covariance

matrix of the kth group. Given these distribution assumptions and according to

equation (1),

Y|X,Z=k ∼ N (UX, Ψ), (3)

and its marginal distribution is therefore a mixture of Gaussians:

f(y) =
K
∑

k=1

πkφ(y; mk, Sk), (4)

where πk is the mixing proportion of the kth group and φ(.; mk, Sk) denotes the

multivariate Gaussian density function parametrized by the mean vector mk = Uµk

and the covariance matrix Sk = UΣkU t+Ψ of the kth group. Furthermore, we define

the p × p matrix W = [U, V ] such that W tW = WW t = Ip, where the (p − d) × p
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matrix V is an orthogonal complement of U . Finally, the noise covariance matrix

Ψ is assumed to satisfy the conditions V ΨV t = βIp−d and UΨU t = 0d, such that

∆k = W tSkW has the following form:

∆k =
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These last conditions imply that the discriminative and the non-discriminative sub-

spaces are orthogonal, which suggests in practice that all the relevant clustering

information remains in the latent subspace. This model is referred to by DLM[Σkβ]

in [6] and a graphical summary is given in Figure 1.

2.2 A family of parsimonious models

Several other models can be obtained from the DLM[Σkβ] model by relaxing or adding

constraints on model parameters. Firstly, it is possible to consider a more general

case than the DLM[Σkβ] by relaxing the constraint on the variance term of the non

discriminative information. Assuming that ε|Z=k ∼ N (0, Ψk) yields the DLM[Σkβk]

model which can be useful in some practical cases. From this extended model, 10

parsimonious models can be obtained by constraining the parameters Σk and βk to

be common between and within the groups. For instance, the covariance matrices

Σ1, . . . , ΣK in the latent space can be assumed to be common across the groups

and this sub-model is referred to by DLM[Σβk]. Similarly, in each group, Σk can be

assumed to be diagonal, i.e. Σk = diag(αk1, . . . , αkd). This sub-model is referred

to by DLM[αkjβk]. These sub-models can also be declined by considering that the

parameter β is common to all classes (∀k, βk = β). A list of the 12 different DLM

models is given by Table 1 and detailed descriptions can be found in [6]. Such a

family yields very parsimonious models and allows, in the same time, to fit into

various situations. In particular, the complexity of the DLM[Σkβk] model mainly

depends on the number of clusters K since the dimensionality of the discriminative

subspace is such that d ≤ K −1. Notice that the complexity of the DLM[Σkβk] grows

linearly with p contrary to the traditional Gaussian models in which the complexity

increases with p2. As an illustration, if we consider the case where p = 100, K = 4
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Model Nb. of parameters
K = 4 and

p = 100

DLM[Σkβk] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + K2(K − 1)/2 + K 337

DLM[Σkβ] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + K2(K − 1)/2 + 1 334

DLM[Σβk] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + K(K − 1)/2 + K 319

DLM[Σβ] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + K(K − 1)/2 + 1 316

DLM[αkjβk] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + K2 325

DLM[αkjβ] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + K(K − 1) + 1 322

DLM[αkβk] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + 2K 317

DLM[αkβ] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + K + 1 314

DLM[αjβk] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + (K − 1) + K 316

DLM[αjβ] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + (K − 1) + 1 313

DLM[αβk] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + K + 1 314

DLM[αβ] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + 2 311

Full-GMM (K − 1) + Kp + Kp(p + 1)/2 20603

Com-GMM (K − 1) + Kp + p(p + 1)/2 5453

Diag-GMM (K − 1) + Kp + Kp 803

Sphe-GMM (K − 1) + Kp + K 407

MFA (K − 1) + Kp + Kd[p − (d − 1)/2)] + Kp 1991 (d = 3)

Mixt-PPCA (K − 1) + Kp + K[d(p − (d + 1)/2) + d + 1] + 1 1198 (d = 3)

PGMM-CUU (K − 1) + Kp + d[p − (d + 1)/2] + Kp 1100 (d = 3)

MCFA (K − 1) + Kd + p + d[p − (d + 1)/2] + Kd(d + 1)/2 4330 (d = 3)

MCUFSA (K − 1) + Kd + 1 + d[p − (d + 1)/2] + Kd 3220 (d = 3)

Table 1: Number of free parameters to estimate when d = K − 1 for the DLM
models and some classical models (see text for details).

and d = 3, then the number of parameters to estimate for the DLM[Σkβk] is 337

which is drastically less than in the case of the Full-GMM (20 603 parameters to

estimate). For a comparison purpose, Table 1 presents also the complexity of other

clustering methods, such as Mixt-PPCA [31], MFA [23], PGMM [24], MCFA [1] and

MCUFSA [38] for which the complexity grows linearly with p as well.

2.3 The Fisher-EM algorithm

An estimation procedure, called the Fisher-EM algorithm, is also proposed in [6] in

order to estimate both the discriminative space and the parameters of the mixture

model. This algorithm is based on the EM algorithm from which an additional step is

introduced, between the E and the M-step. This additional step, named F-step, aims

to compute the projection matrix U whose columns span the discriminative latent

space. The Fisher-EM algorithm has therefore the following form, at iteration q:
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The E-step This step computes the posterior probabilities t
(q)
ik that the observa-

tions belong to the K groups using the following update formula:

t
(q)
ik = π̂

(q−1)
k φ(yi, θ̂

(q−1)
k )/

K
∑

ℓ=1

π̂
(q−1)
ℓ φ(yi, θ̂

(q−1)
ℓ ), (5)

with θ̂k = {µ̂k, Σ̂k, β̂k, Û}.

The F-step This step estimates, conditionally to the posterior probabilities, the

orientation matrix U (q) of the discriminative latent space by maximizing the Fisher’s

criterion [13, 15] under orthonormality constraints:

Û (q) = max
U

trace
(

(U tSU)−1U tS
(q)
B U

)

,

w.r.t. U tU = Id, (6)

where S stands for the covariance matrix of the whole dataset and S
(q)
B , defined as

follows:

S
(q)
B =

1

n

K
∑

k=1

n
(q)
k (m

(q)
k − ȳ)(m

(q)
k − ȳ)t, (7)

denotes the soft between covariance matrix with n
(q)
k =

∑n
i=1 t

(q)
ik , m

(q)
k = 1/n

(q)
k

∑n
i=1 t

(q)
ik yi

and ȳ = 1/n
∑n

i=1 yi. This optimization problem is solved in [6] using the concept of

orthonormal discriminant vector developed by [14] through a Gram-Schmidt proce-

dure. Such a process enables to fit a discriminative and low-dimensional subspace

conditionally to the current soft partition of the data while providing orthonormal

discriminative axes. In addition, according to the rank of the matrix S
(q)
B , the di-

mensionality of the discriminative space d is strictly bounded by the number of

clusters K.

The M-step This third step estimates the parameters of the mixture model in

the latent subspace by maximizing the conditional expectation of the complete log-

likelihood:

Q(θ) = −1

2

K
∑

k=1

n
(q)
k

[

-2 log(πk) + trace(Σ−1
k Û (q)tC

(q)
k Û (q)) + log(|Σk|)

+ (p-d) log(βk) +
trace(C

(q)
k )-

∑d
j=1 û

(q)t
j C

(q)
k û

(q)
j

βk

+ p log(2π)
]

. (8)

where C
(q)
k = 1

n
(q)
k

∑n
i=1 t

(q)
ik (yi − m

(q)
k )(yi − m

(q)
k )t is the empirical covariance matrix

of the kth group and û
(q)
j is the jth column vector of Û (q), n

(q)
k =

∑n
i=1 t

(q)
ik . Hence,
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maximizing Q conditionally to Û (q) leads to the following update formula for the

mixture parameters of the model DLM[Σkβk]:

π̂
(q)
k =

n
(q)
k

n
, (9)

µ̂
(q)
k =

1

n
(q)
k

n
∑

i=1

t
(q)
ik Û (q)tyi, (10)

Σ̂
(q)
k = Û (q)tCkÛ (q), (11)

β̂
(q)
k =

trace(Ck)-
∑d

j=1 û
(q)t
j Ckû

(q)
j

p − d
. (12)

The Fisher-EM procedure iteratively updates the parameters until the Aitken cri-

terion is satisfied (see paragraph 4.5 of [6]). The convergence properties of the

Fisher-EM algorithm have been studied in [7]. It is also proposed in this work

to use a stopping criterion based on the Fisher criterion involved in the F-step to

improve the clustering performance. Finally, since the latent subspace has a low

dimension and common to all groups, the clustered data can be easily visualized by

projecting them into the estimated latent subspace.

3 Sparse versions of the Fisher-EM algorithm

Even though the Fisher-EM algorithm turns out to be efficient both for modeling

and clustering data, the interpretation of clustering results regarding the original

variables remains difficult. In this section, we propose therefore three different ways

to introduce sparsity into the loadings of the projection matrix estimated in the

F-step of the Fisher-EM algorithm.

3.1 A two-step approach

In this first approach, we propose to proceed in two steps. First, at iteration q,

the traditional F-step of the Fisher-EM algorithm computes an estimate Û (q) of the

orientation matrix of the discriminative latent space conditionally to the posterior

probabilities t
(q)
ik . Then, the matrix Û (q) is approximated by a sparse one Ũ (q) using

the following result.

Proposition 3.1. The best sparse approximation Ũ (q) of Û (q) at the level λ is the

solution of the following penalized regression problem:

min
U

∥

∥

∥X(q)t − Y tU
∥

∥

∥

2

F
+ λ

d
∑

j=1

|Uj|1 ,
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where U = [U1, ..., Ud], Uj ∈ R
p is the jth column vector of U , ‖.‖F is the Frobenius

norm and X(q) = Û (q)tY .

Proof. Let Û (q) be the orientation matrix of the discriminative latent space estimated

by the F-step at iteration (q) and let us define X(q) = Û (q)tY ∈ R
d×n the matrix of

the projected data into the subspace spanned by Û (q), where Y ∈ R
p×n denotes the

original data matrix. Since X(q) is generated by Û (q), then Û (q) is solution of the

least square regression of X(q) on Y :

min
U

∥

∥

∥X(q)t − Y tU
∥

∥

∥

2

F
,

where U = [U1, ..., Ud], Uj ∈ R
p is the jth column vector of U , ‖.‖F is the Frobenius

norm. A penalized version of this regression problem can be obtained by adding a

ℓ1-penalty term as follows:

min
U

∥

∥

∥X(q)t − Y tU
∥

∥

∥

2

F
+ λ

d
∑

j=1

|Uj|1 ,

and the solution of this penalized regression problem is therefore the best sparse

approximation of Û (q) at the level λ.

The previous result allows to provide a sparse approximation Ũ (q) of Û (q) but we

have no guarantee that the Ũ (q) is orthogonal as required by the DLM model. The

following proposition solves this issue.

Proposition 3.2. The best orthogonal approximation of Ũ (q) is Ū (q) = u(q)v(q)t

where u(q) and v(q) are respectively the left and right singular vectors of the SVD of

Ũ (q).

Proof. Let us consider the matrix Ũ (q). Searching the best orthogonal approximation

of the matrix Ũ (q) is equivalent to solving the following optimization problem:

min
U

∥

∥

∥Ũ (q) − U
∥

∥

∥

2

F
w.r.t. U tU = Id.

This problem is a nearest orthogonal Procrustes problem which can be solved by a

singular value decomposition [18]. Let u(q)Λ(q)v(q)t be the singular value decomposi-

tion of Ũ (q), then u(q)v(q)t is the best orthogonal approximation of Ũ (q).

From an practical point of view, the penalized regression problem of Proposi-

tion 3.1 can be solved by alternatively regressing each column vector of the projected

matrix Û (q). The sparse and orthogonal approximation Ū (q) of Ũ (q) is obtained af-

terward through a SVD of Ũ (q). The following algorithm summarizes these steps.
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Algorithm 1 – F-step of the sparseFEM-1 algorithm

1. At iteration q, compute the matrix Û (q) by solving (6).

2. Compute X(q) = Û (q)tY .

3. For j ∈ {1, . . . , d}, solve d independent penalized regression problems with the
LARS algorithm [12]:

Ũ
(q)
j = arg min

Uj

∥

∥

∥x
(q)t
j − Y tUj

∥

∥

∥

2
+ λ |Uj |1 ,

4. Repeat step 3 several times until convergence.

5. Let Ũ (q) = [Ũ
(q)
1 , ..., Ũ

(q)
d ], compute the SVD of Ũ (q) = u(q)Λ(q)v(q)t and let

Ū (q) = u(q)v(q)t.

Let us remark that this problem can be extended to a more general penalized

regression by adding a ridge penalty term. This allows in particular to handle

the n < p case which occurs frequently nowadays. In such a case, the elastic-net

algorithm [41] has to be used instead of the LARS algorithm in Algorithm 1.

Nevertheless, a limitation of such a procedure may be the disconnection between

the estimation of the discriminative subspace and the introduction of the sparsity in

the loadings of the projection matrix. To avoid that, the two following approaches

aim to propose penalized Fisher criteria for which the solutions fit directly a sparse

and discriminative latent subspace.

3.2 A penalized regression criterion

We therefore propose here to reformulate the constrained Fisher criterion (6) in-

volved in the F-step of the Fisher-EM algorithm as a penalized regression problem.

Consequently, the solution of this penalized regression problem will fit directly a

sparse and discriminative latent subspace. To this end, let us introduce the soft

matrices H
(q)
W and H

(q)
B which will be computed, conditionally to the E-step, at each

iteration q of the sparse F-step as follows:

Definition 3.1. The soft matrices H
(q)
W ∈ R

p×n and H
(q)
B ∈ R

p×K are defined,

conditionally to the posterior probabilities t
(q)
ik computed in the E-step at iteration q,

as follows:
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H
(q)
W =

1√
n

[

Y −
K
∑

k=1

t
(q)
1k m

(q)
k , . . . , Y −

K
∑

k=1

t
(q)
nk m

(q)
k

]

∈ R
p×n (13)

H
(q)
B =

1√
n

[√

n
(q)
1 (m

(q)
1 − ȳ), . . . ,

√

n
(q)
K (m

(q)
K − ȳ)

]

∈ R
p×K , (14)

where n
(q)
k =

∑n
i=1 t

(q)
ik and m

(q)
k = 1

n

∑n
i=1 t

(q)
ik yi is the soft mean vector of the cluster k.

According to these definitions, the matrices H
(q)
W and H

(q)
B satisfy:

H
(q)
W H

(q)t
W = S

(q)
W and H

(q)
B H

(q)t
B = S

(q)
B , (15)

where S
(q)
W = 1/n

∑K
k=1 n

(q)
k Ck stands for the soft within covariance matrix com-

puted at iteration q and S
(q)
B denotes the soft between covariance matrix defined in

equation (7). A penalized version of the optimization problem (6) can be therefore

formulated as a penalized regression-type problem:

Proposition 3.3. The best sparse approximation Ũ (q) of the solution of (6) at the

level λ is the solution B̂(q) of the following penalized regression problem:

min
A,B

K
∑

k=1

∥

∥

∥R
(q)−t
W H

(q)
B,k − ABtH

(q)
B,k

∥

∥

∥

2

F
+ ρ

d
∑

j=1

βt
jS

(q)
W βj + λ

d
∑

j=1

|βj |1 ,

w.r.t. AtA = Id,

where A = [α1, . . . , αd] ∈ R
p×d, B = [β1, . . . , βd] ∈ R

p×d, R
(q)
W ∈ R

p×p is a upper

triangular matrix resulting from the Cholesky decomposition of S
(q)
W , i.e. S

(q)
W =

R
(q)t
W R

(q)
W , H

(q)
B,k is the kth column of H

(q)
B and ρ > 0.

Proof. First, let us consider that the matrix A is fixed at iteration q . Then, opti-

mizing :

min
A,B

K
∑

k=1

∥

∥

∥R
(q)−t
W H

(q)
B,k − ABtH

(q)
B,k

∥

∥

∥

2

F
+ ρ

d
∑

j=1

βt
jS

(q)
W βj (16)

conditionally to A leads to consider the following regularized regression problem:

min
B

d
∑

j=1

[

∥

∥

∥H
(q)t
B R

(q)−t
W αj − H

(q)t
B βj

∥

∥

∥

2

F
+ ρβt

jS
(q)
W βj

]

,

with B = [β1, . . . , βd]. Solving this problem is equivalent to solving d independent

ridge regression problem and the solution B̂(q) is :

B̂(q) =
(

S
(q)
B + ρS

(q)
W

)−1
S

(q)
B R

(q)−1
W A. (17)

12



By substituting B̂(q) in Equation (16), optimizing the objective function (16) over

A, given AtA = Id and B̂(q) fixed, is equivalent to maximize the quantity:

max
A

trace
(

B̂(q)tH
(q)
B H

(q)t
B R

(q)−1
W A

)

,

w.r.t. AtA = Id.

According to Lemma 1 of [28], this is a Procrustes problem [18] which has an ana-

lytical solution by computing the singular value decomposition of the quantity:

R
(q)−t
W (H

(q)
B H

(q)t
B )B̂(q) = u(q)Λ(q)v(q)t,

where the column vectors of the p × d matrix u(q) are orthogonal and v(q) is a d × d

orthogonal matrix. The solution is Â(q) = u(q)v(q)t. Substituting Â(q) into (17) gives:

B̂(q) = R
(q)−1
W

(

R
(q)−t
W S

(q)
B R

(q)−1
W + ρIp

)−1
R

(q)−t
W S

(q)
B R

(q)−1
W Â(q)

= R
(q)−1
W u(q)

(

Λ(q) + ρIp

)−1
Λ(q)v(q)t.

By remarking that the d eigenvectors associated to the non-zero eigenvalues of the

generalized eigenvalue problem (6) are the columns of R
(q)−1
W u(q), it follows that B̂(q)

spans the same linear subspace than the solution Û (q) of (6). Therefore, the solution

of the penalized optimization problem:

min
A,B

K
∑

k=1

∥

∥

∥R
(q)−t
W H

(q)
B,k − ABtH

(q)
B,k

∥

∥

∥

2

F
+ ρ

d
∑

j=1

βt
jS

(q)
W βj + λ

d
∑

j=1

|βj |1 ,

w.r.t. AtA = Id,

is the best sparse approximation of the solution of (6) at the level λ.

However and as in the previous case, the orthogonality of the column vectors

of B̂(q) is not guaranteed but this issue can be tackled by Proposition 3.2. From a

practical point of view, the optimization problem of Proposition 3.3 can be solved

using the algorithm proposed by [28] in the supervised case by optimizing alterna-

tively over B with A fixed and over A with B fixed. This leads to the following

algorithm in our case:

13



Algorithm 2 – F-step of the sparseFEM-2 algorithm

1. At iteration q, compute the matrices H
(q)
B and H

(q)
W from Equations (13)

and (14). Let S
(q)
W = H

(q)
W H

(q)t
W and S

(q)
B = H

(q)
B H

(q)t
B .

2. Compute R
(q)
W by using a Cholesky decomposition of S

(q)
W + γ/p trace(S

(q)
W ) =

R
(q)t
W R

(q)
W .

3. Initialization:

Let B(q) be the eigenvectors of S−1S
(q)
B .

Compute the SVD R
(q)−t
W S

(q)
B B(q) = u(q)Λ(q)v(q)t and let A(q) = u(q)v(q)t.

4. Solve d independent penalized regression problems. For j = 1, . . . , d:

β̂
(q)
j = arg min

βj

(

βt
jW

(q)tW (q)βj − 2Ỹ (q)tW (q)βj + λ1 ‖βj‖1

)

,

where W (q) =

(

H
(q)t
B√

ρR
(q)
W

)

and Ỹ (q) =

(

H
(q)t
B R

(q)−1
W α

(q)
j

Op

)

.

5. Let B̂(q) = [β̂1, . . . , β̂d]. Compute the SVD of R
(q)−t
W S

(q)
B B̂(q) = u(q)Λ(q)v(q)t and

let A(q) = u(q)v(q)t.

6. Compute the SVD of B̂(q) = u′(q)Λ′(q)v′(q)t and let Ū (q) = u′(q)v′(q)t.

7. Repeat steps several times until convergence.

3.3 A penalized singular value decomposition

In this last approach, we reformulate the constrained Fisher criterion (6) involved in

the F-step of the Fisher-EM algorithm as a regression problem which can be solved

by doing the SVD of the matrix of interest in this regression problem. A sparse

approximation of the solution of this regression problem will be obtained by doing

a penalized SVD [34] instead of the SVD. To that end, let us consider the following

result.

Proposition 3.4. The solution of (6) is also solution of the following constrained

optimization problem:

min
U

p
∑

ℓ=1

∥

∥

∥S
(q)
B,ℓ − UU tS

(q)
B,ℓ

∥

∥

∥

2

w.r.t. U tU = Id,

where S
(q)
B,ℓ is the ℓth column of the soft between covariance matrix S

(q)
B computed at

14



iteration q.

Proof. Let us first prove that minimizing the quantity
∑p

ℓ=1 ||S(q)
B,ℓ − UU tS

(q)
B,ℓ||2 is

equivalent to maximize trace(U tS
(q)
B S

(q)t
B U). To that end, we can write down the

following equalities:

p
∑

ℓ=1

∥

∥

∥S
(q)
B,ℓ − UU tS

(q)
B,ℓ

∥

∥

∥

2
=

p
∑

ℓ=1

trace
(

S
(q)t
B,ℓ (Ip − UU t)t(Ip − UU t)S

(q)
B,ℓ

)

= trace

(

(Ip − UU t)t(Ip − UU t)
p
∑

ℓ=1

S
(q)
B,ℓS

(q)t
B,ℓ

)

= trace
(

S
(q)t
B (Ip − UU t)S

(q)
B

)

= trace(S
(q)t
B S

(q)
B ) − trace(U tS

(q)
B S

(q)t
B U).

Consequently, minimizing over U the quantity
∑p

ℓ=1 ||S(q)
B,ℓ − UU tS

(q)
B,ℓ||2 is equivalent

to maximize trace(U tS
(q)
B S

(q)t
B U) according to U . Let us now consider the SVD of

the n × p matrix S
(q)
B = uΛvt where u and v stands for respectively the left and

right singular vectors of S
(q)
B and Λ is a diagonal matrix containing its associated

singular values. Since the matrix S
(q)
B has a rank d at most equal to K −1 < p, with

K the number of clusters, then only d singular values of the matrix S
(q)
B are non

zeros, which enables us to write S
(q)
B = uΛdvt, where Λd = diag(λ1, . . . , λd, 0, . . . , 0).

Moreover, by letting U = ud the d first left eigenvectors of SB, then:

trace
(

U tSBSt
BU

)

= trace
(

U t(uΛdv
t)(uΛdv

t)tU
)

,

= trace
(

U tuΛdΛt
dutU

)

,

=
d
∑

j=1

λ2
j .

Consequently, the p × d orthogonal matrix Û such that
∑p

ℓ=1 ||S(q)
B,ℓ − UU tS

(q)
B,ℓ||2

is minimized, is the matrix made of the d first left eigenvectors of S
(q)
B . Besides,

since S
(q)
B is symmetric and semi-definite positive, the matrix Û contains also the

eigenvectors associated with the d largest eigenvalues of S
(q)2
B and therefore the ones

of S
(q)
B . Therefore, assuming without loss of generality that S = Ip, Û is also solution

of the constrained optimization problem (6) involved in the original F-step.

The optimization problem of Proposition (3.4) can be seen as looking for the

projection matrix U such that the back-projection UU tS
(q)
B,ℓ is as close as possible

to S
(q)
B,ℓ. In [34], Witten et al. have considered such a problem with a constraint of

sparsity on U . To solve this problem, they proposed an algorithm which performs

a penalized SVD of the matrix of interest in the constrained optimization problem.

15



Therefore, it is possible to obtain a sparse approximation Ũ (q) of the solution of (6)

by doing a penalized SVD of S
(q)
B with the algorithm of [34]. As previously, the

orthogonality of the column vectors of Ũ (q) is not guaranteed but this issue can be

again tackled by Proposition 3.2. From a practical point of view, this third approach

can be implemented as follows:

Algorithm 3 – F-step of the sparseFEM-3 algorithm

1. Let M1 = S
(q)
B and d = rank (SB) .

2. For j ∈ {1, . . . , d}:

(a) Solve û
(q)
j = arg maxuj

ut
jMjvj w.r.t. ‖uj‖2

2 ≤ 1, ‖vj‖2
2 ≤ 1 and

∑p
ℓ=1

∣

∣

∣u
(q)
jℓ

∣

∣

∣ ≤ λ1 using the penalized SVD algorithm of [34].

(b) Update Mj+1 = Mj − λju
(q)
j vt

j.

3. Û (q) = [û
(q)
1 , . . . , û

(q)
d ].

4. Compute the SVD of Û (q) = u(q)Λ(q)v(q)t and let Ũ (q) = u(q)v(q)t.

3.4 Practical aspects

The introduction of sparsity in the Fisher-EM algorithm presents several practical

aspects among which the ability to interpret the discriminative axes. However, two

questions remain: the choice of the hyper-parameter which determines the level of

sparsity and the implementation strategy in the Fisher-EM algorithm. Both aspects

are discussed below.

Choice of the tuning parameter The choice of the threshold λ is an important

problem since the number of zeros in the d discriminative axes depends directly

on the degree of sparsity. In [40], Zou et al. chose the hyper-parameter of their

sparse PCA with a criterion based on the explanation of the variance approximated

by the sparse principal components. In [33], Witten and Tibshirani proposed for

their sparse-kmeans to base the choice of the tuning parameter on a permutation

method closely related to the gap statistic previously proposed by Tibshirani et

al. [30] for estimating the number of components in standard kmeans. Since our

model is defined in a Gaussian mixture context, we propose to use the BIC criterion

to select the threshold λ. According to the consistency results obtained by Zou et

al. [42] and the fact that the sparsity constraint is applied on the projection matrix

16



U , the effective number of parameters to estimate in the DLM[Σkβk] model is:

γe = (K − 1) + Kd + (d[p−(d + 1)/2] − de) + Kd(d + 1)/2 + K

where de is the number of zeros in the loading matrix. In the same manner, this

effective number of parameters to estimate can be declined for the 11 other sub-

models of the DLM family.

Implementation of the sparse Fisher-EM algorithm We identified two dif-

ferent ways to implement the sparse versions of the Fisher-EM algorithm. First,

it could be possible to replace the usual F-step of the Fisher-EM algorithm by a

sparse F-step developed previously. The resulting algorithm would sparsify at each

iteration the projection matrix U before estimating the model parameters. This

can however leads to some drawbacks since an early introduction of the ℓ1 penalty

could penalize too much the loadings of the projection matrix, in particular if the

initialization is far away from the optimal situation. An alternative implementation

would be to, first, execute the traditional Fisher-EM algorithm until convergence

and, then, initialize the sparse Fisher-EM algorithm with the result of the Fisher-EM

algorithm. This strategy should combine the efficiency of the standard Fisher-EM

algorithm with the advantage of having a sparse selection of discriminative vari-

ables. We therefore recommend this second implementation and it will be used in

the experiments presented in the following sections.

4 Experimental comparison

This section presents comparisons with existing variable selection techniques on

simulated and real-world data sets.

4.1 Comparison on simulated data

This first experiment aims to compare on simulated data the performances of the

proposed sparseFEM algorithms (sparseFEM-1, sparseFEM-2, sparseFEM-3) to sev-

eral competitors: Clustvarsel of Raftery and Dean [29], Selvarclust of Maugis et

al. [22] and sparse-kmeans of Witten and Tibshirani [33]. For this experiment,

we replicated the simulation proposed in Section 3.3 of [33]. We simulated K = 3

Gaussian components of n observations in a 25-dimensional observation space whose

components differ only on q = 5 features. The used parameters were µkj =

µ × (1k=1,j≤q, −1k=2,j≤q), ∀k ∈ {1, 2, 3} and ∀j ∈ {1, . . . , p} for the mean com-
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Simulation Method Clustering error non-zero variables

n = 30 µ = 0.6 kmeans 0.48 ± 0.05 25.0 ± 0.0
sparse-kmeans 0.47 ± 0.07 19.0 ± 6.6
Clustvarsel 0.62 ± 0.06 22.2 ± 1.2
Selvarclust 0.40 ± 0.03∗ 8.1 ± 1.9∗

sparseFEM-1 0.47 ± 0.06 2.6 ± 0.9
sparseFEM-2 0.48 ± 0.07 4.7 ± 1.8
sparseFEM-3 0.48 ± 0.03 2.0 ± 0.0

n = 30 µ = 1.7 kmeans 0.14 ± 10.2 25.0 ± 0.0
sparse-kmeans 0.08 ± 0.06 23.6 ± 0.8
Clustvarsel 0.41 ± 0.10 16.6 ± 10.4
Selvarclust 0.08 ± 0.08∗ 6.8 ± 1.4∗

sparseFEM-1 0.14 ± 0.13 3.5 ± 0.8
sparseFEM-2 0.20 ± 0.12 5.4 ± 2.2
sparseFEM-3 0.17 ± 0.11 2.0 ± 0.0

n = 300 µ = 0.6 kmeans 0.43 ± 0.03 25.0 ± 0.0
sparse-kmeans 0.46 ± 0.03 24.0 ± 0.5
Clustvarsel 0.42 ± 0.03 25.0 ± 0.0
Selvarclust 0.34 ± 0.02∗ 7.0 ± 1.7*

sparseFEM-1 0.42 ± 0.03 2.4 ± 1.0
sparseFEM-2 0.43 ± 0.03 5.2 ± 2.7
sparseFEM-3 0.43 ± 0.04 2.3 ± 1.1

n = 300 µ = 1.7 kmeans 0.05 ± 0.06 25.0 ± 0.0
sparse-kmeans 0.05 ± 0.01 15.0 ± 0.0
Clustvarsel 0.05 ± 0.01 25.0 ± 2.0
Selvarclust 0.05 ± 0.01∗ 5.6 ± 0.9∗

sparseFEM-1 0.04 ± 0.01 10.2 ± 2.4
sparseFEM-2 0.05 ± 0.01 8.8 ± 1.7
sparseFEM-3 0.04 ± 0.01 5.6 ± 1.6

Table 2: Clustering errors and numbers of non-zero variables averaged over 20 sim-
ulations for several clustering methods with p = 25 and q = 5. The results of
Selvarclust are reported from [11].
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ponents and σ2
kj = 1 for the variance terms. Moreover, four different situations are

considered: n = 30 or 300 and µ = 0.6 or 1.7. Each simulation was replicated 25

times.

Table 2 presents the means and standard deviations for both the clustering er-

ror and the number of non-zero variables for kmeans, sparse-kmeans, Clustvarsel,

Selvarclust and the 3 procedures of sparseFEM. Note that the results of Selvarclust

corresponds to clustering errors and non-zero variable rates found in [11]. Moreover,

the reported results concerning the 3 sparse Fisher-EM algorithms were obtained

with the DLM[αkβ] model for a sparsity level corresponding to the highest BIC value

obtained at each trial.

Two main remarks can be done on the results presented in Table 2. First,

by considering either the most difficult clustering cases (n = 30 and µ = 0.6) or

the easiest one (n = 300 and µ = 0.6 or 1.7), all approaches present approxima-

tively the same results in terms of clustering error rate. The methods differ how-

ever in the number of variables they retain to perform the clustering: Clustevarsel,

sparseFEM-1, sparseFEM-2 and sparseFEM-3 turn out to select significantly less

variables than sparse-kmeans and Clustvarsel. In particular, Clustevarsel and the

sparseFEM algorithms select a number of useful variables consistent with the actual

number of meaningful variables (q = 5). Second, in the situation where n = 30

and µ = 1.7, Selvarclust and sparse-kmeans present the lowest misclassification rate

(0.08), even though the clustering error of sparseFEM-1 and kmeans remains rel-

atively low (0.14). However, as previously, only Clustevarsel and the sparseFEM

algorithms select a number of variables close to the right number of discriminative

features.

4.2 Comparison on real data sets

Real-world data sets are now used to compare the efficiency of the sparseFEM

algorithms to its competitors for both the clustering and variable selection tasks.

We considered 7 different benchmark data sets coming mostly from the UCI machine

learning repository. We selected these data sets because they represent a wide range

of situations in term of number of observations n, number of variables p and number

of groups K. These characteristics are given in the top row of Table 3 and a detailed

description of these data sets can be found in [6].

For this experiment, we used the 3 sparseFEM algorithms and the 3 sparse meth-

ods introduced previously (sparse-kmeans, Clustvarsel and Selvarclust). Since the

evaluation of the clustering performance is a complex and very discussed problem,

we chose to evaluate the clustering performance as the adequacy between the re-
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sulting partition of the data and the known labels for these data. For each data

set, the sparseFEM algorithms were initialized with a common random partition

drown from a multinomial distribution with equal prior probabilities. For Clust-

varsel, Selvarclust and sparse-kmeans, the initialization was done with their own

deterministic procedure. Moreover, for each method, the number K of groups has

been fixed to the actual one. For Clustvarsel, Selvarclust and sparse-kmeans, the

determination of the other free parameters was done according to the tools provided

by each approach. For the sparseFEM algorithms, we used the penalized BIC cri-

terion to select the model and the level of sparsity. More precisely, we first chose

the model presenting the highest average BIC value on 20 replications. Then, given

the selected model, we selected the level of sparsity associated with the highest BIC

value.

Table 3 presents the average clustering accuracies and the associated standard de-

viations obtained for the 6 approaches. The average number of non-zero variables is

also reported within brackets in the table. The results associated to the sparseFEM

algorithms have been obtained by averaging over 20 trials with random initializa-

tions. The lack of standard deviations for Clustvarsel, Selvarclust and sparse-kmeans

is due to the deterministic initializations they use. It first appears that the three

sparse versions of the Fisher-EM algorithm perform rather similarly both in term

of clustering and variable selection. It also appears clearly that the sparseFEM

algorithms are competitive to existing methods regarding both the clustering per-

formances and the selection of variables. Indeed, the sparseFEM algorithms obtain

the best clustering accuracies on 4 of the 7 data sets whereas sparse-kmeans and

Selvarclust obtain the best clustering accuracies on respectively 2 and 1 data sets.

The sparseFEM algorithms differ also from sparse-kmeans regarding the number of

variables retained to perform the clustering. Indeed, sparse-kmeans turns out to

frequently select a large number of variables whereas sparseFEM is usually rather

sparse in the number of selected variables. Finally, Clustvarsel and Selvarclust turn

out to select most of the time few variables, particularly in high-dimensional spaces,

which seems to obstruct their clustering performance. To summarize, this experi-

ment has shown that the sparseFEM algorithms seem to be good compromises be-

tween sparse-kmeans and Clustvarsel /Selvarclust in term of variable selection and,

certainly thanks to this characteristic, they also provide good clustering results.

4.3 Comparison on the usps358 data set

We focus now on the usps358 dataset to stress the role of variable selection in the

interpretation of clustering results. The original dataset is made of 7 291 images
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iris wine chiro zoo glass satimage usps358
(p=4,K=3) (p=13,K=3) (p=17,K=3) (p=16,K=7) (p=9,K=7) (p=36,K=6) (p=256,K=3)

Approaches (n=150) (n=178) (n=178) (n=101) (n=214) (n=4435) (n=1726)

sparseFEM-1 96.5±0.3 97.8±0.2 84.2±11 71.4±8.5 50.2±1.9 69.6±0.1 84.7±3.2
(2.0±0.0) (2.0±0.0) (2.3±0.5) (13±2.5) (6.0±1.0) (36±0.0) (5.5±0.7)

sparseFEM-2 89.9±0.4 98.3±0.0 84.8±12 70.1±12.2 48.4±3.0 67.5±1.6 82.8±9.1
(4.0±0.0) (4.0±0.0) (2.0±0.6) (14±3.6) (6.6±0.7) (36±.0.0) (15.5±16)

sparseFEM-3 96.5±0.3 97.8±0.0 82.9±12 72.0±4.3 48.2±2.7 71.8±2.3 79.1±7.4
(2.0±0.3) (2.0±0.0) (2.0±0.0) (10±2.8) (7.0±0.0) (36±0.0) (6.0±1.3)

sparse-kmeans 90.7 94.9 95.3 79.2 52.3 71.4 74.7
(4.0) (13.0) (17.0) (16.0) (6.0) (36.0) (213)

Clustvarsel 96.0 92.7 71.1 75.2 48.6 58.7 48.3
(3.0) (5.0) (6.0) (3.0) (3.0) (19.0) (6.0)

Selvarclust 96.0 94.4 92.6 92.1 43.0 56.4 36.7
(3.0) (5.0) (8.0) (5.0) (6.0) (22.0) (5.0)

Table 3: Clustering accuracies and their standard deviations (in percentage) on 7 UCI datasets (iris, wine, chironomus, zoo, glass,
satimage, usps358) averaged on 20 trials. The average number of nonzero variables is reported in brackets. No standard deviation is
reported for Clustvarsel/Selvarclust and sparse-kmeans since their initialization procedure is deterministic and always provides the
same initial partition.
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divided in 10 classes corresponding to the digits from 0 to 9. Each digit is a 16 × 16

gray level image represented as a 256-dimensional vector. For this experiment, we

extracted a subset of the data (n = 1 756) corresponding to the digits 3, 5 and 8

which are the three most difficult digits to discriminate. This smaller dataset is

hereafter called usps358. Figure 2 depicts the group mean images obtained from the

true labels in the usps358 dataset. For this experiment, we used the three sparse-

FEM algorithms with the model and the level of sparsity selected in the previous

experiment for this data set. For Clustvarsel, Selvarclust and sparse-kmeans, the

level of sparsity was again selected with their own selection procedure.

Figures 3 illustrates, as images, the features selected respectively by sparse-

kmeans (Figure 3.a), Clustvarsel (Figure 3.b) and Selvarclust (Figure 3.c). In Fig-

ure 3.a, the weight assigned by sparse-kmeans to each feature is represented by gray

levels: lighter is the pixel, weaker is the absolute value of the weight of the associated

feature. For Clustvarsel and Selvarclust, only the selected variables are depicted and

are associated to black pixels as it is illustrated in Figures 3.b and 3.c respectively.

These representations are associated to the following clustering accuracies 74.7%,

48.3% and 36.7% for sparse-kmeans, Clustvarsel and Selvarclust respectively. For

the 3 sparseFEM algorithms, we superimposed in a same figure the absolute values of

the loadings of the two discriminative axes fitted by the sparseFEM-1, sparseFEM-2

and sparseFEM-3 procedures. The associated clustering accuracies are respectively

84.7%, 82.8% and 79.1%.

First of all, it appears that Clustvarsel and Selvarclust select significantly fewer

variables than both sparse-kmeans or the sparseFEM procedures. Furthermore,

most of the selected variables by Clustvarsel and Selvarclust turn out to be irrelevant

to discriminate the digit 3 from the digits 5 and 8. For instance, in Figures 3.b

and 3.c, we can observe that the black pixels located in right bottom corner, do not

correspond to any discriminative variable. This certainly explain the poor clustering

performances (48.3% for Clustvarsel and 36.7% for Selvarclust) observed on this data

set for these methods. On the contrary, sparse-kmeans turns out to perform well

in term of clustering performance (74.7% of clustering accuracy). Nevertheless, the

number of selected variables remains higher (213 selected variables amongst 256

original ones) than we would expect to ease the interpretation of results. Finally,

sparseFEM-1 and sparseFEM-2 seem to answer quite well to both the clustering task

and the task of feature selection. Indeed, on the one hand, the subset of selected

pixels remains small for both algorithms: 6 and 15 pixels are selected amongst 256

for sparseFEM-1 and sparseFEM-2 respectively. Furthermore, the selected pixels

appear to be relevant to discriminate the classes associated with the three digits.
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(a) (b) (c)

Figure 2: Group means obtained from the true labels in the USP358 datasets.

(a) Sparse-kmeans (b) Clustvarsel (c) Selvarclust

Figure 3: Variable selection obtained from (a) the sparse-kmeans algorithm, (b) the
Clustvarsel approach and (c) the Selvarclust approach.

(a) sparseFEM-1 (b) sparseFEM-2 (c) sparseFEM-3

Figure 4: Variable selection obtained from (a) the sparseFEM-1, (b) the sparseFEM-
2 and (c) the sparseFEM-3 procedures with sparsity levels selected by the penal-
ized BIC.
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Approaches: Procedure time (sec) Approaches: Procedure time (sec)

sparseFEM-1 729.04 sparse-kmeans 1 567.75
sparseFEM-2 387.12 Clustvarsel 2 957.70
sparseFEM-3 409.61 Selvarclust 9 257.10

Table 4: Computing times for the 3 versions of the sparseFEM algorithm, sparse-
kmeans, Clustvarsel and Selvarclust on the USPS358 data (for a given model and
with λ and K fixed).

For instance, the darker pixel on the bottom right corner of Figure 4.b discriminates

the digit 8 from the digits 3 and 5. On the other hand, and certainly due to

this relevant selection of variables, both algorithms perform particularly well on

this high-dimensional data set (84.7% for sparseFEM-1 and 82.8% for sparseFEM-

2). However, on this data set, the sparseFEM-3 procedure shows a disappointing

behavior regarding the variable selection even though its clustering performance

remains satisfying. The fact that sparseFEM-3 succeeds in clustering the data set

even with a bad selection of variables is certainly due to the nature of the DLM

model which models also the non discriminative information through the parameter

βk.

Table 4 presents the computing time of the studied clustering methods (for a

given model and with λ and K fixed) for clustering the usps358 data set. As we can

remark, our procedures are much faster than the sparse-kmeans, Clustvarsel and

Selvarclust algorithms. Consequently, the sparseFEM algorithms appear once again

to be good compromises, in practice, to cluster high-dimensional data and select a

set of discriminative variables in a reasonable time.

5 Application to the segmentation of hyperspec-

tral images

Here, we propose to use sparseFEM to segment hyperspectral images of the Mar-

tian surface. Visible and near infrared imaging spectroscopy is a key remote sensing

technique to study the system of the planets. Imaging spectrometers, which are in-

board of an increasing number of satellites, provide high-dimensional hyperspectral

images. In March 2004, the OMEGA instrument (Mars Express, ESA) [4] has col-

lected 310 Gbytes of raw images. The OMEGA imaging spectrometer has mapped

the Martian surface with a spatial resolution varying between 300 to 3000 meters

depending on the spacecraft altitude. It acquired for each resolved pixel the spec-

trum from 0.36 to 5.2 µm in 256 contiguous spectral channels. OMEGA is designed
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Figure 5: Image of the studied zone of the Martian surface.
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Figure 6: Some of the 38 400 measured spectra described on 256 wavelengths (see
text for details).
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Expert segmentation SparseFEM segmentation

Figure 7: Segmentation of the hyperspectral image of the Martian surface using a
physical model build by experts (left) and sparseFEM (right).

to characterize the composition of surface materials, discriminating between vari-

ous classes of silicates, hydrated minerals, oxides and carbonates, organic frosts and

ices. For this experiment, a 300 × 128 image of the Martian surface is considered

and a 256-dimensional spectral observation is therefore associated to each of the

38 400 pixels. Figure 5 presents an image of the studied zone and Figure 6 shows

some of the 38 400 measured spectra. According to the experts, there are K = 5

mineralogical classes to identify.

The sparseFEM-1 algorithm was applied to this dataset using the model DLM[αkjβ]

and a sparsity ratio equals to 0.1 (it refers to the ratio of the ℓ1 norm of the coeffi-

cient vector relative to the norm at the full least square solution). The sparseFEM

algorithm was initialized with the results of the Fisher-EM algorithm and the whole

segmentation process took 18 hours on a 2.6 Ghz computer. Figure 7 presents, on

the right panel, the segmentation into 5 mineralogical classes of the studied zone

with the sparseFEM algorithm. In comparison, the left panel of Figure 7 shows the

segmentation obtained by experts of the domain using a physical model. It first ap-

pears that the two segmentations agree globally on the mineralogical nature of the

surface of the studied zone (60.30% of agreement). We recall that both segmenta-

tions do not exploit the spatial information. When looking at the top-right quarter

of the image, we can notice that sparseFEM seems to provide a finer segmentation

than the segmentation based on the physical model. Indeed, sparseFEM segments

better than the physical model the fine “rivers” which can be seen on Figure 5.

Finally, Figure 8 shows the mean spectra of the 5 groups formed by sparseFEM

and the selection of the discriminative wavelengths. SparseFEM selected 8 original
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Figure 8: Mean spectra of the 5 groups formed by sparseFEM and selection of the
discriminative wavelengths (indicated by gray rectangles).

variables (wavelengths) as discriminative variables, i.e. the rows associated to these

variables were non-zero in the loading matrix U . Looking closely at the selection,

we indeed notice that the first selected variable (from left to right) discriminates the

blue group from the others. The second selected variable discriminates the red and

green groups from the black, blue and light blue groups whereas the third selected

variable allows to discriminate the red, green and black groups from the blue and

light blue groups. Similarly, the fourth and fifth selected variables discriminate the

red and green groups from the black, blue and light blue groups whereas the sixth,

seventh and eighth selected variable allows to discriminate the red, green and light

blue groups from the blue and black groups.

A possible interest of such a selection could be the measurement of only a tens

of wavelengths for future acquisitions instead of the 256 current ones for a result

expected to be similar. This could in particular reduce the acquisition time for each

pixel from a few tens of seconds to less than one second.

6 Conclusion

This article has focused on variable selection for clustering with the Fisher-EM al-

gorithm which has been recently proposed in [6]. The aim of this work was to

introduce sparsity in the Fisher-EM algorithm and thus select the discriminative

variables among the set of original variables. We have proposed three different pro-

cedures based on a ℓ1-penalty term. Experiments on simulations and real data sets

have shown that the three sparse versions of the Fisher-EM algorithm are highly

competitive with existing approaches of the literature. In particular, the sparseFEM

procedures present several assets regarding existing approaches. On the one hand,
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they tend to select an intermediate number of discriminative variables whereas ex-

isting approaches tend to select either too few (Clustvarsel and Selvarclust) or too

much variables (sparse-kmeans). On the other hand, the sparseFEM procedures

perform both the clustering and the variable selection in a reasonable time compar-

ing to existing approaches in the case of high-dimensional data. The sparseFEM

algorithms have been also applied with success to the segmentation of hyperspectral

images of the planet Mars and relevant parts of the spectra which well discriminate

the groups have been identified.

Among the possible extensions of this work, it may be first interesting to use

different ℓ1-penalty values according to the relevance of each discriminative axis

estimated in the Fisher-EM algorithm. Such an approach could identify different

levels of relevancy among the original variables. Second, we used in this work a pe-

nalized BIC criterion to select the sparsity level by evaluating the model complexity

in regard to the non-zero values as proposed by [27]. Although Zou et al. [42] showed

that the number of non-zero coefficients is an unbiased estimate of the degrees of

freedom and is asymptotically consistent in the case of penalized regression prob-

lem, this result has no theoretical justification in the penalized GMM context. It

would be therefore interesting to obtain theoretical guarantees of such a result in

our context. Finally, since the ICL criterion [5] is also used to select the number

of components, it would be a natural extension to consider a penalized ICL for

selecting the sparsity level in the sparseFEM algorithms.

Acknowledgments

The authors would like to thank Cathy Maugis for providing the results of Selvarclust

on the zoo, glass, satimage and usps358 data sets.

References

[1] J. Baek and G. McLachlan. Mixtures of factor analyzers with common factor

loadings: applications to the clustering and visualisation of high-dimensional

data. Transactions on Pattern Analysis and Machine Intelligence, 2009.

[2] J. Baek, G. McLachlan, and L. Flack. Mixtures of Factor Analyzers with

Common Factor Loadings: Applications to the Clustering and Visualisation of

High-Dimensional Data. IEEE Transactions on Pattern Analysis and Machine

Intelligence, pages 1–13, 2009.

28



[3] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[4] J.-P. Bibring and 42 co-authors. Mars Surface Diversity as Revealed by the

OMEGA/Mars Express Observations. Science, 307(5715):1576–1581, 2005.

[5] C. Biernacki, G. Celeux, and G. Govaert. Assessing a mixture model for clus-

tering with the integrated completed likelihood. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 22(7):719–725, 2001.

[6] C. Bouveyron and C. Brunet. Simultaneous model-based clustering and vi-

sualization in the Fisher discriminative subspace. Statistics and Computing,

22(1):301–324, 2012.

[7] C. Bouveyron and C. Brunet. Theoretical and practical considerations on the

convergence properties of the Fisher-EM algorithm. Journal of Multivariate

Analysis, 109:29–41, 2012.

[8] C. Bouveyron, S. Girard, and C. Schmid. High-Dimensional Data Clustering.

Computational Statistics and Data Analysis, 52(1):502–519, 2007.

[9] C. Bouveyron, S. Girard, and C. Schmid. High Dimensional Discriminant Anal-

ysis. Communications in Statistics : Theory and Methods, 36(14):2607–2623,

2007.

[10] J. Cadima and I. Jolliffe. Loadings and correlations in the interpretation of the

principal components. Journal of Applied Statistics, 22:203–214, 1995.

[11] G. Celeux, M.-L. Martin-Magniette, C. Maugis, and A. Raftery. Letter to the

editor. Journal of the American Statistical Association, 106(493), 2011.

[12] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression.

Annals of Statisics, 32:407–499, May 2004.

[13] R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals

of Eugenics, 7:179–188, 1936.

[14] D.H. Foley and J.W. Sammon. An optimal set of discriminant vectors. IEEE

Transactions on Computers, 24:281–289, 1975.

[15] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic. Press,

San Diego, 1990.

29



[16] G. Galimberti, A. Montanari, and C. Viroli. Penalized factor mixture analy-

sis for variable selection in clustered data. Computational Statistics & Data

Analysis, 53(12):4301–4310, October 2009.

[17] Z. Ghahramani and G.E. Hinton. The EM algorithm for factor analyzers.

Technical report, University of Toronto, 1997.

[18] J.C. Gower and G.B. Dijksterhuis. Procrustes Problems. Oxford University

Press, 2004.

[19] M. Law, M. Figueiredo, and A. Jain. Simultaneous Feature Selection and Clus-

tering Using Mixture Models. IEEE Trans. on PAMI, 26(9):1154–1166, 2004.

[20] J. Liu, J.L. Zhang, M.J. Palumbo, and C.E. Lawrence. Bayesian clustering with

variable and transformation selection. Bayesian Statistics, 7:249–276, 2003.

[21] C. Maugis, G. Celeux, and M.-L. Martin-Magniette. Variable selection for

Clustering with Gaussian Mixture Models. Biometrics, 65(3):701–709, 2009.

[22] C. Maugis, G. Celeux, and M.-L. Martin-Magniette. Variable selection in

model-based clustering: A general variable role modeling. Computational

Statistics and Data Analysis, 53:3872–3882, 2009.

[23] G. McLachlan, D. Peel, and R. Bean. Modelling high-dimensional data by mix-

tures of factor analyzers. Computational Statistics and Data Analysis, (41):379,

2003.

[24] P. McNicholas and B. Murphy. Parsimonious Gaussian mixture models. Statis-

tics and Computing, 18(3):285–296, 2008.

[25] A. Montanari and C. Viroli. Dimensionally reduced mixtures of regression mod-

els. Electronic Proceedings of KNEMO, Knowledge Extraction and Modelling,

2006.

[26] A. Montanari and C. Viroli. Heteroscedastic Factor Mixture Analysis. Statis-

tical Modeling: An International journal, 10(4):441–460, 2010.

[27] W. Pan and X. Shen. Penalized model-based clustering with application to

variable selection. Journal of Machine Learning Research, 8:1145–1164, 2007.

[28] Z. Qiao, L. Zhou, and J.Z. Huang. Sparse linear discriminant analysis with

applications to high dimensional low sample size data. International Journal

of Applied Mathematics, 39(1), 2009.

30



[29] A. Raftery and N. Dean. Variable selection for model-based clustering. Journal

of the American Statistical Association, 101(473):168–178, 2006.

[30] R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in

a dataset via the gap statistic. Journal of the Royal Statistical Society, Series

B, 32(2):411–423, 2001.

[31] E. Tipping and C. Bishop. Mixtures of Probabilistic Principal Component

Analysers. Neural Computation, 11(2):443–482, 1999.

[32] S. Wang and J. Zhou. Variable selection for model-based high dimensional

clustering and its application to microarray data. Biometrics, 64:440–448, 2008.

[33] D.M. Witten and R. Tibshirani. A framework for feature selection in clustering.

Journal of the American Statistical Association, 105(490):713–726, 2010.

[34] D.M. Witten, R. Tibshirani, and T. Hastie. A penalized matrix decomposi-

tion, with applications to sparse principal components and canonical correlation

analysis. Biostatistic, 10(3):515–534, 2009.

[35] B. Xie, W. Pan, and X. Shen. Penalized model-based clustering with cluster-

specific diagonal covariance matrices and grouped variables. Electrical Journal

of Statistics, 2:168–212, 2008.

[36] B. Xie, W. Pan, and X. Shen. Penalized mixtures of factor analyzers with

application to clustering high-dimensional microarray data. Bioinformatics,

26(4):501–508, 2010.

[37] R. Yoshida, T. Higuchi, and S. Imoto. A mixed factor model for dimension

reduction and extraction of a group structure in gene expression data. IEEE

Computational Systems Bioinformatics Conference, 8:161–172, 2004.

[38] R. Yoshida, T. Higuchi, S. Imoto, and S. Miyano. Array cluster: an analytic tool

for clustering, data visualization and model finder on gene expression profiles.

Bioinformatics, 22:1538–1539, 2006.

[39] Z. Zhang, G. Dai, and M.I. Jordan. A flexible and efficient algorithm for regu-

larized fisher discriminant analysis. In Proceedings of the European Conference

on Machine Learning and Knowledge Discovery in Databases, pages 632–647,

2009.

[40] H. Zou and R. Hastie, T.and Tibshirani. Sparse Principal Component Analysis.

Journal of Computational and Graphical Statistics, 15(2):265–286, June 2006.

31



[41] H. Zou and T. Hastie. Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society, 67:301–320, 2005.

[42] H. Zou, T. Hastie, and R. Tibshirani. On the degrees of freedom of the Lasso.

Annals of Statistics, 35(5):2173–2192, 2007.

32


