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Abstract—This paper presents an intuitionistic forc-
ing translation for the Calculus of Constructions (CoC),
a translation that corresponds to an internalization
of the presheaf construction in CoC. Depending on
the chosen set of forcing conditions, the resulting type
system can be extended with extra logical principles.
The translation is proven correct—in the sense that it
preserves type checking—and has been implemented in
Coq. As a case study, we show how the forcing trans-
lation on integers (which corresponds to the internal-
ization of the topos of trees) allows us to define general
inductive types in Coq, without the strict positivity
condition. Using such general inductive types, we can
construct a shallow embedding of the pure λ-calculus
in Coq, without defining an axiom on the existence
of an universal domain. We also build another forcing
layer where we prove the negation of the continuum
hypothesis.

I. Introduction

Forcing is a method originally designed by Cohen in the
60s to prove the independence of the Continuum Hypothe-
sis from the axiomatic set theory ZFC [4]. Forcing is known
to be intimately connected to the sheaf construction, as
stated by Lawvere and Tierney in [15]. Recently, after the
works of Krivine [8] and Miquel [11], it became accepted
that forcing techniques are of great interest for the exten-
sion of the Curry-Howard correspondence. The starting
point of our paper is to connect these two observations:

“Intuitionistic forcing for Type Theory is an
internalization of the presheaf construction in type

theory.”

We develop a forcing layer to increase the power of a logic
based on a type theory just as it is used to build a generic

model M [G] from a previous model M in set theory[7].
In this way, we are able to develop a new generation
of logics—that can be defined modularly using forcing
theory. This translation relies on an internalization of the
presheaf construction inside CoC in order to be able to use
forcing directly in type theory. Then, it becomes possible
to exhibit new reasoning principles inside a forcing layer by
using the structure of the chosen forcing conditions. But,
no matter what new logical principles have been defined,
their consistency can be deduced for free:

“The consistency of a logic defined in a forcing layer
ensues from the consistency of the ground logic.”

Indeed, we are able to extend a type theory with new
reasoning principles and new objects, without defining
them as axioms. Besides coherence problems, avoiding the
axiomatic approach enables us to give a computational
content to these new principles: programs can be associ-
ated to them.

On a connected line of work on Kripke semantics, Appel
et al. [1] have proposed to understand step-indexing—a
technique to handle general recursion in programing lan-
guage semantics—as (Kripke) forcing on the set of natural
numbers. Those natural numbers can be used to define
(or force) a particular modality in the logic, with an
induction principle directly lifted from natural number.
More recently, Birkedal et al. [2] have shown that this
construction can be understood algebraically as a mean
to work inside the topos of trees, which is a generic way
to define general recursive types in a semantical model.
Similarly, we use forcing on the set of natural numbers to
provide general inductive types in CoC, without relying on
a positivity condition. This construction makes possible to
define a universal type D for terms of the pure lambda
calculus that induces a shallow embedding of the pure λ-
calculus into CoC. The fact that we can use a conversion
rule that is normalizing to describe the β-reduction of
the pure λ-calculus should not appear as a contradiction.
Unfolding the recursive type D is handled by an equality
but not by the conversion rule and so has to be explicit in
the term. We also use another set of forcing conditions to
force the negation of the continuum hypothesis.

A prototype implementation of the translation is avail-
able at https://github.com/mattam82/Forcing. It is built
on top of Coq, translating terms of a forcing layer so that
they can be verified by the typechecker of Coq.

Plan of the paper. In Section II, we present an
extended version of the Calculus of Construction with
proof irrelevance and subset types. Then, we explain the
forcing translation in terms of the presheaf construction
(Section III) and define it formally (Section IV). In Sec-
tion V, we illustrate this translation by choosing the nat-
ural numbers as the poset of forcing conditions, providing
a framework for general inductive types. Then, in Sec-
tion VI, we illustrate the forcing translation with another
poset of forcing conditions to force the negation of the
continuum hypothesis. Finally, we discuss related works
(Section VII) and present future works (Section VIII).

https://github.com/mattam82/Forcing


II. The Calculus of Constructions

The Calculus of Constructions is a dependent type
system which uses the ideas of the Curry-Howard cor-
respondence to represent proofs. Indeed, proof-terms are
considered as first class citizens. There is no syntactic
distinction between proofs, logical formulas and types.
This means, among others, that the dependent product,
considered on a logical side, represents the universal quan-
tification.

More precisely, we consider Russell [14], an extension of
the Calculus of Constructions with a distinguished subset
type for dependent sums whose second component is a
proof. It also treats objects of subset type specially in the
conversion rule, allowing to transparently move an object
between different subset types. An object of type T can
be freely used as an object of the subset type {x : T | P}
for any property P . Any derivation in this liberal system
can be translated into a derivation of CoC extended
with proof-irrelevance and metavariables, generating proof
obligations for the missing logical information. On the
condition that these obligations are solvable, one obtains
a well-formed complete derivation in CoC extended with
proof-irrelevance. The forcing translation presented here
uses the Russell system as target, which has just the right
amount of (apparent) extensionality needed to handle
the manipulation of forcing conditions necessary in the
translation.

A. Grammar of terms and contexts

The terms of Russel are given by the following grammar

T, U,M,N := Prop | Typei | Πx : T.U | Σx : T.U
| {x : T | U} | x | λx : T.M
| MN | π1M | π2M

where i ∈ N. Note that we consider a version of CoC with a
hierarchy of universes Typei. We define S = {Prop,Typei}
to be the set of sorts and a function max on S as :

• max(s,Prop) = Prop for any s ∈ S.
• max(Prop,Typei) = Typei and
• max(Typei,Typej) = Typemax(i,j)

Contexts are defined as (ordered) lists of pairs formed
by a variable and a term. We define a judgment of well-
formation wf for contexts:

• wf([])
• wf(Γ :: (x, T )) iff wf(Γ) and x /∈ FV (Γ) and Γ ⊢ T : s

with s ∈ {Prop,Typei}.

It is defined by mutual induction with the typing judg-
ment.

B. Subsets and the subtyping rule

The subtyping relation ≤ is defined as the smallest re-
flexive, transitive congruence relation including conversion
and satisfying the following:

SubInj
Γ ⊢ T ≤ T ′

Γ ⊢ T ≤ {x : T ′ | U}

SubProj
Γ ⊢ T ≤ T ′

Γ ⊢ {x : T | U} ≤ T ′

This relation allows to coerce freely between subsets on
the same support type.

C. Conversion rule

The conversion rule ∼= is defined as the smallest congru-
ence satisfying the following equations:

(λx : T.M)N ∼= M {N/x}
πi 〈M1,M2〉 ∼= Mi (i = 1, 2)

D. The Type System

The axioms of the system are defined as: A
def
=

{(Prop,Type0), (Typei,Typei+1)}. The type system (fig-
ure 1) is a straightforward extension of the PTS for CoC.

The system enjoys Subject Reduction and has decid-
able typechecking (c.f. [14] for a complete metatheoretical
study).

E. Inductive types

To simplify the setting, we do not present inductive
types in the calculus, although they can be forced directly
as constant presheaves. Nevertheless, in the rest of the
paper, we allow ourselves to consider simple inductive
types such as the set of natural numbers or logical con-
nectors. We also use the inductive definition of equality
eq together with its unique inhabitant eq refl and its
elimination principle eq rect.

III. Internalizing the presheaf construction in

CoC

In this section, we explain the intuitionistic forcing
translation [−] of the forcing layer for a poset (P,4)
of forcing conditions. The full definition is given in Sec-
tion IV. This translation can be seen as an internalization
inside CoC of the presheaf construction over P.
We refer the reader to [10] for the definition of the

presheaf construction.

A. Forcing conditions

The forcing translation is defined over a poset P of
forcing condition of type Type equipped with the preorder
relation 4. This preorder enables us to define the poset Pp

of forcing conditions that are below p as

Pp = {q : P | q 4 p}

Because P is a poset, there is an injection ιp,q from Pq to
Pp as soon as there is a proof πp,q : q 4 p. This injection
is used as an implicit coercion in the rest of this article.
This chain of preorders enables us to construct presheaves
over P by approximation.



Var
wf(Γ) (x : T ) ∈ Γ

Γ ⊢ x : T

Ax
wf(Γ) (s1, s2) ∈ A

Γ ⊢ s1 : s2

Abstr
Γ, x : T ⊢M : U

Γ ⊢ λx : T.M : Πx : T.U

App
Γ ⊢M : Πx : T.U Γ ⊢ N : T

Γ ⊢MN : U {N/x}

Prod
Γ ⊢ T : s1 Γ, x : T ⊢ U : s2

Γ ⊢ Πx : T.U : max(s1, s2)

Sum
Γ ⊢ T : Typei Γ, x : T ⊢ U : Typei

Γ ⊢ Σx : T.U : Typei

Pair
Γ ⊢M : T Γ ⊢ N : U {M/x}

Γ ⊢ (M,N) : Σx : T.U

Proj-1
Γ ⊢M : Σx : T.U

Γ ⊢ π1M : T

Proj-2
Γ ⊢M : Σx : T.U

Γ ⊢ π2M : U {π1M/x}

Subset
Γ ⊢ T : s Γ, x : T ⊢ U : Prop

Γ ⊢ {x : T | U} : s

Subtype
Γ ⊢M : T Γ ⊢ T ≤ U

Γ ⊢M : U

Fig. 1. Russell’s Type System

B. Presheaf approximations as dependent sums

In category theory, a presheaf P over P on Set is given
by a family (Pp)p∈P of sets together with restriction maps

Pq
θp,q
←−− Pp

for all q 4 p, satisfying the usual commutative diagrams
ensuring the naturality of those maps. In the special
setting of a preorder, the naturality corresponds to the
reflexivity and transitivity of restriction maps.
In Russell, this restriction maps can be formalized using

a dependent sum and the naturality conditions can be
imposed using a subset type rejecting ill-formed restriction
maps. Thus, the type PSh(p, s) of a presheaf at level p on
a sort s can be defined as

Σf : Pp → s.{θ : Πq : Pp.Πr : Pq.fq → fr |
trans(θ, p) ∧ refl(θ, p)}

where trans(θ, p) and refl(θ, p) are defined in Figure 2.
Given a (closed) term T : s (where s ∈ S), we introduce

two notations to extract the support and the restriction
maps of the associated presheaf [T ]p:

JT Kp
def
= (π1[T ]p)p

θTp→q
def
= (π2[T ]p)pq

C. Presheaf approximation of variables

As we internalize the presheaf construction directly in
CoC, we have to translate variables of the calculus, which
is not the case for purely semantic definitions. The problem
with variables is that they can be used for a presheaf
approximation that is smaller than the presheaf approx-
imation for which they have been defined. For instance,
this situation typically amounts to derive the following
judgment, for q 4 p,

Γ, x : JT Kp ⊢ x : JT Kq

which differs from the usual Var rule. This means that
the translation of a variable must introduce the right
restriction map to go from the presheaf approximation
at level p to the presheaf approximation at level q. To
that purpose, we need to parametrize the translation of a
term T with a map σ that associates the type and level
of approximation to every free variable occurring in T . In
what follow, σ denotes a function from variables to types
and forcing conditions. We note σ1(x) (resp. σ2(x)) for the
type (resp. forcing condition) assigned to x by σ. Given
a context Γ, we say that σ is a valid interpretation of
Γ if it assigns the same variable to the same type, and
all conditions appearing in σ are ordered. Given a valid
interpretation σ, the translation of a variable is given by

[x]σp
def
= θ

σ,σ1(x)
σ2(x)→px

and the translation of rule Var becomes

Γ, x : JT Kσp ⊢ θσ,Tp→qx : JT Kσq

which is now derivable from the rule Var and App.
Note that, inductively, the definitions of the support and
restriction maps of the presheaf approximation are also
annotated with the interpretation σ.

D. Presheaf approximation of dependent products

The category of presheaves is cartesian closed. This
suggests that dependent products can be translated as
presheaf approximations. In category theory, the internal
hom [−,−] is described by

[T, U ]p ∼= HomPSh(y(p)× T, U)

where y denotes the Yoneda embedding. This means that
[T, U ]p is itself a presheaf that associates to any forcing
condition q a morphism

fq : P(q, p)× Tq → Uq.



But in our case, P is a preorder so fq exists only when
q 4 p. A dependent product will thus be translated at
level p as a family of dependent product indexed by forcing
conditions that are below p. As it is the case for morphisms
of presheaves, dependent functions between presheaf ap-
proximations also have to commute with restriction maps
as given by the following categorical commutative diagram

JT Kσp
fp

//

θσ,T
p→q

��

JUKσp

θσ,U
p→q

��

JT Kσq
fq

// JUKσq

(1)

To this end, the support of the presheaf approximation at
level p is given by the following subset type

JΠx : T.UKσp
def
= {f : Πq : PpΠx : JT Kσq .JUK

σ+(x,T,q)
q |

commΠ(f, T, U, p)}

where the first component is a family of dependent product
indexed by a forcing condition below p and where

commΠ(f, T, U, p)
def
= Πq : Pp.Πr : Pq.Πx : JT Kσq .

(fr)(θσ,Tq→rx) = θ
σ+(x,T,q),U
q→r (fqx)

reflects the categorical commutative diagram (1). The
restriction maps are simply given by identity coercions

θσ,Πx:T.U
p→q

def
= λf : JΠx : T.UKσp .λr : Pq.fr

The translation of a function is given by

[λx : T.M ]σp
def
= λq : Pp.λx : JT Kσq .[M ]

σ+(x,T,q)
q

The proof that [λx : T.M ]σp validates the commutation
condition is deduced from the set of equality on restriction
maps.

The translation of an application is obtained by ap-
plying the translated argument [N ]σp to the translated
function [M ]σp taken at level p,

[MN ]σp
def
= [M ]σp p [N ]σp .

E. Presheaf approximation of dependent sums and subset

types

The category of presheaves has products and coproducts
defined pointwise. This suggests that dependent sums can
be translated as presheaf approximation pointwisely, and
so for the associated operators.

JΣx : T.UKσp
def
= Σx : JT Kσp .JUK

σ+(x,T,p)
p

[(t, u)Σx:T.U ]
σ
p

def
= ([t]σp , [u]

σ
p )Σx:JT Kσp .JUKσp

[πiM ]σp
def
= πi[M ]σp

The same pointwise construction works for subset types.

F. Presheaf approximation of sorts

CoC has a hierarchy of universes induced by the ruleAx.
This means that Prop and Typei have to be themselves
translated as presheaf approximation at level p. This is
done by defining a term PShC(p, s) that encodes the
restriction map available on PSh(p, s). Note that because
of proof irrelevance in our type system, the translation of
PSh(p,Prop) is simpler as restriction maps are in that
case proofs of monotonicity and thus, transitivity and
reflexivity of restriction maps are automatic (see Figure 2).

IV. The Forcing Translation

In this section, we present the formal definition of the
forcing translation, state its correctness and show how it
can generically be used to extend a type theory.

A. Definition

An interpretation σ is defined as a list of triples formed
by a variable, a type and a forcing condition. Given a
variable x appearing in σ, we note σ1(x) (resp. σ2(x)) the
type (resp. forcing condition) associated to x in σ.

σ is said to be a valid interpretation of a context

Γ = [(x1, T1), . . . (xn, Tn)]

if σ1(xi) = Ti for all 1 ≤ i ≤ n and the list of forcing con-
ditions appearing in σ is ordered: σ2(x1) < · · · < σ2(xn).
Thus, a valid interpretation σ gives rise to a sequence
p1 : P, p2 : Pp1

, . . . , pn : Ppn−1
of forcing conditions

appearing in σ (where pi = σ2(xi)).
Given a valid interpretation σ of Γ, we pose

JΓKσ = p1 : P, x1 : JT1K
σ
p1
, . . . , pn : Ppn−1

, xn : JTnKσpn

Figure 2 presents the forcing translation of CoC. This
translation has largely been explained in Section III. The
only remaining point concerns the special translation for
the application and conversion rules, that have to be
enforced by some rewriting on restriction maps.

B. Ensuring conversion and substitution lemma on types

We can prove that JU {x/N}Kσp is equal to

JUK
σ+(x,T,p)
p

{
x/[N ]σp

}
, however they are not convertible,

due to the fact that properties like trans(θ, p) are
equalities which are not integrated in the conversion rule.
We do not work in an extentional theory: from the fact

that M is of type T and that T = U , we cannot deduce
that M is of type U . Indeed, T = U does not imply that
T ≃ U .
It is however possible to transform slightly the term

M so that it can be considered of type U . This method
can be seen as a way to transform an extentional theory
to an intentional one, as presented in [6], [12]. This is
done in Coq using the term eq rect, which corresponds
to the elimination of the equality type. Using this term
and equalities available on restriction maps, we are able
to define:



refl(θ, p)
def
= Πq : Pp.θ

σ,T
q→q = id

trans(θ, p)
def
= Πq : Pp.Πr : Pq.Πs : Pr.(θ

σ,T
r→s)(θ

σ,T
q→r) = θσ,Tq→s

PSh(p,Typei)
def
= Σf : Pp → Typei.{θ : Πq : Pp.Πr : Pq.fq → fr | trans(θ, p) ∧ refl(θ, p)}

PSh(p,Prop)
def
= {f : Pp → Prop | θ : Πq : Pp.Πr : Pq.fq → fr}

PShC(p, s)
def
= λq : Pp.λr : Pq.λf : PSh(q, s).

(λs : Pr.(π1f)s, λs : Pr.λt : Ps.λx : (π1f)s.(π2f)stx)

JT Kσp
def
= (π1[T ]

σ
p )p

θσ,Tp→q
def
= (π2[T ]

σ
p )pq

[s]σp
def
= (λq : Pp.PSh(q, s),PShC(p, s)) for s ∈ S

commΠ(f, T, U, p)
def
= Πq : Pp.Πr : Pq.Πa : JT Kσq .(fr)(θ

σ,T
q→ra) = θ

σ+(a,T,q),U{a/x}
q→r (fqa)

[Πx : T.U ]σp
def
= (λq : Pp.{f : Πr : Pq.Πx : JT Kσr .JUK

σ+(x,T,r)
r | commΠ(f, T, U, q)},

λq : Pp.λr : Pq.λf : JΠx : T.UKσq .λs : Pr.fs)

[λx : T.M ]σp
def
= λq : Pp.λx : JT Kσq .[M ]

σ+(x,T,q)
q with the proof commlamM,T

[Σx : T.U ]σp
def
= (λq : Pp.Σx : JT Kσq .JUK

σ+(x,T,q)
q ,

λq : Pp.λr : Pq.λf : JΣx : T.UKσq .(θ
σ,T
q→r(π1f), θ

σ+(x,T,q),U
q→r (π2f)))

[(t, u)Σx:T.U ]
σ
p

def
= ([t]σp , [u]

σ
p )Σx:JT Kσp .JUKσp

[πiM ]σp
def
= πi[M ]σp

[MN ]σp
def
= ([M ]σpp)[N ]σp

[x]σp
def
= θ

σ,σ1(x)
σ2(x)→px

[appT,U,NM ]σp
def
= eq rectJU {x/N}Kσp id

(
JUK

σ+(x,T,p)
p

{
x/[N ]σp

})
πapp
p,T,U,N [M ]σp

[convT,UM ]σp
def
= eq rectJUKσp id JT Kσpπ

conv
p,T,U [M ]σp

Fig. 2. Definition of the translation

• for every type T, U and every term N of type T , a
proof of equality ensuring a substitution lemma

πapp
p,T,U,N : JU {x/N}Kσp = JUKσ+(x,T,p)

p

{
x/[N ]σp

}

• For every type T, U , a proof of equality ensuring a
convertibility lemma

πconv
p,T,U : JT Kσp = JUKσp

We now have to annotate the term generated by the appli-
cation of rules App and Conv with two new constructors
appT,U,N and convT,U :

App’
Γ ⊢M : Πx : T.U Γ ⊢ N : T

Γ ⊢ appT,U,NMN : U {N/x}

Conv’
Γ ⊢M : T T ≃ U

Γ ⊢ convT,UM : U

This changes slightly the type theory of the forcing layer,
since normally the uses of the conversion rule do not
appear in the term. Figure 2 depicts the translation of
appT,U,N and convT,U which ensure the two following
lemmas.

Lemma 1 (substitution lemma). If Γ ⊢ N : T and

JΓKσ ⊢ [M ]σp : JUKσp
{
[N ]σp/x

}

then

JΓKσ ⊢ [appT,U,NM ]σp : JU {N/x}Kσp

where p is the last forcing condition occurring in σ.

Lemma 2 (convertibility lemma). If

JΓKσ ⊢ [M ]σpn
: JT Kσpn



and T ≃ U then

JΓKσ ⊢ [convT,UM ]σpn
: JUKσpn

where p is the last forcing condition occurring in σ.

The proofs of those two lemmas are direct using the type
of πapp

p,T,U,N and πconv
p,T,U .

To realize the complete translation to CoC, it first needs
to be extended with proof-irrelevance. Lastly, the obli-
gations (πapp

p,T,U,N and πconv
p,T,U ) coming from typechecking

the translated terms should be solved automatically, they
are simple applications of transitivity and reflexivity of
the order on forcing conditions or simplifications due to
commutativity proofs.

C. Correctness

Before stating the correctness of the translation, we need
a weakening lemma for valid interpretation.

Lemma 3. If Γ ⊢ T : s and σ is a valid interpretation of Γ,
then for every forcing condition p and every interpretation

σ′ disjoint of σ, [T ]σ
′·σ

p = [T ]σp .

Proof: The proof is done by induction on T . The only
interesting case is when T is a variable x. Then from Γ ⊢
T : s we know that (x, s) ∈ Γ, and since σ is valid for Γ,
there exists a forcing condition q such that (x, T, q) ∈ σ.
So we just have to prove that θσ

′·σ,s
p→q = θσ,sp→q, which follows

from the definition of PSh(p, s).

Theorem 1 (Typing Correctness). If Γ ⊢M : T and σ is

a valid interpretation of Γ then

JΓKσ ⊢ [M ]σp : JT Kσp

where p is the last forcing condition occurring in σ.

Proof: By induction on the typing derivation of Γ ⊢
M : T . The proof is given in the companion technical
appendix1.

D. Importing theorems in the forcing layer

Obviously we do not want to have to prove again all the
theorems of Coq in the forcing layer. Hopefully, a proof
M of a proposition P of Coq can be converted to a proof
M ′ of P in the forcing layer. We just have to annotate the
uses of the rule Conv, which do not appear in M . This
can be done when Coq checks that M is of type P .

E. Extending the forcing layer with new constructors

To extend the logical power of the type theory of a
forcing layer, we follow a general mechanism. We first
add new symbols corresponding to the objects we want
to reason on. For example, in the next section we will
introduce a new fixpoint combinator. We then define their
translation, which is a way to give them a meaning.
Finally, we add properties about these new elements whose
translations are proven in the original layer.

1The technical appendix is available on the web page of the second
author: http://tabareau.fr

More precisely, after adding a new symbol f of type T
to the forcing layer, we define its translation [f ]σp . Then,
we can add a proof-term symbol π of a lemma P about f
as soon as we are able to define a proof [π]σp of [P ]σp in the
ground logic.
This has to be compared to the axiomatic approach in

Coq, which introduce a new symbol using Parameter f :

T and then properties about it using Axiom π : P. In this
approach, f and P have no computational content.

F. Applying the forcing translation inductively

For now, we have defined a forcing layer on top of Coq,
but it is in fact possible to define a forcing layer on top of
another forcing layer:

Coq
[.]F1

←−−− F1
[.]F2

←−−− F2

To do so, F1 must contain Russell, so that the trans-
lation [.]F2 is well-defined. This means that [.]F1 must
translate Russell, which requires some extensions of the
translation in figure 2. Then, the poset of forcing condi-
tions P2 used by F2 has to be defined in F1. So a term
of F2 is translated in Coq simply by combining [.]F1 and
[.]F2 .
This construction is reminiscent of the iterated forcing

construction as presented for example in [7]. In terms
of topos, this means to build the category of presheaves
valuated in another category of presheaves.

G. Sheaf construction and Excluded middle

We have seen how to import a theorem proved in Coq in
a forcing layer, simply by using its proof-term. However,
this method does not work with axioms, for good reasons:
there is no reason it stays true in the forcing layer, since
we do not have a proof of it.
One simple example is the excluded-middle

EM
def
= ΠP : Prop.P ∨ (P → false)

Its translation [EM]σp is equal to

Πq : Pp.ΠP : (Pq → Prop).Pp ∨ (Πr : Pq.P r → false).

It is thus possible to build a set of forcing conditions which
negate this formula, simply adapting the construction of
the usual Kripke model which negates EM.

If we want to keep this axiom true, a standard way is to
add a negative translation to the forcing translation. This
is done in Topos theory by the sheafification process on
the dense topology (usually noted ¬¬). Indeed, it is well
known [10] that the topos Sh(P¬¬, E) is a Boolean topos
while this is not true for PSh(P, E).

It seems possible to adapt the same technique in our
setting. We need to modify the translation so that we
associate sheaves to types, enforcing gluing and local
identity properties for presheaves.
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V. The Step-Indexed Layer

As a first illustration of the power of the forcing trans-
lation, we study the forcing layer obtained when P is an
infinite well-ordered set. When P is the set of natural
numbers, this layer has already been semantically studied
in [2] as it corresponds to the topos of trees. The novelty
in the setting of the Calculus of Constructions is that we
can construct recursive types over any recursive definition,
without relying on a definition of contractiveness that
ensures the existence of a fixpoint. In particular, when
a recursive definition satisfies the usual strictly positive

condition, we show that our definition directly induces the
usual one, making possible to merge the two notions in
Coq. We also define a later modality ⊲ on Prop together
with the Löb rule that provides a general inductive prin-
ciple in the logic. Interestingly, the Löb rule is interpreted
directly as a special instance of the fixpoint construction,
giving a computational meaning to the Löb rule. Even
though we could define the construction below with any
infinite well-ordered set of forcing conditions, we only do
it with the natural numbers to make definitions more
readable. We call this layer the step-indexed (SI) layer.

A. Adding new constructors in the SI layer

As explained in Section IV-E, we can define new terms
in the SI layer and give their meaning through their forcing
translation in the original layer.
We will need to consider, for each s ∈ S, two special

terms units and Units such that

⊢ units : Units : s

that correspond to the unity of each sort. For example ⊢
I : true : Prop. They are translated directly to themselves
using the constant translation.

The later modality: We introduce in the SI layer a
later modality

⊲s : s→ s

for any sort s ∈ S. This modality amounts to shift a
presheaf on s one step on the right. Its translation [⊲s]

σ
p is

defined by

λq : natp.λT : JsKσq .
(λr : natq.match r with

| 0 => Units
| Sr′ => (π1T )r

′

, λr : natq.λt : natr.λM : Ur.match t with

| 0 => units
| St′ => (π2T ) (Pred r) t′ M)

with Ur
def
= match r with | 0 => Units | Sr

′
=> (π1T )r

′.
The fixpoint operator: We can define a fixpoint oper-

ator
fixT : (⊲sT → T )→ T

for every T of sort s. The meaning of fixT is given by its
approximation at level p, computed by induction. At level

0, the fixpoint of f : ⊲sT → T is given by the value of f
on the unique inhabitant of ⊲sT at level 0. And at level
p+1, the value is given by f applied to the approximation
at level p. Formally, the translation [fixT ]

σ
p is defined by

λq : natp.λf : J⊲sT → T Kσq .nat rects,q(λr : natq.JT Kσr )
(f 0 units) (λr : Predq.λa : JT Kσr .f(Sr)a) q

where Predp
def
= {q : nat | q < p} and nat rects,p is

defined as a restriction of nat rects on the set natp.

The later modality and fixpoint operator on Prop:
When T is a proposition P (and thus s = Prop), fixPM
computes a proof of P from a proof M of ⊲PropP → P ,
This is exactly what the Löb rule

Löb
⊲PropP ⊢ P

⊢ P

does, so fixP gives the computational content of this rule.
Thus, applying the Löb rule on a proof π of ⊲PropP → P
simply amounts to consider the proof term fixP (π) : P .

The lifting of the later modality: For every T of sort
s, there exists a lifting

nextT : (T → ⊲sT )

that transports elements of the sheaf T into elements
of the sheaf ⊲sT This morphism simply amounts to use
the retractions θσ,TSp→p to lift elements of the presheaf
accordingly. The translation [nextT ]

σ
p is given by

λq : natp.λu : JT Kσq .match q with

| 0 => units
| Sq′ => θσ,Tq→q′u

Internalizing the later modality for sorts: For every
sort s, we can internalize the shifting induced by the
later modality directly in the presheaf. This is done by
introducing a morphism

switchs : (⊲Types→ s)

whose translation [switchs]
σ
p is defined by

λq : natp.λf : J⊲TypesK
σ
q .

(λr : natq.match r with

| 0 => Units
| Sr′ => (π1f)r

′

, λr : natq.λs : natr.λM : Tr.match s with

| 0 => units
| Ss′ => (π2f)(Pred r)s

′M)

with Tr
def
= match r with | 0 => Units | Sr

′
=> (π1f)r

′.

The lifting and switching of the later modality are
connected by the following lemma.

Lemma 4. For every T : s and every forcing condition p,
[switchs(nextsT )]

σ
p = [⊲sT ]

σ
p .



B. Forcing equalities on the new constructors

To make the later modality, the lifting and the switching
usable in practice, we introduce proof-terms that make
naturality and commutativity properties explicit in the SI
layer.
For for any T : s1 and U : s2, we add two terms

comlater
T,U
Π : ⊲s2(Πx : T.U) → (Πx : ⊲s1T. ⊲s2 U) and

comlater
T,U
Σ : ⊲s2(Σx : T.U)→ Σx : ⊲s1T. ⊲s2 U in the SI

layer. We also add proof-terms that state the naturality of
nextT with respect to T .

C. General recursive types

Before providing a definition of recursive types for any
general recursive definition, we study the property of the
translation of fix.

Proposition 1. For every f : ⊲s → s and every forcing

condition p, [fixsf ]
σ
p ≃ [f(nexts(fixsf))]

σ
p .

The proposition above is induced by the following (con-
version) equalities.

Lemma 5. For every natural number p, the following

holds:

1) for every T : s, J⊲sT KσSp ≃ JT Kσp
2) for every M : T , [nextTM ]σSp ≃ [M ]σp
3) for every f : ⊲s→ s, [fixsf ]

σ
Sp ≃ [f ]σSp(Sp)[fixsf ]

σ
p

Now, given a recursive definition f : s→ s for any sort
s, we can define

µsf = fixsλx.f(switchsx).

Then, using Proposition 1 and Lemma 4, we can add a
proof term

recµs
: µsf = f(⊲sµsf)

which is just translated in the original layer using eq refl

[recµs
]σp = eq refl[µsf ]

σ
p .

Finally, using eq rect, we can define two morphisms
folds : Πf : s → s.µsf → f(⊲sµsf) and unfolds : Πf :
s→ s.f(⊲sµsf)→ µsf together with two proof terms

πfold
s : Πf : .Πx : .unfoldsf(foldsfx) = x

πunfold
s : Πf : .Πx : .foldsf(unfoldsfx) = x

translated using eq refl.
Note that compare to [2], we do not require contrac-

tiveness of the recursive definition to compute a recursive
type. But the unfolding of a recursive type introduces
uniformly a later modality in front of any use of the
recursive variable.
Our definition of recursive types introduces a later

modality ⊲ on the recursive type at each unfolding. But
in the particular case of recursive types satisfying the
strictly positive condition, we can automatically erase
the introduced ⊲. For example, consider the definition of

binary trees on natural numbers (for simplicity, we use a
usual sum and product notation)

Tree = µs(λT : Type.(emp : 1) + (node : nat× T × T )).

As this recursive type is strictly positive, there is an induc-
tion principle in our setting, annotated with ⊲ modalities.

Treeind : ΠP : Tree→ Prop, P emp→
(Πn : nat.Πt : ⊲Tree, switch((nextP )t)

→ Πt′ : ⊲Tree, switch((nextP )t′)
→ P (node n t t′))→ Πt : Tree, P t

But using the lifting nextTree, and the equality of
Lemma 4, we deduce

Tree′ind : ΠP : Tree→ Prop, P emp→

(Πn : nat.Πt : Tree, ⊲(Pt)→ Πt′ : Tree, ⊲(Pt′)
→ P (node n t t′))→ Πt : Tree, P t

The lifting nextP : P → ⊲P (which gives a computational
content to the rule Mono of Gödel-Löb logic) is now used
on hypotheses to weaken the formula and get the usual
induction principle

Tree′′ind : ΠP : Tree→ Prop, P emp→

(Πn : nat.Πt : Tree, P t→ Πt′ : Tree, P t′

→ P (node n t t′))→ Πt : Tree, P t

D. An example: the pure λ-calculus

Let’s consider the generalized recursive type

D
def
= µType(λT : Type.T → T ).

This amounts to add in Coq a type satisfying the usual
domain equation for the pure lambda calculus

D = D → D.

The idea is that, although this object does not exists in
Coq, we can manipulate it directly in the forcing layer,
and only its approximations at level n will be considered
by Coq’s type checker.
For simplicity, we suppose that the function nextT is

declared as a coercion and thus we do not write it explicitly
in the rest of this section. We pose

funf
def
= unfoldType(λT : Type.T → T )f

and

defunf
def
= foldType(λT : Type.T → T )f.

We can introduce an analogous of switchs for D defined
as

↓: ⊲D → D
def
= λt : ⊲D.fun(λ : ⊲D.t)

Thus, we can define application in D as

f@s
def
= ↓ (funf)s

Intuitively, the operator ↓ tags each β-reduction in the
term, thus we get a pure lambda calculus where we can



keep track of places where a reduction has occurred. For
example, we can construct the usual looping term

Ω
def
= fun(λx : ⊲D.x@x)

and prove that for all integers n,

Ω@Ω = ↓n (Ω@Ω)

where ↓n denotes n applications of ↓. Note that even
Ω@Ω reduces to itself (plus a lift), there is no problem
of termination because we have here an equality but
the two terms are not convertible. Indeed, each β-redex
is “guarded” by defun ◦ fun that has to be explicitly
rewritten into id to enable Coq’s conversion.
In the same way, we can define the Y fixpoint combina-

tor as

Y
def
= fun(λf.(Y ′f)@(Y ′f))

with Y ′f
def
= fun(λx.f@(x@x))

Since β-reductions are tagged, we do not have the usual
equation Y g = g(Y g). Indeed, those terms are β-
equivalent, but the places where β-reductions have to be
done are different. Thus, we only get a weaker version of
the unfolding lemma.

Lemma 6. For all terms g : D,

Y@g = ↓2 (g@((Y ′g)@(Y ′g))).

VI. Forcing the negation of the Continuum

Hypothesis

We now build a forcing layer where we can prove the
negation of the Continuum Hypothesis, assuming the ex-
cluded middle in the original layer (note that, as explained
in Section IV-G, the excluded middle is not preserved
in the forcing layer). We adapt the usual construction of
Cohen, using its reformulation in terms of topos of sheaves,
as presented in [10]. In the following, P(T ) denotes the
type T → Prop corresponding to the “power set” of T . We
will build a forcing layer where we can add a type A with
injections

nat →֒i1 A →֒i1 P(nat)

and such that there is no surjection from nat to A and from
A to P(nat), thus negating the Continuum Hypothesis.
The set of forcing conditions is given by

P
def
= (P(P(nat))× nat)→fin Prop

where →fin denotes the type of function with finite sup-
port. This type can be defined in Coq. The order is the
usual inclusion order on functions: q ⊆ p if the domain of
p is smaller than the domain of q and the two functions
coincide on their common domain.
For a closed term T : s, we note T̂ for the constant

presheaf defines as

JT̂ Kσp = (λq : Pp.T, λq : Pp.λr : Pq.id).

The set A that will negate the continuum hypothesis is

P̂(nat). The idea is to collapse ̂P(P(nat)) to P(nat) in

the forcing layer. Then, using the injection from P̂(nat) to
̂P(P(nat)), this gives us the wanted injection i2 : P̂(nat)

to P(nat). To sum up, we will build injection

nat →֒i1 P̂(nat) →֒i2 P(nat)

with the proofs of non-existence of surjections

nat  A  P(nat)

We insist on the fact that P̂(nat) is not equal to

P(n̂at) = P(nat) since JP(nat)Kσp
def
= nat → (Pp → Prop)

while JP̂(nat)Kσp
def
= nat→ Prop.

A. Building the injection i2

We add a new symbol f of type ̂P(P(nat)) → P(nat)
whose translation is defined as

[f ]σp
def
= λq : Pp.λb : P(P(nat)).λr : Pq.λn : nat.λs : Pr.

(s 4 r ∧ s(b, n) = true)

Proposition 2. For every forcing condition p, [f ]σp is an

injection, which means that the proposition

JΠb1, b2 : P(P(nat)).f(b1) = f(b2)⇒ b1 = b2Kp

is provable in Coq plus excluded middle.

Proof: Since p is a partial map from (P(P(nat))×nat)
to Prop whose domain is finite, we can find an m such
that p(b1,m) and p(b2,m) are undefined. If b1 6= b2, we
can define a new forcing condition q that extend p such
that q(b1,m) = true and q(b2,m) = false. But then we
can easily check that

[f ]σp (p)(b1)(p)(m)(q) = true

and
[f ]σp (p)(b2)(p)(m)(q) = false

Using the excluded middle, we can conclude that b1 = b2.

Finally, i2 is built from f as:

i2
def
= P̂(nat) →֒ ̂P(P(nat))

f
−→ P(nat)

The injection i1 is just obtained as the lifting of the
injection from nat to P(nat).

B. Absence of surjections

We now prove that if there is no surjection between S
and T in the ground system, then there is no surjection
between Ŝ and T̂ in the forcing layer. This is usually called
the “conservation of cardinals”.
Assume the formula

NS(T, S)
def
= (ΣF : T → S.Πs : S.Σt : T.F (t) = s)→ false

We will prove in the forcing layer the formula NS(T̂ , Ŝ).



As the restriction map on T̂ and Ŝ are equal to the
identity, JNS(T̂ , Ŝ)K

[]
p just enforces that there is no F :

Pq → (T → S) such that F (q) is a surjection between T
and S, which is given by NS(T, S).

This proof is much simpler than the usual one in
classical forcing. Indeed, we do not need any hypothesis
like the countable chain coundition[7] on the set of forcing
conditions P. This is due to the fact that we are working
with constant presheaves, whose translation is trivial,
which would not be the case if we were working with
constant sheaves2.

VII. Related Works

A. Topos of Trees

In [2], Birkedal et al. study the internal logic of the topos
of presheaves over ω. They show that this logic admits
general recursive types as soon as the considered recursive
definitions are contractive. In Section V, we have presented
a syntactic translation of this logical layer using forcing.
Our presentation presents several advantages: (i) Since

we have access to the universe Type, we are able to define
an automatic translation from any recursive definition to
a contractive recursive definition. (ii) We are conservative
with respect to inductive types of Coq. (iii) General
recursive types are translated into Coq terms, and can thus
be given a computational contents.

B. Forcing as a Program Transformation

Krivine has been one of the first to study the com-
putational content of the forcing translation [8]. This
work has been rephrased by Miquel in [11], where the
forcing translation of proofs is interpreted as a program
transformation on λ-terms. Their works focus on classical
logic while we only study an intuitionistic translation.
Moreover, since they are working in a logical system with
a syntactic stratification between proofs and propositions
(PAω in [11]), proof-terms and formulas are not translated
uniformly, contrary to our work.

VIII. Future Works

A. From Presheaves to Sheaves

As we have seen in IV-G, our forcing translation is
intuitionistic. A solution to conserve the excluded middle
would be to use sheaves instead of presheaves, for a well
suited topology (the dense or double negation topology)
[10]. Sheaves restrict presheaves with gluing conditions, so
we need to introduce a notion of topology on P, formalized
inside Coq, to define them.

B. Formalizing semantics of complex programming lan-

guages

Defining semantics of rich programming languages with
mutable states, recursive types and impredicative poly-
morphism is an hard problem. Recently, some works com-
bining step-indexing with Kripke logical relations have

2A constant presheaf is not a sheaf in general.

been proposed [13], [5], [3]. Those semantics use a no-
tion of Kripke world to specify memory, which has to
been defined as a generalized inductive type of the form
W = V al → W → Prop. Formalizing them is thus hard,
and has been the motivation of [2].

We plan to use forcing iteration to define a forcing
layer at the top at the step-indexed layer, whose forcing
conditions would be Kripke worlds modelling memory
states. It would then be possible to state abstract rules
to reason on stateful programs, opening the door to a
complete formalization of those works in Coq.

C. Ultrafilter over N

An interesting example of forcing translation we wish
to adapt is the proof of Levin [9] of conservativity of the
existence of an ultrafilter over N with respect to higher-
order Peano Arithmetic with the axiom of dependent
choice.

This proof uses partial functions from N to bool with
an infinite domain as forcing conditions. Defining a forcing
layer over this set, we could give a computational content
to proofs which use an ultrafilter, like Gödel completeness
theorem or Ramsey theorem. It would then be interesting
to compare this interpretation with the one in [8].
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