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A complete probabilistic model of random positive definite matrices is developed that incorporates constraints on the standard deviations of a set of its eigenvalues. The model is in particular applicable to the representation of the mass and stiffness matrices of random dynamic systems of which certain natural frequencies are observed. The model development is based on the maximization of the entropy under a set of constraints representing the prescribed eigenvalue standard deviations, the mean matrix being given, and the existence of the mean Frobenius norm of the inverse of the random matrix. The efficient simulation of samples of random matrices according to the proposed model is discussed in details. Finally, examples of application validate the above concepts and demonstrate the usefulness of the proposed model.

INTRODUCTION

The stochastic modeling and simulation of random multi degree of freedom systems has often in the past been accomplished by postulating joint probability density functions of the components of their mass, stiffness, and/or damping matrices or, equivalently, of their corresponding natural frequencies, damping ratios, and mode shapes (e.g. [START_REF] Ghanem | Stochastic Finite elements: A spectral approach[END_REF][START_REF] Kleiber | The Stochastic Finite element Method[END_REF][START_REF] Rivas-Guerra | Local/Global Effects of Mistuning on the Forced Response of Bladed Disks[END_REF][START_REF] Schueller | A State-of-the-Art Report on Computational Stochastic Mechanics[END_REF]. However, a different approach has recently been proposed [START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF] and validated (see [START_REF] Soize | Probabilistic models for computational stochastic mechanics and applications[END_REF], for a review) in which the probabilistic model of the mass, stiffness, and/or damping matrices is not assumed but rather determined to maximize the entropy under the constraints (i) that these matrices are positive definite, (ii) that their mean values are prescribed, and (iii) of an overall measure of variation (variance of the norms of the matrices prescribed). This approach has been named nonparametric since no parameter value is selected by the user. It will be further qualified of unconstrained to differentiate it from its constrained extension presented below.

The unconstrained approach is applicable to a broad range of situations in which little, i.e. only a single measure of variability, is known about the randomness of the system. In such cases, the unconstrained approach is particularly advantageous as it permits to derive, on a rational basis, a full stochastic model of the system. There are however various other situations in which more than a single measure of randomness is known, e.g. when tests have been conducted. Natural frequencies are the most standard information obtained from dynamic tests and thus estimates of the mean and variance of the first few natural frequencies of the system may realistically be available. Since the mean natural frequencies are likely to be close to the values obtained for the design configurations, it is typically the variances which provide the most valuable information about the system randomness. They should thus be incorporated in the stochastic model of the system.

In this light, the goal of the present investigation is to extend the formulation of the unconstrained nonparametric approach to allow for additional constraints on the standard deviations of some of the eigenvalues of the mass, damping, and/or stiffness matrices. This novel approach will be referred to as constrained in the remainder of the paper.

Note that the expected domain of application of these concepts is the low frequency range in which the natural frequencies are distinguishable and observable.

ENTROPY MAXIMIZATION AND CON-STRAINTS

It is desired here to simulate realizations of symmetric positive definite random matrices, e.g. the mass and/or stiffness matrix of a linear dynamic system, the properties of which, i.e. eigenvalues, eigenvectors, components, etc., are all random. This requirement necessitates the specification of the joint probability density function of all elements of the matrix.

In most practical problems, however, this information is not available -only some moments and/or marginal probability density functions are likely to be available. In the absence of the exact distribution, it is then appropriate to ask what are the desirable features of this distribution. In this context, note that the design of structural systems is often robust, i.e. that small perturbations in their geometrical and material properties do not alter significantly the probability of failure/fatigue life of the system considered (see Rivas-Guerra and Mignolet, 2004 for a notable counterexample in turbomachinery). It is thus desirable to dispose of a probabilistic model which places particular emphasis on "larger" deviations from the design conditions. Equivalently, this model should have a large value of the entropy as defined by

( ) ( ) ∫ Ω - = x d x p x p S X X ln (1)
where X denotes the vector of random variables considered of joint probability density function ( )

x p X .
Further, x denotes the realized values of X, and Ω the domain of support of ( )

x p X .
Consistently with the above discussion, a probabilistic model of uncertain nxn matrices A has been formulated [START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF] to maximize the value of the entropy S ( )

( ) ∫ Ω - = a d a p a p S A A ln (2)
given the following physical constraints:

( ) ∫ Ω = 1 a d a p A (3) [ ] ( ) ∫ Ω = = A a d a p a A E A (4) and ( ) [ ] ( ) ∫ Ω ν = finite det ln a d a p a A (5)
where denotes the operation of mathematical expectation,

[] . E ( ) a p A
is the joint probability density function of the elements of A , and det( A ) is its determinant.

The first two of the above constraints correspond to the normalization of the total probability to 1 (Eq. ( 3)) and the specification of the mean matrix (Eq. ( 4)). The third one, Eq. ( 5), implies the existence of the mean squared Frobenius norm of the inverse matrix 1 -A (see [START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF] for discussion). To apply this approach to the simulation of random mass, stiffness, and damping matrices of dynamical systems, it is further required to ensure both the symmetry and positive definiteness of every realized matrix A . This is achieved by introducing the Cholesky decomposition of A , i.e.

T L L A = (6)
where L ~ is an lower triangular matrix with non- negative diagonal elements and T denotes the operation of matrix transposition. The domain of support Ω of the obtained probability density functio then such that the elements

n is ij L ~ belong to for ( ) ∞ + ∞ -, j i ≠ and [ for ) ∞ + , 0 j i = , i.e. { ( ) [ ] [ ) [ ] }. , 0 , , : ,..., 1 , , ; +∞ ∈ ∩ > +∞ ∞ - ∈ = = = Ω ii ij ij T L j i L n j i L L L a
The maximization of the entropy, Eq. ( 2), under the constraints of Eqs (3)-( 6) yields a closed form expression for the joint probability density function of the elements of the random matrix A [START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF]. Further, this distribution only depends on the single parameter ν so that only a broad knowledge of the matrix uncertainty needs to be known or can be enforced. In some situations however, e.g. when considering insertable turbomachinery blades, tests may have been performed that provide more information on the system variability. In the context of structural dynamics, such tests will often focus on the natural frequencies of the system and will likely result in estimates of the variance of the first few natural frequencies. In such circumstances, it is highly desirable to dispose of a probabilistic model of the corresponding mass and stiffness matrices that accurately accounts for all the available information. If only one natural frequency is observed, its variance as estimated by the tests can serve for the determination of the parameter ν, Eq. ( 5), corresponding to the mass and/or stiffness matrix model. However, to account for two or more variances, it is necessary to extend the formulation of Eq. ( 2)-( 5) by introducing additional constraints that can reflect the knowledge on the natural fre-quencies.

To address this extension, consider the generalized eigenvalue problems

i i i B A ϕ λ = ϕ (7) 
and

i i i B A φ λ = φ ~ (8)
where B is a deterministic symmetric, positive definite matrix. In the ensuing discussions, it will be assumed that the eigenvectors i ϕ and i φ are normalized with respect to B so that

1 = ϕ ϕ i T i B i i T i A λ = ϕ ϕ (9) and 1 = φ φ i T i B i i T i A λ = φ φ ~. ( 10 
)
Constraining the variance of the eigenvalues directly is unfortunately extremely challenging because of the lack of an exact expression for the natural frequencies of the random matrix i λ A in terms of its elements. Accordingly, an indirect approach will be selected here which relies on simple constraints that are akin to the second order moments of the eigenvalues. More specifically, it will be assumed that the value of

( ) ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ φ φ 2 i T i A E is specified, i.e. ( ) ( ) ( ) ∫ Ω λ = φ φ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ φ φ 2 2 2 2 ~i i A i T i i T i s a d a p a A E (11) where i s , [ ] n I i , 1 ⊆
, are m known positive con-∈ stants and i φ are the eigenvectors of the mean matrix A corresponding to the m eigenvalues of which the variance is known. For exampl if the variances of the three lowest eigenvalues of e, A have been estim n ated, the i φ will in turn be the eigenvector of the mean matrix A corresponding to its three lowest eigenvalues.

Several comments can made in regards to the constraints of Eq. ( 11). First, these conditions involve second order moments, not variances, but this se the mean values of switch is appropriate becau

( ) i i
are already prescribed by Eq. ( 4). Next, as discussed above, these conditions do not generally relate exactly to the natural frequencies of the random matrix

T Aφ φ

A , but they do so when its eigenvectors are the same as those of its mean A . Finally, it should be noted that the specification of the constraints of Eq. ( 11) provides freedom in the prob-abilistic model of the random matrix A which can be used to match the known variances of the natural frequencies. This last issue will be discussed in more details further.

PROBABILISTIC MODEL DERIVATION

Following the discussions of the previous sections, the proposed probabilistic model ( )

a p A maximizes
the entropy, S of Eq. ( 2), under the constraints of Eqs (3)-( 5) and ( 11) as well as the symmetry and positive definiteness requirements of Eq. ( 6). Using Lagrange multipliers 0 μ , μ ~, 1 -λ

, and i τ ~ the constrained maximization of Eq. ( 2) is reduced to the unconstrained maximization of

( ) ( ) ∫ ∫ Ω Ω ⎪ ⎭ ⎪ ⎬ ⎫ ⎪ ⎩ ⎪ ⎨ ⎧ μ - μ - = a d a p a a d a p S S A T A tr 0 * ( ) ( ) [ ] ( ) ∫ Ω - λ + a d a p a A det ln 1 ( ) ( ) ∫ ∑ Ω ∈ φ φ τ - a d a p a A i T i I i i 2 ~ (12)
Proceeding next by calculus of variations, it is shown that

( ) ( ) [ ] ( ) ( ) ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ φ φ τ - μ - = ∑ ∈ - λ I i i T i i T A a a a C a p 2 1 tr exp det ~ (13)
where C is the appropriate constant to satisfy the normalization condition, Eq. (3). It should be noted from Eq. ( 13) that this probabilistic model is independent of a rotation/change of coordinate system as the vectors i φ are fixed in space.

Before addressing the evaluation of the Lagrange multipliers, it is desired to simplify Eq. ( 13) and to address the positive definiteness requirement. In regards to simplifications, introduce first the matrix L such that

T L L A = and ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ Λ = Φ 0 ~2 / 1 T L (14a,b)
where Φ denotes the nxm matrix formed by the m eigenvectors i φ , I i ∈ , and Λ ~ is the corresponding diagonal matrix of eigenvalues. Note that the condition of Eq. ( 14b) is introduced to simplify the constraints of Eq. (11) as will be shown below. From Eqs ( 7)-( 10), it can be proved that L can be expressed in the partitioned form

⎥ ⎦ ⎤ ⎢ ⎣ ⎡ Λ Φ = - A L 2 / 1 ~D (15) 
-m) matrix where the nx(n D is any decomposition, e.g. Cholesky, of

A A A D D T T Φ Λ Φ - = -1 ~ . ( 16 
)
tmultiplying Eq. ( 16) by Pre-and pos T and Φ Φ , respectively, it is found that 0 = Φ T D Eq. (14b).

Next, expre as required in ss the random matrix A as

T L G L A = . ( 17 
)
hange of ra a Proceeding with this c ndom vari bles, it is found that the probability density function of the elements of G is

( ) ( ) [ ] ( ) ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ τ - μ - = ∑ = - λ m i ii i T G g g g C g p 1 2 1 tr exp det ( 18 
)
where C is a new normalization constant,

L L T = μ
, and

2 μ ~~i i i λ τ = τ .
try and positive definite-To guarantee the symme ness of G , and thus of A , the model of Eq. ( 18) is reformulated in terms of the elements of the lower triangular matrix H such that

T H H G = . ( 19 
) ize (2000) a i (20) so that
As demonstrated in So , the J cob an of the transformation is

∏ = + - = n l l n ll n h J 1 1 2 ( ) ( ) ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ τ - μ - × ⎪ ⎭ ⎪ ⎬ ⎫ ⎪ ⎩ ⎪ ⎨ ⎧ = ∑ ∑ ∏ = = = - λ + - m i i l il i T T n l l n ll H h h h h C h p 1 2 1 2 1 1 2 tr exp (21)
where C is the appropriate normalization constant over the domain

( ) [ ] [ ) [ ] { } +∞ ∈ ∩ > +∞ ∞ - ∈ , 0 , , : ii ij h j i h .
To evaluate the Lagrange multipliers 

[ ] n I G E = ( 22 
)
where n I denotes the tity matrix. The sim-nxn iden plicity of this condition implies an equally simple form of the matrix μ . Specifically, it can be shown that this matrix is di gonal and thus Eq. ( 21) reduces to a

( ) ∏ ∑ ∑ = = = ⎪ ⎭ ⎪ ⎬ ⎫ ⎪ ⎩ ⎪ ⎨ ⎧ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ τ - ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ μ - = m i i l il i i l il ii i p ii i H h h h C h p 1 2 1 2 1 2 ) ( exp [ ] { } [ ] { } ∏ ∏ ∏ + = - = + = μ - × μ - × n m i i l il ii il n m i ii ii i p ii i h C h h C 1 1 1 2 1 2 ) ( exp exp (23) (24)
om Eq. ( 23) that:

all independent d where i C , i=1,..., n, and il C , i=m+1,..., n; l=1,...,i-1, are appropriate normalization constants and ( )

1 2 - λ + - = i n i p
. It is concluded fr (i) the elements il h , i>l and i>m are of each other and independent of the other elements il h . Further, they are normally distribute with m 0 and standard deviation ean

ii il μ = σ 2 / 1
.

ii (ii) the elements i>m, are all independent of ts h , each other and independent of the other elemen il h . Further, they are distributed according to

( ) [ ] 2 ) ( exp ii ii i p h h C h p μ - = , 0 ≥ ii h ( ii i ii H ii 25) e ) wher ( ) [ ] ( ) ( 2 / 1 ) ( 2 2 / 1 + Γ μ = + i p C i p ii i (26)

and ( )

. Γ denotes the Gamma function. (iii) the e ents il h , l=1, ..., i for a given

i ∈ lem , 1 dent of ⎢ ⎢ ⎢ ⎣ ⎡ ⎟ ⎟ ⎠ ⎜ ⎜ ⎝ τ - ⎟ ⎟ ⎠ ⎜ ⎜ ⎝ μ - = ∑ ∑ = = 1 2 1 2 ) ( exp l il i l il ii i p ii i il H h h h C h p il (27) [ ] m are dependent on each other but indepen the other elements il h . Their joint distribution is ⎤ ⎞ ⎛ ⎞ ⎛ 2 i i ( ) ⎥ ⎥ ⎥ ⎦ over the domain ( ) [ { = = : ,..., 1 , il il i h i l h ] [ ) [ ] } +∞ ∈ ∩ > +∞ ∞ - ∈ Ω , 0 , , ii h l i . From the first observation, (i), it is concluded tha (iii) and th sat- isfy the di t [ ] 0 = il G
for i>l and i>m. Further, the observation e symmetry of the distribution of Eq. ( 27) with respect to the origin imply similarly that

[ ] 0 = il G E
for i>l and i≤ m. It then remains to agonal terms of the mean condition, Eq. ( 22). For i>m,

[ ] E [ ] ( ) [ ] 2 1 2 2 1 1 1 ii i l ii il ii H E i H E G E ∑ = + μ - = = = (28)
where [ ]

2 ii H E
is obtained by integration of Eq. ( 27)

as ( ) ( ) ii i p μ + 2 / 1
. Combining this result and Eqs ( 26) and ( 28), it is found that

2 1 2 - λ + = μ n ii for i>m. ( 29 
)
At this point, it only remains to determine the Lagrange multipliers ii μ and i τ for

[ ] m i , 1 ∈
. This step is achieved by enforcing the conditions

[ ] 1 = ii G E (30) and Eq. (11) or [ ] 2 2 i ii s G E = (31) d, it is usef (32)
for i≤ m. To this en ul to proceed with the following change of variables that highlights the random element ii G

∑ = = i l il ii H G 1 2 1 cos i ii ii G H Θ = (33) 2 1 ( s i i H Θ - (34) 1 ) co sin i i ii G Θ = 3 ( i i i H Θ (35) 2 1 ) 2 cos sin sin i i ii G Θ Θ = - on till and so ) 1 ( 2 1 1 = i H sin ... sin sin - Θ Θ Θ i i i i ii G (36) l=2,..,i-2, a 2 , 0
. The acobian of can be found (e.

where nd [START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF] to be ( )

[ ] 2 / , 0 1 π ∈ Θ i , [ ] π ∈ Θ , 0 il , [ ) π ∈ Θ -) 1 (i i J this transformation g. see
) 2 ( 3 2 1 2 / - - - i i ii i g 2 1 sin ... sin sin 2 ' - θ θ θ = i i i i J (37)
Then, the joint probability density function of ii G

and il Θ , l=1,..., i-1, is ( ) [ ] 2 2 / ) 3 2 ( exp 2 1 , g C g p = θ ii i ii ii n ii i il ii G g g il ii τ - μ - - λ + Θ [ ] ) 2 ( 3 2 ) ( 1 2 1 sin ... sin cos sin - - - θ θ × θ θ × i i i i i p i i i . (3 n s 8)
The above expression demonstrates that the random variables ii G and il Θ , l=1,..., i-1 are all independent of each other and that the joint probability density function of the angles il Θ , l=1,..., i-1 does not depend on the values of τ This important observatio will be used in the nex ection. Further, the marginal distribution of ii G is

( ) i . t [ ] 2 2 / ) 2 (n ii i ii G g C g p ii = + 3 exp ii i ii ii g g τ - μ - - λ (39)
here . For each value of i, the two para w me-0 ≥ ii g ters ii μ

SIMULATION OF RANDOM MATRICES

The simulation of random matrices A according to the model derived above is achieved by first generating random matrices H according to the joint distributions of Eqs ( 23), ( 25), ( 27), ( 38) and ( 39). On sample of ce a H has b n generated, the correspo matrix ee nding G is determine from Eq. ( 19) and, finally realization of d , a

A is obtained from q. (17). Thus, the simulation effort reduces to the generation of appropriate samples of E H . From the observ ions drawn in the previous section, it is concluded that there besides the simulation of the Gaussian variates il H i>m and i>l, three part ar issues. These are: generation of the diagonal elements ii H , i>m according to the distri ion of Eq. ( 25), (ii) the lation of the ratios ii il G H / , i≤ m, described by th angular variables in Eqs ( 33)-( 38), and (iii) the g eration of samples of ii G , i≤ m, according to Eq. (39). These three issues are addressed in order below. The generation of samples of is simplified by considering the variable . Proceeding with the change of variables, it is found that the probability density function of is ii H

2 ii ii ii H Y μ = ii Y ( ) ( ) [ ] [ ] ii i p ii ii Y y i p y y p ii - + Γ = - exp 2 / 1 ) ( 2 / ) 1 ) ( ( , . (40) 0 ≥ ii y
That is, is a Gamma distributed random variable for which efficient simulation algorithms exist, e.g. see [START_REF] Devroye | Non-Uniform Random Variate Generation[END_REF]. Once a sample of has been simulated according to the Gamma distribution, the corresponding value of

, i > m, is found as ii Y ii Y ii H ii ii ii Y H μ = (41)
where ii μ is given by Eq. ( 29).

Simulation of ii il

G H /

, i≤ m, l=1,..., i

A first approach for the simulation of the random variables

ii il G H / , l=1,..., i-1, and i≤ m, is to proceed from the generalized spherical coordinates transformation of Eqs ( 33)-( 36) and to generate independent angles , l=1,..., i-1, according to the distributions il Θ and i are then finally solved from the constraints given by Eqs ( 30) and (31).

τ ( ) [ ] ) ( 1 2 1 1 1 cos sin 1 i p i i i i i C p i θ θ = θ - Θ , ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ π ∈ θ 2 , 0 1 i (42) and ( ) 1 sin ~-- Θ θ = θ l i il il il C p il (43)
with for l=2,..., i-2, and and where the coefficients

[ π ∈ θ , 0 il ] [ ) π ∈ θ - 2 , 0 ) 1 (i i il C
~ are appropriate normalization constants. Note however that the above distributions are non standard and thus a different, easier approach was selected here. Specifically, it was observed in the previous section that the probability density functions of Eqs ( 42) and ( 43) do not depend on and thus they would be the same for =0. In this case however, the simulation of the random variables is completely similar to the case i>m, i.e. the random variables , , are Gaussian variates with mean zero and standard deviation

i τ i τ il H il H i l ≠ ii μ 2 / 1 while ii ii ii Y H μ = /
where is a Gamma random variable. Note further that the appropriate value of ii Y ii μ to be used is the one given by Eq. ( 29) to insure the consistency with p(i) of Eq. ( 24).

In view of these comments, the simulation of the terms 

∑ = = i l il ii H G 1 2 ~ ii il ii il G H G H = l=1,..., i . ( 45 
)

Simulation of ii G , i≤ m

The last step in the simulation of the random matrix H is the generation of the diagonal elements according to their probability density function of Eq. ( 39). This distribution is non standard and thus a dedicated simulation algorithm by rejection from the Student's t distribution with 3 degrees-of-freedom was devised (see [START_REF] Devroye | Non-Uniform Random Variate Generation[END_REF] for background). Such an algorithm requires that there exists a con-

stant such that ii G θ c for all (46) ( ) ( ii Z ii G g p c g p ii θ θ ≤ ) ) ) 0 ≥ ii g
where is defined by Eq. ( 39) and is the probability density function of in which Z is a random variable having the Student's t distribution with 3 degrees-offreedom. That is, the probability density function of Z is

( ii G g p ii ( ii Z g p θ Z y Z θ + = θ 0 ( ) 2 / 3 2 2 1 2 2 1 - ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + = z z p Z ( ∞ + ∞ - ∈ , z ) (47)
and thus, ( ) ( )

2 / 3 2 2 0 2 1 2 2 1 - ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ θ - + θ = θ y g g p ii ii Z (48)
for

. If values of , θ, and can be found for which Eq. ( 46) holds, then random deviates can be generated as

( ∞ + ∞ - ∈ , ii g ) θ c 0 y ii G θ = Z G ii provided that ( ) ( ) θ θ θ ≤ θ Z p U Z p c ii G Z (49)
in which U denotes a random variable uniform in the interval [0,1] and independent of . When the inequality in Eq. ( 49) is not satisfied, no sample is generated. Note further that 1/ is the probability that this inequality be satisfied, so that represents the average number of pairs of samples ( ,

θ Z ii G θ c θ c θ Z U
) that must be generated per value of to be simulated. Accordingly, it is desired to have a value of as close as possible to 1.

ii G θ c The Student's t distribution with 3 degrees-offreedom was selected for the random variable Z first because it can easily be simulated as

( ) ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - - = 2 1 1 2 U U U Z ( 50 
)
where U is a random number uniformly distributed in [0,1]. Another advantage of the Student's t distribution is that it led to values of that remained reasonably small, i.e. to efficient simulation algorithms, over a broad range of values of the parameters p(i) and . 

* * ii Z ii G g p c g p ii θ θ =
. These 2 conditions will provide the values of and in terms of θ. This last parameter will then be selected to minimize while maintaining the inequality of Eq. ( 46) over the entire domain . 

( ii G g p ii ) ) ( ii Z g p θ (51) 0 2 0 2 0 = - μ + τ q y y ii i or 0 8 4 1 2 0 ≥ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ μ - τ + μ τ = ii i ii i q y ( 52 
)
where the notation

2 3 2 - λ + = n q (53)
has been adopted for simplicity.

Next, matching the peak values of and requires that

( ii G g p ii ) ) θ c ( ii Z g p θ [ ] 2 0 0 0 exp 2 2 y y y C c i ii q i τ - μ - θ = θ (54)
which indicates that is proportional to θ while is independent of this parameter, see Eq. ( 52). An acceptable simulation algorithm is obtained for all values of θ for which the inequality of Eq. ( 46) is satisfied. However, the most efficient of these algorithms is the one that minimizes the corresponding , see Eq. ( 54). In view of the linearity of with respect to θ, it is concluded that the best algorithm is the one for which θ has the smallest possible value that guarantees the satisfaction of the inequality of Eq. ( 46) for all values of . To determine this value of θ, introduce first the function

θ c 0 y θ c θ c 0 ≥ ii g ( ) ( ) ( ) w y p w y p c w r ii G Z + + = θ 0 0 0 ln ( 55 
)
and it is desired that r(w) be nonpositive for all . From the above conditions, it is found that r(0)=0 and . Thus, a sufficient condition for r(w) to be nonpositive is that

0 y w - ≥ ( ) 0 0 = ′ r and . (56) 
( )

0 for 0 < ≥ ′ w w r ( ) 0 for 0 > ≤ ′ w w r
After differentiation of Eq. ( 55) and some algebraic manipulations, it is found that Eq. ( 56) is equivalent to

( ) ( ) 2 0 0 2 2 4 3 2 w w y w y i i ii - τ + τ + μ + ≥ θ (57) 
for all . Accordingly, the smallest value of θ corresponds to the maximum of the right-hand-side of Eq. ( 57). In this regards, note from Eqs ( 51) and ( 52) that 0 y w -≥

w y i i ii τ + τ + μ 2 4 0 is always positive for all
. Then, the right-hand-side of Eq. ( 57) is monotonically increasing in and thus the maximum must occur for w > 0. Further, 

0 y w - ≥ [ ] 0 , 0 y w - ∈ ( ) ( ) ( ) ( ) ( ) ( ) 2 
i ii i ii i ii w i i ii w τ + μ τ + μ + = ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ - τ + μ + ≤ ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ - τ + τ + μ + > > which suggests the value of θ as ( ) ( ) 2 0 0 0 4 8 4 12 9 y y y i ii i ii τ + μ τ + μ + = θ . ( 59 
)
The above expression is simple but overestimates the maximum of the function on the right-hand-side of Eq. ( 57). This maximum can be obtained by differentiating and solving a cubic equation in w. Specifically, it is found that 59) and ( 60)-( 64) will be presented in section 6.1.

( ) ( ) 2 2 4 2 3 2 * * 0 * 0 w w y w y i i ii - τ + τ + μ + = θ ( 
The simulation of random values according to the probability density function of Eq. ( 39 

( θ θ Z p Z ) ii Z g p θ ( θ = Z g ii ( ) i G C Z p ii / θ is similarly obtained from Eq. (39). If [ ] ( ) ( ) i G Z i C Z p U Z p C c ii / / θ θ θ ≤ θ , (65) 
a value of is obtained as . Otherwise, the value of is rejected and no corresponding sample of is generated. Either way, the process is repeated starting with the simulation of a new pair of uniform random variables

ii G θ = Z G ii θ Z ii G ( U U,
) until the appro- priate number of samples of has been obtained. Note that Eq. ( 65) is equivalent to the inequality of Eq. ( 49) but is preferable to it because it does not require the numerical evaluation of the normalization constant ii G i C .

IDENTIFICATION OF NONPARAMETRIC MODEL PARAMETERS

Dispersion Parameter δ

It is desired next to characterize the overall variability of the random matrices A around their mean A .

To this end, introduce the dispersion parameter δ as

⎥ ⎦ ⎤ ⎢ ⎣ ⎡ - = δ 2 2 1 F n I G E n (66)
where

[ T F V V V tr 2 = ] (67)
is the square of the Frobenius norm of an arbitrary matrix V . Expanding, the right-hand-side of Eq. ( 67) and taking Eq. ( 22) into account, it is found that

( ) [ ] { } n G G E n T - = δ tr 1 2 (68) with ( ) [ ] [ ∑ = = n l k j i jl il jk ik T H H H H E G G E 1 , , , tr ] (69)
where, by its lower triangular nature, for l > i. The evaluation of the right-hand-side of Eq. ( 69) is accomplished by first separating the cases in which i=j and those in which i≠j. Further, it is recalled from Eq. ( 23) that and are independent if i≠j. Noting finally from Eq. ( 23) that for k≠l, it is found that

0 = il H ik H jl H [ ] 0 = il ik H H E ( ) [ ] [ ] [ ] ( ) 2 1 2 1 , 2 2 1 2 tr ∑ ∑ ∑ ∑ = = = = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ + - = n k n k i ik n k i ik n i ii T H E H E G E G G E . (70)
To evaluate the above expression, it should further be noted

that [ ] [ ] 2 ) 1 ( 2 - = i i ik H E H E
, for k≠i, in view of the symmetry of the variables , l > i, in Eq. ( 23) and further that these expectations are the same if i>m of i≤m in view of Eq. ( 30). Moreover, from Eqs (30), (33), and (34), it is found that

il H [ ] 1 2 2 2 - λ + - λ + = n i n H E ii (71) and [ ] 1 2 1 2 - λ + = n H E ii . ( 72 
)
Introducing Eq. ( 71) and ( 72) into (70) and combining the above results yields

[ ] ∑ = - λ + λ - = δ n i ii n G E n 1 2 2 1 2 2 1 . ( 73 
) Noting finally that [ ] 2 2 i ii s G E =
for i≤ m (Eq. ( 31))

and [ ]

) 1 2 /( ) 1 2 ( 2 - λ + + λ + = n n G E ii
for i> m (from Eq. ( 25)), it is found that ( )( )

∑ = - λ + + λ + - + + = δ m i i n n n m n s n 1 2 2 1 2 1 2 / 1 1 . ( 74 
)
5.2 Identification of the parameters λ, ii μ , and i τ

The above derivations have been carried out in terms of the parameters λ, ii μ , and but these coefficients are not part of the original problem statement and thus they should, in principle, be evaluated in terms of the stated constraints, Eqs ( 5), (30), and (31). Note in this regard that the constraint of Eq. ( 5) has two aspects: the finiteness of ν and its specific value. The finiteness of ν guarantees the existence of the mean squared Frobenius norm of the inverse matrix i τ 1 -A while the specific value of this coefficient providing an overall measure of the randomness of the matrices A . In this light, ν and δ play a similar role and it is thus appropriate to replace Eq. ( 5) by a fixed value of δ, Eq. ( 74), see [START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF] for discussion. Proceeding in this manner would provide a direct expression for λ as ( )

⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ + - δ - + = + = - λ + ∑ = m i i n m s n n m n q n 1 2 2 1 / 2 1 2 2 1 2 . ( 75 
)
Note however that the available information about the randomness of the model lies in the standard deviations of some of its natural frequencies and thus it would be desirable to identify all model parameters from that information alone. Such an approach has already been proposed [START_REF] Capiez-Lernout | Blade manufacturing tolerances definition for a mistuned industrial bladed disk[END_REF]: the standard deviation of the first natural frequency was used to evaluate the parameter λ of an unconstrained model. A similar procedure is accordingly proposed here. Specifically, it will be assumed that the standard deviations of m+1 natural frequencies are known. Then, one of these standard deviation conditions will be used to yield the value of λ while the m others will be enforced through constraints of the form of Eq. ( 11).

To complete this strategy, it remains to determine which standard deviation should be singled out and used to compute λ. In this regard, it is valuable to analyze the behavior of the distribution of Eq. ( 39) as as large values of this parameter occur for small to moderate system variability. In this limit, it is found that a positive value of is obtained only if

∞ → q i τ . ( 76 
) q s i / 1 1 2 + ≤ In this regard, note that is the value of q / 1 1 + [ ] 2 ii G E
obtained from the unconstrained distribution of Eq. (25) in the same limit of . It is thus concluded that the specified value of must be less than what would be obtained by the unconstrained model with the same λ. This result is in fact not surprising since enforcing a higher value of

∞ → q 2 i s [ ] 2 ii G E
would lead to an entropy larger than its maximum obtained for the unconstrained model.

This result also elucidates the determination of the parameter λ. Specifically, it will be evaluated from the standard deviation of the natural frequency which amongst the m+1 prescribed ones has the largest value of . Equality will be achieved in Eq. ( 76) for that value of i and the corresponding parameter will be zero.

2 i s i τ
The above observation that [ ]

2 ii G E
= as independently of i for the unconstrained model implies first that the ratios of the standard deviation of a random natural frequency divided by the corresponding natural frequency of the mean model are all the same, i.e. 1/q. Next, note that not imposing a second order constraint on the eigenvalues m+1 to n has led to the corresponding rows of the matrix

q / 1 1 + ∞ → q
H being obtained from the unconstrained approach. Therefore, the natural frequencies m+1 to n will then all have approximately the same ratio of standard deviation to value of mean model and equal to the largest . Equivalently, the natural frequencies m+1 to n would, in this manner, have their largest possible variances of value dictated by whichever eigenvalue exhibits the largest . While this condition will certainly lead to the largest value of the entropy, it would seem that the observed natural frequency of highest rank would provide the best basis for forecasting the variations of the unobserved, higher rank natural frequencies. Accordingly, it is proposed here to modify the modeling approach so that the parameters 2 i s 2 i s ii μ and obtained for the row of i τ H associated with the observed natural frequency of highest rank be used also for the rows corresponding to unobserved, higher rank natural frequencies. Thus, the standard deviations of these random variables will be approximately (for finite value of q) constant as the rank increases.

NUMERICAL RESULTS AND VALIDATION

Evaluation of the Simulation Algorithm by Rejection

It is first desired to evaluate the performance, as measured by , of the simulation algorithm by rejection of the random variables , see section 4.3. The parameter , which represents the average number of pairs of uniform random numbers

θ c ii G θ c ( ) U U,
to be simulated before an acceptable sample is obtained, is determined by introducing Eq. ( 59) into Eq. ( 54). Note however that the resulting expression does depend on the normalization constant ii G i C which could not be evaluated in closed form. Accordingly, the present validation will be carried first on limiting cases for which i C can be evaluated and then through a numerical study.

Previous applications of the nonparametric approach and the example below suggest that the parameter λ is generally much larger than 1 so that q, Eq. ( 53), is large. In such cases, the distribution of Eq. ( 39) can be closely approximated near its mode by a Gaussian distribution (see [START_REF] Devroye | Non-Uniform Random Variate Generation[END_REF] for a similar results for the Gamma distribution corresponding here to ). To demonstrate this limiting behavior, note first that the mode tends to infinity as , see Eq. ( 52). Next, consider the behavior of for fixed, finite values of y

0 = τ i 0 y ∞ → q ( y y p ii G + 0 ) as . With ∞ → q y , 0 ( ) ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + = + 0 0 0 1 ln exp y y q y y y q q ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ - ≈ 2 0 2 0 0 2 exp y qy y qy y q , ( 77 
)
it is found that ( )

⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + τ - ≈ + 2 2 0 0 2 exp ˆy y q C y y p i i G ii (78) where [ ] ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + τ π ≈ τ - μ - = 2 0 2 0 0 0 2 1 exp ˆy q y y y C C i i ii q i i . (79)
It is thus concluded from Eq. ( 67) that the distribution of Eq. ( 39) is, around its mode, approximately Gaussian. Next, combining Eqs ( 54), (59), and (79) provides the asymptotic limit of as as

θ c ∞ → q 382 . 1 6 = π = θ c ( 80 
)
for all values of ii μ and . Note that the same asymptotic result was obtained from Eqs ( 60)-( 64) thereby demonstrating the equivalency of Eqs ( 59) and ( 60)-( 64) in the limit . It should finally be observed that Eq. ( 80) is valid independently of the mean and standard deviation of the approximate Gaussian distribution of Eq. ( 78) and thus is valid for all Gaussian distributions.

i τ ∞ → q
Although of a lesser practical interest, the other limiting situation a small value of q was also investigated. Consider for example q = 0. In this case, the probability density function of Eq. ( 39) reduces to a truncated Gaussian distribution for which it is found that

1 2 2 1 4 exp - ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ τ μ Φ - ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ τ μ - π τ = i ii i ii i i C (81)
where denotes the cumulative distribution function of a standard Gaussian random variable. The determination of the parameter is achieved separately for ( )

. Φ θ c 0 ≤ μ ii and 0 ≥ μ ii
. In the first case, the mode is 59) and the other from Eqs (60)-( 64)) are very close to each other and to the value of Eq. ( 80). This result is not surprising as the truncation of the normal distribution plays a very small role for large values of the mode. As

θ c i ii τ μ /
decreases, the values of obtained by the two different algorithms differ increasingly from each other. For example, at θ c i ii τ μ / =0, the parameter corresponding to Eqs (60)-( 64) converges to twice the value of Eq. ( 80), as expected since half of the produced Z values, those which are negative, are automatically rejected. On the contrary, the parameter obtained from Eq. ( 59) tends to infinity, due to the vanishing of the denominator of Eq. ( 59). 

θ c ∞ → τ μ i ii /
. It is concluded from the above discussion that the algorithm based on Eqs ( 52), ( 54), ( 60)-( 64) performs very well, typically requiring an average of 1.4 pairs of independent uniform random numbers per sample to be simulated. In unusual cases, the number of pairs of uniform variates may rise to 3. The algorithm based on Eq. ( 59) in place of Eqs ( 60)-( 64) performs almost as well in the cases of greater practical interest but may lead to a large simulation effort when q is small (e.g. equal 0) and ii G i ii τ μ / is typically less than 3.

Numerical Estimation of the parameters λ, ii μ , and i τ

The initial conditions, and , that were used to start these computations correspond to the large q Gaussian approximation of Eq. ( 39), i.e. Eqs ( 78) and ( 79). Accordingly, the constraints of Eqs ( 30) and ( 31) imply that

0 ii μ 0 i τ ( ) 1 8 4 1 0 0 2 0 0 0 0 = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ μ - τ + μ τ = i i ii i q y (82) and 
( )

1 2 0 0 0 2 2 2 1 1 - ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎝ ⎛ + τ = - y q s i i . ( 83 
)
The solution of Eqs ( 82) and ( 83) is readily found as

⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ - - = τ q s i i 1 1 2 1 2 0 (84) 1 1 2 2 2 0 0 - - = τ - = μ i i ii s q q . ( 85 
)
Next, it is necessary to evaluate ii μ and from Eqs ( 30) and ( 31), or Eq. ( 30) and fixed second moments of the exact eigenvalues. In fact, neither of these constraints can be matched analytically given the complexity of Eq. (39) and thus a numerical approach must be undertaken. Either set of constraints (Eq. ( 30) and either Eq. ( 31) or the second moment of the exact eigenvalues) were considered and successfully matched using a polytope algorithm (IMSL routine DUMPOL). i τ At this point, note that the parameter must be positive for the distribution of Eq. ( 39) to be integrable at infinity but this condition is automatically satisfied if the constraint of Eq. ( 76) is met. 0 i τ

Examples of Application

To exemplify the above developments, a n=5 degree of freedom dynamic system was considered exhibiting variations of its stiffness matrix. The above methodology was then applied with A and B being the stiffness and mass matrices, respectively. Further, the analysis of the system was carried out in the modal coordinates of the mean model with mass normalized modes. Thus, B is the 5x5 unit matrix and A is the diagonal matrix containing the squares of the natural frequencies which were first assumed to be 1, 3, 5, 7, and 9 rad/s (mean model 1). Finally, the damping matrix was constructed by assuming a damping ratio of 1% on all modes.

Three sets of computations were carried out, two with the unconstrained nonparametric approach and one with the present constrained formulation. The first unconstrained model was obtained by enforcing a standard deviation of the first natural frequency equal to 0.058, i.e. 5.8% of the corresponding value for the mean model. The second unconstrained model was similarly determined but with a lower standard deviation, i.e. 0.033. As stated earlier, it was observed that the ratios of the standard deviations of the natural frequencies of the random systems divided by their corresponding values for the mean models varied very little, from 0.00575 to 0.00584 for the first system and from 0.00331 to 0.00334 for the second one.

The constrained approach was applied next by imposing ratios of standard deviations to mean model value of 5.8% and 3.3% for the first and second natural frequency, respectively. Since the first natural frequency exhibits the largest relative variations, the first row of H , i.e. the one most closely associated with the first frequency, was characterized by an unconstrained model, i.e.

. Given the lack of information on the third, fourth, and fifth natural frequencies, the parameters 0 1 = τ ii μ and were assumed to be the same for . Accordingly, there were only 4 model parameters to be determined:

, λ, , and . They were iteratively obtained by imposing the prescribed standard deviations on natural frequencies (the exact constraints, not the approximate ones of Eq. ( 11)) and Eq. ( 30) for i=1 and 2. In fact, Eq. ( 30) for i=1 is readily satisfied by selecting and λ to be related by Eq. ( 29) with i=1. Note further that the conditions of Eq. (30) for i= 3, 4, and 5 are automatically satisfied when it is for i=2 as the model parameters Constrained Model ("2Freq"), unconstrained models with higher ("1FreqHi") and lower ("1FreqLo") level of variations.

Shown in Fig. 1 are, for each of the three random systems, the distributions of the five natural frequencies divided by their corresponding value for the mean model. It is seen from this figure that the probability density function of the first natural frequency of the constrained system closely match its counterpart for the unconstrained system with the largest, i.e. 5.8%, level of variations. Similarly, the distributions of the 2 nd -5 th natural frequencies of the constrained system (divided by their corresponding value for the mean model) match those of the unconstrained model with the lowest, i.e. 3.3%, level of variations. It is thus concluded that the constrained model accurately matches the prescribed information on the variations of its natural frequencies. A comparison of the frequency response functions of the 3 random systems was carried out next. Shown in Fig. 2 are the 95th percentile of the Frobenius norm of the frequency response matrix

[ 1 2 - ω + ω - C i M K
] for the constrained model, for the two corresponding unconstrained models, and for the mean model. It is clearly seen from this figure (and additional results not shown here for brevity) that the frequency response functions of the constrained model and of the unconstrained one corresponding to the smaller (3.3%) variations in natural frequencies match very closely in the range 5 . 1 ≥ ω rad/s. For smaller frequencies however, e.g. see Fig. 2(b), the constrained model frequency response function closely match the unconstrained model with the largest variations natural in frequencies. These results are in fact in complete agreement with the distributions of natural frequencies presented in Fig. 1.

It was desired next to assess if the closeness of two natural frequencies of the mean model could affect the applicability of the approach and/or the validity of the above observations. To this end, the above computations were repeated exactly except for the second natural frequency of the mean model which was selected to be 1.06 rad/s., i.e. very close to the first one (mean model 2). The parameters of all three random systems were recomputed and the distributions of natural frequencies and norm of frequency response functions were again determined. Notwithstanding the closeness of the natural frequencies of the mean system, the constrained model accurately matched the prescribed variations of the natural frequencies, see Fig. 3. Note again that the distribution of the first natural frequency matches the one from the unconstrained model with higher level of variations, while the probability density function of the second one matches its counterpart for the other unconstrained model, as seen in Fig. 1. Finally, the norm of the frequency response function matrix, see Fig. 4, exhibits the properties already described in connection with Fig. 2. In regards to the behavior near 1Hz, note first that the two peaks of the mean model have merged when considering any of its statistics (mean, 5th, and 95th percentile) for either of the three random systems. Finally, note that the 95th percentile of the norm of the frequency response function of the constrained model matches closely its unconstrained counterpart with the larger level of variations left of the peak (as dictated by the first natural frequency) and the one with the lower level of variations right of the peak (as dictated by the second natural frequency). Model ("2Freq"), unconstrained models with higher ("1FreqHi") and lower ("1FreqLo") level of variations. Model ("2Freq"), unconstrained models with higher ("1FreqHi") and lower ("1FreqLo") level of variations.

SUMMARY

The focus of this paper was on the derivation and validation of a maximum entropy based probabilistic model of positive definite matrices, such as the stiffness and mass matrices of a dynamic system. Following prior work in this area, the maximum of the entropy is sought under the additional constraints that the mean matrix is known, that each realization A is positive definite, and that the mean squared Frobenius norm of its inverse exists. A new set of constraints was however added in the present effort, Eq. ( 11), to permit the enforcement of prescribed standard deviations of an arbitrary number of natural frequencies of the random system. Accordingly, the present methodology provides a full probabilistic model of random systems from basic variability information. Further, this model is independent of a rotation/change of coordinate system, as desired. It should be noted that if only the standard deviation of a single natural frequency is prescribed, the present model reduces to the one previously developed.

Central to the inclusion of natural frequency variations in the model are the Rayleigh quotient type constraints of Eq. ( 11) and the representations of the mean and random matrices A and A in the specific form of Eqs ( 14), (15), and (17). These representations transfer the m frequency constraints of Eq. ( 11) into prescribed second order moments of the first m diagonal elements of the positive definite random matrix G , the mean value of which is iden- tity. Enforcing the positive definiteness of G is achieved by formulating directly the probabilistic model in terms of its Cholesky decomposition H .

In fact, the joint probability density function of its elements is given by Eq. ( 23) in which it is recognized that each row is stochastically independent of the others. Further, the first m rows, i.e. those associated with the natural frequency constraints, and the remaining ones are characterized by two different types of joint probability density functions. For rows m+1 to n, it is found, as in prior investigations, that all elements are independent of each other with the diagonal ones being distributed as square root of Gamma random variables. Further, the non-diagonal elements are found to follow a Gaussian distribution. The joint probability density function of the elements in the rows 1 to m is more complex because of the frequency constraints which induce a statistical coupling between these random variables. Nevertheless, the joint probability density function of these elements was obtained, Eq. ( 27), and discussed extensively. Further, a simple approach was given to simulate these elements which hinges on the generation of samples of the diagonal elements according to the distribution of Eq. (39). This task was achieved by an efficient, specially designed rejection algorithm, see Eqs ( 46) and ( 59)-( 64).

ii G

The details of the application of this model were discussed and exemplified on the stiffness matrix of two 5 degree of freedom models, one exhibiting widely spread frequencies while the other has two very close natural frequencies. In both cases, the model accurately matched the prescribed information on the natural frequency variations and thus provides a sound and complete probabilistic description of the random stiffness matrix of these stochastic systems.
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 1 Figure 1. Probability density functions of the squared natural frequencies divided by their corresponding value for the mean model. Mean model 1.Constrained Model ("2Freq"), unconstrained models with higher ("1FreqHi") and lower ("1FreqLo") level of variations.
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 2 Figure 2. (a) Frobenius norm of the frequency response function matrix, (b) same, zoomed. Mean model 1.ConstrainedModel ("2Freq"), unconstrained models with higher ("1FreqHi") and lower ("1FreqLo") level of variations.

Figure 3 .Figure 4 .

 34 Figure3. Probability density functions of the squared first and second natural frequencies. Mean model 2. Constrained Model ("2Freq"), unconstrained models with higher ("1FreqHi") and lower ("1FreqLo") level of variations.