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Abstract 
In order to predict the nonlinear dynamic response of automotive equipment supported by rubber mounts, 
it is proposed to extend the generalized Dahl model for taking into account the visco-elastic behaviour of 
elastomer mount and to combine it, in a next step, with the reduced dynamic equations of the equipment 
supposed to exhibit a linear behaviour. To this end, the parameters of the restoring force model of the 
mounts are identified through a series of tests accounting several types of solicitation. The procedure 
applied to the measured force-deflection loops makes automatic the data processing and thus the 
parameter identification of the model. The application concerns the suspension of an automotive engine 
cooling module. 

1 Introduction 

The qualification of on-board manufactured components forces the automotive suppliers to subject their 
products to vibration tests defined by standards that are more and more drastic for fitting the complex car 
environment solicitations. On-board automotive equipments are subjected to base or active excitations 
which can be time varying, combined, superposed, see Figure 1.  
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Figure 1: Solicitation environment of linear on-board equipment with nonlinear suspension 

Amongst all the different types of suspension, see the review of Ibrahim  [1], the passive suspension made 
of elastomer mounts remains the best choice regarding the economical-performance compromise. For 
reducing the numbers of tests, it takes advantages to develop a FE model involving the nonlinearities and 
dissipation brought mainly by the rubber mounts. The dynamic condensation technique associated with the 
FE method is usually used because it is well-adapted for modeling the linear behavior of structures, Craig 
and Bampton  [2]. The physical degrees of freedom (DOF) kept in the reduced basis permit connecting the 
nonlinear mechanical component, Gjika and al.  [3]. To sum-up modelling rubber mounts requires to take 
into account a multi-parameter dependence because, pre-load, type of excitation, forcing frequency, 
frequency and amplitude deflection, warm-up and ambient temperature have different effects on the 
nonlinear behaviour (Nashif, Jones and Henderson  [4]), Petitet, Braquins  [5]). 



The non linear behavior of mechanical components can be modeled either by parametric models or non-
parametric models (Vestroni and Noori  [6]). The former provide stiffness and damping parameters (such 
as Kelvin Voigt, Maxwell, Masing models), that are introduced in the first member of the equation of 
motion while the latter give a restoring force (such as the Dahl model) introduced in the second member. 
Al Majid and Dufour proposed a generalized Dahl model for force-deflection loop. It can model different 
behaviors such as softening, hardening or a combination of both and has been used for predicting the time 
response of a beam with an all-metal mount, subjected to shocks  [8], and to harmonic force  [9]. Then it 
has been applied to belt tensioner (Michon and al. [10]) and passive actuator for the autonomous hexapod 
deployment. As these previous mechanical components  provide elastic and dry-friction forces, they 
exhibit, at contrary to the rubber mount, an elasto-plastic behavior that is forcing frequency independent. 
Consequently, modeling rubber mount requires extending the generalized Dahl model for taking into 
account the visco-elastic effect. This is the purpose of this article. 

 

Section 2 presents the Dahl model generalized by Al Majid and Dufour [8] and its extension to the rubber 
mount used for the automotive equipment suspension. The experimental tests are carried out on the rubber 
mounts within their environment, i.e. with the connecting parts to the cooling module. The objective is to 
demonstrate that this restoring force model is efficient and easy to use and can advantageously replace 
rheological models. It is described by a first order differential equation which can be coupled with 
equations of motion of the equipment, forcing the non linear response prediction to be integrated in the 
time domain. Section 3 presents a data processing permitting the automatic identification of the model 
parameters by analyzing measured force –deflection loops. The specific interpolation, presented in section 
4, gives the model parameters for any force deflection loops in the parameter ranges. Finally the 
implementation of the generalized Dahl model extended to the rubber mount is implemented in a FE code. 
Then, experimental and numerical force-deflection loops of rubber mounts used for the suspension of an 
engine cooling module are compared. 

2 Generalized Dahl model extension 

The investigated rubber mounts are made of pure elastomer, exhibiting a visco-elastic behaviour. 
Moreover the equipment-mount interface and the end-stop phenomena add also deflection nonlinearities. 
Therefore establishing a FE model is not obvious for such a component and it is logical to extract the 
required parameters from measured force-deflection loops which depends also on temperature, forcing 
frequency. Such a non linear behavior makes the prediction of the global assembly delicate, (Lacarbonara 
and Vestroni  [7]). In order to obtain the most general and easily formulated model possible, the aim is to 
model the force deflection loop based on boundary curves, which can be temperature, frequency and 
amplitude dependent. 

2.1 The generalized Dahl’s model (GDM) 

 
Figure 2: Example of hu and hl boundary curves 



The GDM, that is a force-deflection model, has been proposed by Al Majid and Dufour ( [8],  [9]). Let u 
and R be the deflection and restoring force respectively. The model is expressed as: 
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where 
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with β a parameter that has a stiffness dimension and hu, hl the upper and lower boundary curves 
approximated by a polynomial expansion which can depend on deflection, rate of deflection, temperature, 
forcing frequency, etc.. Consequently this model can take into account a combination of the 
environmental effects such as dry friction, visco-elastic behavior, mechanical gaps or end-stops, but 
requires an experimental investigation for identifying its parameters. 

2.2 Experimental identification of the rubber mount  

In order to illustrate the procedure for evaluating the GDM parameters, let the experimental identification 
be carried out on upper and lower rubber mounts, which support an automotive engine cooling module, 
see Fig. 3. 

 
 

 

 

 

Figure 3: Exploded view of the cooling module 
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Figure 4: Testing devices for shear (a) and axial (c) tests applied on the rubber mount equipped of its 
interfaces. 



Two testing apparatus have been designed to test the rubber mounts in traction-compression (see Fig.4a) 
and in shear deflections, (see Fig. 4c). It should be noted that the transverse test shown in Fig. 4a is 
performed with two mounts in order to remove the bending effect. A particular attention was paid on the 
boundary conditions of the rubber mount available in operating condition: these are plastic and metallic 
interfaces. For the lower rubber mount, the pin of the watertank is used as the exciter connection and a 
piece of the front end as housing. They enable to keep the gaps and dry friction effects. 

An electrodynamic shaker subjected the item to a sinusoidal excitation with a deflection amplitude u1 
controlled by a closed-loop, and a forcing frequency Ω. A bias u0 permits to impose a preload. The forcing 
frequency range has been chosen from a real power spectral density (PSD) test. Acceleration recordings 
gave the range of the deflection, and the maximum frequency is chosen as twice of the frequency range 
(usual criteria for mode extraction in PSD numerical simulation). The deflection imposed to the rubber is 
measured by an eddy current sensor, and the transmitted force by a piezo-electric cell load. 

 
Figure 5: Deflection (blue) and force (red) samples in the time domain 

The force and deflection time histories plotted in Fig. 5 highlight that the lower rubbers has a nonlinear 
behavior, see Fig. 6: designed for supporting a part of the module weight, it has the degree of freedom to 
translate along the pin of the watertank in the presence of the sinusoidal forcing. Indeed, for large 
deflections, the rubber mount is no more compressed, and force reaches a threshold, see Fig. 6. Moreover, 
increasing the forcing deflection amplitude introduces a loop shift due to the lower rubber mounts which 
leaves more and more the hole in which it is inserted. 

Once the measured force-deflection loops are obtained, an automatic data processing has to be established 
for identifying the GDM parameters. 

 
Figure 6: Force-deflection loops recorded at 5.6Hz for different deflection amplitudes 



3 Automatic model parameter identification 

3.1 Average cycle extraction 

The first step of the parameter fitting process is to correct the raw experimental data to make their 
processing easier and run faster. Indeed, experimental data are often corrupted with noise, it seems better 
to evaluate an average hysteresis loop from the loops recorded.   

Hence,  a spatial averaging of the values is performed (Fig. 7). The working plane that contains the cycle 
is partitioned with small rectangular areas. A sweep is made on all the rectangles to define if points of the 
curves are present or not in it. Each time several points are surrounded by the rectangle, an average point 
is created as a barycentre of all the points. 

The main advantage of this method is its robustness but it’s time consuming. In the version we 
programmed, blank corners are first removed from the sweeping to gain time on the process. 

 
Figure 7: Spatial averaging, example of result average cycle(red), on original points (red)  

3.2 Skeleton extraction 

After obtaining an average cycle, the scaling of Dahl’s model parameters require a sorting of the points. 
We have to define for each point if it belongs to the upper or the lower curve of the cycle. We decide to 
automate this sorting by comparing the coordinates of the point to a skeleton curve equation. The points 
corresponding to the skeleton curve must first be created. We evaluate their coordinates thanks to a 
sweeping on abscissas. For each abscissa range, a skeleton point is created as an average of the ordinates 
of the curve points existing in the range. A polynomial interpolation can be used to obtain an approximate 
equation of the skeleton curve. 

 
Figure 8: Cycle with its skeleton curve 

All point coordinates can then be injected in the skeleton curve equation. The result enables to define if 
the point is upper or lower than the curve. 



3.3 Equivalent excitation 

The imposed displacement during the test may not correspond exactly to what is defined in the control 
software. Therefore, it can be necessary to evaluate what are the real values from the measurements. Since 
our excitation is harmonic we have to evaluate U0 and U1 as:  

 )sin(10 tUUU ω+=  (5.) 

These parameters are obtained by calculating the intersection points of the two polynomial envelop 
curves. These points correspond to the roots of the function defined by: 

 )()()( xPxPxQ lu −=  (6.) 

where Pu(x) and Pl(x)  are the polynomial functions corresponding to the upper and lower envelops. 
Actually, the intersection points satisfy the relation: 

 )()( xPxP lu =   (7.) 

In our case study, the polynoms order is larger than 2. Therefore, there can be more than 2 real roots for 
the function Q. We have to eliminate complex roots and non physical values. This method can lead to not 
consistent results if the 2 polynomials have no intersection point in a reasonable range of displacement,  
that is why we need to be able to modify manually these parameters. 

3.4 ββββ Evaluation – Stokes’ theorem 

The β parameter is closely linked to the inner area of the hysteretic loop. An automated procedure to 
evaluate the value of this parameter can be based on the difference between the area of the experimental 
cycle and the area of the calculated cycle from the identified model parameters.  

The area of any surface can be approached thanks to differential geometry. Stokes’ theorem  [11], which is 
a central result on differential form integration, enables to obtain formula to switch from perimeter to area. 

Stokes Theorem:Let M be an oriented smooth manifold of dimension n and let w be an n-1 differential 
form that is compactly supported on M. So, we have: 

 ∫∫ ∂
=

MM
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where d denotes the exterior derivative,∂M the boundary of M. 

.  

Figure 9: Stokes' theorem illustration 

Another version of this theorem known as the Green Riemann theorem  [12] gives a differential form on 
2ℜ : 
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To obtain immediately an area definition, the best is to define the differential form as: 
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With the previous equation we obtain: 
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or: 
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where S is the inner area of the surface. Finally, the discrete formulation is given by: 
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where dxi et dyi  can be calculated as : 
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β can then be evaluated by comparison between the experimental area and the model area. 

3.5 Iterative reconstruction of the restoring force  model 

 

Figure 10: Reconstructed cycles obtained with 3rd order polynomials β = 1 (left), with 3rd order 
polynomials β = 262 (right) 

 

In our case study, the two envelop curves hu and hl are easily approximated thanks to polynomial 
regression. Several tests enabled to obtain a satisfying fitting of the cycle with 3rd order polynomial forms  
of the deflection u such as: 

                                                                     3
3

2
210 uauauaaR +++=                                                (15.) 

Where the an coefficients depend on the excitation parameter. The reconstruction of the restoring force 
model is based on the incremental calculation of the restoring force thanks to its derivative. 

dt
dt

dR
RR *12 +=      (16.) 



where 
dt

dR
 is given by (1). 

 
Figure 11: Reconstructed cycle with a 9th order polynomial beta=262 

4 Model use – Bilinear Interpolation 

It is reminded that the rubber model is established in order to be fully integrated in a global dynamic 
transient simulation. It means that at each time of the simulation the model should provide a restoring 
force that corresponds to a frequency and an amplitude of a given deflection. From all the tests performed, 
we have identified several sets of model parameters corresponding each to one couple (deflection 
amplitude – frequency) and therefore to one hysteresis loop. The purpose is now to pass from one cycle to 
another since from two different times the amplitude of deflection and its frequency may change.  

4.1 Presentation 

Several ways have been investigated to be able to shift from one cycle to another in terms of deflection 
amplitude and frequency of solicitation. This shift between cycles can be realized through an expression or 
an interpolation of the polynomial coefficients an (see Eq. 15.) 

 
Figure 12: Table of parameters for several excitations (f frequency, u deflection amplitude) 

It can be seen on the above figure that an values change in various way depending on excitation 
parameters. In our case, we consider this evolution only based on the frequency and the amplitude of the 
excitation. Actually standard automotive supplier vibration tests occur in normal conditions of 
hygrometry, pressure and temperature. Considering only these two excitation conditions enables to 
represent the an parameters values as 3D surfaces (Fig. 13). 



 
Figure 13: Example of an an response surface 

The method consists in a bilinear interpolation of the value of the restoring force itself, or of the 
parameters of the model, i.e the polynomial coefficients.  

4.2 Interpolation Principe 

We choose here to make a parallel with finite element models. All couples of  excitation parameters 
(deflection, frequency) can be considered as a node of  a mesh, numbered by ascending order in deflexion 
and then in frequency.  Each element is a rectangle with four nodes. 

 
Figure 14: Mesh defined by tests points 

As we can see in the figure 14, the test space is often defined as triangle area. Actually, high frequencies 
of excitation do not enable high amplitude of deflection (due to the shaker limitations). Rectangle 
elements require that we force excitation couples points to have same frequencies or deflections. That is 
why we have to define excitation nodes as an average of similar frequencies or displacements. This 
precision is really important because finite elements interpolation requires geometrical functions to go 
from real element to perfect shaped element in a reference space  [13]. 

 
Figure 15: Space changing 

The rectangular shape of our elements enables to express easily geometrical functions as: 
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The evaluation of maximum u (displacement) and f (frequency) can be automated thanks to the expression 
of the vectors of the connectivity matrix. Finally, the value to interpolate A (corresponding to one of the 
an) can be obtained anywhere in the element thanks to [ ]4321 AAAA  the value of A at each node 
of the element as: 
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The main advantage of this method is its simplicity of implementation once the matrix formulation is 
defined.  

4.3 Out-of-range points 

Numerical computations of time displacement and force response can lead to points that do not belong to 
the test space. That is why it is compulsory to integrate a processing for these points, to prevent solver 
crashes. It is proposed to consider out of range points belonging to virtual elements which nodes are 
created as linear dependant to real points insuring continuity. 

 
Figure 16: Virtual elements illustration 

The virtual element is created so that the out-of-range point is located at the middle of an edge. The value 
of A is given at the virtual nodes considering it is linear regarding the two closer real nodes aligned with 
the virtual one. For example, for the Y node the upper left virtual element of figure 16: 
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The same principle is use for corner elements but the calculation is done twice on the last point, once 
considers the value as linear in term of displacement, once in term of frequency. The retained value is 
finally an average of the two previous results. 

A generalization of the method has been created to enable the reconstruction of an entire surface of 
response, on the basis of a triangle test surface. In particular, the definition of interaction between real and 
virtual elements must be carefully analyzed. The results of interaction are shown on figure 17. 



 
Figure 17: Interaction between real and virtual elements 

This method enables to take into account as many data from the real elements as possible to be able to 
give a plausible response for every non predictable excitation that could occur during the simulation. 

The interpolation method results in the implementation of the following data processing algorithm for 
choosing the good elements of the mesh, or virtual elements that will give the most accurate results. 

 
Figure 18: Support element choice algorithm 

The process enables to create surfaces of response on the basis of the test mesh. 



 
Figure 19: Example of extrapolated surface of response representing the values of a2 

5 Results and solver integration 

Automotive suppliers perform random vibration tests on their components within the car manufacturer 
environment. In the case of engine cooling module, it requires validating the structure with its non linear 
supporting mounts. Actually, such rubber components are not taken into account in all numerical 
simulations whereas they can have a big impact on the structure dynamic behavior. The usual average 
impact appears thanks to the stress criteria value use to validate simulation results.  Actually, the 
numerical stress value defined as critical has been scaled comparing simulation results to failure observed 
in tests. This empirical solution doesn’t enable to have a real fatigue post-processing on the basis of the 
calculated stress levels. 

That’s why a numerical model of rubbers, fully integrated to an industrial Finite Element Analysis (FEA) 
solver, is required. 

5.1 Results 

The whole process has been programmed on OCTAVE, GNU-licensed MATLAB-like application  [1].  

The automated data processing is integrated to a program called RUB.I.S.  Its interface enables to perform 
the post processing of tests data with modifiable parameters such as the degree of the polynomial 
interpolation, the range of force and deflection, the frequency. After uploading a results file, a first 
processing is performed with a 6th order polynomial form. The user can then modify parameters to better 
fit the experimental cycle. A report can be saved as a text file to generate a matrix which characterizes the 
rubber.  



 
Figure 20: Example of RUB.I.S data processing 

RUB.I.S enables to quickly characterize the rubber among a wide range of excitations. A program to 
generate interpolated hysteric cycles has also been realized an enables to reconstruct measured cycles. 

 

 
   (a)       (b) 

Figure 21: Comparison between measured (a) and simulated (b) cycles 

5.2 Integration to Abaqus 

The model and the algorithms developed have been integrated to Abaqus 6.9 thanks to user subroutines. In 
particular, the routine UAMP enables to define an amplitude value with commands defined by the user. 
Our amplitude is obtained thanks to previously defined algorithm and interpolation with frequency and 
displacement obtained from the Finite Element simulation. This amplitude modulates a force imposed at a 
node representing the upper bound of the rubber. Abaqus Viewer enables to post process history outputs to 
draw the hysteretic cycles. 



 
   (a)       (b) 

Figure 22: Comparison between experimental cycle (a) and Abaqus  results (b) 

The proposed method enables to directly obtain the hysteretic behavior of the rubber with Abaqus. 

6 Conclusion 

An efficient method to automatically scale the parameters of the modified Dahl’s model has been defined. 
Implemented in an Octave-based software, this method generates the inputs variables of an FEM-like 
FORTRAN interpolation routine. This routine has been exploited within the industrial solver Abaqus to 
simulate characteristics hysteresis of the rubbers of an automotive Engine Cooling module. 

The next steps of this study consist in the modelling of a real PSD test thanks to temporal simulation and 
dynamic condensation with Abaqus, first on an academic structure, and then on a complete engine cooling 
module within its front end. 
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