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Abstract

In order to predict the nonlinear dynamic respasfsgutomotive equipment supported by rubber mounts,
it is proposed to extend the generalized Dahl méatefaking into account the visco-elastic behaviotu
elastomer mount and to combine it, in a next stefn the reduced dynamic equations of the equipment
supposed to exhibit a linear behaviour. To this, ¢hd parameters of the restoring force model ef th
mounts are identified through a series of testowatting several types of solicitation. The procedur
applied to the measured force-deflection loops makatomatic the data processing and thus the
parameter identification of the model. The applaatconcerns the suspension of an automotive engine
cooling module.

1 Introduction

The qualification of on-board manufactured compdsédarces the automotive suppliers to subject their
products to vibration tests defined by standards dine more and more drastic for fitting the comuar
environment solicitations. On-board automotive pqénts are subjected to base or active excitations
which can be time varying, combined, superposesFggure 1.
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Figure 1: Solicitation environment of linear on-bbaquipment with nonlinear suspension

Amongst all the different types of suspension,tbeereview of Ibrahinjl], the passive suspension made
of elastomer mounts remains the best choice regarlie economical-performance compromise. For
reducing the numbers of tests, it takes advantagdevelop a FE model involving the nonlinearitesl
dissipation brought mainly by the rubber mountse @iinamic condensation technique associated wéth th
FE method is usually used because it is well-adbfaiemodeling the linear behavior of structuresi@
and Bampton2]. The physical degrees of freedom (DOF) kephim reduced basis permit connecting the
nonlinear mechanical component, Gjika and3l. To sum-up modelling rubber mounts requiresatce
into account a multi-parameter dependence becaurselpad, type of excitation, forcing frequency,
frequency and amplitude deflection, warm-up and iantbtemperature have different effects on the
nonlinear behaviour (Nashif, Jones and HendegpnPetitet, Braquings]).



The non linear behavior of mechanical componentsbeamodeled either by parametric models or non-
parametric models (Vestroni and Nof#]). The former provide stiffness and damping paegers (such
as Kelvin Voigt, Maxwell, Masing models), that argroduced in the first member of the equation of
motion while the latter give a restoring force (s@s the Dahl model) introduced in the second membe
Al Majid and Dufour proposed a generalized Dahl giddr force-deflection loop. It can model diffeten
behaviors such as softening, hardening or a coribmaf both and has been used for predictingithe t
response of a beam with an all-metal mount, subijets shock$8], and to harmonic forcf]. Then it
has been applied to belt tensioner (Michon arfd@). and passive actuator for the autonomous hekap
deployment. As these previous mechanical compongotsvide elastic and dry-friction forces, they
exhibit, at contrary to the rubber mount, an elgdéstic behavior that is forcing frequency indegbemt.
Consequently, modeling rubber mount requires extgnthe generalized Dahl model for taking into
account the visco-elastic effect. This is the pagpof this article.

Section 2 presents the Dahl model generalized byl&id and Dufour [8] and its extension to the rabb
mount used for the automotive equipment suspensio& . experimental tests are carried out on theeubb
mounts within their environment, i.e. with the centing parts to the cooling module. The objecta/¢oi
demonstrate that this restoring force model iscigffit and easy to use and can advantageously eeplac
rheological models. It is described by a first ordéferential equation which can be coupled with
equations of motion of the equipment, forcing tlom tinear response prediction to be integratechin t
time domain. Section 3 presents a data proces&ngifing the automatic identification of the model
parameters by analyzing measured force —defletdimps. The specific interpolation, presented irtieac

4, gives the model parameters for any force déflectoops in the parameter ranges. Finally the
implementation of the generalized Dahl model ex¢éenid the rubber mount is implemented in a FE code.
Then, experimental and numerical force-deflectmopk of rubber mounts used for the suspension of an
engine cooling module are compared.

2 Generalized Dahl model extension

The investigated rubber mounts are made of pursetaeteer, exhibiting a visco-elastic behaviour.
Moreover the equipment-mount interface and the stag-phenomena add also deflection nonlinearities.
Therefore establishing a FE model is not obvioussioch a component and it is logical to extract the
required parameters from measured force-defledbops which depends also on temperature, forcing
frequency. Such a non linear behavior makes thaigiren of the global assembly delicate, (Lacarlvana
and Vestron{7]). In order to obtain the most general and gasitmulated model possible, the aim is to
model the force deflection loop based on boundamyes, which can be temperature, frequency and
amplitude dependent.

2.1  The generalized Dahl's model (GDM)
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Figure 2: Example of jand hboundary curves



The GDM, that is a force-deflection model, has bpeposed by Al Majid and Dufoufg], [9]). Let u
andR be the deflection and restoring force respectivEhe model is expressed as:

dR

= ﬂ—* (h—sgn%‘) *R) )
where

h=05* ((h, —h)* sgn%) +(h, +h)) (2)

with # a parameter that has a stiffness dimension landy the upper and lower boundary curves

approximated by a polynomial expansion which cgmedd on deflection, rate of deflection, temperature

forcing frequency, etc.. Consequently this modeh dake into account a combination of the

environmental effects such as dry friction, vistaséc behavior, mechanical gaps or end-stops, but
requires an experimental investigation for idemtifyits parameters.

2.2  Experimental identification of the rubber mount

In order to illustrate the procedure for evaluating GDM parameters, let the experimental ideratifon
be carried out on upper and lower rubber mountsctwhlupport an automotive engine cooling module,
see Fig. 3.
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Figure 4: Testing devices for shear (a) and axjalgsts applied on the rubber mount equippedsof it
interfaces.



Two testing apparatus have been designed to tesutiber mounts in traction-compression (see Fig.4a
and in shear deflections, (see Fig. 4c). It shdagdnoted that the transverse test shown in Figs4a
performed with two mounts in order to remove thadieg effect. A particular attention was paid oa th
boundary conditions of the rubber mount availabl®perating condition: these are plastic and metall
interfaces. For the lower rubber mount, the pinhaf watertank is used as the exciter connectionaand
piece of the front end as housing. They enable&pkhe gaps and dry friction effects.

An electrodynamic shaker subjected the item tonassiidal excitation with a deflection amplitude
controlled by a closed-loop, and a forcing frequye@c A biasu, permits to impose a preload. The forcing
frequency range has been chosen from a real pgveetral density (PSD) test. Acceleration recordings
gave the range of the deflection, and the maximigguency is chosen as twice of the frequency range
(usual criteria for mode extraction in PSD numdrgtaulation). The deflection imposed to the rublser
measured by an eddy current sensor, and the traedrforce by a piezo-electric cell load.
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Figure 5: Deflection (blue) and force (red) sampmhethe time domain

The force and deflection time histories plotted=ig. 5 highlight that the lower rubbers has a roadr
behavior, see Fig. 6: designed for supporting & gfathe module weight, it has the degree of freedo
translate along the pin of the watertank in thes@nee of the sinusoidal forcing. Indeed, for large
deflections, the rubber mount is no more compresaedi force reaches a threshold, see Fig. 6. Mereov
increasing the forcing deflection amplitude introds a loop shift due to the lower rubber mountscivhi
leaves more and more the hole in which it is iregbrt

Once the measured force-deflection loops are oddaimn automatic data processing has to be estatblis
for identifying the GDM parameters.

&0

o - 5 1
/ 5.6Hz,01mm ————
& 5 6Hz, m 1
5 _6H m
[ 56Hz, m |
Bz
5.6Hz, 1

DEFLECTION

Figure 6: Force-deflection loops recorded at 5.6 aifferent deflection amplitudes



3  Automatic model parameter identification

3.1 Average cycle extraction

The first step of the parameter fitting procesdaoiscorrect the raw experimental data to make their
processing easier and run faster. Indeed, expetandata are often corrupted with noise, it seegtteb
to evaluate an average hysteresis loop from thesloecorded.

Hence, a spatial averaging of the values is peddr(Fig. 7). The working plane that contains thele
is partitioned with small rectangular areas. A gwisemade on all the rectangles to define if poaitthe
curves are present or not in it. Each time seyewadts are surrounded by the rectangle, an averaigg
is created as a barycentre of all the points.

The main advantage of this method is its robustimgsit's time consuming. In the version we
programmed, blank corners are first removed froenstlieeping to gain time on the process.
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Figure 7: Spatial averaging, example of result agercycle(red), on original points (red)

3.2 Skeleton extraction

After obtaining an average cycle, the scaling ohiBamodel parameters require a sorting of the {goin
We have to define for each point if it belongshe tipper or the lower curve of the cycle. We detide
automate this sorting by comparing the coordinafebe point to a skeleton curve equation. The {soin
corresponding to the skeleton curve must first teated. We evaluate their coordinates thanks to a
sweeping on abscissas. For each abscissa rangeletos point is created as an average of the aitebn

of the curve points existing in the range. A polynal interpolation can be used to obtain an appnaxe
equation of the skeleton curve.

Figure 8: Cycle with its skeleton curve

All point coordinates can then be injected in tkelston curve equation. The result enables to dédfin
the point is upper or lower than the curve.



3.3  Equivalent excitation

The imposed displacement during the test may notspond exactly to what is defined in the control
software. Therefore, it can be necessary to evalvhat are the real values from the measuremeinise S
our excitation is harmonic we have to evallagandU, as:

U =U, +U, sin(t) (5.)

These parameters are obtained by calculating ttegsiction points of the two polynomial envelop
curves. These points correspond to the roots diuthetion defined by:

Q(x) = P, (x) = R (x) (6.

where Py(x) and P(x) are the polynomial functions corresponding to tipper and lower envelops.
Actually, the intersection points satisfy the riglat

P,.(¥) =R (X (7.)

In our case study, the polynoms order is largen thaT herefore, there can be more than 2 real foots
the functionQ. We have to eliminate complex roots and non physaes. This method can lead to not
consistent results if the 2 polynomials have nerggction point in a reasonable range of displanéme
that is why we need to be able to modify manudibse parameters.

3.4  BEvaluation — Stokes’ theorem

The B parameter is closely linked to the inner areahef hysteretic loop. An automated procedure to
evaluate the value of this parameter can be basddeodifference between the area of the experimhent
cycle and the area of the calculated cycle fromdbatified model parameters.

The area of any surface can be approached thamifdrential geometry. Stokes’ theordfri], which is
a central result on differential form integratie@mables to obtain formula to switch from perimetearea.

Stokes Theorem:Let M be an oriented smooth manifold of dimensioand let w be am-1 differential
form that is compactly supported pn So, we have:

.[dez aml 8)

whered denotes the exterior derivatig®] the boundary oM.
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Figure 9: Stokes' theorem illustration
Another version of this theorem known as the Grieemann theorerfil2] gives a differential form on

02

LM [f.dx+ g.dy] = ”M [% - g—;}dxdy 9.)



To obtain immediately an area definition, the hies$b define the differential form as:
(ag _of

ox "yj With g=x and f=-y (10.)
With the previous equation we obtain:

LM [— y.dx+ x.dy] = 2”M dxdy (11.)
or:
0.5* LM [— y.dx+ x.dy] = ”M dxdy=S (12)
whereSis the inner area of the surface. Finally, therite formulation is given by:
0.5* > -y .dx +x.dy =S (13.)
wheredx etdy; can be calculated as :
dx = (%, = %) /2
dyi = (yi+1 - yi—l)/2

[ can then be evaluated by comparison between therienental area and the model area.

(14.)

3.5 lterative reconstruction of the restoring force model

Figure 10: Reconstructed cycles obtained with 3dgiopolynomialg3 =1 (left), with 3rd order
polynomialsf = 262 (right)

In our case study, the two envelop curygsand h, are easily approximated thanks to polynomial
regression. Several tests enabled to obtain dysatjditting of the cycle with 3 order polynomial forms
of the deflectioru such as:

R=a, +au+au”+au’ 15)

Where thea, coefficients depend on the excitation parametee fidtonstruction of the restoring force
model is based on the incremental calculation efréstoring force thanks to its derivative.

dR
Rz:Rﬁa*dt (16)



dR
wherea is given by (1).

2 El 0

Figure 11: Reconstructed cycle with a 9th ordeyipomhial beta=262

4 Model use — Bilinear Interpolation

It is reminded that the rubber model is establisimedrder to be fully integrated in a global dynami
transient simulation. It means that at each timehefsimulation the model should provide a restprin
force that corresponds to a frequency and an amdgliof a given deflection. From all the tests panted,

we have identified several sets of model parametersesponding each to one couple (deflection
amplitude — frequency) and therefore to one hysigteop. The purpose is now to pass from one dgcle
another since from two different times the ampktud deflection and its frequency may change.

4.1 Presentation

Several ways have been investigated to be ablhifiofliom one cycle to another in terms of deflenti
amplitude and frequency of solicitation. This shiftween cycles can be realized through an expressi
an interpolation of the polynomial coefficier@gs(see Eq. 15.)

il sg | 55 | 56 | 58 | 56 | 0 | 10 | 10 | 1o | 10 | 18 | 18 | 18 | 18

u oz7]  osrl el 101 27 osrlmE] 11 n27]  osrlogE] 11 027 ns7) 0E 0,27 057

al| 74839 20453 3292 42574 48921 79862 19005 32552 42,235 47923 £,3573 20565 33376 42314 68,3475 21 762 35636 84313 22293
al | 117,55 75395 48373 26,723 17777 12115 7316 48725 26291 15622 12486 74023 50483 27237 12555 75605 42903 12004 72016
a2| 117,47 -91 341 -B027 55,012 46648 1233 95276 -57 378 -B369 -50,541 12624 10145 93538 -67 044 11881 101,23 9068 12075 108,35
ad| -209,23 -6,1804 33426 26278 21595 2253 20293 40284 33972 26935 25362 -1,3302 43134 36159 20853 -24162 46135 24607 12,743

Figure 12: Table of parameters for several exoiteti(f frequency, u deflection amplitude)

It can be seen on the above figure thatvalues change in various way depending on excitatio
parameters. In our case, we consider this evolution based on the frequency and the amplitudéef t
excitation. Actually standard automotive supplieibration tests occur in normal conditions of
hygrometry, pressure and temperature. Considerimy these two excitation conditions enables to

represent tha, parameters values as 3D surfaces (Fig. 13).
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Figure 13: Example of aa, response surface

The method consists in a bilinear interpolationttodé value of the restoring force itself, or of the
parameters of the model, i.e the polynomial coieffits.

4.2  Interpolation Principe

We choose here to make a parallel with finite elemmaodels. All couples of excitation parameters
(deflection, frequency) can be considered as a nbde mesh, numbered by ascending order in deftexi
and then in frequency. Each element is a rectamigfefour nodes.

f

1 2 3 4

u

Figure 14: Mesh defined by tests points

As we can see in the figure 14, the test spacéas defined as triangle area. Actually, high frexcies

of excitation do not enable high amplitude of defften (due to the shaker limitations). Rectangle
elements require that we force excitation couplaatp to have same frequencies or deflections. Ehat
why we have to define excitation nodes as an aeerddgsimilar frequencies or displacements. This
precision is really important because finite eletaanterpolation requires geometrical functionsgtm
from real element to perfect shaped element idexagrce spacg 3].
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Figure 15: Space changing

The rectangular shape of our elements enablegptesx easily geometrical functions as:



_ U, (MAX) +u, (Min) - f (MAX) + f, (Min)
(U )= udMAxyigmm) and (. f)= fdMAX%ﬁde) (7.)
2 2
The evaluation of maximum (displacement) anfd(frequency) can be automated thanks to the express
of the vectors of the connectivity matrix. Finalthe value to interpolatd (corresponding to one of the
a,) can be obtained anywhere in the element thanl{eﬁ\lo A2 A3 A4] the value ofA at each node
of the element as:

Al
A(u,f):<(1_fk)4(1_,7k) (1+Ek)4(1_’7k) (1+£k)4(l+,7k) (1_Ek)4(1+,7k)>::\§ :N*Ak(18.)
A4

The main advantage of this method is its simplicifyimplementation once the matrix formulation is
defined.

4.3  Out-of-range points

Numerical computations of time displacement anddaesponse can lead to points that do not betmng t
the test space. That is why it is compulsory tegniate a processing for these points, to prevduerso
crashes. It is proposed to consider out of rangetpdelonging to virtual elements which nodes are
created as linear dependant to real points inswomgnuity.

f

u

Figure 16: Virtual elements illustration

The virtual element is created so that the outaofge point is located at the middle of an edge. vetae
of A is given at the virtual nodes considering it r&2lr regarding the two closer real nodes aligneld wi
the virtual one. For example, for thenode the upper left virtual element of figure 16:

Ay_A4 Ay s -ATA

*
u,) (19.)
—U; U, = U,

The same principle is use for corner elementshrutalculation is done twice on the last point,eonc
considers the value as linear in term of displacgnunce in term of frequency. The retained vatue i
finally an average of the two previous results.

A generalization of the method has been createthable the reconstruction of an entire surface of
response, on the basis of a triangle test surfagarticular, the definition of interaction betweesal and
virtual elements must be carefully analyzed. Tlseilte of interaction are shown on figure 17.
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Figure 17: Interaction between real and virtuairedats
This method enables to take into account as matayfoam the real elements as possible to be able to
give a plausible response for every non predictakditation that could occur during the simulation.

The interpolation method results in the implemeatedf the following data processing algorithm for
choosing the good elements of the mesh, or vidleghents that will give the most accurate results.

L
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Figure 18: Support element choice algorithm

The process enables to create surfaces of respartbe basis of the test mesh.
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Figure 19: Example of extrapolated surface of raspaepresenting the valuessgf
5 Results and solver integration

Automotive suppliers perform random vibration teststheir components within the car manufacturer
environment. In the case of engine cooling modtilesquires validating the structure with its namekr
supporting mounts. Actually, such rubber componears not taken into account in all numerical
simulations whereas they can have a big impacthenstructure dynamic behavior. The usual average
impact appears thanks to the stress criteria vakee to validate simulation results. Actually, the
numerical stress value defined as critical has Isealed comparing simulation results to failureesbsd

in tests. This empirical solution doesn’t enabldh&we a real fatigue post-processing on the bddiseo
calculated stress levels.

That's why a numerical model of rubbers, fully imtated to an industrial Finite Element Analysis AfE
solver, is required.

51 Results

The whole process has been programmed on OCTAVEJ-B¥nsed MATLAB-like applicatiorl].

The automated data processing is integrated togramn called RUB.I.S. Its interface enables tdgrer

the post processing of tests data with modifiabdeameters such as the degree of the polynomial
interpolation, the range of force and deflectidme frequency. After uploading a results file, astfir
processing is performed with & 6rder polynomial form. The user can then modifyapaeters to better

fit the experimental cycle. A report can be savea tdext file to generate a matrix which charazeerithe
rubber.
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Figure 20: Example of RUB.I.S data processing

RUB.I.S enables to quickly characterize the rubdnmong a wide range of excitations. A program to
generate interpolated hysteric cycles has also tes#ized an enables to reconstruct measured cycles
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Figure 21: Comparison
5.2 Integration to Abaqus

The model and the algorithms developed have beegrated to Abaqus 6.9 thanks to user subroutines.
particular, the routine UAMP enables to define ampltude value with commands defined by the user.
Our amplitude is obtained thanks to previously mkdi algorithm and interpolation with frequency and
displacement obtained from the Finite Element satnoih. This amplitude modulates a force imposeal at
node representing the upper bound of the rubbexgid Viewer enables to post process history outputs

draw the hysteretic cycles.
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Figure 22: Comparison between experimental cyglarid Abaqus results (b)

The proposed method enables to directly obtaimytséeretic behavior of the rubber with Abaqus.

6 Conclusion

An efficient method to automatically scale the paegers of the modified Dahl's model has been ddfine

Implemented in an Octave-based software, this ndetienerates the inputs variables of an FEM-like

FORTRAN interpolation routine. This routine has meploited within the industrial solver Abaqus to
simulate characteristics hysteresis of the rubbkas automotive Engine Cooling module.

The next steps of this study consist in the madglbf a real PSD test thanks to temporal simuladioc
dynamic condensation with Abaqus, first on an agadstructure, and then on a complete engine cgolin
module within its front end.
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