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Probabilistic uncertainty modeling for thermo-mechanical
analysis of plasterboard submitted to fire load

Seddik Sakji', Christian Soize?* & Jean-Vivien Heck?

March 10, 2008

Abstract: The paper deals with a probabilistic modeling of the thermo-mechanical behavior
of cardboard-plaster-cardboard (CPC) multilayer plates submitted to fire load. The proposed
model takes into account data and model uncertainties. This work is justified by the fact that
fire resistance tests of plasterboard-lined partitions are made impossible when their dimensions
exceed those of furnaces. A fundamental key to solve such a problem is the development and
the experimental validation of a deterministic and probabilistic model of CPC multilayer sub-
mitted to fire load. The first step of this work concerns the constitution of an experimental
thermo-mechanical data base for a CPC multilayer and for its components. These experimental
tests are carried out by the use of a bench test specially designed for this work. The second step
is the development of an homogenization thermo-mechanical mean model for the CPC multi-

layer. The third step is the development of a probabilistic model of uncertainties based on the
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nonparametric probabilistic approach. Numerical results are compared to the experimental ones.

CE Database subject headings: fire resistance, cardboard-plaster-cardboard multilayer, un-

certainties, probabilistic model, experiments, thermal load bench.

Introduction

Large light partitions (10 meters and more) are non-load bearing elements. They are made
of plasterboards screwed on both sides of a metal frame of various constructive configurations.
Besides structural requirements such as the resistance to impact loading and collision loads (see
European Commitee for Standardization 1994), a light partition must verify various fire resis-
tance criteria such as the carrying out of full scale tests under the ISO 834 thermal loading curve
(see International Standards Organization 1975). This last requirement can not be met when the
structure dimensions exceed those of the testing furnaces (up to 3m). One way to circumvent
the dimensional difficulty consists in evaluating partition behavior by means of experimental
and numerical combined approaches. The fundamental key to solve the above problem is to
develop and validate with experiments a deterministic and a probabilistic thermo-mechanical
model of the plasterboard submitted to fire loads. This paper is only devoted to this aspect and
the use of the results presented below in order to analyze large light partitions is introduced
in the discussion presented in the last section. A plasterboard (cardboard-plaster-cardboard
(CPC) multiplayer) gives a partition higher resistance thanks to the important quantity of cap-
illary and chemically bound water contained in the plaster (21% of its weight, see Axenenko,
O. and Thrope, G. 1996). The first step in this paper deals with the identification of the CPC
mechanical characteristics under fire and mechanical loads. For that, one adopts a thermo-

mechanical experimental approach taking implicitly into account the hydrous phase. Indeed,



the mechanical characteristics of the CPC multilayer are determined under the same thermal
loading that a partition would receive during conventional resistance tests. For this matter, a
new thermal loading bench (TLB) is designed allowing a time evolution thermal load equivalent
to the ISO834 function to be reproduced on CPC specimens and then one performs, "quickly",
mechanical tests. this means that the test is carried out in two steps. The first step consists in
applying a thermal load to a CPC specimen. The duration for step one is between three and
ten minutes depending on the the chosen ISO fire load. The second step consists in performing
the mechanical test of the specimen of step one for a selected value of the temperature. The
duration between the time for which the specimen is extracted from the BST (step 1) and the
time corresponding to the end of the mechanical test is thirty seconds as a maximum. Taking
into account the brief delay to realize the mechanical test, the evolution of the temperature is
negligible and consequently the temperature is not measured. A thermo-mechanical mean model
is developed using a homogenization with respect to the thickness of the CPC. In this model,
Najar’s brittle damage model (see Najar 1987) is introduced for the plaster. A devoted finite
element code has been developed and takes into account the evolution of damage within the lay-
ers. This mean model is validated with experiments and constitutes a basic model to implement
the nonparametric probabilistic approach (Soize 2005) allowing model and data uncertainties to
be taken into account. Finally, the numerical results are compared to the experiments.

The outline of the paper is as follows. In the second Section, the procedure of conception is briefly
described, the use of the TLB is presented and finally, the thermo-mechanical tests performed
on plasterboard and its components are given. The third Section summarizes the CPC thermo-
mechanical mean model of homogenization and the model prediction which are compared to
the reference experimental results presented in the second Section. The homogenized thermo-

mechanical probabilistic model and its numerical results are presented in the last Section.



Experimental identification of the thermo-mechanical properties

of the CPC

To identify the thermo-mechanical properties of the CPC, a thermo-mechanical approach, taking
implicitly into account the hydrous phase, is adopted. During ISO 834 equivalent thermal
loading, each CPC specimen is taken parallel to the heat source and one side of the specimen is
exposed to the former. Consequently, the direction of the heat flux and the hydrous transport

are mainly transversal to the specimen. The experimental approach is developed in two steps:

e Thermal loading by means of a thermal load bench (TLB) designed and realized for this

work.

e Thermo-mechanical identification by means of a four-point bending test.

Thermal load bench (TLB)

The TLB (see Fig. 1) reproduces an incidental heat flux equivalent to the one that a partition
would receive during a mandatory test using a gas furnace. It is composed of a radiant panel
(the heat source) and a mobile cart provided with a specimen holder. The heat flux received
by the specimen, hang on the specimen holder, is modified by moving the cart with respect to
the radiant panel. Hence, one can reproduce the I[ISO-thermal-load-equivalent heat flux, not by
modifying the flow of combustible gas (as during tests on conventional furnaces), but by modi-
fying the distance between the specimen and the radiant panel. The specimen thermal loading
takes place only when the radiant panel reaches its steady state. Therefore the illumination
can be considered as constant throughout the test duration. The combination of a heat source
used in its steady state and a specimen movement controlled with millimeter precision insures

an excellent reproducibility of the thermal load. Furthermore, the ECHAFO software (e.g. see



Fromy and Curtat 1999) developed in order to model thermal exchanges in fire resistance fur-
naces, allows us to perform the calculation of the total heat flux received by the specimen surface
at different time steps of conventional fire resistance test. First, one characterizes the incidental
heat flux received by a fluxmeter at different distances from the radiant panel and then, the cart
displacement program is found out in order to reproduce by means of the TLB the incidental
heat flux calculated by ECHAFO. Figure 2 compares the proposed TLB density heat flux with
the calculated incidental density heat flux on the surface of a plasterboard specimen submitted
to the ISO thermal load in a conventional furnace. This figure shows the good re producibil-
ity of the TLB thermal loading and validate then its use in the experimental identification of

thermo-mechanical characteristics of CPC plates.

Mechanical load bench

The second step of the experimental protocol concerns the thermo-mechanical identification
tests of the CPC multilayer and its components. The values of the Young modulus of the CPC
multilayer at different time steps of the ISO thermal load have been identified. Therefore, after
having exposed a 0.4 x 0.4m? specimen to a time evolution of a heat flux corresponding to the
ISO thermal load using the TLB, a 0.08 x 0.4m? new specimen is cut in the specimen central
part. A four-point bending test is then "quickly" performed (see the first Section). The choice
of the specimen dimensions (cutting out a 0.08 x 0.4m? new specimen in the thermal loaded
specimen) is motivated by a concern to preserve hydrous boundary conditions by avoiding the
steam loss in the specimen central part. Concerning cardboard, the same protocol is adopted,
the bending test being replaced by a tensile test. These mechanical tests are achieved using an

INSTRON press of 5.10% N capacity and a 3.10"' m/s displacement rate.



Thermo-mechanical experimental results

As the plasterboard is an orthotropic material, the bending tests are carried out in the longitudi-
nal (LL), transversal (TT), and diagonal (LT) directions at different steps of the time evolution
ISO thermal loading (ambient temperature, 300s ISO, 420s ISO and 600s ISO). For each con-
figuration (mechanical load direction / thermal load time step), six specimens are tested. A
measure of the temperature (performed using a thermocouple located in the middle of plaster-
board) gives a correspondence between the ISO loading time and the average temperature in
the plasterboard. Experimental results show a non linear behavior of the CPC multilayer espe-
cially at room temperature. Figure 3 displays the behavior of the CPC plate according to the
longitudinal direction for different values of the temperature (20°C, 120°C, 170°C and 250°C).
Figure 4 shows the mean value of the experimental Young modulus of the CPC multilayer as a
function of temperature. Concerning the thermo-mechanical identification of CPC components,
the same experimental protocol have been used. Bending tests performed on plaster samples at
different steps of thermal loading show linear-elastic behavior (Fig. 5) with a decreasing stiff-
ness with respect to temperature. As for the cardboard, its behavior shows a light hardening
which vanishes when temperature increases (Fig. 6). For the modeling we assume that the two

materials are elastic linear.

CPC multilayer thermo-mechanical mean model

Consider a CPC multilayer composed of three physical layers (subscript j): cardboard 1, plaster,
cardboard 2. Each physical layer is discretized itself in "numerical" layers (subscript k) (see
Fig.7). The total number of the numerical layers for the composite is denoted by n. Each physical

cardboard layer is assumed to be orthotropic while the plaster layer is assumed to be isotropic.



The elasticity matrix of the constitutive equation of each numerical layer k (k = 1,..., n)
for the mean model is denoted by [A¥] and is a matrix belonging to the set M (R) of all the
positive-definite symmetric (5 x 5) real matrices. The multilayer system is defined in a cartesian

coordinate axis (oxyz) where o is located in the composite midplane.

CPC multilayer homogenization with damage

The usual one dimensional homogenization through the thickness of the multilayer composite
yields a matrix equation relating, by means of the homogenized mean matrix [A9], the membrane
forces n;, i = {1,2,6}, the bending moments m;, ¢ = {1, 2,6} and the shear forces, n;, i = {4, 5},
with the membrane deformations €], j = {1,2,6}, the bending deformations «;, j = {1,2,6}

and the shear deformations e;, j = {4,5} according to Eq. (1).

N1 ‘ | 0 0 671n
M2 [H] | [B] [0 0 ey’
Mg ‘ | 0 0 6%”

my 0 0 K1
(1)
ma [B] [C] 0 0 K2
Mg 0 0 K6
Ny 0 0 0 E44 E45 €4
N5 0 0 0 E45 E55 €5




where

Cl,; = 1/32 — 2 )AG(M,60) iand j=1,2,6 (2b)
B, = 1/23 (2 -2 )A,(M,0) iandj=1,26 | (2¢)
k=1
n Gky 0
[F] = ) (s —zi) : (2d)
=1 0 Gip

The Egs. (2a)-(2d) correspond respectively to the membrane stiffness matrix elements, the bend-
ing stiffness matrix elements, the membrane-bending coupling matrix elements and the shear
stiffness matrix elements. In these equations, € is the temperature and M = (x,y, z) is a point in
the 3D domain. The matrices [A (M, 0)] are such that [A (M, 0)] = (I — [D*(M, 0)]))[A* (M, 6)]
in which [A¥(M, 6)] and [D*(M, 8)] correspond to the stiffness and damage matrices of the layer
k, respectively. Finally, one has A}, = E./(1 — vayvye), Asy = Ey/(1 — vayvye), Ak = Gy,
Afy = vy By /(1 — veyvys) = A5y, Ay = Gy, ASs = Gy and Affy = AE) = ASg = Af, = Al =

Algl = 0.

Heat transfer analysis

The mean thermal diffusivity (see Fig. 8) of the CPC plates is identified by an inverse prob-
lem performed with a developed finite element code of heat transfer analysis and according to
temperature-time tests carried out with the TLB. The CPC thermal conductivity is also iden-
tified by thermal experiments at the steady state performed with the TLB. The heat transfer
analysis through the thickness of the CPC multilayer (taking into account the identified param-
eters) allows the temperature in the middle of the different numerical layers of the CPC to be

calculated as a function of the thermal loading time (Fig. 9). The mechanical characteristics of



the CPC layers (Young’s modulus) are modeled by an affine function of the mean temperature
T. The parameters a and b have been identified with the thermo-mechanical response of the
multilayer composite. (This identification yields a = —3.71 and b = 2.45). It should be noted
that no probabilistic model of uncertainties for the heat transfer analysis is implemented in the

model.

Damage model

As a first approach, a cut-off model was adopted for the plaster layers. For each point of the
modeled domain, the damage is equal to zero if the stress is less than the limit stress and equal
to 1 otherwise. This first nonlinear approach used for modeling the global behavior of the CPC
shows a good qualitative agreement with experimental results at 120°C and some differences
at room temperature (Sakji et al. 2005). In order to improve the model prediction, a brittle
damage model (see Najar 1987) has been implemented for the plaster. According to this model,
which is based on strain energy formulation, the damage evolution law of each numerical layer

of the plaster can be written as

B exp(wh) ifa=0 ,
B = (3)
BE( + awk)/> ifa #£0
In Eq. (3) the parameters 85, o and w* depend on temperature @, on the point M and on
wk = W;erf/W,;‘. The quantity errf is the strain energy of the undamaged material for the
layer k. The nominal damage energy for the layer k, denoted by W}, is defined as the nominal
capacity of the material to store energy in the form of internal structural damage. Finally, ﬁ{f
is the initial damage for the layer k and « is a model parameter. As a first assumption, we

consider the plaster damage as isotropic and follows the damage evolution law of Eq. (3) in each

principal direction. The damage matrix [D*] related to the numerical layer k of the plaster is



then written as

[DF) =6*1), (k=2,...,n—1) . (4)

Finally, the cut-off model is used for the cardboard while a brittle damage model is used for the

plasterboard.

Nonlinear thermo-mechanical analysis of the CPC mean model

A multilayer thin plate theory is used with the constitutive equation Eq. (1). A finite element
code is developed for the nonlinear thermo-elastic model. The mechanical response of the CPC
is calculated as a function of the external mechanical load corresponding to a four-point bending
test. The damage parameters are such that ayy- = 0.1, Bypr = 0.005, (W} )gper = 3.2KJ/m3
for the temperature 6 = 20°C’ and o o5 = 0.8, Biog°c = 0.005, (W}) 997 = 2KJ/m3 for the
temperature § = 120°C’. Figures 10 and 11 show the comparisons of the experimental results
with the numerical simulations for the applied mechanical load as a function of the transversal

displacement at 20°C and 120°C respectively.

CPC multilayer probabilistic model of uncertainties

We now consider data and model uncertainties in the physical layers (subscript j). We have used
the nonparametric probabilistic approach (see Soize 2005) in order to take into account these
uncertainties. According to this approach, a global random model is constructed using random
matrix theory rather than using a probabilistic model of each uncertain parameter (parametric

probabilistic approach (e.g. see Ghanem and Spanos 1991)).
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CPC random stiffness matrix

Each random stiffness matrix [A7] is with value in M3 (R) (plate model). The probability
density function of this matrix is constructed following the procedure given in the next section.
An homogenization throughout the thickness of the CPC (as for the mean model) is applied to
the random multilayer composite and yields the random matrix [A9] of the random homogenized

constitutive equation
[A9) = hom{[A"], ... ,[AT]} . (5)
Probability density function of the random stiffness matrix of the layer j

The probability density function of the matrix [A7] is constructed using the maximum entropy
principle (see Soize 2005). The maximum entropy principle allows the probability density func-
tion of a random variable to be constructed by maximizing the entropy function under constraints
defined by the available information. The available information related to random matrix [A7]

is defined as follows:
1. The random matrix is with values in MJ (R).

2. The mean value is such that {[AJ]} = [4’] in which £{-} denotes the mathematical

expectation.
3. E{|I[AY]7 |2} < +oo where ||[[A]||F = (tr{[A][A]"})'/? is the Frobenius norm.

The last constraint insures the existence of a second-order solution of the stochastic problem
and then to be consistant with mechanic’s considerations.

The random matrix [A7] of the j** layer is written as

[A7] = L) [GwllLas] - (6)

11



where [L 4;] is a (5 x 5) real upper triangular matrix such that [A7] = [L4;]7[L4i]. The prob-
ability distribution function of the random matrix [G 4;] with values in M3 (R) is defined by
the probability density function [G 5] — pg ,;)([G4s]) from MI(R) in R" with respect to the

measure dG 4; such that dG 4 = 2n("—1/4 [[1<ick<n dlG as]ik and such that

1-62

3—5? 3
P ) (Gas]) = Ty g (Gas)) X cay x (det[Gu]) 7 xexp(—trlGa])  (7)

J

in which the normalization positive constant G ,; 1s written as
—5 3 155_—2 n 3 1 —l
Gy = Cm) )™ AL + 50 ®)
J =1 J

In Eq. (8), for z > 0, I'(z) is the gamma function defined by I'(z) = 0+OO t*~le~tdt. The
parameter 0; allows the probability model dispersion of the random matrix [G 4;] to be controlled

(and then the dispersion of the random matrix [A7] to be controlled). We have
6 = {EUIIG 4] = [GalIFH/ NG ATIEY (9)
The parameter J; is independent of the random matrix dimension and must be such that
0<d; <06 . (10)

For the Monte-Carlo simulation method, the realizations of the random matrices [A]’ are con-

structed using the following algebraic representation:
(G i) = [Ly]T[Ly] (11)
where [L;| is an upper random triangular matrix such that:

e Random variables {[L;]xr, k <k} are independent,

e For k < k', the random variable [L;]s, is such [L;]ge = 0 Yies, in which o; = 6;/v/6 and

Y is a normalized Gaussian random variable,

12



o For k =k, [Ljlpr = 0j/2Vijo; = 6]-/\/6 where Vi is a gamma random variable which

probability density function given by

1 A
Py, (V) = 1ﬂ?+(”)r(3/5§ T (1-k)/2)"

Finite element discretization of the stochastic boundary value problem

The nonlinear stochastic boundary value problem is approximated by the usual finite ele-
ment method (also called stochastic finite element method). The mean global stiffness matrix
([K(q, T)]) of the classic mean finite element modeling (i.e. [K(q, T)]q = f) is then replaced
by a random matrix [K(q, T)]. The solution q is no longer deterministic and then becomes a
stochastic process denoted by Q. The mean equation is then replaced by the stochastic equation

corresponding to the probabilistic model of uncertainties which is written as
K@, T)Q=1f , (13)

where [K(Q, T)] corresponds to the global stiffness matrix constructed by the assembly of the

random elementary matrices [K¢(Q, T)] such that

K°(Q, T)] = /D [B(21, z2,0)]T [AY(z1, 20, Q, T)] [B%(x1, x2,0)] dzy dao . (14)

e

In Eq. (14), [AY9(z1,22,Q, T)] denotes the homogenized matrix constructed according to Eq. (5)
where the updated damage, according to Eq. (3) and Eq. (4), is taken into account using internal
iterations. Matrix [B¢(z1,x2,0)| corresponds to the strain interpolation matrix of each finite

element defined in the elementary domain De.

Stochastic solver and convergence

The Monte-Carlo simulation method is used as the stochastic solver for the random nonlinear
equation (i.e. Eq. (13)). For j = 1,2,3, let [AJ(r1)], ..., [A(r,,)] be ns independent real-

izations of random matrix [A7]. Each realization {[A7(r/)], j = 1,2,3} of the physical layers

13



(cardboard 1, plaster and cardboard 2) is constructed using the scheme described in the fourth
Section and according to Eq. (11), Eq. (7) and Eq. (6). The homogenization process given by
Eq. (5) and applied to the random matrices of each numerical layer k, (k = 1, ..., n) throughout
the thickness of the CPC, yields the realization of the random matrix [AY(z1, x2, Q(ry, T),ry)]

of the homogenized multilayer. The corresponding realization of Eq. (13) is then written as

K(Q(r), T)]Qre) = £ . (15)

Equation (13) is solved by performing increments on load with a load step small enough to take
into account damage which is updated according to Eq. (3) of the damage evolution law. The
updated damage is taken into account using internal iterations.

The convergence with a respect to the number ng of realizations rq, ..., r,, used in the

S

Monte Carlo simulation is studied by analyzing the function

1 N 1/2
N — conv(ng) = {n > HQ(W)H2} : (16)
S =1

Let Q; be the random transversal displacement of the CPC plate at a given node of the mesh.
The confidence region with respect to a given probability level P. is defined by the upper and

the lower envelopes (¢* and ¢~ respectively) such as
Prob(q~ <Q; < ¢ )=P. . (17)

The estimation of ¢~ and ¢ is performed using the sample quantiles. Let Q1 = Q;(r1), ..., Qn, =
Qj(rn,), ns be independent realizations of the random variable Q;. Let @1 < ... < @ns be the
order statistics of the independent variables @1, ..., Q,,. Therefore, a possible estimation of

the lower and the upper envelopes of ¢~ and ¢* is
¢~ ~ Q- with j~ = fiz(ns(1 - F.)/2) | (18a)
¢t~ Qv with j* = fiz(ns(1+ P.)/2) (18b)

14



where fiz(x) is the integer part of the real number z.

Prediction of the probabilistic model and experimental comparisons

We consider the boundary value problem corresponding to a four-point bending test and dis-
cretized by the stochastic finite element method. We are interested in the random response Q as
a function of the applied mechanical load. Two cases are considered, the first one corresponds
to a temperature of 20°C (room temperature) and the second one corresponds to 120°C. The
dispersion parameters of the physical layers have been identified with the experimental data

using the random response Q and yields

o (Sptaster)ogrc = 0.15 and (Seardboard)gg-c = 0.08 at 20°C

° (6pla5t€T)IQOCC = 0.18 and (5cardboard)120°c = 0.09 at 120°C

For each temperature case, the Monte Carlo simulation method is carried out for ng simulations
with (ns)y0° = 350 and (ns),90° = 700. Figures 12 and 13 are related to the convergence
function (Eq. (16)) at 20°C and at 120°C respectively. Figures 14 and 15 display the comparison
of the experiments with the confidence regions calculated for P. = 0.98 at 20°C' and 120°C

respectively.

Discussion an conclusion

A deterministic nonlinear thermo-mechanical model has been presented for studying a cardboard-
plaster-cardboard multilayer plate. A new test bench for thermo-mechanical characterization
has been specially developed in order to identify the parameters of the thermo-mechanical model
and to perform its experimental validation. Due to the high complexity of the thermo-mechanical

system induced by the nature of the materials used in the CPC plates (plaster and cardboard),

15



there is a significant variability in the real CPC plates induced by the process of fabrication
and there are both model uncertainties and data uncertainties in the thermo-mechanical model
proposed. Consequently, a probabilistic model of uncertainties has been introduced in order
to increase the robustness of the predictions. The dispersion parameters of the probabilistic
model of the mechanical properties for the cardboard and for the plaster have experimentally
been identified for two temperature steps according to the ISO834 thermal load curve. The
confidence region has been constructed to predict the global thermo-mechanical behavior of the
CPC multilayer plate submitted to a ISO834 thermal loading. The proposed model with un-
certainties can be considered as validated by experiments taking into account the complexity of
the thermo-mechanical system.

In this paper, the heat transfer analysis has been performed with deterministic thermal
properties, which means that no uncertainties modeling have been taken into account for the
thermal properties. It should be noted that another investigation has been developed to analyze
the heat transfer with uncertain thermal properties in the context of the probability theory (see
Sakji 2006). It has been proven that the temperature field in the CPC plate is sensitive to the
uncertainties in the thermal properties but in opposite it has been proven that the statistical
fluctuations of the temperature field are not sufficiently large to significantly modify the nonlin-
ear thermo-mechanical behavior of the CPC plate submitted to fire load and mechanical loads.
This is the reason why we have presented a simplified version of this work in order to increase
its readability. Finally, it should be noted that the uncertainties induced by fire scenario is not
considered in the context of this paper because the thermal loading is fixed by the ISO 834
thermal loading curve.

The limitation of the model developed is due to the use of a nonlinear thermo-mechanical

model instead of a nonlinear thermo-hydro-chemico-mechanical model. However, it should be

16



noted that the hydro-chemical phenomena are implicitly taken into account by the proposed
experimental protocol which reproduces the ISO 834 thermal load curve and is also taken into
account by the use of the probabilistic model of uncertainties.

Concerning the structural engineering applications, the main conclusions of this paper can be
summarized as follows: (1) development of a new experimental protocol for thermo-mechanical
characterization of the CPC plate; (2) development of a nonlinear thermo-mechanical model
including uncertainties and experimentally validated for CPC plates in spite of the fact that no
model existed for such CPC in the literature; (3) the experimental thermo-mechanical measure-
ments on several specimens show small variability of the nonlinear behavior but show a large
variability for the ultimate load; this two types of variability are very well predicted by the
nonlinear thermo-mechanical model including uncertainties (see fig.(14) and (15)).

The objective of this paper is only focused on the development of experimental and modeling
tools to analyze the nonlinear thermo-mechanical response of CPC plates submitted to fire
load and mechanical loads. However, these developments constitute a necessary first stage to
construct a computational model to analyze the nonlinear thermo-mechanical behavior of a
complete large light partition. This aspect requires additional works for which other types of
developments must be performed and are not relevant of this paper. Nevertheless, we give below
some indications about the methodology which could be used and which is in progress. The
first development is related to the connection of the CPC plates to steel frame with studs. A
way to solve this problem is to develop a load-displacement constitutive equation for the studs
connected to the CPC plate using a local three-dimensional finite element nonlinear thermo-
mechanical model. The second development consists in assembling all the CPC plates on the
steel frame with studs and including internal insulation. In a first step, the heat transfer analysis

would be done on this partition and the second step would be devoted to the nonlinear thermo-

17



mechanical analysis of the partition using load-displacement constitutive equation for the studs
and using for each CPC plate the nonlinear thermo-mechanical model including uncertainties

and presented in this paper.
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Notation

The following symbols are used in this paper:

18



mean stiffness matrix of the layer k;

mean damaged stiffness matrix of the layer k;
homogenized stiffness matrix of the multilayer;
membrane-bending coupling stiffness matrix;

bending stiffness matrix;

shear stiffness matrix;

random matrix germ related to the random matrix [A7];
membrane stiffness matrix;

identity matrix;

number of physical layers;

real upper triangular matrix of cholesky decomposed matrix [A7];
set of positive-definite symmetric real matrices;

number of numerical layers;

number of simulations;

19



q,q lower and upper envelopes of the confidence region;

Ty the ¢t" realization belonging to the set of all the realizations;
Bl transpose of matrix [S];

tr([S]) trace of matrix [S];

[S] mean model matrix;

[S] random matrix;

T vector of the mean temperature in numerical layers;

gk damage parameter of the layer k;

57 dispersion parameter of the random matrix [A7];

0 denotes the temperature ;

Prob(X > x) probability that X be greater than x.

]llR+(:c) equal to 1 if z € RT and 0 elsewhere;
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Captions of figures :

Fig. 1. Thermal load bench composed of: (D: Specimen holder, @): mobile cart and @):
radiant panel.

Fig. 2. Incident density heat flux (vertical axis in KW /m?) as a function of time (horizontal
axis in second): calculated heat flux (thick solid line), TLB measured heat flux (dashed and
marked lines), upper and lower ISO 834 equivalent density flux bounds (dot-dashed and dashed
lines respectively).

Fig. 3. Bending test experiments for different values of temperature on CPC specimens
carried out according to the longitudinal direction: graph of the mechanical load (vertical axis
in N) as a function of the transversal displacement (horizontal axis in mm): thick solid lines
(250°C), thin solid lines (170°C), dot-dashed lines (120°C), thin dashed lines(20°C).

Fig. 4. Thermomechanical experiments for the CPC: graph of the mean Young modulus
(vertical axis in MPa) as a function of the average temperature in the CPC (horizontal axis in
°C): solid line marked ”*” (Err), solid line marked ” " (Ep7), solid line marked ”*” dashed line
(Err).

Fig. 5. Bending tests for different values of temperature carried out on plaster specimens:
graph of the mechanical load (vertical axis in N) as a function of the transversal displacement
(horizontal axis in mm): thin solid lines (room temperature), thin dashed line (120°C), thick
lines(170°C), thick dashed lines(250°C) .

Fig. 6. Tensile tests on cardboard for two different values of temperature: graph of axial
stress (in MPa) as a function of strain. Solid lines (tests at room temperature), dashed lines
(tests after 5min ISO thermal load).

Fig. 7. Schematic representation of cardboard-plaster-cardboard plates.
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Fig. 8. Thermal diffusivity of the CPC (vertical axis in (m?/s)) as a function of the thermal
loading time (horizontal axis in (s)).

Fig. 9. Temperature profiles in the core of CPC plates. Temperature in the middle of
numerical layers (Vertical axis in “K) as a function of the thermal loading time(horizontal axis
in s).

Fig. 10. Mechanical applied load (vertical axis in N) as a function of the transversal displace-
ment (horizontal axis in mm): experiments (dashed lines), numerical simulation of the mean
model at room temperature (thick solid line).

Fig. 11. Mechanical applied load (vertical axis in N) as a function of the transversal displace-
ment (horizontal axis in mm): experiments (dashed lines), numerical simulation of the mean
model at 120°C (thick solid line).

Fig. 12. Convergence with respect to the number ng of realizations: graph of the function
ng +— conv(ng) for numerical simulation at room temperature.

Fig. 13. Convergence with respect to the number ny of realizations: graph of the function
ns — conv(ng) for numerical simulation at 120°C.

Fig. 14. Results for 20°C: mechanical applied load (Vertical axis in N) as a function of the
transversal displacement (horizontal axis in mm): experiments (dashed thin lines), numerical
simulations with the mean model (thick solid line), confidence region with the stochastic model
(grey region).

Fig. 15. Results for 120°C: mechanical applied load (Vertical axis in N) as a function of the

transversal displacement (horizontal axis in mm): experiments (dashed thin lines), numerical

simulations with the mean model (thick solid line), confidence region with the stochastic model

(grey region).
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Figure 1: Thermal load bench composed of: (I): Specimen holder, @): mobile cart and 3):

radiant panel.
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Figure 2: Incident density heat flux (vertical axis in KW/m?) as a function of time (horizontal
axis in second): calculated heat flux (thick solid line), TLB measured heat flux (dashed and
marked lines), upper and lower ISO 834 equivalent density flux bounds (dot-dashed and dashed

lines respectively).
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Figure 3: Bending test experiments for different values of temperature on CPC specimens carried
out according to the longitudinal direction: graph of the mechanical load (vertical axis in N)
as a function of the transversal displacement (horizontal axis in mm): thick solid lines (250°C),

thin solid lines (170°C), dot-dashed lines (120°C), thin dashed lines(20°C).
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Figure 4: Thermomechanical experiments for the CPC: graph of the mean Young modulus
(vertical axis in MPa) as a function of the average temperature in the CPC (horizontal axis in
"C): solid line marked ”*” (E), solid line marked ”*” (Ezr), solid line marked ”*” dashed line

(Err).
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Figure 5: Bending tests for different values of temperature carried out on plaster specimens:
graph of the mechanical load (vertical axis in N) as a function of the transversal displacement
(horizontal axis in mm): thin solid lines (room temperature), thin dashed line (120°C), thick

lines(170°C), thick dashed lines(250°C) .
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Figure 6: Tensile tests on cardboard for two different values of temperature: graph of axial
stress (in MPa) as a function of strain. Solid lines (tests at room temperature), dashed lines

(tests after bmin ISO thermal load).
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of cardboard-plaster-cardboard plates.
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Figure 8: Thermal diffusivity of the CPC (vertical axis in (m2/s)) as a function of the thermal

loading time (horizontal axis in (s)).
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Figure 9: Temperature profiles in the core of CPC plates. Temperature in the middle of nu-

merical layers (Vertical axis in ‘K) as a function of the thermal loading time(horizontal axis in

s).

32



300 \

2501 =

200r ==

Load (N)
o
o
4
\\‘
\\\

1001 ly

50r

0 L L L1

5 10 _31 20
Transversal displacement ( 10 3m5$

Figure 10: Mechanical applied load (vertical axis in N) as a function of the transversal displace-
ment (horizontal axis in mm): experiments (dashed lines), numerical simulation of the mean

model at room temperature (thick solid line).
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Figure 11: Mechanical applied load (vertical axis in N) as a function of the transversal displace-
ment (horizontal axis in mm): experiments (dashed lines), numerical simulation of the mean

model at 120°C (thick solid line).

34



0.27

Soardbo:rdo 08

plaster -

0.255 y
0

50 100 150 200 250 300 350
Number of numerical simulations (ns)

Figure 12: Convergence with respect to the number n, of realizations: graph of the function

ns +— conv(ng) for numerical simulation at room temperature.
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Figure 13: Convergence with respect to the number n, of realizations: graph of the function

ngs — conv(ng) for numerical simulation at 120°C.
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Figure 14: Results for 20°C: mechanical applied load (Vertical axis in N) as a function of the
transversal displacement (horizontal axis in mm): experiments (dashed thin lines), numerical
simulations with the mean model (thick solid line), confidence region with the stochastic model

(grey region).
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Figure 15: Results for 120°C: mechanical applied load (Vertical axis in N) as a function of the
transversal displacement (horizontal axis in mm): experiments (dashed thin lines), numerical

simulations with the mean model (thick solid line), confidence region with the stochastic model

(grey region).
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