
HAL Id: hal-00685023
https://hal.science/hal-00685023v1

Submitted on 3 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combinatorial specification of permutation classes
Frédérique Bassino, Mathilde Bouvel, Adeline Pierrot, Carine Pivoteau,

Dominique Rossin

To cite this version:
Frédérique Bassino, Mathilde Bouvel, Adeline Pierrot, Carine Pivoteau, Dominique Rossin. Com-
binatorial specification of permutation classes. 24th International Conference on Formal Power
Series and Algebraic Combinatorics (FPSAC 2012), Jul 2012, Nagoya, Japan. pp.781 - 792,
�10.46298/dmtcs.3082�. �hal-00685023�

https://hal.science/hal-00685023v1
https://hal.archives-ouvertes.fr

FPSAC 2012, Nagoya, Japan DMTCS proc. (subm.), by the authors, 1–12

Combinatorial specification of permutation
classes†

Frédérique Bassino1 and Mathilde Bouvel2 and Adeline Pierrot3 and
Carine Pivoteau4 and Dominique Rossin5

1Université Paris 13, LIPN (CNRS UMR 7030), Villetaneuse, France.
2Université de Bordeaux, LaBRI (CNRS UMR 5800), Talence, France.
3Université Paris Diderot, LIAFA (CNRS UMR 7089), Paris, France.
4Université Paris-Est, LIGM (CNRS UMR 8049), Marne-la-Vallée, France.
5École Polytechnique, LIX (CNRS UMR 7161), Palaiseau, France.

Abstract. This article presents a methodology that automatically derives a combinatorial specification for the per-
mutation class C = Av(B), given its basis B of excluded patterns and the set of simple permutations in C, when
these sets are both finite. This is achieved considering both pattern avoidance and pattern containment constraints
in permutations. The obtained specification yields a system of equations satisfied by the generating function of C,
this system being always positive and algebraic. It also yields a uniform random sampler of permutations in C. The
method presented is fully algorithmic.

Résumé. Cet article présente une méthodologie qui calcule automatiquement une spécification combinatoire pour la
classe de permutations C = Av(B), étant donnés une base B de motifs interdits et l’ensemble des permutations sim-
ples de C, lorsque ces deux ensembles sont finis. Ce résultat est obtenu en considérant à la fois des contraintes de mo-
tifs interdits et de motifs obligatoires dans les permutations. La spécification obtenue donne un système d’équations
satisfait par la série génératrice de la classe C, système qui est toujours positif et algébrique. Elle fournit aussi un
générateur aléatoire uniforme de permutations dans C. La méthode présentée est complètement algorithmique.

Keywords: permutation classes, excluded patterns, substitution decomposition, simple permutations, generating
functions, combinatorial specification, random generation

1 Introduction
Initiated by Knuth (1973) almost forty years ago, the study of permutation classes has since received a lot
of attention, mostly with respect to enumerative questions (see Bousquet-Mélou (2002); Elizalde (2004);
Kitaev and Mansour (2003) and their references among many others). Most articles are focused on a given
class C = Av(B) where the basis B of excluded patterns characterizing C is finite, explicit, and in most
cases contains only patterns of size 3 or 4. Recently, some results of a rather different nature have been

†This work was completed with the support of the ANR project MAGNUM number 2010 BLAN 0204.

subm. to DMTCS c© by the authors Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/proceedings/
http://www.dmtcs.org/proceedings/dm(subm.)ind.html

2 F. Bassino and M. Bouvel and A. Pierrot and C. Pivoteau and D. Rossin

obtained, and have in common that they describe general properties of permutation classes – see Albert
and Atkinson (2005); Albert et al. (2005); Bassino et al. (2010, 2011); Brignall et al. (2008a,b); Vatter
(2008) for example. Our work falls into this new line of research.

Our goal in this article is to provide a general algorithmic method to obtain a combinatorial specification
for any permutation class C from its basis B and the set SC of simple permutations in C, and assuming
these two sets are finite. Notice that by previous works to be detailed in Section 3, it is enough to know
the finite basis B of the class to decide whether the set SC is finite and (in the affirmative) to compute SC .

By combinatorial specification of a class (see Flajolet and Sedgewick (2009)), we mean an unam-
biguous system of combinatorial equations that describe recursively the permutations of C using only
combinatorial constructors (disjoint union, cartesian product, sequence, . . .) and permutations of size 1.
Notice the major difference with the results of Albert and Atkinson (2005): our specifications are unam-
biguous, whereas Albert and Atkinson (2005) obtain combinatorial systems of equations characterizing
permutations classes that are ambiguous in general.

We believe that our purpose of obtaining algorithmically combinatorial specifications of permutation
classes is of interest per se but also because it then allows to obtain by routine algorithms a system of equa-
tions satisfied by the generating function of C and a Boltzmann uniform random sampler of permutations
in C, using the methods of Flajolet and Sedgewick (2009) and Duchon et al. (2004) respectively.

The paper is organized as follows. Section 2 proceeds with some background on permutation classes,
simple permutations and substitution decomposition, and Section 3 sets the algorithmic context of our
study. Section 4 then explains how to obtain a system of combinatorial equations describing C from the
set of simple permutations in C, that we assume to be finite. The system so obtained may be ambiguous
and Section 5 describes a disambiguation algorithm to obtain a combinatorial specification for C. The
most important idea of this disambiguation procedure is to transform ambiguous unions into disjoint
unions of terms that involve both pattern avoidance and pattern containment constraints. This somehow
allows to interpret on the combinatorial objects themselves the result of applying the inclusion-exclusion
on their generating functions. Finally, Section 6 concludes the whole algorithmic process by explaining
how this specification can be plugged into the general methodologies of Flajolet and Sedgewick (2009)
and Duchon et al. (2004) to obtain a system of equations satisfied by the generating function of C and a
Boltzmann uniform random sampler of permutations in C. We also give a number of perspectives opened
by our algorithm.

2 Permutation classes and simple permutations
2.1 Permutation patterns and permutation classes
A permutation σ = σ1σ2 . . . σn of size |σ| = n is a bijective map from {1, . . . , n} to itself, each σi denot-
ing the image of i under σ. A permutation π = π1π2 . . . πk is a pattern of a permutation σ = σ1σ2 . . . σn
(denoted π � σ) if and only if k ≤ n and there exist integers 1 ≤ i1 < i2 < . . . < ik ≤ n such
that σi1 . . . σik is order-isomorphic to π, i.e. such that σi` < σim whenever π` < πm. A permutation σ
that does not contain π as a pattern is said to avoid π. For example the permutation σ = 316452 con-
tains π = 2431 as a pattern, whose occurrences are 3642 and 3652. But σ avoids the pattern 2413 as none
of its subsequences of length 4 is order-isomorphic to 2413.

The pattern containment relation � is a partial order on permutations, and a permutation class C is a
downset under this order: for any σ ∈ C, if π � σ, then we also have π ∈ C. For every set B, the set

Combinatorial specification of permutation classes 3

Av(B) of permutations avoiding any pattern of B is a class. Furthermore every class C can be rewritten
as C = Av(B) for a unique antichain B (i.e., a unique set of pairwise incomparable elements) called the
basis of C. The basis of a class C may be finite or infinite; it is described as the set of permutations that
do not belong to C and that are minimal in the sense of � for this criterion.

In the following, we only consider classes whose basis B is given explicitly, and is finite. This does
not cover the whole range of permutation classes, but it is a reasonable assumption when dealing with
algorithms on permutation classes, that take a finite description of a permutation class as input. More-
over, as proved by Albert and Atkinson (2005), it is necessary that B is finite as soon as the set SC of
simple permutations in C = Av(B) is finite. Consequently the assumption of the finiteness of B is not a
restriction when working on permutation classes such that SC is finite, which is the context of our study.

2.2 Simple permutations and substitution decomposition of permutations
An interval (or block) of a permutation σ of size n is a subset {i, . . . , (i+ `− 1)} of consecutive integers
of {1, . . . , n}whose images by σ also form an interval of {1, . . . , n}. The integer ` is called the size of the
interval. A permutation σ is simple when it is of size at least 4 and it contains no interval, except the trivial
ones: those of size 1 (the singletons) or of size n (σ itself). The permutations 1, 12 and 21 also have only
trivial intervals, nevertheless they are not considered to be simple here. Moreover no permutation of size
3 has only trivial intervals. For a detailed study of simple permutations, in particular from an enumerative
point of view, we refer the reader to Albert and Atkinson (2005); Albert et al. (2003); Brignall (2010).

Let σ be a permutation of size n and π1, . . . , πn be n permutations of size p1, . . . , pn respectively.
Define the substitution σ[π1, π2, . . . , πn] of π1, π2, . . . , πn in σ to be the permutation of size p1+ . . .+pn
obtained by concatenation of n sequences of integers S1, . . . , Sn from left to right, such that for every i, j,
the integers of Si form an interval, are ordered in a sequence order-isomorphic to πi, and Si consists of
integers smaller than Sj if and only if σi < σj . For instance, the substitution 1 3 2[2 1, 1 3 2, 1] gives the
permutation 2 1 4 6 5 3. We say that a permutation π is 12-indecomposable (resp. 21-indecomposable) if
it cannot be written as 12[π1, π2] (resp. 21[π1, π2]), for any permutations π1 and π2.

Simple permutations allow to describe all permutations through their substitution decomposition.

Theorem 2.1 (Albert and Atkinson (2005)) Every permutation π of size n with n ≥ 2 can be uniquely
decomposed as follows, 12 (resp. 21, σ) being called the root of π:
• 12[π1, π2], with π1 12-indecomposable,
• 21[π1, π2], with π1 21-indecomposable,
• σ[π1, π2, . . . , πk], with σ a simple permutation of size k.

To account for the first two items of Theorem 2.1 in later discussions, we furthermore introduce the
following notations: For any set C of permutations, C+ (resp. C−) denotes the set of permutations of C
that are 12-indecomposable (resp. 21-indecomposable). Notice that even when C is a permutation class,
this is not the case for C+ and C− in general.

Theorem 2.1 provides the first step in the decomposition of a permutation π. To obtain its full decompo-
sition, we can recursively decompose the permutations πi in the same fashion, until we reach permutations
of size 1. This recursive decomposition can naturally be represented by a tree, that is called the substitu-
tion decomposition tree (or decomposition tree for short) of π. Each internal node of the tree is labeled
by 12, 21 or by a simple permutation and the leaves represent permutation 1. Notice that in decompo-
sition trees, the left child of a node labeled 12 (resp. 21) is never labeled by 12 (resp. 21), since π1 is
12-indecomposable (resp. 21-indecomposable) in the first (resp. second) item of Theorem 2.1.

4 F. Bassino and M. Bouvel and A. Pierrot and C. Pivoteau and D. Rossin

Example 2.2 The permutation π = 8 9 5 11 7 6 10 17 2 1 3 4 14 16 13 15 12 is recursively decomposed
as π = 2413[4517326, 1, 2134, 35241] = 2413[31524[12[1, 1], 1, 1, 21[1, 1], 1]], 1, 12[21[1, 1], 12[1, 1]],
21[2413[1, 1, 1, 1], 1]] and its decomposition tree is given in Figure 1.

2 4 1 3

3 1 5 2 4

12 21

12

21 12

21

2 4 1 3

Fig. 1: Decomposition tree of π (from Ex. 2.2).

The substitution closure Ĉ of a permutation class(i) C is de-
fined as the set of permutations whose decomposition trees
have internal nodes labeled by either 12, 21 or a simple per-
mutation of C. Notice that C and Ĉ therefore contain the
same simple permutations. Obviously, for any class C, we
have C ⊆ Ĉ. When the equality holds, the class C is said
to be substitution-closed (or sometimes wreath-closed). But
this is not always the case, and the simplest example is given
by C = Av(213). This class contains no simple permutation hence its substitution closure is the class of
separable permutations of Bose et al. (1998), i.e. of permutations whose decomposition trees have internal
nodes labeled by 12 and 21. It is immediate to notice that 213 ∈ Ĉ whereas of course 213 /∈ C.

A characterization of substitution-closed classes useful for our purpose is given in Albert and Atkinson
(2005): A class is substitution-closed if and only if its basis contains only simple permutations.

3 Algorithmic context of our work
Putting together the work reported in this article and recent algorithms from the litterature provides a full
algorithmic chain starting with the finite basis B of a permutation class C, and computing a specification
for C. The hope for such a very general algorithm is of course very tenuous, and the algorithm we
describe below will compute its output only when some hypothesis are satisfied, which are also tested
algorithmically. Figure 2 summarizes the main steps of the algorithm.

Is there a finite number of simple permutations in the class C=Av(B)?

O(n log n)

B: finite basis of excluded patterns

B contains only simple permutations
Av(B) is substitution-closed

B contains permutations that are not simple
Av(B) is not substitution-closed

NO

YES

Computation of the subset Sc of simple permutations in C

direct

STOP

O(N. l)4O(N. l . |B|)p+2

O(n)4k

Compute an ambiguous system
by propagation of pattern avoidance constraints

Constraints propagation

Compute an
unambiguous system
of equations
for generating
functions using the
inclusion-exclusion
principle

Disambiguation of the
combinatorial system

- transform intersecting
 unions into disjoint unions
 introducing complement sets
- express complement sets
 by means of pattern
 containment constraints

Generating functions
Boltzmann sampler

Specification for C

Fig. 2: Automatic process from the basis of a permutation class to generating function and Boltzmann sampler.

The algorithms performing the first two steps of the algorithmic process of Figure 2 are as follows.
(i) that contains permutations 12 and 21. We will assume so in the rest of this article to avoid trivial cases.

Combinatorial specification of permutation classes 5

First step : Finite number of simple permutations First, we check whether C = Av(B) contains
only a finite number of simple permutations. This is achieved using algorithms of Bassino et al. (2010)
when the class is substitution-closed and of Bassino et al. (2011) otherwise. The complexity of these
algorithms are respectively O(n log n) and O(n4k), where n =

∑
β∈B |β| and k = |B|.

Second step : Computing simple permutations The second step of the algorithm is the compu-
tation of the set of simple permutations SC contained in C = Av(B), when we know it is finite. Again,
when C is substitution-closed, SC can be computed by an algorithm that is more efficient than in the gen-
eral case. The two algorithms are described in Pierrot and Rossin (2012), and their complexity depends
on the output: O(N · `p+2 · |B|) in general and O(N · `4) for substitution-closed classes, with N = |SC |,
p = max{|β| : β ∈ B} and ` = max{|π| : π ∈ SC}.

Sections 4 and 5 will then explain how to derive a specification for C from SC .

4 Ambiguous combinatorial system describing C
We describe here an algorithm that takes as input the set SC of simple permutations in a class C and the
basis B of C, and that produces in output a (possibly ambiguous) system of combinatorial equations de-
scribing the permutations of C through their decomposition trees. The main ideas are those of Theorem 10
of Albert and Atkinson (2005), but unlike this work, we make the whole process fully algorithmic.

4.1 The simple case of substitution-closed classes
Recall that C is a substitution-closed permutation class when C = Ĉ, or equivalently when the permuta-
tions in C are exactly the ones whose decomposition trees have internal nodes labeled by 12, 21 or any
simple permutation of C. Then Theorem 2.1 directly yields the following system EĈ :

Ĉ = 1] 12[Ĉ+, Ĉ]] 21[Ĉ−, Ĉ]]
⊎
π∈SĈ

π[Ĉ, . . . , Ĉ] (1)

Ĉ+ = 1] 21[Ĉ−, Ĉ]]
⊎
π∈SĈ

π[Ĉ, . . . , Ĉ] (2)

Ĉ− = 1] 12[Ĉ+, Ĉ]]
⊎
π∈SĈ

π[Ĉ, . . . , Ĉ]. (3)

By uniqueness of substitution decomposition, unions are disjoint and so Equations (1) to (3) describe
unambiguously the substitution closure Ĉ of a permutation class C. For a substitution-closed class (and the
substitution closure of any class), this description gives a combinatorial specification. Hence, it provides
an efficient way to compute the generating function of the class, and to generate uniformly at random a
permutation of a given size in the class.

4.2 Adding constraints for classes that are not substitution-closed
When C is not substitution-closed, we compute a new system by adding constraints to the system obtained
for Ĉ, as in Albert and Atkinson (2005). Denoting by X〈Y 〉 the set of permutations of X that avoid the
patterns in Y , we have C = Ĉ〈B?〉 where B? is the subset of non-simple permutations of B. Noticing
that SĈ = SC (by definition of Ĉ), and since Cε = Ĉε〈B?〉 for ε ∈ { ,+,−} , Equations (1) to (3) give

Ĉ〈B?〉 = 1] 12[Ĉ+, Ĉ]〈B?〉] 21[Ĉ−, Ĉ]〈B?〉]
⊎
π∈SC π[Ĉ, . . . , Ĉ]〈B?〉 (4)

Ĉ+〈B?〉 = 1] 21[Ĉ−, Ĉ]〈B?〉]
⊎
π∈SC π[Ĉ, . . . , Ĉ]〈B?〉 (5)

Ĉ−〈B?〉 = 1] 12[Ĉ+, Ĉ]〈B?〉]
⊎
π∈SC π[Ĉ, . . . , Ĉ]〈B?〉, (6)

6 F. Bassino and M. Bouvel and A. Pierrot and C. Pivoteau and D. Rossin

all these unions being disjoint. This specification is not complete, since sets of the form π[Ĉ, . . . , Ĉ]〈B?〉
are not immediately described from Ĉ〈B?〉. Theorem 10 of Albert and Atkinson (2005) explains how sets
such as π[Ĉ, . . . , Ĉ]〈B?〉 can be expressed as union of smaller sets:

π[Ĉ, . . . , Ĉ]〈B?〉 =
⋃k
i=1 π[Ĉ〈Ei,1〉, Ĉ〈Ei,2〉, . . . , Ĉ〈Ei,k〉]

where Ei,j are sets of permutations which are patterns of some permutations of B?. This introduces sets
of the form Ĉ〈Ei,j〉 on the right-hand side of an equation of the system that do not appear on the left-hand
side of any equation. We will call such sets right-only sets. Taking Ei,j instead of B? in Equations (4)
to (6), we can recursively compute these right-only sets by introducing new equations in the system. This
process terminates since there exists only a finite number of sets of patterns of elements of B? (as B is
finite). Let us introduce some definitions to describe these sets Ei,j .

A generalized substitution σ{π1, π2, . . . , πn} is defined as a substitution (see p.3) with the particularity
that any πi may be the empty permutation (denoted by 0). Specifically σ[π1, π2, . . . , πn] necessarily
contains σ whereas σ{π1, π2, . . . , πn} may avoid σ. For instance, 1 3 2{2 1, 0, 1} = 2 1 3 ∈ Av(132).

An embedding of γ in π = π1 . . . πn is a map α from {1, . . . , n} to the set of (possibly empty) blocks(ii)

of γ such that:
• if blocks α(i) and α(j) are not empty, and i < j, then α(i) consists of smaller indices than α(j);
• as a word, α(1) . . . α(n) is a factorization of the word 1 . . . |γ| (which may include empty factors).
• denoting γI the pattern corresponding to γi1 . . . γi` for any block I of indices from i1 to i` in

increasing order, we have π{γα(1), . . . , γα(n)} = γ.
There are 11 embeddings of γ = 5 4 6 3 1 2 into π = 3 1 4 2, which correspond for instance to the general-
ized substitutions π{3241, 12, 0, 0}, π{3241, 0, 0, 12} and π{0, 0, 3241, 12} for the same expression of γ
as the substitution 21[3241, 12], or π{3241, 1, 0, 1}which is the only one corresponding to 312[3241, 1, 1].
Notice that this definition of embeddings conveys the same notion than in Albert and Atkinson (2005),
but it is formally different and it will turn to be more adapted to the definition of the sets Ei,j .

Equations (4) to (6) can be viewed as Equations (1) to (3) “decorated” with pattern avoidance con-
straints. These constraints apply to every set π[Ĉ1, . . . , Ĉn] that appears in a disjoint union on the right-
hand side of an equation. For each such set, the pattern avoidance constraints can be expressed by pushing
constraints into the subtrees, using embeddings of excluded patterns in the root π. For instance, assume
that γ = 5 4 6 3 1 2 ∈ B? and SC = {3142}, and consider 3142[Ĉ, Ĉ, Ĉ, Ĉ]〈γ〉. The embeddings of γ
in 3142 indicates how pattern γ can be found in the subtrees in 3142[Ĉ, Ĉ, Ĉ, Ĉ]. As example the last
embedding of the previous example tells that γ can spread over all the subtrees of 3142 except the third.
In order to avoid this particular embedding of γ, it is enough to avoid one of the induced pattern γI on
one of the subtrees. However, in order to ensure that γ is avoided, the constraints resulting from all the
embeddings must be considered and merged. More precisely, consider a set π[C1, . . . , Cn]〈γ〉, π being a
simple permutation. Let {α1, . . . , α`} be the set of embeddings of γ in π, each αi being associated to a
generalized substitution γ = π{γαi(1), . . . , γαi(n)} where γαi(k) is embedded in πk. Then the constraints
are propagated according to the following equation:

π[C1, . . . , Cn]〈γ〉 =
⋃

(k1,...,k`)∈Kπ
γ
π[C1〈E1,k1...k`〉, . . . , Cn〈En,k1...k`〉] (7)

where Kπ
γ = {(k1, . . . , k`) ∈ [1..n]` | ∀i, γαi(ki) 6= 0} and Em,k1...k` = {γαi(ki) | i ∈ [1..`] and ki =

m} is a set containing at least γ for (k1, . . . , k`) ∈ Kπ
γ . In a tuple (k1, . . . , k`) of Kπ

γ , ki indicates a

(ii) Recall that here blocks of a permutation are sets of indices.

Combinatorial specification of permutation classes 7

subtree of π where the pattern avoidance constraint (γαi(ki) excluded) forbids any occurrence of γ that
could result from the embedding αi. The set Em,k1...k` represents the pattern avoidance constraints that
have been pushed into the m-th subtree of π by embeddings αi of γ in π where the block αi(ki) of γ is
embedded into πm.

Starting from a finite basis of patterns B, Algorithm 1 describes the whole process to compute an
ambiguous system defining the class C = Av(B) knowing its set of simple permutations SC . The prop-
agation of the constraints expressed by Equation (7) is performed by the procedure ADDCONSTRAINTS.
It is applied to every set of the form π[C1, . . . , Cn]〈B′〉 that appears in the equation defining some Ĉε〈B′〉
by the procedure COMPUTEEQN. Finally, Algorithm 1 computes an ambiguous system for a permutation
class Av(B) containing a finite number of simple permutations: it starts from Equations (4) to (6), and
adds new equations to this system calling procedure COMPUTEEQN, until every π[C1, . . . , Cn]〈B′〉 is re-
placed by some π[C′1, . . . , C′n] and until every C′i = Ĉε〈B′i〉 is defined by an equation of the system. All
the sets B′ are sets of patterns of some permutations in B. Since there is only a finite number of patterns
of elements of B, there is a finite number of possible B′, and Algorithm 1 terminates.

Algorithm 1: AMBIGUOUSSYSTEM(B)
Data: B is a finite basis of patterns defining C = Av(B) such that SC is known and finite.
Result: A system of equations of the form D =

⋃
π[D1, . . . ,Dn] defining C.

begin
E ← COMPUTEEQN((Ĉ, B?)) ∪ COMPUTEEQN((Ĉ+, B?)) ∪ COMPUTEEQN((Ĉ−, B?))
while there is a right-only Ĉε〈B′〉 in some equation of E do
E ← E ∪ COMPUTEEQN(Ĉε, B′)

/* Returns an equation defining Ĉε〈B′〉 as a union of π[C1, . . . , Cn] */
/* B′ is a set of permutations, Ĉε is given by SĈ and ε ∈ { ,+,−} */
COMPUTEEQN (Ĉε, B′ (

E ← Equation (4) or (5) or (6) (depending on ε) written with B′ instead of B?

foreach t = π[C1, . . . , Cn]〈B′〉 that appears in E do
t← ADDCONSTRAINTS(π[C1, . . . , Cn], B′)

return E

/* Returns a rewriting of π[C1 . . . Cn]〈E〉 as a union
⋃
π[D1, . . .Dn] */

ADDCONSTRAINTS ((π[C1 . . . Cn], E) (

if E = ∅ then return π[C1 . . . Cn];
else

choose γ ∈ E and compute all the embeddings of γ in π
compute Kπ

γ and sets Em,k1...k` defined in Equation (7)
return

⋃
(k1,...,k`)∈Kπ

γ
ADDCONSTRAINTS(π[C1〈E1,k1...k`〉, . . . , Cn〈En,k1...k`〉], E \ γ).

Consider for instance the class C = Av(B) for B = {1243, 2413, 531642, 41352}: C contains only
one simple permutation (namely 3142), and B? = {1243}. Applying Algorithm 1 to this class C gives

8 F. Bassino and M. Bouvel and A. Pierrot and C. Pivoteau and D. Rossin

the following system of equations:

Ĉ〈1243〉 = 1 ∪ 12[Ĉ+〈12〉, Ĉ〈132〉] ∪ 12[Ĉ+〈1243〉, Ĉ〈21〉] ∪ 21[Ĉ−〈1243〉, Ĉ〈1243〉]
∪ 3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉] ∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈132〉] (8)

Ĉ〈12〉 = 1 ∪ 21[Ĉ−〈12〉, Ĉ〈12〉] (9)

Ĉ〈132〉 = 1 ∪ 12[Ĉ+〈132〉, Ĉ〈21〉] ∪ 21[Ĉ−〈132〉, Ĉ〈132〉] (10)

Ĉ〈21〉 = 1 ∪ 12[Ĉ+〈21〉, Ĉ〈21〉]. (11)

5 Disambiguation of the system
In the above, Equation (8) gives an ambiguous description of the class Ĉ〈1243〉. As noticed in Albert
and Atkinson (2005), we can derive an unambiguous equation using the inclusion-exclusion principle:
Ĉ〈1243〉 = 1 ∪ 12[Ĉ+〈12〉, Ĉ〈132〉] ∪ 12[Ĉ+〈1243〉, Ĉ〈21〉] \ 12[Ĉ+〈12〉, Ĉ〈21〉] ∪ 21[Ĉ−〈1243〉, Ĉ〈1243〉] ∪
3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈132〉] ∪ 3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉] \ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉].
The system so obtained contains negative terms in general. This still gives a system of equations allowing
to compute the generating function of the class. However, this cannot be easily used for random gener-
ation, as the subtraction of combinatorial objects is not handled by random samplers. In this section we
disambiguate this system to obtain a new positive one: the key idea is to replace the negative terms by
complement sets, hereby transforming pattern avoidance constraints into pattern containment constraints.

5.1 General framework
The starting point of the disambiguation is to rewrite ambiguous terms like A∪B ∪C as a disjoint union
(A∩B ∩C)] (Ā∩B ∩C)] (Ā∩ B̄ ∩C)] (Ā∩B ∩ C̄)] (A∩ B̄ ∩C)] (A∩ B̄ ∩ C̄)] (A∩B ∩ C̄).
By disambiguating the union A ∪ B ∪ C using complement sets instead of negative terms, we obtain an
unambiguous description of the union with only positive terms. But when taking the complement of a set
defined by pattern avoidance constraints, these are transformed into pattern containment constraints.

Therefore, for any set P of permutations, we define the restriction P〈E〉(A) of P as the set of permuta-
tions that belong to P and that avoid every pattern of E and contain every pattern of A. This notation will
be used when P = Ĉε, for ε ∈ { ,+,−} and C a permutation class. With this notation, notice also that
for A = ∅, C〈E〉 = C〈E〉(∅) is a standard permutation class. Restrictions have the nice feature of being
stable by intersection as P〈E〉(A)∩P〈E′〉(A′) = P〈E ∪E′〉(A∪A′). We also define a restriction term
to be a set of permutations described as π[S1,S2, . . . ,Sn] where π is a simple permutation or 12 or 21
and the Si are restrictions. By uniqueness of the substitution decomposition of a permutation, restriction
terms are stable by intersection as well and the intersection is performed componentwise for terms sharing
the same root: π[S1,S2, . . . ,Sn] ∩ π[T1, T2, . . . , Tn] = π[S1 ∩ T1,S2 ∩ T2, . . . ,Sn ∩ Tn].

5.2 Disambiguate
The disambiguation of the system obtained by Algorithm 1 is performed by Algorithm 2. It consists in
two main operations. One is the disambiguation of an equation according to the root of the terms that
induce ambiguity, which may introduce right-only restrictions. This leads to the second procedure which
computes new equations (that are added to the system) to describe these new restrictions (Algorithm 3).

As stated in Section 4, every equation F of our system can be written as t = 1 ∪ t1 ∪ t2 ∪ t3 . . . ∪ tk
where the ti are restriction terms and t is a restriction. By uniqueness of the substitution decomposition

Combinatorial specification of permutation classes 9

Algorithm 2: DISAMBIGUATESYSTEM(E)
Data: A ambiguous system E of combinatorial equations /* obtained by Algo. 1 */
Result: An unambiguous system of combinatorial equations equivalent to E
begin

while there is an ambiguous equation F in E do
Take π a root that appears several times in F in an ambiguous way
Replace the restriction terms of F whose root is π by a disjoint union using Eq. (12) – (14)
while there exists a right-only restriction Ĉε〈E〉(A) in some equation of E do
E ←− E

⋃
COMPUTEEQNFORRESTRICTION(Ĉε,E,A). /* See Algo. 3 */

return E

of a permutation, terms of this union which have different roots π are disjoint. Thus for an equation we
only need to disambiguate unions of terms with same root.

For example in Equation (8), there are two pairs of ambiguous terms which are terms with root 3142
and terms with root 12. Every ambiguous union can be written in the following unambiguous way:⋃k

i=1 ti =
⊎
X⊆[1...k],X 6=∅

⋂
i∈X ti ∩

⋂
i∈X ti, (12)

where the complement ti of a restriction term ti is defined as the set of permutations of Ĉ whose decom-
position tree has the same root than ti but that do not belong to ti. Equation 13 below shows that ti is
not a term in general but can be expressed as a disjoint union of terms. By distributivity of ∩ over], the
above expression can therefore be rewritten as a disjoint union of intersection of terms. Because terms are
stable by intersection, the right-hand side of Equation 12 is hereby written as a disjoint union of terms.

For instance, consider terms with root 3142 in Equation (8): t1 = 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈132〉]
and t2 = 3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉]. Equation (12) applied to t1 and t2 gives an expression of
the form Ĉ〈1243〉 = 1 ∪ 12[. . .] ∪ 12[. . .] ∪ 21[. . .] ∪ (t1 ∩ t2)] (t1 ∩ t2)] (t1 ∩ t2).

To compute the complement of a term t, it is enough to write that

t =
⊎

X⊆{1,...,n},X 6=∅

π[S ′1, . . . ,S ′n] where S ′i = Si if i ∈ X and S ′i = Si otherwise, (13)

with the convention that Si = Ĉε \ Si for Si = Ĉε〈E〉(A). Indeed, by uniqueness of substitution de-
composition, the set of permutations of Ĉ that do not belong to t but whose decomposition tree has root π
can be written as the union of terms u = π[S ′1,S ′2, . . . ,S ′n] where S ′i = Si or S ′i = Si and at least one
restriction Si must be complemented. For example 21[S1,S2] = 21[S1,S2]] 21[S1,S2]] 21[S1,S2].

The complement operation being pushed from restriction terms down to restrictions, we now com-
pute S, for a given restriction S = Ĉε〈E〉(A), S denoting the set of permutations of Ĉε that are not in S.
Notice that given a permutation σ of A, then any permutation τ of Ĉε〈σ〉 is in S because τ avoids σ
whereas permutations of S must contain σ. Symmetrically, if a permutation σ is in E then permutations
of Ĉε〈〉(σ) are in S . It is straightforward to check that Ĉε〈E〉(A) =

[⋃
σ∈E Ĉε〈〉(σ)

]⋃ [⋃
σ∈A Ĉε〈σ〉()

]
.

Unfortunately this expression is ambiguous. Like before we can rewrite it as an unambiguous union

Ĉε〈E〉(A) =
⊎

X⊆A,Y⊆E
X×Y 6=∅×∅

Ĉε〈X ∪ Y 〉(Y ∪X), where X = A \X and Y = E \ Y . (14)

10 F. Bassino and M. Bouvel and A. Pierrot and C. Pivoteau and D. Rossin

In our example (Equations (8) to (11)), only trivial complements appear as every restriction is of the
form Ĉ〈σ〉() or Ĉ〈〉(σ) for which complements are respectively Ĉ〈〉(σ) and Ĉ〈σ〉().

All together, for any equation of our system, we are able to rewrite it unambiguously as a disjoint union
of restriction terms. As noticed before, some new right-only restrictions may appear during this process,
for example as the result of the intersection of several restrictions or when complementing restrictions.
To obtain a complete system we must compute iteratively equations defining these new restrictions using
Algorithm 3 described below.

Finally, the terminaison of Algorithm 2 is easily proved. Indeed, for all the restrictions Ĉε〈E〉(A) that
are considered in the inner loop of Algorithm 2, every permutation in the sets E and A is a pattern of
some element of the basis B of C. And since B is finite, there is a finite number of such restrictions.

5.3 Compute an equation for a restriction
Let Ĉε〈E〉(A) be a restriction. Our goal here is to find a combinatorial specification of this restriction in
terms of smaller restriction terms (smaller w.r.t. inclusion).

If A = ∅, this is exactly the problem addressed in Section 4.2 and solved by pushing down the pattern
avoidance constraints in the procedure ADDCONSTRAINTS of Algorithm 1. Algorithm 3 below shows
how to propagate also the pattern containment constraints induced by A 6= ∅.

Algorithm 3: COMPUTEEQNFORRESTRICTION(Ĉε, E,A)

Data: Ĉε, E,A with E,A sets of permutations, Ĉε given by SĈ and ε ∈ { ,+,−}.
Result: An equation defining Ĉε〈E〉(A) as a union of restriction terms.
begin

F ← Equation (1) or (2) or (3) (depending on ε)
foreach σ ∈ E do

/* This step modifies F ! */
Replace any restriction term t in F by ADDCONSTRAINTS(t, {σ}) /* See Algo. 1 */

foreach σ ∈ A do
/* This step modifies F ! */
Replace any restriction term t in F by ADDMANDATORY(t, σ)

return F

ADDMANDATORY (π[S1, . . . ,Sn], γ (

return a rewriting of π[S1, . . . ,Sn](γ) as a union of restriction terms using Equation (15).

The pattern containment constraints are propagated by ADDMANDATORY, in a very similar fashion to
the pattern avoidance constraints propagated by ADDCONSTRAINTS. To compute t(γ) for γ a permuta-
tion and t = π[S1, . . . ,Sn] a restriction term, we first compute all embeddings of γ into π. In this case, a
permutation belongs to t(γ) if and only if at least one embedding is satisfied. Hence, any restriction term
t = π[S1, . . . ,Sn](γ) rewrites as a (possibly ambiguous) union as follows:⋃`

i=1 π[S1(γαi(1)),S2(γαi(2)), . . . ,Sn(γαi(n))], (15)

where the (αi)i∈{1,...,`} are all the embeddings of γ in π and if γαi(j) = 0, then Sj(γαi(j)) = Sj . For
instance, for t = 2413[S1,S2,S3,S4] and γ = 3214, there are 9 embeddings of γ into 2413, and the
embedding 2413{321, 1, 0, 0} contributes to the above union with the term 2413[S1(321),S2(1),S3,S4].

Combinatorial specification of permutation classes 11

Notice that although the unions of Equation 15 may be ambiguous, they will be transformed into disjoint
unions by the outer loop of Algorithm 2. Finally, the algorithm produces an unambiguous system which
is the result of a finite number of iterations of computing equations followed by their disambiguation.

6 Conclusion
We provide an algorithm to compute a combinatorial specification for a permutation class C = Av(B),
when its basisB and the set of its simple permutations are finite and given as input. The complexity of this
algorithm is however still to analyse. In particular, we observe a combinatorial explosion of the number
of equations in the system obtained, that needs to be quantified.

Combined with existing algorithms, our procedure provides a full algorithmic chain from the basis
(when finite) of a permutation class C to a specification for C. This procedure may fail to compute its result,
when C contains an infinite number of simple permutations, this condition being tested algorithmically.

This procedure has two natural algorithmic continuations. First, with the dictionnary of Flajolet and
Sedgewick (2009), the constructors in the specification of C can be directly translated into operators on
the generating function C(z) of C, turning the specification into a system of (possibly implicit) equations
defining C(z). Notice that, using the inclusion-exclusion principle as in Albert and Atkinson (2005),
a system defining C(z) could also be obtained from an ambiguous system describing C. Second, the
specification can be translated directly into a Boltzmann uniform random sampler of permutations in C, in
the same fashion as the above dictionnary (see Duchon et al. (2004)). This second translation is possible
only from an unambiguous system: indeed, whereas adapted when considering enumeration sequences,
the inclusion-exclusion principle does not apply when working on the combinatorial objects themselves.

When generating permutations with a Boltzmann sampler, complexity is measured w.r.t. the size of the
permutation produced (and is linear if we allow a small variation on the size of the output permutation;
quadratic otherwise) and not at all w.r.t. the number of equations in the specification. In our context, this
dependency is of course relevant, and opens a new direction in the study of Boltzmann random samplers.

With a complete implementation of the algorithmic chain fromB to the specification and the Boltzmann
sampler, one should be able to test conjectures on and study permutation classes. One direction would be
to somehow measure the randomness of permutations in a given class, by comparing random permutations
with random permutations in a class, or random permutations in two different classes, w.r.t. well-known
statistics on permutations. Another perspective would be to use the specifications obtained to compute or
estimate the growth rates of permutation classes, to provide improvements on the known bounds on these
growth rates. We could also explore the possible use the computed specifications to provide more efficient
algorithms to test membership of a permutation to a class.

However, a weekness of our procedure that we must acknowledge is that it fails to be completely gen-
eral. Although the method is generic and algorithmic, the classes that are fully handled by the algorithmic
process are those containing a finite number of simple permutations. By Albert and Atkinson (2005),
such classes have finite basis (which is a restriction we imposed already), but they also have an algebraic
generating function. Of course, this is not the case for every permutation class. We may wonder how
restrictive this framework is, depending on which problems are studied. First, does it often happen that
a permutation class contains finitely many simple permutations? To properly express what often means,
a probability distribution on permutation classes should be defined, which is a direction of research yet
to be explored. Second, we may want to describe some problems (maybe like the distribution of some
statistics) for which algebraic permutation classes are representative of all permutation classes.

12 F. Bassino and M. Bouvel and A. Pierrot and C. Pivoteau and D. Rossin

To enlarge the framework of application of our algorithm, we could explore the possibility of extending
it to permutation classes that contain an infinite number of simple permutations, but that are finitely de-
scribed (like the family of oscillations of Brignall et al. (2008b) for instance). With such an improvement,
more classes would enter our framework, but it would be hard to leave the algebraic case. This is however
a promising direction for the construction of Boltzmann random samplers for such permutation classes.

References
M. H. Albert and M. D. Atkinson. Simple permutations and pattern restricted permutations. Discrete Math., 300

(1-3):1–15, 2005.

M. H. Albert, M. D. Atkinson, and M. Klazar. The enumeration of simple permutations. J. Integer Seq., 6, 2003.

M. H. Albert, S. Linton, and N. Ruškuc. The insertion encoding of permutations. Electron. J. Combin., 12:Research
Paper 47, 31 pp. (electronic), 2005.

F. Bassino, M. Bouvel, A. Pierrot, and D. Rossin. Deciding the finiteness of simple permutations contained in a
wreath-closed class is polynomial. Pure Mathematics and Applications, 21(2):119–135, 2010.

F. Bassino, M. Bouvel, A. Pierrot, and D. Rossin. A polynomial algorithm for deciding the finiteness of the number
of simple permutations contained in permutation classes. Preprint available at
http://lipn.fr/˜bassino/publications.html, 2011.

P. Bose, J. F. Buss, and A. Lubiw. Pattern matching for permutations. Inform. Process. Lett., 65:277–283, 1998.

M. Bousquet-Mélou. Four classes of pattern-avoiding permutations under one roof: Generating trees with two labels.
Electron. J. Combin., 9(2), 2002.

R. Brignall. A survey of simple permutations. In S. Linton, N. Ruškuc, and V. Vatter, editors, Permutation Patterns,
volume 376 of London Math. Soc. Lecture Note Ser., pages 41–65. Cambridge Univ. Press, 2010.

R. Brignall, S. Huczynska, and V. Vatter. Simple permutations and algebraic generating functions. J. Combin. Theory
Ser. A, 115(3):423–441, 2008a.

R. Brignall, N. Ruškuc, and V. Vatter. Simple permutations: decidability and unavoidable substructures. Theoret.
Comput. Sci., 391(1-2):150–163, 2008b.

P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer. Boltzmann samplers for the random generation of combinato-
rial structures. Comb. Probab. Comput., 13(4–5):577–625, 2004.

S. Elizalde. Statistics on pattern-avoiding permutations. PhD thesis, MIT, 2004.

P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University Press, Cambridge, 2009.

S. Kitaev and T. Mansour. A survey on certain pattern problems. Preprint available at
http://www.ru.is/kennarar/sergey/index_files/Papers/survey.ps, 2003.

D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming. Addison-Wesley, Reading
MA, 3rd edition, 1973.

A. Pierrot and D. Rossin. Simple permutation poset. Preprint available at
http://arxiv.org/abs/1201.3119, 2012.

V. Vatter. Enumeration schemes for restricted permutations. Comb. Probab. Comput., 17(1):137–159, 2008.

	Introduction
	Permutation classes and simple permutations
	Permutation patterns and permutation classes
	Simple permutations and substitution decomposition of permutations

	Algorithmic context of our work
	Ambiguous combinatorial system describing C
	The simple case of substitution-closed classes
	Adding constraints for classes that are not substitution-closed

	Disambiguation of the system
	General framework
	Disambiguate
	Compute an equation for a restriction

	Conclusion

