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Abstract

In this work we consider the problem of numerical locking in composite materials featuring quasi-
incompressible and compressible sections. More specifically, we start by extending a classical
regularity estimate for the H'-norm of the divergence of the displacement field to the heterogeneous
case. The proof is based on a reformulation of the elasticity problem as a Stokes system with
nonzero divergence constraint. This result is then used to design a locking-free discontinuous
Galerkin method. The key point is to make sure that the multiplicative constant in the estimate
of the convergence rate uniquely depend on the this bounded quantity. Thanks to a fine tuning of
the penalty term, the lower bound for the penalty parameter appearing in the method is simply
expressed in terms of the space dimension. To conclude, numerical validation of the theoretical
results is provided.

Keywords: Linear elasticity, composite materials, locking-free method, discontinuous Galerkin
method

1. Introduction

This work addresses the problem of numerical locking in heterogeneous, locally nearly in-
compressible media by revisiting the classical works of Brenner and Sung [I] and Hansbo and
Larson [2, B]; see also Wihler [4]. More specifically, let Q@ C R? d > 2, be a bounded polygonal
domain. We do not assume that €2 is a Lipschitz domain to include the presence of cracks in our
analysis. We consider the linear elasticity problem

—divg(u) =f in Q,

(1)
u=20 on 0,

where f € L2(Q)?, u denotes the vector-valued displacement field, and, for all v € H' ()9,

(Vv + Vvt) .

)

(v) :=2ue(v) + Adivvig, e(v) ==

N | =

Here, 1 and A are scalar-valued fields corresponding to Lamé’s parameters such that
0<p<p<i<+oo, 0< A< A<

We focus on heterogeneous media for which there exists a partition Py = {€;}1<i<n, of © into
polyhedral subdomains such that ;1 and A are piecewise constant on Po. Our goal is to design a
locking-free discontinuous Galerkin method, meaning that the error estimate should not blow up
when ) is fixed and large enough and A — +o0o. The robustness with respect to x is not considered
herein, since large heterogeneity ratios 11/ do not correspond to physically relevant situations.

Preprint submitted to Elsevier April 3, 2012



Let H'(Py) := {ve L*(Q) | vjq, € H' (), 1 <i < No}. An instrumental result to prove a
locking-free error estimate is to show that the quantity

. /2
Ny = (||11H12H2(P9)d + |)\d1Vu|§11(PQ)) ; (2)

stays bounded when A — 4oo0. This is proved in of Sect. |2 in the two-dimensional case d = 2.
While this result is a generalization of [1, eq. (2.18)] to the heterogeneous case, the techniques used
in the proof are new and are inspired by the recent work of Nicaise and Mercier [5]. The key idea
is to reformulate the elasticity problem in terms of a transmission Stokes problem by introducing
a fictitious pressure defined as the product of the first Lamé parameter by the divergence of the
displacement field. The bound for then follows from an energy estimate for the elasticity
problem together with the local regularity of the solutions to the Stokes problem.

With an estimate for A, at hand, the goal of Sect. [3] is to design a discontinuous Galerkin
(dG) method based on piecewise affine functions and satisfying an estimate of the form

lu — uh|\|m < CMNuh’

where [|-[|,,x is the energy-like norm defined in (I4), uy, is the discrete solution, and C,, denotes
a constant depending on p and on |[f[[z2(qy« but not on A. A key point in this direction is to
make sure that A only appears either in terms involving a product by the divergence of uy, or
in terms that can be cancelled by an appropriate choice of the interpolator in the error estimate.
This is achieved here by designing the penalty term so that (i) the weak coercivity (nonnegativity)
of the discrete bilinear form is obtained by penalizing piecewise constant jump liftings in a least-
square fashion with a user-dependent parameter 7; (ii) full coercivity is achieved by a standard
interior penalty term with a coefficient that solely depends on p and on the mesh size h. This
term is required since penalizing the average component of the jumps is insufficient to use the
discrete Korn inequality derived by Brenner [6]. Unlike [3], the lower bound for the parameter 7
is simply expressed in terms of the space dimension, i.e., no undetermined trace constant appears.
The idea of penalizing using jump liftings can be traced back to the seminal works of Bassi and
Rebay [7, [8]. An explicit formula is provided to ease the practical implementation of liftings, and
the flux formulation of the method is briefly discussed for the sake of completeness in Sect.
Moreover, the convergence of the method to minimal regularity solutions is addressed in Sect. |3

The numerical assessment of the proposed method is performed in Sect. {4 I using (i) the closed
cavity problem of [3] and (ii) the exact solution derived by Hongjun, Zhifei, and Taotao [9] for a
composite multi-layer infinite cylinder. The results confirm that no loss of accuracy is observed in
the incompressible limit.

2. A regularity result

Letting U := H}(Q)¢, the weak formulation of problem reads: Find u € U such that
a(u,v) = / f-v Vv e U, (3)
Q

where a(u, V) fQ ) and, for two second-order tensors ¢ and B, we have denoted a: B

D o< j<a@ijBij. In what follows we prove an a priori estimate for the quantity N, defined by (2| .
in the two-dimensional case d = 2.

Lemma 1 (Stability estimate). If u € U is the unique solution of with £ € L?(Q)9, then the
following energy estimate holds

Cao
1(21) 2 e(w) | L2 (y.a + A7 div ]| 2oy < 1/2HfHL2(Q)'i (4)

where Cq is the product of the Poincaré and Korn constants.



Proof. Taking u as a test function in (3) it is inferred ||(2u)"/2¢(u)||? 4 N2 div ull7 o) =

L2(Q)d,
a(u,u) = fQ f-u. Using the Cauchy—Schwarz, Poincaré, Korn, and Young’s inequalities it is
inferred
fou < [|f]] [[all < Collf]| le(u)]] < }%IIfHQ +1H(2 ) e(w)7
0 = L2 =Lz (@ =~ L2 (@) IIE L2(Q)dd = 224 22T llek) e L2(Q)dd-
The conclusion follows. O

To proceed, we derive an alternative weak formulation which relates the solution of to that
of a transmission Stokes problem. To this purpose, let L2(Q) := {p € L*(Q) : (p)q = 0}, where, for
a function ¢ integrable on Q, (¢)q = ﬁfﬂ ¢. We introduce the bilinear forms ag € £(U x U, R)

and by € L(U x L3(Q),R) defined as follows:

ap(w,v) Z:/QQ/Lg(W)tg(V), bo(w, q) ::—/Qdiqu.

Then, letting
pi=—Adivu € L3(Q), p:=p+ (\divu)g € L3(Q), (5)

we infer that (u,) € U x LZ(Q) is the unique solution of the transmission Stokes problem

ao(u7v)+b0(v,p§):/f-v Vv e U,
Q
(6)
bo(u, q) = / 99 Vg€ L),
Q

with ¢ = —divu. We assume that u € H?(Pq)?¢, and that problem @ satisfies the optimal
regularity shift, meaning that the regularity (f,g) € L?(Q)¢ x H'(Pq) implies the regularity
(u,p) € H(Pq)? x H'(Pg) with the estimate

[l 2 (po) + 1Bl (poy < Cs (IflL2@ye + 9l () - (7)

The positive constant C's > 0 is clearly independent of A since problem @ does not depend on
this parameter. An immediate consequence of is that

lull g2 py) + 1Bl (Po) < Cs (1€l z2(0ye + I divullgipy)) - (8)

Note that the optimal regularity shift is satisfies if for each corner of P, (namely a common
corner of some €2;), there is no singular exponent in the strip (0,1]. We refer to [10, I1] for the
standard Stokes system and to [12} [13] 5] for the extension to transmission Stokes problem. This
condition can be interpreted as a geometrical one in the sense that the singular exponent depends
on the values of p and the angle of the subdomains ; near the corner. In particular, if u is
constant in the whole domain, this optimal regularity shift holds if Q is convex. Similarly, the
assumption u € H?(Pq)? is related to the optimal regularity shift for the elastic transmission
problem (3, we again refer to [10} (LT} [[4] 13, 5].

Theorem 2 (Regularity). There holds with N, defined by , assuming (8) and provided A > Cs,
Nu < OA7M|‘f||L2(Q)da

with Cy,,, dependent on Q, A\, and u but not on .
Proof. By (8), there holds with p defined by (F)),

|Adiv U.|H1(p9) = |ﬁ|H1(pQ) < Cs (||f||L2(Q)d +l diVu”Hl(Pn))

Cs

. 1 .
< W (}\1/2 div uHL2(Q) + )\1/2|>\d1VU|H1(pQ)) + CSHf||L2(Q)d.



Hence, using the energy estimate ,

C. C
(1 — )\S) |>\diVU|H1(pQ) < CSHfHLZ(Q)d (1 + Q) y

and the result follows from the assumption A > Cs. O

3. Discrete setting

3.1. Notation

Let H C R be a countable set of mesh sizes having 0 as its unique accumulation point, and
denote by (7Tr)nen a refined sequence of matching simplicial meshes T, = {T'} of Q. Let h € H
be arbitrary. The diameter of an element T' € T}, is denoted by hr and the mesh index is such
that h = maxpeT;, hr. The set of faces of 7j, is denoted by Fj,; boundary faces are collected in
the set FP and we set Fi := F3, \ Fp. For all F € F}, we let Tp := {T € Tj, | F C 0T}. For every
interface F' € ]—',il, we select an arbitrary but fixed orientation of the normal ngp and number the
elements of 7 in such a way that ng points out of 77; on boundary faces F' € ]-'}f the normal np
is outward to Q. For all F' € Fj, we denote by hp its diameter.

It is assumed in what follows that the mesh sequence {7p}ney is shape-regular in the usual
sense of Ciarlet [15], meaning that there exists p > 0 such that

h

T
max max — < p,
heH TeT, 1T

where, for all T € Ty, h € H, rp denotes the radius of the largest ball inscribed in T. For all
h € H and all integers £ > 0 we introduce the broken polynomial spaces:

Pi(T) = {on € L*() | vnjz € BY(T), VT € Ta},

where IP”;(T) denotes the restriction to 1" of the polynomials of degree < k in dimension d. Similarly,
broken Sobolev spaces are defined for an integer m > 0 as

H™(Ty) == {v e L*(Q) |vr € H™(T),VT € Tp,} -

The broken gradient acting on functions in H*(7j,) is denoted by V, the broken divergence acting
on functions in H'(T,)? is denoted by divj,. Similarly, the broken versions of the symmetric
gradient and elasticity operators € and ¢ are defined for all v € H'(7;)? by setting

1
ap (V) 1= 2pep(v) + Adivy, vIg, en(v) = 3 (Vav+ V).

It is assumed here that, for all h € H, Tj is compatible with the partition Py, meaning that for
all T € T, there exists a unique €2;, 1 < ¢ < Nq, such that T" C ;. This implies, in particular,
that for all h € H,

pePy(Th),  AePy(Th).

We close this section by defining some trace operators commonly used in the context of dG
methods. More precisely, for any scalar-valued function v defined on {2 and smooth enough to
admit on all F' € F}, a possibly two-valued trace on F' we let for all F' € F,

[I) = v (%) v (%), {ob(x) =5 (v (%) +op, (%) -

N | =

For all F € F} such that F' = 9T N 9Q we conventionally set {v}(x) = [v](x) = vj7(x). When
applied to vector- or tensor-valued functions, the jump and average operators act component-wise.
If no confusion can arise, the variable x is omitted, and we simply write {v} and [v].



3.2. Preliminary results

In this section we recall some preliminary results, namely the discrete Korn inequality in broken
polynomial spaces and the definition of jump liftings.

3.2.1. Discrete Korn’s inequality
We define the following usual H}-like norm on H}(7p):

1
1ol = 19 n0lTagpa + 105 fonl3i= D 5= lonllZzgm)-
FeFy

An important ingredient in the approximation of the linear elasticity problem is the discrete
counterpart of Korn’s inequality, which states that the ||-||1,5-norm can be controlled in terms of
the L2-norm of the symmetric part of the gradient plus the jump seminorm |-|;. Korn’s inequalities
for piecewise H' functions on fairly general meshes are proved by Brenner [6]. In this work we
make use of the following variant of [6l (1.11)].

Theorem 3 (Discrete Korn’s inequality). There is Ck uniquely depending on the mesh regularity
parameter and on Q such that, for all vy, € PE(T;)¢, k> 1,

1/2
vl < Cic (e (s + il ) o)

3.2.2. Liftings
For an integer polynomial degree [ > 0 we define a face lifting operator inspired by Brezzi
e.a. [16] as follows: For all F € F, and all v € L*(F)?, riz(v) € P4(T,)** is the unique solution

to
/ZlE(V):IQ:/ venp: {1} V1 € PL(Tn) 4, (10)
Q F

where, for two vectors a and b we have let a®b = [aibj]lgi,jgd € R%4. For the sake of brevity
we also introduce a symbol for the trace of the face lifting,

rip(v) = tr(rp(v) € P(Th).

The piecewise constant liftings obtained by taking I = 0 can be related to the average of v
across one face. More precisely, taking 7, = xrm; for 1 < i,j < dand T € Tr in where

(mij)ijr = di05;5. and xr denotes the characteristic function of T, it is inferred

|F'a—1

r90 (V) — |F|d—1
E\VIT = card(Tr)|T|a

"F card(T9)|Ta (v)rmp, (11)

(Vip@np,  rp(V)ir =

where, for all functions ¢ integrable on F, we have let (¢)p := [}.¢/|F|a—1. The relations
can be replace the liftings in practical implementations. Finally, for a function v € H}(Q)¢, the
global lifting of the jumps of v and its trace are respectively denoted by

Ry(v):= > (V) € By(Ti)™,  Ri(v) = t(By(v)) = Y ri([v]) € Pu(Th).

FeFy, FeFy

3.3. The discrete problem

We introduce the following spaces:

Uy, = PL(TH), U, :=UNH*Py)? U,,:=U,+U,.



The additional regularity in U, ensures that the traces of gradients on mesh faces are square-
integrable. This regularity assumption can be relaxed using the techniques of [I7], To which we
refer for further details. We define the discrete bilinear form aj, € £(U,;, X Uy, R) such that

on(w.v) = [ aywyen ()
- 5 [ (tzatwnheone + @l ronpsiosn )

FeF,
(12
Y RICEI BT IESETCRET )
+ 3 [ L
FeFp

where 7 > 0 denotes a user-dependent positive parameter and, for all F' € Fj, v, F 1= maxXreTs f|7-
The discrete problem reads

Find u;, € Uy, s.t. ap(up, vy) = / f-vy, for all v, € Uy,. (13)
Q

The terms in the second line of are responsible, respectively, for the (weak) consistency and
symmetry of the bilinear form aj; the terms in the third line ensure nonnegativity by penalizing
the jump liftings across mesh faces to compensate the corresponding contribution from the weak
consistency and symmetry terms. Using , it is a simple matter to realize that these contribu-
tions only penalize the mean value of the jumps; finally, in view of the discrete Korn inequality
@D, the term in the fourth line contains a full penalization of jumps to ensure coercivity.

Remark 4 (Lifting-based penalty terms). Considering lifting-based penalty terms in the third
line of allows to derive a trivial lower bound for the user-dependent parameter 1 to achieve
stability (cf. Lemmal[7). In practice, the following equivalent expression based on can be used:

S [ O tvhe () e () ).

FeF,

.7 (20) 7| Fla—1 L ANl Fla—1
where 1, r =0 1t caarreyes A4 INE =0 re T ard(r2 T

Remark 5 (Restriction of aj to Uy x Uy and Crouzeix—Raviart finite elements). Using the fact
that g, (vi) € PY(Tn)%? for all vj, € Uy, it is inferred that, for all (wp,vy) € U7, the asymptotic

consistency and symmetry terms in the second line of are equivalent to

=S / ({a‘h wp) }:[vi]eng + [wh]eng: {Uh(Vh)})

FeFy,

Using this formulation to extend aj to Uy, X Uy, would yield a consistent bilinear form. However,
we have preferred to use the asimptotically consistent formulation since it makes it easier to
track the dependency on A and p of the multiplicative parameter in the error estimate, as detailed
in the following section. Moreover, as is the case in [3], the analysis readily applies when the dG
space Uy, is replaced by the Crouzeix-Raviart finite element space CR(7;)? defined by .

3.4. Energy error estimate

Lemma 6 (Weak consistency). Let u € U denote the solution to the continuous problem and
further assume that u € U,. Then,

Vv € Uy, ah(u7vh) = / fovy, — 5u(Vh)7
Q

with consistency error E4(vi) =Y per, [pla()}: ([vil)r — [va]) @np.



Proof. Using the symmetry of g(u), integrating by parts, and rearranging the boundary terms it

is inferred for all v;, € Uy,

[ et = [t 3 [ gwptvilone + 3 [ lalvien.

Fern FeF}

The conclusion follows since [g(u)ng]p = 0 for all F € F} and [u]r = 0 for all F € F,. O

Stability is expressed with respect to the following energy-like norm defined on H'(73)%:

o = 120 Pen (V) 122 qa + N7 divi VIIEa () + IV, + VA + VI, (14)

with seminorms |v|? = Y ez

@20 (VD s yans Vs = e, IX
and [VI3,, = S e 1 /1) IV
)

Lemma 7 (Coercivity). For all n > Ny = d + 1 there holds with oy, := (n — Np)/(1 + 1),

N (VDI -

Vv, € Up, an(Vh,vr) > POk |Ivall3 s (15)

where Cx is the discrete Korn constant introduced in @D

Proof. Taking (w,v) = (vp,vy) in it is a simple matter to realize that only the weak consis-
tency and symmetry terms in the second line do not have a sign a priori. To bound these terms,
we use the definition of the lifting operators given in Sect. [3.2.2]together with the Cauchy—Schwarz
inequality to infer

Z /{Uh vi) F([ve]) rOnp

FeFn

= ‘/ <2M:@ vi)+Adivy Vh) lR:(})L(Vh)

(Vi) ||L2(Q)d,d |Vh|r,H+H)\1/2 divy, VhHLQ(Q) [vh,

Sh

<N, (||<2u)

r,)\)

where we have used the fact that, for all F' € Fy, the local lifting is supported in the elements of
T to infer ||(2) 7R (v1)[2agqyaa < Nolval2, and [IN/2RL(va) 220 < Nolval2, (cf., ., IS

Lemma 4.34] for details). The conclusion follows using twice the inequality z2 — 2N (;/ “ry +ny? >
2(2? +y?) with (i) = = [|(21) "2en(va)l L2 (yae and y = |Vale s (D) @ = [[]A/2 diva va 20

1+17
and y = |[vp|r - O

The last ingredient to prove an error estimate is to show the continuity of a; in U,y x Uy. To
this end, we define an augmented version of the energy norm on H'(7;)? as follows:

2 Y e (n(<2u>1/@<vh>>.T||i2(aT)d,d T2 div, Vh>|T|%z<aT>) |
TETh

2 ._
Vil x . -

Clearly, [|[v]la > V]l for all v € H(T;)¢, and the two norms are uniformly equivalent on

U,,.
Lemma 8 (Boundedness). There holds with 8,, := 2+ 1+ 2p?,

V(w,vy) € Uy x Uy, ap(w,vy) <

Proof. Denote by ¥;,...,% the addends in the right-hand side of with (w,v) = (w,vy).
Multiple applications of the Cauchy—Schwarz inequality yield

[Tl + [Fal + [Fs] + [Te < (1 +1) < (T+n)lwl

s Vel -




Using the equivalent form T3 = 3o~ [ i ([w]):an(vs), an application of the Cauchy—Schwarz

inequality readily yields |T5| < |w|
Schwarz inequality to infer

s lVallua. Finally, to estimate T, we use the Cauchy—

1 1/9 1/2 :
ol < Il % { > =3 (lleumn” <uvhﬂ>F||%2<F>d,d+|A,é<uvhﬂ>F~nF||iQ<F>)} .

FeFy, F TeTr

Using (11) and since, owing to mesh regularity, for all T € 7, and all F € Fr, there holds
card(Tr)?|T 4
hp|Fla-1

proof. O

< 4p, the term in braces is bounded by 4p (|Vh|i“ + |Vh‘i)\). This concludes the

The following result is a classical consequence of Lemmata [6] [7, and

Lemma 9 (Error estimate). Let u denote the unique solution to and further assume u € U,.
Then, denoting by uy, the unique solution to , there holds

Bp n) . Eu(vn)
u—upfpr < (14+ ") inf Ju—va|ur«+ sup .
Il < oy ) i, 1 Velere ¥ S0 o

Following Hansbo and Larson [3], we derive an estimate for the convergence rate using the
Crouzeix—Raviart interpolator Zcg : H2(T,) — CR(Ty,), where

CR(Ty) := {vn € BY(Th) | {[va])r =0, VF € F}. (16)

When applied to vector functions, the interpolator acts componentwise. The following approxi-
mation estimates classically hold (cf. [3, Lemma 2.3] and references therein): For all v € H?(Tj)¢
and all T € Ty,

v = Zervl|L2(ryi + hrlv = Zerv]girye < CerhZ |V a2 (rya, (17a)
|| diV(V - IC]RV)HL?(T) + hT| diV(V - IC]RV)|H1(T) S C(CRI'LT‘ CliVV|H1(T)7 (17b)

where Ccr only depends on the mesh regularity parameter p. Observe that the broken H' semi-
norm of the divergence appears in the right-hand side of coherently with the definition
of Ny (). Indeed, results from a simple application of the Poincaré-Wirtinger inequality
observing that div(Zcgv) = (divv)q. This is an important property meaning that the discrete
space allows to accurately approximate nontrivial functions with zero divergence.

Theorem 10 (Convergence rate). There holds
e = apflux < xh, (18)

with x = C, Nu where Ny is defined by and C,, only depends on the mesh regularity
parameter p and on .

Proof. For the sake of brevity we denote by a < b the inequality a < Cb with C' generic constant
only depending on the mesh regularity parameter p and on .

(i) Approzimation error. Let wy, := Zcru. The fact that |Jlu — w5« S Nyh follows from
upon observing that [u — wp|;,, = |[u — wy|r,» = 0 and applying several times the following trace
inequality (see, e.g., Monk and Siili [19] or Carstensen and Funken [20]): For all v € H'(Ty,),

VT € Th, hT||’U||2L2(aT) S ||U||2Lz(T) + h%’”VUH%%T)d' (19)

(ii) Comsistency error. Let vj, € Uy, and denote by 79 the L?-orthogonal projector onto PY(7;)%.



Using the fact that {7g(u)}r is constant over F' € Fj, together with the Cauchy-Schwarz in-

equality, it is inferred

galvi) = 3 [ {ew) = mah(Dr - D)
FeFy

{ Z hr ( 2p(e(u) — W%g(u)))lTH%z(aT)d,d + | (A(divu — 7, div u))T||%z(3T))}

TeTh

AN

1

2

x { S (il - uvhuiw} T,
FeFy,

Using (L9), it is readily inferred that ‘31 < Nuh. On the other hand, the generalized Poincaré-

Friedrichs inequality [[v — [v]||z2(r) S hF V|| 2(73)a valid for all v € H'(T,) N Hy(Q) (cf. [21])
yields To < || Vvh|12(q)aa. Finally, using (9), T2 < [[vall,,a, and the conclusion follows. O

Remark 11 (Numerical locking). The estimate (18]) shows that the discrete method is locking-
free for d = 2, since, owing to Theorem[2] the multiplicative parameter x only depends on quantities
that stay bounded for A — +oo.

3.5. Fluz formulation

It is a common practice to express dG methods in terms of numerical fluxes. To this purpose,
we introduce the following lifting-corrected gradient: For all v, € Uy,

:_Cii(vh) = Vv fﬁ(vh).

Discrete symmetric gradient, divergence, and elasticity operators can be defined from G%(vh):

Bt = 5 (Ghwa) + G )

Dg(vh) = tr(ig(vh)) = divy, vj, — R%(vh),

20 (Va) = 2uBp (Vi) + ADj (Vh) La.

Lemma 12 (Flux formulation). There holds for all (wy,vy) € U3,

ah(Whavh):/Eh(Wh en(vi) + Y /‘I)F (wn):[vi]@np,
0 b

FeFy

where

Tu,F

hp [wr]ong.

Dp(wn) = —{2u(en(wn) — 1 (Wn)) + Mdivy Wi, — rp(wn))La} +

3.6. Convergence to minimal regularity solutions

For the sake of completeness, this section briefly addresses the convergence to minimal regular-
ity solutions, i.e., solutions that barely sit in HZ(92)%. In view of applying the arguments of [22],
we record the following equivalent expression for the bilinear form aj; with discrete arguments:
For all (wy,vy) € Uy, x Uy,

ah(Whavh)Z/Q?_E(Wh)?E:g(Vh)ﬂLjh(Wth)? (20)



with
Jrn(Wh,vp) = —/Q (2MR:2(Wh)ZR:2(Vh) + )\R?l(wh)R?L(vh)>

+ 3 [ o (ke i) + M@l ()

FeF,
+ Y [l
F hr
FeFy,

Remark 13 (Extension to U, x U,). An important remark is that the expressions and
are equivalent at the discrete level only, i.e., the extension of to U,y x Uy, does not coincide
with . Such an extension is not required in the proof of Theorem

Remark 14 (Coercivity). Letting wj, = vy, in and assuming 1 > Nj, coercivity holds in the
form

an(Vh,vp) > ||(2,u')1/2§:2(vh)”%2(9)d=d + ||)\1/2D2(Vh)||%2(9) + (1= No) (IVal7 .+ [valEs) + [val3

= [vallZn + (0= No) (IvalZ .+ [ValZa) + VAl .-
(21)

Theorem 15 (Convergence to minimal regularity solutions). Let (7p)nen be an admissible mesh
sequence, and denote by (up)ney the sequence of discrete solutions to problem . Assume
n> Ny =d+ 1. Then, with u € Hj(Q)* unique solution to (3)), there holds

u, - u strongly in L*(Q)4, (22a)

en(un) — €(u) strongly in L*(Q)%9, (22b)

divp up — divua strongly in L*(Q), (22c)

an e+ [hlex + [unfy, — 0. (22d)

Proof. (i) A priori estimate. Using together with the Cauchy—Schwarz and discrete Poincaré
inequalities it is inferred

ani’ Cicllunlli < an(un,up) = /Qf'uh < Cp|fl L2y llull1.n,

L Cp
hence the a priori estimate ||uy|1,n < P Iom

in h, owing to [I8, Theorem 5.7], there exists a subsequence (not renumbered to alleviate the
notation) and an element w € Hj(2)? such that u, — w strongly in L?(Q)? and G} (u),) = Vw

[|£]| 2(q2)+ holds. Since ||uyp||1,, is bounded uniformly

weakly in L?(Q)%?. Hence, E_g(uh) — ¢(w) weakly in L2(Q)%? and D) (w) — divw weakly in

L3(Q). (ii) Convergence of uy. Let v € C*°(Q)? and, for h € H, denote by v; the Lagrange
interpolate of v onto 7;. Then, using v}, as a test function in (I3)), since Eg(vh) — €(v) strongly

in L2(Q)44, DY(v};,) — divv strongly in L*(Q), and ji,(wp,vs) = 0, it is inferred from

[t s = [ tvis [ o

By density of C>(Q)¢ we conclude that w coincides with u unique solution to (13). This implies
that the whole sequence (uy,)nen converges and proves (22a). (iii) Convergence of ¢, (uy,), divy, up,

and of the jumps. Using it is inferred

limsup [Jug[|? 5 < lim as(up, up) = lim / fou, = / fu=a(u,u).
h—0 h—0 h—0 Jo Q
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(a) Closed cavity (b) Concentric cylindrical layers

Figure 1: Configurations for the numerical examples

On the other hand, owing to weak convergence,
lim inf [Jun x> 11200 @) Z2gpa + IV divulfq) = a(u, ).

Hence, we conclude limy ¢ [Jug[|p,n = an(u,u), which, together with the weak convergence of
Eﬁ(uh) and DY (uyp) proved in the previous point, classically yields E_g(uh) — ¢(u) strongly in

L2(Q)%? and DY (up,) — divu strongly in L?(f2). Using again it is inferred
(1= No) ([unlep + [unle ) + [unlye < anup, up) = [Jugf]? 5,
and follows. To prove and observe that, owing to the triangular inequality,
125 ()l L2 (@yaa — I|BR (an) | 20y < llen(un)llz2(yaa < | Ep(un)ll2@aa + | B (wn)ll 22 (@)a.a,
IR (an) |2 () = IRR (i)l z2 (@) < 1divi unllzaiey < D5 (un)lz2() + [1RA (un)l220)-

Since ||;R_g(Uh)||Lz(Q)d < (2&)_1/2N3|uh|r’u and ||R2(uh)||L2(52) < Ail/2|uh|r’)\, the conclusion fol-
lows letting h — 0 and using (22d)). O

Remark 16 (General meshes). The above proof extends to general polyhedral meshes by replacing
the Lagrange interpolator by the L2-orthogonal projector. For further details see [I8, Sect. 5.2]
and [I8, Chapter 1].

4. Numerical examples

4.1. Closed cavity

Our first test case is the homogeneous closed cavity problem proposed by Hansbo and Lar-
son [3]. The domain is the unit square 2 = (0,1)2. A horizontal displacement is imposed on the
upper side, whereas the others are kept fixed; see Figure The elastic modulus and Poisson’s
ratio are chosen as £ = 1000 and v = 0.4999. The values of the Lamé parameters are obtained

from the relations
vE E

A = /< = —

Q+v)(1-20) " 201
Two uniform triangular meshes with meshsize h € {6.25 - 1072,1.5625 - 1072} are used, and a
comparison with the stabilized Crouzeix—Raviart method of [3] is provided for the sake of com-
pleteness. The values of the horizontal displacement along the vertical centerline and of the vertical

(23)
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(a) Coarse mesh (b) Fine mesh

Figure 2: Results for the closed cavity problem. Solid lines: xz-component of the displacement along the vertical
centerline. Dashed lines: y-component of the displacement along the horizontal centerline.

displacement along the horizontal centerline are depicted in Figure The methods show good
agreement, and no sign of locking is present in both cases.

4.2. Concentric cylindrical layers

To test the robustness with respect to the heterogeneity of the medium we consider the exact
solution derived in [9] for a configuration composed of concentric hollow cylindrical layers subject
to a homogeneous pressure ¢ on the inner surface and @ on the outer surface. The configuration is
depicted in Figure Denote by B g the ball of radius R > 0 centered in the origin. For three
real numbers 0 < Ry < Ry < Ry, we set Q := Bg, \ Bg, and Py := {Q; := Bg, \ By
The exact solution in cylindrical coordinates (r,d) is such that

i—1}1§¢§2‘

A

ujg, = (aZ * + 51‘3#) r, 1<i<2,
r

where r denotes the unit vector in the radial direction and, for a given pressure module ¢, the

coefficients {a;, B; }1<i<2 are such that

(1 — 2Vz)(1 + Vi)

1 .
1t B = T 1<i<2.

Q; =
E; E; ’

Here, E; and v; denote, respectively, the constant values of the elastic modulus and Poisson’s
ratio, while the coefficients {A;, B; }1<;<2 solve

Aq as —aq Ag OZQ—ﬁlB

S N S zad  wZhip g,
R(Q)+ ! ¢ az—ﬁ2R%+&2—52 ! 2
Ay ay — Ba B1 — B2 9
— + By = — — A - A —=B;R7=0.
R§+ ? @ ag— By 2+a2—ﬂ2 B

The constant values of the Lamé parameters A; and p; in each layer €, i € {1,2} can be inferred
from . For the tests we have used the following values: Ry = 0.5, Ry =0.75, Ro =1, E; =1
for 1 <i<2 v =1, vp € {0.499,0.4999,0.49999}. The stabilization parameter 7 is taken equal
to 1. To study the convergence, we use a sequence of uniformly refined unstructured triangular
meshes (7x,)o<j<a With hj := ho/2’ and hg = 0.25. The results displayed in Figure [3 show that
the precision is not affected when the outer layer tends to the incompressible limit.

12



10—0,5 - - [ N
1072 E
1071 F 1
—e— vy = 0.499 10-? B —o— vy =0.499 ||
—a— vy = 0.4999 r —a— 15 = 0.4999 ||
—e— vy = (0.49999 r —e— vy = (0.49999 |
! ! ! 1 1 L ! ! ! 1 1 i
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() lu—uplly,x vs. b (b) lu—upllp2(gya vs. h

Figure 3: Errors versus mesh sizes

Remark 17 (Smooth domains). The theory of Sect. [2| can be extended to the smooth domain of
Figure In practice, however, smooth domains are often approximated by polygonal domains
at the numerical levels, so that the case considered in Sect. [2] turns out to be the most important
in practice.
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