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ABSTRACT

This paper deals with the singularity analysis of four degrees of freedom parallel manipulators with

identical limb structures performing Schönflies motions, namely, three independent translations and

one rotation about an axis of fixed direction. The 6×6 Jacobian matrix of such manipulators contains

two lines at infinity among its six Plücker vectors. Some points at infinity are thus introduced to for-

mulate the superbracket of Grassmann-Cayley algebra, which corresponds to the determinant of the

Jacobian matrix. By exploring this superbracket, all the singularity conditions of such manipulators

can be enumerated. The study is illustrated through the singularity analysis of the 4-RUU parallel

manipulator.

Keywords: parallel manipulator; singularity; Schönflies motions; Grassmann-Cayley algebra; su-

perbracket.

RÉSUMÉ

Cet article traite de l’analyse des singularités de manipulateurs parallèles à quatre degrés de liberté

ayant des jambes identiques, générant des mouvements dits de Schönflies, c.à.d. trois translations

indépendantes et une rotation autour d’un axe de direction fixe. La matrice jacobienne 6× 6 de ces

manipulateurs contient deux lignes à l’infini parmi ses six vecteurs de Plücker. Quelques points à

l’infini sont ainsi introduits pour formuler le superbracket de l’algèbre de Grassmann-Cayley qui

correspond au déterminant de la matrice jacobienne. En examinant ce superbracket, toutes les condi-

tions de singularités de ces manipulateurs peuvent être énumérées. Les contributions de l’article sont

illustrées à travers l’analyse de singularités du manipulateur parallèle 4-RUU.

Mots-clés: manipulateur parallèle ; singularités ; mouvements de Schönflies ; algèbre de Grassmann-

Cayley ; superbracket.



1. INTRODUCTION

The singular configurations of Parallel Manipulators (PMs) are critical poses characterized by ei-

ther the loss of some degrees of freedom (dof ), the gain of some extra dof or the loss of stiffness. The

determination of singular configurations is thus a central issue in robotics due to their major effect

on the robot performance [1, 2]. Lower-mobility PMs are suitable for a wide range of applications

that require fewer than six dof. The classification of singularities for lower-mobility PMs has stimu-

lated the interest of many researchers [3–6]. In this paper, the classification proposed in [4], which

is similar the one proposed in [7], is adopted. Accordingly, a lower-mobility PM can exhibit three

different types of singularities: (i) limb singularities, (ii) platform singularities [4], also known as

constraint singularities [8] and (iii) actuation singularities, also called architecture singularities [7].

Constraint and actuation singularities are referred to as parallel singularities and are related to the

rank deficiency of the 6×6 Jacobian matrix J of the PM that transforms the velocities of the actuators

to the linear and angular velocities of the end-effector.

The determination of the parallel singularities of a PM consists in finding either the poses, yield-

ing the singularity locus, or the conditions, yielding the configurations, for which J becomes rank-

deficient. Generally, J expresses a system of screws or more precisely Plücker vectors3. In this

paper, J is determined by using the theory of reciprocal screws [9–12]. For most manipulators, the

determinant of such a matrix is highly nonlinear and unwieldy to assess even with a computer al-

gebra system. Hence, linear algebra fails to provide satisfactory results, and therefore, the use of

Grassmann Geometry (GG) [1, 13–15] or Grassmann-Cayley Algebra (GCA) [2, 16–18] can be re-

garded as a promising solution. The GG is a geometric approach that provides a classification for the

conditions under which a set of n Plücker lines spans a variety of dimension lower than n. On the

other hand, the GCA is a systematic approach to obtain a bracket representation of the determinant

of J, called superbracket. By exploring this superbracket, it is possible to obtain a vector form and a

geometrical interpretation of the parallel singularities.

Ben-Horin et al. [2, 16] analyzed the singularities of 6-dof PMs whose actuated joints transmit six

pure actuation forces, i.e., six finite lines, to the moving platform, by means of GCA. The singularity

conditions are derived from a simplified expression of the superbracket, which is obtained by using

the intersection points between actuation lines. Nevertheless, their method does not consider the

intersection at infinity of two parallel finite lines. Moreover, it does not apply when some Plücker

vector(s) of J correspond to the Plücker coordinate vector(s) of a line at infinity. Recently, Kanaan et

al. [17] and Amine et al. [18] filled this gap by using some properties of projective geometry in order

to formulate a superbracket with points and lines at infinity, and therefore, to extend the application

of GCA to lower-mobility PMs. This paper focuses on the application of GCA to provide a compact

vector expression for the singularity locus of 3T1R PMs with identical limb structures.

Schönflies Motion Generators (SMGs) [19] are manipulators performing three independent trans-

lations and one rotation about an axis of fixed direction. This type of motion is required in a wide

range of industrial pick and place operations such as the assembly of computer circuit boards. The

3A Plücker vector, also known as Plücker line, denotes the Plücker coordinate vector of a projective line, namely, a line

in the 3-dimensional projective space.



type synthesis of parallel SMGs with identical limb structures, performed in [12], leads to four kine-

matic architectures4: 4-RUU, 4-PUU, 4-RRUR and 4-PRUR. For instance, as an important criterion,

the kinematic arrangements RUU and PUU require two links whereas the other ones require at least

three links. In this paper, we focus on the singularity analysis of the 4-RUU PM based on GCA. The

remainder of the paper is organized as follows. First, the superbracket decomposition of GCA and

some fundamental concepts of the projective space P3 are recalled. Then, the 4-RUU PM is presented

and its constraint analysis is performed in order to determine its Jacobian matrix J. A superbracket

of the PM is then formulated. Finally, the singularity conditions of the 4-RUU PM are enumerated

and some singular configurations are illustrated.

2. GRASSMANN-CAYLEY ALGEBRA

The GCA was developed by H. Grassmann (1809–1877) as a calculus for linear varieties operating

on extensors with the join “∨” and meet “∧” operators. The latter are associated with the span and

intersection of vector spaces of extensors characterized by their step. GCA makes it possible to

work at the symbolic level, and therefore, to produce coordinate-free algebraic expressions for the

singularity conditions of spatial PMs. For further details on GCA, the reader is referred to [2, 16, 20]

and references therein.

2.1. Extensors

Let V be a n-dimensional vector space over the field of R, U be a k-dimensional subspace of V

and {u1, u2, . . . ,uk} be a basis of U . Let P be the Plücker coordinate vector of U , regarded at the

symbolic level, namely, as a vector of the

(
n

k

)

-dimensional vector space V (k). In this case, P is

called k-extensor or decomposable k-tensor and is denoted by:

P = ∨(u1, u2, . . . ,uk) = u1 ∨u2 ∨ . . .∨uk. (1)

The vector subspace U , also denoted by P, is called the support of P, and the scalar k is called

the step of the extensor. In the 4-dimensional vector space V associated with the 3-dimensional

projective space P
3, extensors of step 1, 2 and 3 correspond to points, lines and planes, respectively.

2.2. Join operator

Let A = a1∨a2∨ . . .ak et B = b1∨b2∨ . . .bj (or simply A = a1a2 . . .ak and B = b1b2 . . .bj), be

two extensors in V of steps j and k, respectively, with j+ k ≤ n. The join of A and B, is the ( j+ k)-
extensor A∨B given by:

A∨B = a1a2 . . .akb1b2 . . .bj (2)

If vectors a1, a2, . . . ,ak, b1, b2, . . . ,b j−1 and b j are linearly dependent, then A∨B = 0. If they are

independent, then A∨B = A+B = span(A∪B), the space vector spanned by A∪B.

4
R, P and U stand for a revolute joint, a prismatic joint and a universal joint, respectively, while an underline is used to

denote the actuated joints.



The join of two extensors corresponds to the sum of their associated vector spaces. The join

operation is anti-commutative:

A∨B = (−1)k jB∨A (3)

The vector space V (k) is closed under the addition but not closed under the join operation. If we

combine the vector spaces V (k), (k = 1, 2, . . . ,n), used to represent the vector subspaces of V , into

another vector space defined as:

Λ(V ) =V (0)⊕V (1)⊕ . . .⊕V (n) (4)

then Λ(V ) will be closed under both the addition and the join operations. The vector space Λ(V )
with the join operation is known as the exterior algebra on V .

2.3. Meet operator

Let A = a1∨a2∨ . . .ak = a1a2 . . .ak and B = b1b2 . . .bj be two extensors with j+ k ≥ n.

The meet of A and B is defined as:

A∧B = ∑
σ

sign(σ)[aσ(1)aσ(2) . . .aσ(n−j)b1 . . .bj]aσ(n−j+1)aσ(n−j+2) . . .aσ(k)

= ∑
σ

sign(σ)[
•
a1

•
a2 . . .

•
an−j b1 b2 . . .bh]

•
an−j+1 . . .

•
ak (5)

The brackets stand for determinants, and the sum is taken over all permutations σ of {1, 2, . . . ,k}
such that: σ(1)<σ(2)< .. . <σ(n− j) and σ(n− j+1)<σ(n− j+2)< .. . <σ(k). An alternative

notation is to use a dot over the permuted elements [20] instead of using σ . Equation (5) is called

shuffle formula, and is very useful for practical applications of GCA. If A 6= 0, B 6= 0 and A∪B spans

V , then A∧B = A∩B. In this case, A∧B is an extensor of step k+ j−n.

The meet of two extensors is always an extensor. The meet of two extensors corresponds to the

intersection of their associated vector spaces. The meet operation is anti-commutative:

A∧B = (−1)(n−k)(n− j)B∧A (6)

The Grassmann-Cayley algebra on V is defined as the vector space Λ(V ) with the operations join and

meet. These operations are both associative, distributive over addition, and anticommutative.

2.4. The superbracket and its decomposition

Many researchers in the field of parallel robots have explored the determinant of the 6×6 Jacobian

matrix J to analyze the singularities. The columns of JT of a PM are usually six Plücker vectors. Each

Plücker vector, being of six components, is the support of an extensor of step 1 in the 5-dimensional

projective space P
5 (a Plücker vector corresponds to a point in P

5). The join (also called superjoin)

of these six 1-extensors in P
5 is equal to the determinant of JT , up to scale. This determinant matrix,

whose columns are the Plücker coordinates of six lines (2-extensors), is called the superbracket

in GCA Λ(V (2)) [20, 21]. Thus, a singularity occurs when this superbracket vanishes.



The superbracket is an expression involving 12 points selected on six projective lines (2-extensors)

and can be developed into a linear combination of 24 bracket monomials [2, 22], each one being the

product of three brackets of four projective points:

[ab, cd, ef, gh, ij, kl] =
24

∑
i=1

yi (7)

where

y1 =−[abcd][efgi][hjkl] y2 = [abcd][efhi][gjkl] y3 = [abcd][efgj][hikl]
y4 =−[abcd][efhj][gikl] y5 = [abce][dfgh][ijkl] y6 =−[abde][cfgh][ijkl]
y7 =−[abcf][degh][ijkl] y8 = [abdf][cegh][ijkl] y9 =−[abce][dghi][fjkl]
y10 = [abde][cghi][fjkl] y11 = [abcf][dghi][ejkl] y12 = [abce][dghj][fikl]
y13 =−[abdf][cghi][ejkl] y14 =−[abde][cghj][fikl] y15 =−[abcf][dghj][eikl]
y16 = [abdf][cghj][eikl] y17 = [abcg][defi][hjkl] y18 =−[abdg][cefi][hjkl]
y19 =−[abch][defi][gjkl] y20 =−[abcg][defj][hikl] y21 = [abdh][cefi][gjkl]
y22 = [abdg][cefj][hikl] y23 = [abch][defj][gikl] y24 =−[abdh][cefj][gikl]

A bracket [abcd] is null if and only if (iff) the projective points a, b, c and d are coplanar. The

bracket of four projective points is defined as the determinant of the matrix whose columns are the

homogeneous coordinates of these points. It is noteworthy that a bracket containing one finite point

and three distinct points at infinity does not depend on the finite point. Indeed, let g, i, j and k be

one given finite point and three disctinct points at infinity, respectively. Then,

[gikj] =

∣
∣
∣
∣
∣
∣
∣
∣

g1 i1 k1 j1
g2 i2 k2 j2
g3 i3 k3 j3
1 0 0 0

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

i1 k1 j1
i2 k2 j2
i3 k3 j3

∣
∣
∣
∣
∣
∣

= [ikj] = [xikj] (8)

where x can be any finite point.

2.5. Projective space

The 3-dimensional projective space P3 is characterized by the affine space R
3 in addition to the

plane at infinity Ω∞. It is noteworthy that the coordinates of a projective element are determined up

to a scalar multiple. A projective point has four homogeneous coordinates whereas a projective line

has six Plücker coordinates represented by its Plücker coordinate vector. The following properties

highlight the relations between projective elements:

• A finite point, A, is represented by its homogeneous coordinates vector a= (a1, a2, a3, 1)T , the

first three coordinates being its Cartesian coordinates in R
3;

• A finite line, L , is represented by its Plücker coordinates vector F = (s; r× s); where s is the

unit vector of L , r is the position vector of any point on L and (r× s) represents the moment

of L with respect to the origin;
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Figure 1: A 4-RUU PM.

• Let underlined points denote points at infinity. Any finite line, F = (s; r× s), has a unique

point at infinity c= (s; 0). This point only depends on the line direction and is determined up

to scale. Accordingly, if a and b are two finite points on F , then c = b− a. Furthermore, all

finite lines directed along s intersect at one common point at infinity, namely, c;

• All finite planes of normal vector m, have a common line at infinity. This line is given by:

M = (0; m) and passes through the point at infinity on any finite line orthogonal to m;

• Two lines at infinity M1 = (0; m1) and M2 = (0; m2) intersect at a unique point at infinity

g= (m1 ×m2; 0).

3. JACOBIAN MATRIX OF THE 4-RUU PM

3.1. Architecture review and kinematic modeling

Figure 1(a) represents the CAD model of a 4-RUU PM, which consists of a fixed base and a

moving platform connected to each other with four identical RUU limbs. The input of the mechanism

is provided by four revolute actuators attached to the base. From [12], the geometric characteristics

of each limb are:

1. Each limb is composed of five revolute joints. The second and the third joints, as well as

the fourth and the fifth joints, are built with intersecting and perpendicular axes and are thus

assimilated to U-joints centered at points Bi and Ci, respectively;

2. The axes of the third and the fourth revolute joints of the ith limb are parallel to mi. These axes

define a plane Vi. Let fi be the unit vector of line BiCi. Thus, plane Vi has (mi × fi) as normal



vector;

3. The first, the second and the fifth revolute joints of the ith limb have axes parallel to a fixed

direction along z. Plane Pi, defined by the axes of the second and the last revolute joints, has

(z× fi) = mi as normal vector. However, plane Pi degenerates into a line if fi is parallel to z.

3.2. Constraint analysis

Each limb li = R
i
U

i
1U

i
2 (i = 1, . . . ,4) of the 4-RUU PM applies one constraint moment Mi =

(0; mi × z) reciprocal to the twists associated with joints R
i, U

i
1 and U

i
2. Vectors mi × z are or-

thogonal to z. Thus, in a non singular configuration, the four constraint wrenches Mi form a 2-system

Wc
4RUU , namely, the constraint wrench system of the PM:

W
c
4RUU = span(Mi) ; i = 1, . . . ,4 (9)

The limbs of the 4-RUU PM can each apply one constraint moment but altogether they limit

only two dof, namely, two rotations of the moving platform. Thus, it is an over-constrained SMG.

The moving platform cannot rotate about an axis of direction orthogonal to z. It provides three

independent translations and one rotation about an axis of fixed direction along z. By locking the

actuator of the ith limb, an additional constraint appears, which is called the limb actuation wrench.

It is a pure force Fi = (fi;rCi
× fi) where fi is the unit vector of (BiCi =Pi∩Vi) and rCi

is the position

vector of point Ci. In a non-singular configuration, the actuation wrench system of the PM is a

4-system expressed as:

W
a
4RUU = span(Fi) ; i = 1, . . . ,4 (10)

Based on the constraint analysis, the rows of J of the 4-RUU PM can be composed of four indepen-

dent zero pitch wrenches within Wa
4RUU plus two independent infinite pitch wrenches within Wc

4RUU .

However, a parallel singularity occurs when the system spanned by the four actuation forces and the

four constraint moments becomes a (n < 6)-system.

4. LIMB SINGULARITIES

A limb singularity is similar to the singularity of a serial manipulator. It occurs for the 4-RUU PM

when a limb kinematic screw system (twist system) degenerates. Consequently, the platform loses

one dof in such a configuration. Let us consider the twist system of the ith limb. It can be expressed

in matrix form as follows:
[

z z mi mi z

z× rAi
z× rBi

mi × rBi
mi × rCi

z× rCi

]

(11)

After some linear transformations, Eq. (11) becomes:
[

z mi 0 0 0

z× rAi
mi × rBi

z× (rBi
− rAi

) z× (rCi
− rAi

) mi × fi

]

where fi = rCi
− rBi

. Since z and mi correspond to two independent directions, this matrix is rank

deficient whenever its last three columns (corresponding to infinite-pitch twists) become linearly
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Figure 2: Limb singularities.

dependent. On the other hand, in any robot configuration one has: Ai, Bi and Ci are three distinct

points, AiBi⊥z and mi 6‖ fi. Thus, the ith limb of the 4-RUU PM may exhibit a limb singularity

whenever:

a.1 (rCi
− rAi

) ‖ z ⇔ AiCi ‖ z. In that case, Fi = (fi; rCi
× fi) crosses Ai at point Ci. As a result, Fi

acts as a constraint force and the 4-RUU PM loses the translational dof along fi. Figure 2(a)

illustrates such a configuration;

a.2 (rCi
− rBi

) ‖ z ⇔ fi ‖ z as shown in Fig. 2(b). In that case, Fi crosses Ai at infinity, i.e., at point

j= (z; 0). Consequently, the 4-RUU PM loses the translational dof along z.

5. SINGULARITY ANALYSIS OF THE 4-RUU PM USING GCA

In order to formulate a superbracket expression of the 4-RUU PM, one must represent its different

wrenches in P3 and then select two points on each Plücker line of J. A finite line (pure force) could

be represented in the superbracket either by two finite points or by one finite point and its unique

point at infinity. In turn, a line at infinity could be represented by two points at infinity. However,

the selection of the foregoing points must highlight as much as possible geometric (coincidence,

parallelism, orthogonality, intersection and so on) relations between the wrenches in order to obtain

a simplified expression of the superbracket.

As shown in Fig. 1(a), each actuation force of the 4-RUU PM can be expressed as Fi = (Pi ∩Vi),
i = 1, . . . ,4, plane Pi being of normal (z× fi) = mi while plane Vi is of normal mi × fi. On the

other hand, in a general case, two planes Pi and P j (i 6= j) intersect at a finite line, namely, Ti j =
(Pi ∩P j). Such a line is orthogonal to both vectors z× fi and z× f j and is thus directed along

z. Therefore, for i 6= j, one can find a line Ti j = (Pi ∩P j) directed along z and crossing the two



actuation forces Fi and Fj. In this vein, let a and c be the intersection points of T12 with F1 and F2,

respectively. Likewise, let e and g be the intersection points of T34 with F3 and F4, respectively.

On the other hand, let b = (f1; 0), d = (f2; 0), f = (f3; 0) and h = (f4; 0). Accordingly, the four

actuation forces can be expressed as:

F1 = ab ; F2 = cd ; F3 = ef ; F4 = gh (12)

Now let x = (x; 0) and y = (y; 0). Hence, line xy collects all points at infinity corresponding to

directions orthogonal to z. Let j = (z; 0), i = (m1; 0), k = (m2; 0), l = (m3; 0) and m = (m4; 0).
Accordingly, the four constraint moments are expressed as:

M1 = ij ; M2 = kj ; M3 = lj ; M4 = mj (13)

where i, k, l and m belong to xy. A wrench graph, representing the projective lines associated with

the wrenches of the 4-RUU PM in P3, is given in Fig. 1(b).

5.1. Superbracket decomposition

Due to the redundancy of constraints, a superbracket of the 4-RUU PM can be composed of the

four actuation forces Fi (i= 1, . . . ,4) in addition to two among the four constraint moments expressed

in Eq. (13). Thus, one can write

(
4

2

)

= C2
4 = 6 superbrackets S j ( j = 1, . . . ,6). However, a parallel

singularity occurs when the six possible superbrackets vanish simultaneously. For example, the

superbracket S1 involving the two constraint moments ij and kj takes the form:

S1 = [ab, ef, cd, gh, ij, kj] (14)

From Eq. (7), S1 can be decomposed into a linear combination of 24 bracket monomials, which leads

to only five non-zero monomials as follows:

S1 = − [abef][cdhj][gikj]− [abed][fghj][cikj]+ [abeh][fcdj][gikj]

− [abfh][ecdj][gikj]+ [abfd][eghj][cikj] (15)

From Eq. (8), one has [gikj] = [ikj]. Furthermore, since points e, g and j belong to the same

projective line, namely, to T34, the bracket [eghj] is null and therefore: [abfd][eghj][cikj] = 0.

Thus, Eq. (15) becomes:

S1 = [ikj]
(
−[abef][cdhj]− [abed][fghj]+ [abeh][fcdj]− [abfh][ecdj]

)
(16)

From the syzygies or Grassmann-Plücker relations [2, 20], it follows that:

[abec][fdhj] = +[abef][cdhj]+ [abed][fchj]+ [abeh][fdcj]+ [abej][fdhc] (17)

On the other hand, [fdhj] = 0 and [fdcj] =−[fcdj]. From Eq. (8) [fghj] = [fchj]. Therefore,

[abej][fdhc] =−[abef][cdhj]− [abed][fchj]+ [abeh][fcdj] (18)
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Figure 3: Two critical configurations of the 4-RUU PM.

As a result, Eq. (16) becomes:

S = [ikj]
︸ ︷︷ ︸

A1

(
[abej][fdhc]− [abfh][ecdj]

)

︸ ︷︷ ︸

B

(19)

Term A1 = [gikj] in Eq. (19) depends only on the chosen constraint moments ij and kj whereas

term B does not depend on the choice of points i and k. Consequently, term B is a common factor of

the six possible superbrackets:

S j = A j B ; j = 1, . . . ,6 (20)

where A1 = [ikj], A2 = [ilj], A3 = [imj], A4 = [klj], A5 = [kmj] and A6 = [lmj].

5.2. Condition for constraint singularities

Constraint singularities correspond to the degeneracy of the constraint wrench system of the ma-

nipulator. In such configurations, the manipulator loses some constraints and, as a result, its moving

platform gains one or several dof. Accordingly, a constraint singularity of the 4-RUU PM occurs

when the four constraint moments Mi (i = 1, . . . ,4) form a n < 2-system, i.e., when all terms A j

( j = 1, . . . ,6) expressed in Eq. (20) vanish simultaneously. Let us consider bracket [gikj], namely,

term A1. This bracket vanishes iff points i, k and j belong to the same projective line. Since point

j corresponds to the fixed direction of vector z, it is a fixed point. Points i and k correspond to two

directions orthogonal to z and, therefore, these points belong to a line that cannot pass through point

j unless i and k are coincident. Consequently, all terms A j vanish simultaneously iff points i, k, l,

and m become all coincident. As a result, the 4-RUU PM reaches a constraint singularity iff:

m1 ‖ m2 ‖ m3 ‖ m4 (21)



In such a configuration, the constraint wrench system of the manipulator degenerates into a 1-system

and the moving platform gains one extra dof, namely, the rotation about an axis directed along the

common direction of mi (i = 1, . . . ,4), as shown in Fig. 3(a). In such a critical configuration, if the

moving platform rotates about an axis directed along z, then the robot will come back to a non-

singular configuration.

On the other hand, in a constraint singular configuration, if the moving platform rotates about an

axis directed along mi, the revolute joints attached to the moving platform will no longer be directed

along z. As a consequence, the constraint wrench of each limb becomes a wrench of finite pitch (a

combination of a force and a moment). In that case, the moving platform has neither pure constraint

moments nor pure constraint forces. Moreover, the limbs constrain neither a pure rotation nor a pure

translation. Such a configuration is shown in Fig. 3(b) and corresponds to a coupled motion.

5.3. Conditions for actuation singularities

In this paper, the actuation singularities correspond to configurations in which J is rank deficient

while the constraint wrench system does not degenerate. In such configurations, the motion of the

moving platform becomes uncontrollable, namely, the actuators cannot control the motion of the

moving platform. According to Eq. (20), these singularities are related to the vanishing conditions

of term B. In order to obtain geometric and vector conditions for actuation singularities, term B is

expressed in a more compact form by considering the following bracket simplifications:

• [fdhc] = [cdfh] = [adfh];

• Since j= c−a, [abej] = [(c−j)bej] = [cbej] = [ecbj].

Accordingly,

B = [adfh][ecbj]− [abfh][ecdj] = [a
•
dfh][ec

•
bj] = (afh)∧ (ecj)∧ (db) (22)

where the dotted letters stand for the permuted elements as explained in [16, 20]. From Eq. (22),

term B is the meet of three geometric entities, namely,

1. (afh) is a finite plane having f3 × f4 as normal vector;

2. (ecj) is the finite plane containing the finite points e and c and the unit vector z. Since

plane (ecj) contains lines T12 and T34 (Fig. 1(b)), the line at infinity of plane (ecj) =
span(T12, T34) can be expressed as (uj) where u = (u; 0) and u is the unit vector of a fi-

nite line non-parallel to z and lying in plane (ecj), i.e., crossing T12 and T34. Accordingly,

plane (ecj) has u×z as normal vector. It should be noted that u and u exist unless T12 ≡T34;

3. (db) is the line at infinity of all parallel finite planes containing the unit vectors f1 and f2, i.e.,

having f1 × f2 as normal vector.



F1F2F3F4

(a) F1 and F2 are parallel.

F1

F2

F3

F4

B1

C1

(b) All actuation forces are coplanar.

Figure 4: Two actuation singular configurations of the 4-RUU PM.

An actuation singularity occurs iff term B of Eq. (22) vanishes. It amounts to the following vector

form:
(

(f3 × f4)× (u× z)
)

· (f2 × f1) = 0 (23)

From Eqs. (22) and (23), an actuation singularity of the 4-RUU PM occurs whenever:

(a) Plane (afh) degenerates, which happens iff f≡ h⇔ f3 ‖ f4, i.e., F3 and F4 are parallel;

(b) Plane (ecj) degenerates, which happens iff points e, c and j are aligned. In that case, T12 ≡T34

and u = 0;

(c) Line (db) degenerates, which happens iff d≡ b⇔ f2 ‖ f1 as shown in Fig. 4(a);

(d) Plane (afh) coincides with plane (ecj). Since point a lies in plane (ecj), the condition (afh)≡
(ecj) amounts to (fh)≡ (uj). In that case, (f3× f4) ‖ (u×z), i.e., f3, f4, u and z are orthogonal

to a given direction;

(e) Line (db) lies in plane (afh). In such a case, (f2 × f1) ‖ (f3 × f4). For example, if the four

actuation forces are coplanar, as shown in Fig. 4(b);

(f) Line (db) lies in plane (ecj). In such a case, (f2 × f1) ‖ (u× z);

(g) The intersection line of planes (afh) and (ecj) coincides with line (db). Since planes (afh)

and (ecj) contain point a, they intersect at a line at infinity iff they coincide. Accordingly,

condition (g) amounts to (fh)≡ (uj)≡ (db), i.e., (f3 × f4) ‖ (u× z) ‖ (f2 × f1);



Table 1: Actuation singularity conditions of the 4-RUU PM.

Case Vector form Algebraic form

(a) f3 ‖ f4 f≡ h

(b) u = 0 e, c and j are aligned

(c) f2 ‖ f1 d≡ b

(d) (f3 × f4) ‖ (u× z) fh≡ uj

(e) (f2 × f1) ‖ (u× z) db≡ uj

(f) (f3 × f4) ‖ (f2 × f1) fh≡ db

(g) (f3 × f4) ‖ (u× z) ‖ (f2 × f1) fh≡ uj≡ db

(h)
(

(f3 × f4)× (u× z)
)

⊥(f2 × f1) (fh∧uj) ∈ db

(h) Let us consider the general case of Eq. (23), namely, the intersection line of planes (afh)

and (ecj) crosses line (db). If planes (afh) and (ecj) are not coincident (condition(d)), then

they will intersect at a finite line D directed along n = (f3 × f4)× (u× z). Thus, the point at

infinity, n= (n; 0), of line D is the intersection point of lines (fh) and (uj). The finite line D

crosses line (db) iff n ∈ (db). In that case, the lines at infinity (fh), (db) and (uj) intersect at

point n. As a result, n is orthogonal to (f2 × f1), (f3 × f4) and (u× z).

All possible cases of Eq. (23) are expanded in Table 1. It should be noted that Eq. (23) is obtained

by considering two lines T12 (crossing F1 and F2) and T34 (crossing F3 and F4). Vector u in Eq. (23)

can be written as u34
12, i.e., the unit vector of a finite line non-parallel to z crossing lines T12 and T34.

Accordingly, since a line Ti j exists between each pair of forces Fi and Fj, the vector form of actuation

singularities can be generalized as follows:
(

(fi × f j)× (fk × fl)
)

· (ukl
i j × z) = 0 (24)

where (i, j, k, l), i 6= j 6= k 6= l, is a permutation of (1, 2, 3, 4) and ukl
i j is the unit vector of a finite

line non-parallel to z crossing Ti j and Tkl .

6. CONCLUSIONS

In this paper, the singularity conditions of 3T1R Parallel Manipulators (PMs) with identical limb

structures were investigated through the singularity analysis of the 4-RUU PM based on Grassmann-

Cayley Algebra (GCA). First, the Jacobian matrix J of the PM was derived using screw theory.

Then, a wrench graph that represents the wrenches of the 4-RUU PM, namely, the rows of J in

the 3-dimensional projective space, was obtained. Accordingly, a superbracket was formulated and

explored to provide a compact vector expression for the singularity locus, which is difficult to assess

using classical linear algebra tools. Finally, all the geometric singularity conditions of the 4-RUU PM

were enumerated and some singular configurations were illustrated.
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