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HOCHSCHILD HOMOLOGY OF HOPF ALGEBRAS AND FREE

YETTER-DRINFELD RESOLUTIONS OF THE COUNIT

JULIEN BICHON

Abstract. We show that if A andH are Hopf algebras that have equivalent tensor categories of
comodules, then one can transport what we call a free Yetter-Drinfeld resolution of the counit
of A to the same kind of resolution for the counit of H , exhibiting in this way strong links
between the Hochschild homologies of A and H . This enables us to get a finite free resolution
of the counit of B(E), the Hopf algebra of the bilinear form associated to an invertible matrix E,
generalizing an ealier construction of Collins, Härtel and Thom in the orthogonal case E = In.
It follows that B(E) is smooth of dimension 3 and satisfies Poincaré duality. Combining this
with results of Vergnioux, it also follows that when E is an antisymetric matrix, the L

2-Betti
numbers of the associated discrete quantum group all vanish. We also use our resolution to
compute the bialgebra cohomology of B(E) in the cosemisimple case.

1. introduction

Let n ∈ N
∗ and let Ao(n) be the algebra (over the field of complex numbers) presented by

generators (uij)1≤i,j≤n and relations making the matrix u = (uij) orthogonal. This is a Hopf
algebra, introduced by Dubois-Violette and Launer [13] and independently by Wang [43] in the
compact quantum group setting. The Hopf algebras Ao(n) play an important role in quantum
group theory, since any finitely generated Hopf algebra of Kac type (the square of the antipode is
the identity), and in particular any semisimple Hopf algebra, is a quotient of one of these. They
have been studied from several perspectives, in particular from the (co)representation theory
viewpoint [1, 4, 7] and the probabilistic and operator algebraic viewpoint [2, 3, 39, 38, 42].

The homological study of Ao(n) begins in [11], where Collins, Härtel and Thom define an
exact sequence of Ao(n)-modules

0→ Ao(n) −→Mn(Ao(n)) −→Mn(Ao(n)) −→ Ao(n)
ε
−→ C→ 0 (⋆)

thus yielding a resolution of the conit of Ao(n) by free Ao(n)-modules. From this exact sequence,
they deduce some important homological information on Ao(n):

(1) Ao(n) is smooth of dimension 3,
(2) Ao(n) satisfies Poincaré duality,
(3) The L2-Betti numbers of Ao(n) all vanish.

An inconvenient in [11] is that the verification of the exactness of ⋆ is a very long compu-
tation involving tedious Gröbner basis computations. It is the aim of the present paper to
propose a simpler and more conceptual proof of the exactness of the sequence ⋆, together with
a generalization to a larger class of Hopf algebras.

Our starting point is the combination of the following two known facts.

(1) For q ∈ C
∗, there exists a resolution of the counit of O(SLq(2)) having the same length

as the one of the sequence ⋆ (see e.g. [19]).
(2) For q satisfying q+ q−1 = −n, there exists an equivalence of tensor categories of comod-

ulesMO(SLq(2)) ≃⊗MAo(n) [4].

Therefore, although one cannot expect that a tensor equivalence between categories of comod-
ules induces isomorphisms between Hochschild homologies, it is tempting to believe that it
is possible to use the above monoidal equivalence to transport a resolution of the counit of
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O(SLq(2)) by free modules having appropriate additional structures (in particular a comodule
structure) to get a resolution of the counit of Ao(n) having the same length.

The appropriate structure we find is that of free Yetter-Drinfeld module, see Section 3 for
the definition, these are Yetter-Drinfeld modules that are in particular free as modules. We
show that if A and H are Hopf algebras that have equivalent tensor categories of comodules,
then one can transport a free Yetter-Drinfeld resolution of the counit of A to the same kind of
resolution for the counit of H (with preservation of the length of the resolution).

Now let E ∈ GLn(C) with n ≥ 2 and consider the algebra B(E) presented by generators
(uij)1≤i,j≤n and relations

E−1utEu = In = uE−1utE,

where u is the matrix (uij)1≤i,j≤n. The Hopf algebra B(E) was defined in [13], and corresponds
to the quantum symmetry group of the bilinear form associated to E. We have B(In) = Ao(n)
and O(SLq(2)) = B(Eq), where

Eq =

(
0 1
−q−1 0

)

We construct, for any E ∈ GLn(C), an exact sequence of B(E)-modules

0→ B(E) −→Mn(B(E)) −→Mn(B(E)) −→ B(E)
ε
−→ C→ 0 (⋆E)

See Section 5. For E = In, the sequence is the one of Collins-Härtel-Thom in [11]. The
verification of exactness goes as follows.

(1) We endow each constituent of the sequence of a free Yetter-Drinfeld module structure.
(2) We use the previous construction to transport sequences of free Yetter-Drinfeld modules

to show that for E ∈ GLn(C), F ∈ GLm(C) with tr(E−1Et) = tr(F−1F t) and m,n ≥ 2
(so thatMB(E) ≃⊗MB(F ), [4]), the sequence ⋆E is exact if and only if the sequence ⋆F
is exact.

(3) We check that for any q ∈ C
∗, the sequence ⋆Eq is exact (this is less than a one page

computation). Now for any E ∈ GLn(C) with n ≥ 2, we pick q ∈ C
∗ such that

tr(E−1Et) = −q − q−1 = tr(E−1
q Et

q), and we conclude from the previous item that ⋆E
is exact.

Similarly as in [11], the exactness of the sequence ⋆E has several interesting consequences. The
first one is that B(E) is smooth of dimension 3 for any E ∈ GLn(C), n ≥ 2 (recall [37] that an
algebra A is said to be smooth of dimension d is the A-bimodule A has a finite resolution of
length d by finitely generated projective A-bimodules, with d being the smallest possible length
for such a resolution).

The second consequence is that B(E) satisfies a Poincaré duality between its Hochschild
homology and cohomology. Since Van den Bergh’s seminal paper [37], Poincaré duality for
algebras has been the subject of many papers, in which the authors propose axioms that will
have Poincaré duality as a corollary, see e.g. [22] for a recent general and powerful framework.
Let us emphasize that the exact sequence ⋆E enables us to establish Poincaré duality in a
straightforward manner, without having to check any condition such as the ones proposed in [8]
(where moreover noetherianity assumptions were done, while B(E) is not noetherian if n ≥ 3).

A third consequence concerns bialgebra cohomology (Gerstenhaber-Schack cohomology [15,
16]), for which only very few full computations are known for non-commutative and non-
cocommutative Hopf algebras (see [35]). The fact that the exact sequence ⋆E consists of free
Yetter-Drinfeld modules enables us to compute the bialgebra cohomology of B(E) (and hence
in particular of O(SLq(2))) in the cosemisimple case.

The last consequence concerns L2-Betti numbers. Recall that the definition of L2-Betti
numbers for groups [27] can be generalized to discrete quantum groups (compact Hopf algebras
of Kac type) [23]. Combining the results in [11] with a result of Vergnioux [41] (vanishing of the
first Betti number of Ao(n)), Collins, Härtel and Thom have shown that the L2-Betti numbers
of Ao(n) all vanish. Using similar arguments we show that the L2-Betti numbers of Ao(Jm) all
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vanish, where Jm is any anti-symmetric matrix. This completes the computation of the L2-Betti
numbers of all universal orthogonal discrete quantum groups of Kac type.

The paper is organized as follows. Section 2 is devoted to preliminaries. In Section 3 we
introduce free Yetter-Drinfeld modules and remark that the standard resolution of the counit of
a Hopf algebra is a free Yetter-Drinfeld resolution. In Section 4 we show how to transport free
Yetter Drinfeld resolutions for Hopf algebras having equivalent tensor categories of comodules.
In Section 5 we define and prove the exactness of the announced resolution of the counit of
B(E). Section 6 is devoted to the several applications we have already announced, and Section
7 consists of concluding remarks.

2. Preliminaries

2.1. Notations and conventions. We assume that the base field is C, the field of complex
numbers (although our results, except in Subsection 6.4, do not depend on the base field). We
assume that the reader is familiar with the theory of Hopf algebras and their tensor categories of
comodules, as e.g. in [20, 21, 28]. If A is a Hopf algebra, as usual, ∆, ε and S stand respectively
for the comultiplication, counit and antipode of A. We use Sweedler’s notations in the standard
way. The category of right A-comodules is denotedMA. If M is an A-bimodule, then H∗(A,M)
and H∗(A,M) denote the respective Hochschild homology and cohomology groups of A (with
coefficients in M).

2.2. Hochschild homology of Hopf algebras and resolutions of the counit. In this
section we recall how the Hochschild homology and cohomology of a Hopf algebra A can be
described by using suitable Tor and Ext groups on the category of left or right A-modules and
resolutions of the counit. This has been discussed under various forms in several papers (see
[14], [17], [19], [8], [11]) and probably has its origins in [10], Section 6 of chapter X.

Proposition 2.1. Let A be a Hopf algebra and let M be an A-bimodule. Define a left A-module

structure on M and a right A-module structure on M by

a→ x = a(2) · x · S(a(1)), x← a = S(a(1)) · x · a(2)

and denote by M ′ and M ′′ the respective corresponding left A-module and right A-module. Then

for all n ∈ N there exist isomorphisms of vector spaces

Hn(A,M) ≃ TorAn (Cε,M
′), Hn(A,M) ≃ ExtnA(Cε,M

′′)

The previous Ext-groups are those in the category of right A-modules. In lack of a reference
that would give exactly the isomorphisms of Proposition 2.1, we will provide an explicit proof.
Writing down the proof also gives us the opportunity to review the material involved in the
statement of the proposition [44].

Let (A, ε) be an augmented algebra, i.e. A is an algebra and ε : A −→ C is an algebra
map that we call the counit of A. We view C as a right A-module via ε and we denote by Cε

this right A-module. Recall that the standard resolution of Cε (the standard resolution of the
counit) is given by the complex of free right A-modules

· · · −→ A⊗n+1 −→ A⊗n −→ · · · −→ A⊗A −→ A −→ 0

where each differential is given by

A⊗n+1 −→ A⊗n

a1 ⊗ · · · ⊗ an+1 7−→ ε(a1)a2 ⊗ · · · ⊗ an+1 +
n∑

i=1

(−1)ia1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

Given a left A-module M , the vector spaces TorA∗ (Cε,M) are given by the homology of the
complex obtained by tensoring any projective resolution of Cε by − ⊗A M . Thus using the
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standard resolution of the counit, after suitable identifications, we see that the vector spaces
TorA∗ (Cε,M) are given by the homology of the following complex

· · · −→ A⊗n ⊗M
d
−→ A⊗n−1 ⊗M

d
−→ · · ·

d
−→ A⊗M

d
−→M −→ 0

where the differential d : A⊗n ⊗M −→ A⊗n−1 ⊗M is given by

d(a1 ⊗ · · · ⊗ an ⊗ x) =ε(a1)a2 ⊗ · · · ⊗ an ⊗ x+

n−1∑

i=1

(−1)ia1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an ⊗ x

+ (−1)na1 ⊗ · · · ⊗ an−1 ⊗ an · x

Recall now that if A is an algebra and M is an A-bimodule, the Hochschild homology groups
H∗(A,M) are the homology groups of the complex

· · · −→M ⊗A⊗n b
−→M ⊗A⊗n−1 b

−→ · · ·
b
−→M ⊗A

b
−→M −→ 0

where the differential b : M ⊗A⊗n −→M ⊗A⊗n−1 is given by

b(x⊗ a1 ⊗ · · · ⊗ an) =x · a1 ⊗ · · · ⊗ an +
n−1∑

i=1

(−1)ix⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)nan · x⊗ a1 ⊗ · · · ⊗ an−1

Assume now that A is a Hopf algebra and let M be an A-bimodule. Consider the linear map

θ : M ⊗A⊗n −→ A⊗n ⊗M ′

x⊗ a1 ⊗ · · · ⊗ an 7−→ a1(2) ⊗ · · · ⊗ an(2) ⊗ x · (a1(1) · · · · · · an(1))

It is straightforward to see that θ is an isomorphism with inverse given by

θ−1 : A⊗n ⊗M ′ −→M ⊗A⊗n

a1 ⊗ · · · ⊗ an ⊗ x 7−→ x · S(a1(1) · · · an(1))⊗ (a1(2) ⊗ · · · ⊗ · · · an(2))

and that d◦θ = θ◦b. Hence θ induces an isomorphism between the complexes definingH∗(A,M)
and TorA∗ (Cε,M

′) and we get the first isomorphism H∗(A,M) ≃ TorA∗ (Cε,M
′).

For the second isomorphism in Proposition 2.1, let us come back to the situation of an
augmented algebra (A, ε). Given a right A-module M , the vector spaces Ext∗A(Cε,M) are
given by the cohomology of the complex obtained by applying the functor HomA(−,M) to
any projective resolution of Cε. Thus, using the standard resolution of the counit, we see that
after suitable identifications, the vector spaces Ext∗A(Cε,M) are given by the cohomology of the
following complex

0 −→ Hom(C,M)
∂
−→ Hom(A,M)

∂
−→ · · ·

∂
−→ Hom(A⊗n,M)

∂
−→ Hom(A⊗n+1,M)

∂
−→ · · ·

where the differential ∂ : Hom(A⊗n,M) −→ Hom(A⊗n+1,M) is given by

∂(f)(a1 ⊗ · · · ⊗ an+1) =ε(a1)f(a2 ⊗ · · · ⊗ an+1) +

n∑

i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1)

+ (−1)n+1f(a1 ⊗ · · · ⊗ an) · an+1

If A is an algebra and M is an A-bimodule, the Hochschild cohomology groups H∗(A,M) are
the cohomology groups of the complex

0 −→ Hom(C,M)
δ
−→ Hom(A,M)

δ
−→ · · ·

δ
−→ Hom(A⊗n,M)

δ
−→ Hom(A⊗n+1,M)

δ
−→ · · ·

where the differential δ : Hom(A⊗n,M) −→ Hom(A⊗n+1,M) is given by

δ(f)(a1 ⊗ · · · ⊗ an+1) =a1 · f(a2 ⊗ · · · ⊗ an+1) +

n∑

i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1)

+ (−1)n+1f(a1 ⊗ · · · ⊗ an) · an+1

4



Assume now that A is a Hopf algebra and let M be an A-bimodule. Consider the linear map

ϑ : Hom(A⊗n,M) −→ Hom(A⊗n,M ′′)

f 7−→ f̂ , f̂(a1 ⊗ · · · ⊗ an) = S(a1(1) · · · an(1))f(a1(2) ⊗ · · · ⊗ an(2))

It is easy to see that ϑ is an isomorphism and that ∂ ◦ ϑ = ϑ ◦ δ. Hence ϑ induces an iso-
morphism between the complexes defining H∗(A,M) and Ext∗A(Cε,M

′′) and we get the second
isomorphism H∗(A,M) ≃ Ext∗A(Cε,M

′′).

2.3. The Hopf algebra B(E). Let E ∈ GLn(C). Recall that the algebra B(E) [13] is presented
by generators (uij)1≤i,j≤n and relations

E−1utEu = In = uE−1utE,

where u is the matrix (uij)1≤i,j≤n. It has a Hopf algebra structure defined by

∆(uij) =
n∑

k=1

uik ⊗ ukj, ε(uij) = δij , S(u) = E−1utE

For the matrix Eq ∈ GL2(C) in the introduction, we have B(Eq) = O(SLq(2)), and thus the
Hopf algebras B(E) are generalizations of O(SLq(2)). It is shown in [4] that the isomorphism
class of the Hopf algebra B(E) only depends on the bilinear form associated to the matrix E,
and that for q ∈ C

∗ satisfying tr(E−1Et) = −q − q−1, the tensor categories of comodules over
B(E) and O(SLq(2)) are equivalent.

The fundamental n-dimensional B(E)-comodule is denoted by VE : it has a basis eE1 , . . . , e
E
n

and right coaction α : VE → VE ⊗ B(E) defined by α(eEi ) =
∑n

k=1 e
E
k ⊗ uki. For future use, we

record that the following linear maps

δ : C −→ VE ⊗ VE , ϕ : VE −→ V ∗
E

1 7−→

n∑

i,j=1

E−1
ij eEi ⊗ eEj , eEi 7−→

n∑

k=1

Eike
E∗
k

are morphisms of B(E)-comodules (where E−1 = (E−1
ij )).

We now define some maps that will be used in Section 6.

(1) The sovereign character of B(E) is the algebra map Φ : B(E) → C defined by Φ(u) =
E−1Et. It satisfies S2 = Φ ∗ id ∗Φ−1.

(2) The modular automorphism of B(E) is the algebra automorphism σ of B(E) defined by
σ(u) = E−1EtuE−1Et, i.e. σ = Φ ∗ id ∗ Φ.

(3) We denote by θ is the algebra anti-automorphism of B(E) defined by θ = S ∗Φ ∗Φ, i.e.
θ(u) = S(u)E−1EtE−1Et. We have S ◦ θ = σ.

3. Free Yetter-Drinfeld modules

In this section we introduce the concept of free Yetter-Drinfeld module, which will be essential
for our purpose. We begin by recalling the basics on Yetter-Drinfeld modules.

Let A be a Hopf algebra. Recall that a (right-right) Yetter-Drinfeld module over A is a right
A-comodule and right A-module V satisfying the condition, ∀v ∈ V , ∀a ∈ A,

(v ← a)(0) ⊗ (v ← a)(1) = v(0) ← a(2) ⊗ S(a(1))v(1)a(3)

The category of Yetter-Drinfeld modules over A is denoted YDA
A: the morphisms are the A-

linear A-colinear maps. Endowed with the usual tensor product of modules and comodules, it
is a tensor category.

An important example of Yetter-Drinfeld module is the right coadjoint Yetter-Drinfeld mod-
ule Acoad: as a right A-module Acoad = A and the right A-comodule structure is defined by

adr(a) = a(2) ⊗ S(a(1))a(3),∀a ∈ A
5



The following result, which will be of vital importance for us, generalizes the construction of
the right coadjoint comodule.

Proposition 3.1. Let A be a Hopf algebra and let V be a right A-comodule. Endow V ⊗A with

the right A-module structure defined by multiplication on the right. Then the linear map

V ⊗A −→ V ⊗A⊗A

v ⊗ a 7−→ v(0) ⊗ a(2) ⊗ S(a(1))v(1)a(3)

endows V ⊗A with a right A-comodule structure, and with a Yetter-Drinfeld module structure.

We denote by V ⊠ A the resulting Yetter-Drinfeld module, and this constructions produces a

functor

L :MA −→ YDA
A

V 7−→ V ⊠A

Proof. This is a direct verification. �

Note that when V = C is the trivial comodule, then C⊠A = Acoad.

Definition 3.2. Let A be a Hopf algebra. A Yetter-Drinfeld module over A is said to be free if

it is isomorphic to V ⊠A for some right A-comodule V .

Of course a free Yetter-Drinfeld is free as a right A-module. The terminology is further
justified by the following result.

Proposition 3.3. Let A be a Hopf algebra. The functor L = − ⊠ A : MA −→ YDA
A is left

adjoint to the forgetful functor R : YDA
A −→ M

A. In particular if P is a projective object in

MA, then L(P ) is a projective object in YDA
A.

Proof. Let V ∈ MA and X ∈ YDA
A. It is a direct verification to check that we have a natural

isomorphism

HomMA(V,R(X)) −→ HomYDA
A
(V ⊠A,X)

f 7−→ f̃ , f̃(v ⊗ a) = f(v)← a

and thus L = −⊠A is left adjoint the forgetful functor R. The last assertion is a standard fact,
see e.g. [44], Proposition 2.3.10. �

It is worth to note that the existence of a left adjoint functor to the forgetful functor R :
YDA

A −→M
A follows from the general situations studied in [9].

Recall [25] that the categoryMA of right A-comodules has enough projectives if and only if
A is co-Frobenius (A is said to be co-Frobenius is there exists a non-zero right A-colinear map
A→ C).

Corollary 3.4. Let A be a co-Frobenius Hopf algebra. Then the category YDA
A has enough

projective objects.

Proof. Let V ∈ YDA
A and let P be a projective object in MA with an epimorphism f : P ։

R(V ). We have a surjective morphism of Yetter-Drinfeld modules

L(P ) = P ⊠A։ V

x⊗ a 7→ (f(x)← a)

with L(P ) projective, and we are done. �

Definition 3.5. Let A be a Hopf algebra and let M ∈ YDA
A. A free Yetter-Drinfeld resolution

of M consists of a complex of free Yetter-Drinfeld modules

P. = · · ·Pn+1 → Pn → · · · → P1 → P0 → 0

for which there exists a Yetter-Drinfeld module map ǫ : P0 →M such that

· · ·Pn+1 → Pn → · · · → P1 → P0
ǫ
→M → 0

6



is an exact sequence.

In particular a free Yetter-Drinfeld resolution of M is a resolution of M (as a right A-module)
by free A-modules. A basic motivation for considering this special kind of resolutions comes from
the fact that the standard resolution of the counit is in fact a free Yetter-Drinfeld resolution.
Before making this statement precise, we need the following construction.

For any n ∈ N, we define the comodule A⊠n as follows:

A0 = C, A⊠1 = C⊠A = Acoad, A⊠2 = A⊠1 ⊠A, . . . , A⊠(n+1) = A⊠n ⊠A, . . .

It is straighforward to check that after the obvious vector space identification of A⊠n with A⊗n,
the right A-module structure of A⊠n is given by right multiplication and its comodule structure
is given by

ad(n)r : A⊠n −→ A⊠n ⊗A

a1 ⊗ · · · ⊗ an 7−→ a1(2) ⊗ · · · ⊗ an(2) ⊗ S(a1(1) · · · an(1))a1(3) · · · an(3)

Proposition 3.6. Let A be Hopf algebra. The standard resolution of the counit of A is a

resolution of C by free Yetter-Drinfeld modules.

Proof. It is a direct verification to check that for any n ≥ 0, the map

A⊠(n+1) −→ A⊠n

a1 ⊗ · · · ⊗ an+1 7−→ ε(a1)a2 ⊗ · · · ⊗ an+1 +

n∑

i=1

(−1)ia1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

is a morphism of Yetter-Drinfeld modules. This gives the result since the Yetter-Drinfeld mod-
ules A⊠(n+1) are free by construction. �

We close the section by recording the following elementary result, to be used in Section 5.
The proof is left to the reader.

Lemma 3.7. Let A be a Hopf algebra, let V be finite-dimensional A-comodule with coaction

α : V → V ⊗A, with basis e1, . . . , en, and let (uij) ∈Mn(A) be such that α(ei) =
∑

k ek ⊗ uki.
The linear maps

Φ1
V : V ∗ ⊗ V −→ C⊠A = Acoad

e∗i ⊗ ej 7−→ uij

Φ2
V : V ∗ ⊗ V ∗ ⊗ V ⊗ V −→ (V ∗ ⊗ V )⊠A

e∗i ⊗ e∗j ⊗ ek ⊗ el 7−→ e∗j ⊗ ek ⊗ uil

are A-colinear.

4. Equivalences between tensor categories of comodules

In this section we present the technical core of the paper: the fact that if A and H are Hopf
algebras that have equivalent tensor categories of comodules, then one can transport a free
Yetter-Drinfeld resolution of the counit of A to the same kind of resolution for the counit of H
(with preservation of the length of the resolution). The precise result is as follows.

Theorem 4.1. Let A and H be some Hopf algebras. Assume that there exists an equivalence

of linear tensor categories Θ : MA ≃⊗ MH . Then Θ induces an equivalence of linear tensor

categories Θ̂ : YDA
A ≃

⊗ YDH
H together with, for all V ∈ MA, natural isomorphisms

Θ̂(V ⊠A) ≃ Θ(V )⊠H

The functor Θ̂ associates to any free Yetter-Drinfeld resolution of the counit of A

V· ⊠A : · · ·Vn+1 ⊠A→ Vn ⊠A→ · · · → V0 ⊠A→ 0
7



a free Yetter-Drinfeld resolution of the counit of H

Θ(V·)⊠H : · · ·Θ(Vn+1)⊠H → Θ(Vn)⊠H → · · · → Θ(V0)⊠H → 0

Proof. Let RA : YDA
A −→M

A and RH : YDH
H −→M

H be the respective forgetful functors with

their respective left adjoint LA : MA −→ YDA
A and LH : MH −→ YDH

H . The description of
YDA

A as the weak center of the monoidal categoryMA (see e.g. [32], [20]) ensures the existence

of an equivalence of linear tensor categories Θ̂ : YDA
A ≃ YD

H
H such that RHΘ̂ ≃ ΘRA as

functors. Denote by Θ−1 a quasi-inverse of Θ. Then we have, for any U ∈ MH and X ∈ YDH
H ,

natural isomorphisms

HomYDH
H
(Θ̂LAΘ

−1(U),X) ≃ HomYDA
A
(LAΘ

−1(U), Θ̂−1(X))

≃ HomMA(Θ−1(U), RAΘ̂
−1(X))

≃ HomMA(Θ−1(U),Θ−1RB(X))

≃ HomMH (U,RB(X))

The uniqueness of adjoint functors ensures that Θ̂LAΘ
−1 ≃ LH , so that Θ̂LA ≃ LHΘ, as

required. The last assertion is then immediate. �

In the next section, in order to transport an explicit resolution, we will need to know the
explicit form of a tensor equivalence Θ :MA ≃⊗MH and of the associated tensor equivalence

Θ̂ : YDA
A ≃ YD

H
H .

It was shown by Schauenburg [31] that equivalences of linear tensor categories MA ≃⊗MH

always arise from Hopf A-H-bi-Galois objects. The axioms of Hopf bi-Galois objects were
symmetrized [5, 18], leading to the use of the language of cogroupoids [6], that we now recall.

First recall that a cocategory C consists of:
• a set of objects ob(C).
• For any X,Y ∈ ob(C), an algebra C(X,Y ).
• For any X,Y,Z ∈ ob(C), algebra morphisms

∆Z
X,Y : C(X,Y ) −→ C(X,Z) ⊗ C(Z, Y ) and εX : C(X,X) −→ C

such that some natural coassociativity and counit diagrams (dual to the usual associativity and
unit diagrams in a category) commute.

A cogroupoid C consists of a cocategory C together with, for any X,Y ∈ ob(C), linear maps

SX,Y : C(X,Y ) −→ C(Y,X)

such that natural diagrams (dual to the invertibility diagrams in a groupoid) commute. A
cogroupoid with a single object is precisely a Hopf algebra. A cogroupoid is said to be connected
if for any X,Y ∈ ob(C), the algebra C(X,Y ) is non-zero.

The following theorem is the cogroupoid reformulation of Schauenburg’s results in [31], see
[6].

Theorem 4.2. Let C be a connected cogroupoid. Then for any X,Y ∈ ob(C) we have linear

equivalences of tensor categories that are inverse of each other

MC(X,X) ≃⊗MC(Y,Y ) MC(Y,Y ) ≃⊗MC(X,X)

V 7−→ V�C(X,X)C(X,Y ) V 7−→ V�C(Y,Y )C(Y,X)

Conversely, if A and H are Hopf algebras such thatMA ≃⊗MH , then there exists a connected

cogroupoid with 2 objects X, Y such that A = C(X,X) and B = C(Y, Y ).

Here the symbol � stands for the cotensor product of a right comodule by a left comodule,
see e.g. [28].
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In order to extend the previous monoidal equivalences to categories of Yetter-Drinfeld mod-
ules, let us now recall Sweedler’s notation for cocategories and cogroupoids. Let C be a cocate-
gory. For aXY ∈ C(X,Y ), we write

∆Z
X,Y (a

XY ) = aXZ
(1) ⊗ aZY

(2)

The cocategory axioms are

(∆T
X,Z ⊗ 1) ◦∆Z

X,Y (a
XY ) = aXT

(1) ⊗ aTZ
(2) ⊗ aZY

(3) = (1⊗∆Z
T,Y ) ◦∆

T
X,Y (a

XY )

εX(aXX
(1) )aXY

(2) = aXY = εY (a
Y Y
(2) )a

XY
(1)

and the additional cogroupoid axioms are

SX,Y (a
XY
(1) )a

Y X
(2) = εX(aXX)1 = aXY

(1) SY,X(aY X
(2) )

The following result is Proposition 6.2 in [6].

Proposition 4.3. Let C be cogroupoid, let X,Y ∈ ob(C) and let V be a right C(X,X)-module.

(1) V ⊗ C(X,Y ) has a right C(Y, Y )-module structure defined by
(
v ⊗ aXY

)
← bY Y = v ← bXX

(2) ⊗ SY X(bY X
(1) )a

XY bXY
(3)

Endowed with the right C(Y, Y )-comodule defined by 1⊗∆Y
X,Y , V ⊗C(X,Y ) is a Yetter-

Drinfeld module over C(Y, Y ).
(2) If moreover V is Yetter-Drinfeld module, then V�C(X,X)C(X,Y ) is Yetter-Drinfeld sub-

module of V ⊗ C(X,Y ).

We now can write down the explicit form of the tensor equivalence between categories of
Yetter-Drinfeld modules induced by a tensor equivalence between categories of comodules.

Theorem 4.4. Let C be connected cogroupoid. Then for any X,Y ∈ ob(C), the functor

YD
C(X,X)
C(X,X) −→ YD

C(Y,Y )
C(Y,Y )

V 7−→ V�C(X,X)C(X,Y )

is an equivalence of linear tensor categories. Moreover we have natural isomorphisms
(
V�C(X,X)C(X,Y )

)
⊠ C(Y, Y ) −→ (V ⊠ C(X,X))�C(X,X)C(X,Y )

v ⊗ aXY ⊗ bY Y 7−→ v ⊗ bXX
(2) ⊗ SY,X(bY X

(1) )a
XY bXY

(3)

Proof. The fact that this indeed defines an equivalence of tensor categories is proved in [6],
Theorem 6.3. The announced natural isomorphism is the one induced by the uniqueness of
adjoint functors as in the proof of Theorem 4.1. For the reader’s convenience, let us write down
explicitely the inverse isomorphism. Let

ξV : (V ⊠ C(X,X))�C(X,X)C(X,Y ) −→
((
V�C(X,X)C(X,Y )

)
⊠ C(Y, Y )

)
�C(Y,Y )

(
C(Y,X)�C(X,X)C(X,Y )

)

v ⊗ aXX ⊗ bXY 7−→ v(0) ⊗ vXY
(1) ⊗ aY Y

(2) ⊗ SXY (a
XY
(1) )v

Y X
(2) aY X

(3) ⊗ bXY

The explicit inverse of the morphism in the statement is then (id ⊗ (εY f))ξV , where f is the
inverse isomorphism to ∆X

Y Y : C(Y, Y )→ C(Y,X)�C(X,X)C(X,Y ), see the proof of Lemma 2.14
in [6]. �

We end the section by recalling that B(E) is part of a cogroupoid. Let E ∈ GLm(C) and let
F ∈ GLn(C). Recall [4] that the algebra B(E,F ) is the universal algebra with generators uij,
1 ≤ i ≤ m, 1 ≤ j ≤ n, satisfying the relations

F−1utEu = In ; uF−1utE = Im.

Of course the generator uij in B(E,F ) is denoted uEF
ij to express the dependence on E and F ,

when needed. It is clear that B(E,E) = B(E).
9



We get a cogroupoid B whose objects are the invertible matrices E ∈ GLn(C), where the
algebras B(E,F ) are the ones just defined and where the structural morphisms are the algebra
maps defined as follows

∆G
E,F : B(E,F ) −→ B(E,G)⊗ B(G,F )

uEF
ij 7−→

∑

k

uEG
ik ⊗ uGF

kj

SE,F : B(E,F ) −→ B(F,E)op

u 7−→ E−1utF

and where εE is the counit of B(E).
When B(E,F ) 6= 0 (i.e. when tr(E−1Et) = tr(F−1F t) and the matrices E, F have size ≥ 2,

see [4]), we know, by Theorem 4.2 and Theorem 4.4, that the cotensor product by B(E,F )
induces equivalences of tensor categories

MB(E) ≃⊗MB(F ), YD
B(E)
B(E) ≃

⊗ YD
B(F )
B(F )

The following B(F )-comodule isomorphisms will be used in the next section.

VF −→ VE�B(E)B(E,F ), V ∗
F ⊗ VF −→ (V ∗

E ⊗ VE)�B(E)B(E,F )

eFi 7−→
∑

k

ek ⊗ uEF
ki , eF∗

i ⊗ eFj 7−→
∑

k,l

eE∗
k ⊗ eEl ⊗ SFE(u

FE
ik )uEF

lj

5. A resolution of the counit for B(E)

In this section we write down the announced resolution ⋆E for the counit of B(E).

5.1. The resolution.

Theorem 5.1. Let E ∈ GLn(C), n ≥ 2, and let VE be the fundamental n-dimensional B(E)-
comodule. There exists an exact sequence of Yetter-Drinfeld modules over B(E)

0→ C⊠ B(E)
φ1
−→ (V ∗

E ⊗ VE)⊠ B(E)
φ2
−→ (V ∗

E ⊗ VE)⊠ B(E)
φ3
−→ C⊠ B(E)

ε
−→ C→ 0

which thus yields a free Yetter-Drinfeld resolution of the counit of B(E).

Of course the first thing to do is to define the maps φ1, φ2, φ3 in Theorem 5.1.

Definition 5.2. Let eE1 , . . . , e
E
n be the canonical basis of VE. The linear maps φ1, φ2, φ3 in

Theorem 5.1 are defined as follows.

φ1 : C⊠ B(E) −→ (V ∗
E ⊗ VE)⊠ B(E)

x 7−→
∑

i,j

eE∗
i ⊗ eEj ⊗

(
(EtE−1)ij − (Eu(Et)−1)ij

)
x

φ2 : (V
∗
E ⊗ VE)⊠ B(E) −→ (V ∗

E ⊗ VE)⊠ B(E)

eE∗
i ⊗ eEj ⊗ x 7−→ eE∗

i ⊗ eEj ⊗ x+
∑

k,l

eE∗
k ⊗ eEl ⊗ (u(Et)−1)ilEjkx

φ3 : (V
∗
E ⊗ VE)⊠ B(E) −→ C⊠B(E)

eE∗
i ⊗ eEj ⊗ x 7−→ (uij − δij)x

When E = In, the maps φ1, φ2, φ3 are those defined in [11].
10



5.2. Proof of Theorem 5.1.

Lemma 5.3. The maps φ1, φ2, φ3 in Theorem 5.1 are morphisms of Yetter-Drinfeld modules.

Proof. This can be checked directly, but for future use we describe φ1, φ2, φ3 as linear com-
bination of maps that are known to be morphisms of Yetter-Drinfeld modules. Let φ′

1, φ
′′
1 be

defined by the following compositions of B(E)-colinear maps

φ′
1 : C

δ
→ VE ⊗ VE

ϕ⊗id
−→ V ∗

E ⊗ VE
id⊗u
−→ (V ∗

E ⊗ VE)⊠ B(E)

φ′′
1 : C

δ⊗δ
−→ VE ⊗ VE ⊗ VE ⊗ VE

ϕ⊗ϕ⊗id
−→ V ∗

E ⊗ V ∗
E ⊗ VE ⊗ VE

Φ2
V−→ (V ∗

E ⊗ VE)⊠ B(E)

where u is the unit map k ⊂ B(E), the maps ϕ, δ were defined in Section 2 and Φ2
V was defined

in Lemma 3.7. We have φ1 = φ̃′
1 − φ̃′′

1 (where the notation ˜ has the same meaning as in the
proof of Proposition 3.3) hence φ1 is a Yetter-Drinfeld map. Define now φ′

2 by the composition
of the following colinear maps

φ′
2 : V

∗
E ⊗ VE

id⊗δ
−→ V ∗

E ⊗ VE ⊗ VE ⊗ VE
id⊗ϕ⊗id
−→ V ∗

E ⊗ V ∗
E ⊗ VE ⊗ VE

Φ2
V−→ (V ∗

E ⊗ VE)⊠ B(E)

We have φ2 = id + φ̃′
2, hence φ2 is a Yetter-Drinfeld map. Finally we have φ3 = Φ̃1

V − φ̃′
3,

where φ′
3 is the evaluation map V ∗ ⊗ V → k ⊂ B(E), and hence φ3 is also a morphism of

Yetter-Drinfeld modules. �

Lemma 5.4. The sequence in Theorem 5.1 is a complex.

Proof. It is straighforword to check that ε◦φ3 = 0 and that φ3◦φ2 = 0. The identity φ2 ◦φ1 = 0

follows from the observation that φ̃′
2 ◦ φ̃

′
1 = φ̃′′

1 and φ̃′
2 ◦ φ̃

′′
1 = φ̃′

1. �

Lemma 5.5. Let E ∈ GLn(C), F ∈ GLm(C) with m,n ≥ 2 and tr(E−1Et) = tr(F−1F t). Then

the sequence in Theorem 5.1 is exact for B(E) if and only if it is exact for B(F ).

Proof. We know from [4] and Theorems 4.1 and 4.4 that we have an equivalence of tensor

categories YD
B(E)
B(E) ≃

⊗ YD
B(F )
B(F ) that preserves freeness of Yetter-Drinfeld modules. Let us check

that this tensor equivalence transforms the complex of Yetter-Drinfeld modules of Theorem 5.1
for B(E) into the complex of Yetter-Drinfeld modules of Theorem 5.1 for B(F ). First consider
the following diagram.

C⊠ B(F )
φF
1

//

��

(V ∗
F ⊗ VF )⊠ B(F )

��(
C�B(E)B(E,F )

)
⊠ B(F )

��

(
(V ∗

E ⊗ VE)�B(E)B(E,F )
)
⊠ B(F )

��

(C⊠ B(E))�B(E)B(E,F )
φE
1 ⊗id

// ((V ∗
E ⊗ VE)⊠ B(E))�B(E)B(E,F )

The first vertical arrow on the left is given by the identification C ≃ C�B(E)B(E,F ) and the
second one is that of Theorem 4.4 for the trivial comodule C. So the composition of the vertical
arrows on the left is

C⊠ B(F ) −→ (C⊠ B(E))�B(E)B(E,F )

1⊗ xFF 7−→ xEE
(2) ⊗ SFE(x

FE
(1) )x

EF
(3)

The first vertical arrow on the right is the one given at the end of Section 4, while the second
one is that of Theorem 4.4 for the comodule V ∗

E⊗VE . So the composition of the vertical arrows
on the right is

(V ∗
F ⊗ VF )⊠ B(F ) −→ ((V ∗

E ⊗ VE)⊠ B(E))�B(E)B(E,F )

eF∗
i ⊗ eFj ⊗ xFF 7−→

∑

k,l

eE∗
k ⊗ eEl ⊗ xEE

(2) ⊗ SFE(x
FE
(1) )SFE(u

FE
ik )uEF

lj xEF
(3)
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The vertical arrows are compositions of isomorphisms so are isomorphims. It is a direct verifica-
tion to check that the previous diagram is commutative. Similarly one checks the commutativity
of the following diagrams.

(V ∗
F ⊗ VF )⊠ B(F )

φF
2

//

��

(V ∗
F ⊗ VF )⊠ B(F )

��(
(V ∗

E ⊗ VE)�B(E)B(E,F )
)
⊠ B(F )

��

(
(V ∗

E ⊗ VE)�B(E)B(E,F )
)
⊠ B(F )

��

((V ∗
E ⊗ VE)⊠ B(E))�B(E)B(E,F )

φE
2 ⊗id

// ((V ∗
E ⊗ VE)⊠ B(E))�B(E)B(E,F )

(V ∗
F ⊗ VF )⊠ B(F )

φF
3

//

��

C⊠ B(F )

��(
(V ∗

E ⊗ VE)�B(E)B(E,F )
)
⊠ B(F )

��

(
C�B(E)B(E,F )

)
⊠ B(F )

��

((V ∗
E ⊗ VE)⊠ B(E))�B(E)B(E,F )

φE
3 ⊗id

// (C⊠ B(E))�B(E)B(E,F )

C⊠ B(F )
ε

//

��

C

��

(
C�B(E)B(E,F )

)
⊠ B(F )

��

(C⊠ B(E))�B(E)B(E,F )
ε⊗id

// C�B(E)B(E,F )

The vertical isomorphims are those previously defined. Thus we conclude that the complex in
Theorem 5.1 is exact for B(E) if and only if it is exact for B(F ). �

Lemma 5.6. Let q ∈ C
∗. The sequence of Theorem 5.1 is exact when E = Eq.

Proof. Put A = B(Eq) = O(SLq(2)). As usual we put a = u11, b = u12, c = u21, d = u22. We
will frequently use the well-known fact that A and its quotients A/(b), A/(c) and A/(b, c) are
integral domains. For x ∈ A, we have

φ1(x) = e∗1 ⊗ e1⊗((−q
−1 + qd)x) + e∗1 ⊗ e2 ⊗ (−cx) + e∗2 ⊗ e1 ⊗ (−bx) + e∗2 ⊗ e2 ⊗ ((−q + q−1a)x)

φ2(e
∗
1 ⊗ e1 ⊗ x) = e∗1 ⊗ e1 ⊗ x+ e∗2 ⊗ e1 ⊗ (−qbx) + e∗2 ⊗ e2 ⊗ ax

φ2(e
∗
1 ⊗ e2 ⊗ x) = e∗1 ⊗ e1 ⊗ bx+ e∗1 ⊗ e2 ⊗ (1− q−1a)x

φ2(e
∗
2 ⊗ e1 ⊗ x) = e∗2 ⊗ e1 ⊗ (1− qd)x+ e∗2 ⊗ e2 ⊗ cx

φ2(e
∗
2 ⊗ e2 ⊗ x) = e∗1 ⊗ e1 ⊗ dx+ e∗1 ⊗ e2 ⊗ (−q−1cx) + e∗2 ⊗ e2 ⊗ x

φ3(e
∗
1 ⊗ e1 ⊗ x) = (a− 1)x, φ3(e

∗
1 ⊗ e2 ⊗ x) = bx,

φ3(e
∗
2 ⊗ e1 ⊗ x) = cx, φ3(e

∗
2 ⊗ e2 ⊗ x) = (d− 1)x

The injectivity of φ1 follows from the fact that A is an integral domain and the surjectivity of
φ3 is easy (and well-known). Let X =

∑
i,j e

∗
i ⊗ ej ⊗ xij ∈ Ker(φ3). We have

X + φ2(−e
∗
1 ⊗ e1 ⊗ x11) = e∗1 ⊗ e2 ⊗ x12 + e∗2 ⊗ e1 ⊗ (qbx11 + x21) + e∗2 ⊗ e2 ⊗ (−ax11 + x22)

and hence to show that X ∈ Im(φ2), we can assume that x11 = 0. We have

bx12 + cx21 + (d− 1)x22 = 0
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which gives (d − 1)x = 0 in the integral domain A/(b, c) and thus x22 = bα + cβ for some
α, β ∈ A. Then we have

X + φ2(e
∗
1 ⊗ e2 ⊗ qdα− e∗2 ⊗ e1 ⊗ β − e∗2 ⊗ e2 ⊗ bα) = e∗1 ⊗ e2 ⊗ x+ e∗2 ⊗ e1 ⊗ y

for some x, y ∈ A, and hence we also can assume that x22 = 0. Then we have bx12 + cx21 = 0,
which gives bx12 = 0 in the integral domain A/(c), and hence x12 = cα for some α ∈ A, and
moreover x21 = −bα. Then we have

φ2(q
−1e∗1 ⊗ e1 ⊗ α+ e∗1 ⊗ e2 ⊗ cα− q−1e∗2 ⊗ e2 ⊗ aα) = X

and we conclude that Ker(φ3) = Im(φ2).
Let X =

∑
i,j e

∗
i ⊗ ej ⊗ xij ∈ Ker(φ2). Then −qbx11 + (1− qd)x21 = 0, hence (1− qd)x21 = 0

in the integral domain A/(b) and hence x21 = bα for some α ∈ A. Hence

X+φ1(α) = e∗1⊗e1⊗ (x11+(−q−1+qd)α)+e∗1⊗e2⊗ (x12−cα)+e∗2⊗e2⊗ (x22+(−q+q−1a)α)

and we can assume that x21 = 0. But then, using the fact that A is an integral domain, we see
that X = 0 since X ∈ Ker(φ2). We conclude that Ker(φ2) = Im(φ1). �

We are now ready to prove Theorem 5.1. Let E ∈ GLn(C), n ≥ 2, and let q ∈ C
∗ be such

that tr(E−1Et) = −q − q−1 = tr(E−1
q Et

q). Lemma 5.5 and Lemma 5.6 combined together yield
that the sequence in Theorem 5.1 is exact.

6. Applications

In this section we present several applications of the resolution built in the previous section.

6.1. Smoothness and Poincaré duality.

Theorem 6.1. Let E ∈ GLn(C) with n ≥ 2. The algebra B(E) is smooth of dimension 3. In

particular Hn(B(E),M) = (0) = Hn(B(E),M) for any B(E)-bimodule M and any n ≥ 4.

Proof. Put A = B(E), and consider the algebra map ∆′ : A → Ae = A ⊗ Aop, a 7→ a(1) ⊗

S−1(a(2)). It induces an exact functor MA −→ MAe , M 7−→ M ⊗A Ae that sends free A-
modules to free Ae-modules and the trivial module Cε to the trivial bimodule A (since Ae is
free for the left A-module structure induced by ∆′, see e.g. Subsection 2.2 in [8]). Thus A has
a length 3 resolution by finitely generated free Ae-modules and is smooth of dimension d ≤ 3.
Moreover using Proposition 2.1 and Theorem 5.1, we see that H3(B(E),ΦkΦ−1) ≃ C (see more
generally the next subsection), so the resolution in Theorem 5.1 has minimal length and we
conclude that A is smooth of dimension 3. �

We now show that Poincaré duality holds for the algebras B(E).

Proposition 6.2. Let M be a right B(E)-module. Then for any n ∈ {0, 1, 2, 3} we have

isomorphisms

ExtnB(E)(Cε,M) ≃ Tor
B(E)
3−n (Cε, θM)

where θ is the algebra anti-automorphism of B(E) defined by θ(u) = S(u)E−1EtE−1Et and

where θM has the left B(E)-module structure given by a · x := x · θ(a).

Proof. After applying the functor HomA(−,M) to the resolution of Theorem 5.1 and standard
identifications, the complex to compute the Ext-groups on the the left becomes

0→M
φt
3−→ V ∗ ⊗ V ⊗M

φt
2−→ V ∗ ⊗ V ⊗M

φt
1−→M → 0

where V = VE and with

φt
3(x) =

∑

i,j

e∗i ⊗ ej ⊗ x · (uji − δji)

φt
2(e

∗
i ⊗ ej ⊗ x) = e∗i ⊗ ej ⊗ x+

∑

k,l

e∗k ⊗ el ⊗ x ·
(
(u(Et)−1)liEkj

)

φt
1(e

∗
i ⊗ ej ⊗ x) = x ·

(
(EtE−1)ji − (Eu(Et)−1)ji

)
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Consider now the isomorphisms ι : M → A⊗A (θM), x 7→ 1⊗A x, and

f : V ∗ ⊗ V ⊗M → V ∗ ⊗ V ⊗A⊗A (θM), φ⊗ v ⊗ x 7→ φ⊗ f0(v)⊗ 1⊗A x

where f0 is the automorphism of V whose matrix in the canonical basis is (Et)−1E. The
following diagrams commute

0 // M
φt

3
//

ι

��

V ∗ ⊗ V ⊗M
φt

2
//

f

��

V ∗ ⊗ V ⊗M
φt

1
//

f

��

M

ι

��

// 0

0 // A⊗A (θM)
φ1⊗Aid

// V ∗ ⊗ V ⊗A⊗A (θM)
φ2⊗Aid

// V ∗ ⊗ V ⊗A⊗A (θM)
φ3⊗Aid

// A⊗A (θM) // 0

and hence since the homology of the lower complex gives the Tor-groups in the proposition, we
get the result. �

Corollary 6.3. Let M be a B(E)-bimodule. Then for any n ∈ {0, 1, 2, 3} we have isomorphisms

Hn(B(E),M) ≃ H3−n(B(E), σM)

where σ is the modular automorphism of B(E) given by σ(u) = E−1EtuE−1Et.

Proof. We know for Proposition 2.1 that

H3−n(B(E), σM) ≃ Tor
B(E)
3−n (Cε, (σM)′)

where the left B(E)-module structure on (σM)′ is given by a→ x = σ(a(2)) · x · S(a(1)). On the
other hand we have by Proposition 2.1 and Proposition 6.2,

Hn(B(E),M) ≃ ExtnB(E)(Cε,M
′′) ≃ Tor

B(E)
3−n (Cε, θ(M

′′))

The left B(E)-module structure on θ(M
′′) is given by

a x = x← θ(a) = S(θ(a)(1)) · x · θ(a)(2)

= Sθ(a(2)) · x · S(a(1)) = σ(a(2)) · x · S(a(1))

= a→ x

We conclude that θ(M
′′) = (σM)′ and we have our result. �

See [8] for more examples of (noetherian) Hopf algebras satisfying Poincaré duality.

6.2. Some homology computations. In this short subsection we record the computation of
the Hochschild homology of B(E) when the bimodule of coefficients has dimension 1 as a vector
space.

Proposition 6.4. Let α, β ∈ HomC−alg(B(E),C). Put γ = β−1 ∗ α. Then

H0(B(E), αCβ) ≃

{
0 if α 6= β

C if α = β
H3(B(E), αCβ) ≃

{
0 if α 6= β ∗Φ2

C if α = β ∗Φ2

H1(B(E), αCβ) ≃
{M ∈Mn(C) | tr(Mγ(u)t) = tr(M)}

{M + EtM tγ(u)(Et)−1, M ∈Mn(k)}

H2(B(E), αCβ) ≃
{M ∈Mn(C), M + EtM tγ(u)(Et)−1 = 0}

{λ(
∑

i,j e
∗
i ⊗ ej ⊗ ((EtE−1)ij − (Eγ(u)(Et)−1)ij)), λ ∈ C}

The proof is a direct computation by using Proposition 2.1 and Theorem 5.1. The computa-
tion of the cohomology groups follows by using Poincaré duality.
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6.3. Bialgebra cohomology of B(E). The cohomology of a bialgebra was introduced by
Gerstenhaber and Schack [16, 15]: it is defined by means of an explicit bicomplex whose arrows
are modelled on the Hochschild complex of the underlying algebra and columns are modelled
on the Cartier complex of the underlying coalgebra. If A is a Hopf algebra, let us denote by
H∗

b (A) the resulting cohomology. Taillefer [34] proved that

H∗
b (A)

∼= Ext∗M(A)(A,A)

whereM(A) is the category of Hopf bimodules over A. Combined with the monoidal equivalence
between Hopf bimodules and Yetter-Drinfeld modules [30], this yields an isomorphism

H∗
b (A)

∼= Ext∗
YDA

A

(C,C)

Bialgebra cohomology of algebras of polynomial functions on linear algebraic groups was studied
by Parshall and Wang [29], with a complete description in the connected reductive case. It
seems that only very few full computations of H∗

b (A) are known in the non-commutative non-
cocommutative case, see [35] and the references therein. The following result gives in particular
the description of the bialgebra cohomology of O(SLq(2)) for q generic, i.e. q = ±1 or q not a
root of unity.

Theorem 6.5. Assume that B(E) is cosemisimple, i.e. that the solutions of the equation

tr(E−1Et) = −q − q−1 are generic. Then we have

Hn
b (B(E)) ≃

{
0 if n 6= 0, 3

C if n = 0, 3

Proof. The assumption that B(E) is cosemisimple ensures that evey object inMB(E) is projec-

tive, so by Proposition 3.3 every free Yetter-Drinfeld is a projective object in YD
B(E)
B(E) and the

category YD
B(E)
B(E)

has enough projective objects by Corollary 3.4. The description of bialgebra

cohomology as an Ext functor [34, 33] now shows that the bialgebra cohomology of B(E) is
given by the cohomology of the complex obtained by applying the functor Hom

YD
B(E)
B(E)

(−,C) to

any projective resolution of the trivial Yetter-Drinfeld module C. Thus, using the resolution
of Theorem 5.1, the description of H∗

b (B(E)) is a direct computation, that we leave to the
reader. �

6.4. L2-Betti numbers. Let A be compact Hopf algebra, i.e. A is the Hopf ∗-algebra of
polynomial functions on a compact quantum group [45], and assume that A is of Kac type (the
Haar state of A is tracial, or equivalently the square of the antipode is the identity). The L2-
Betti numbers of A have been defined in [23]. There are several possible equivalent definitions
[12, 23, 36] and the one we shall use is

β
(2)
k (A) = dimMop TorAk (Cε, AM)

whereM is the (finite) von Neumann algebra of A, the left A-module structure on AM =M
is given by left multiplication through the natural inclusion A ⊂ M, and dimMop is Lück’s
dimension function for modules over finite von Neuman algebras [26].

Now let F ∈ GLn(C) with FF ∈ RIn. Recall [1] that Ao(F ) is the universal ∗-algebra
with generators (uij), 1 ≤ i, j ≤ n and relations making the matrix u = (uij) unitary and
u = FuF−1. The ∗-algebra Ao(F ) has a natural Hopf ∗-algebra structure (it is isomorphic, as
a Hopf algebra, to the previous B((F t)−1)) and is a compact Hopf algebra. Moreover Ao(F ) is
of Kac type if and only if F t = ±F . Thus in this case

Ao(F ) ≃ Ao(In) = Ao(n), or Ao(F ) ≃ Ao(J2m)

where for 2m = n, J2m ∈ GL2m(C) is the anti-symmetric matrix

J2m =

(
0m Im
−Im 0m

)
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Collins, Härtel and Thom have shown, combining the results in [11] with the vanishing of

β
(2)
1 (Ao(n)) by Vergnioux [41], that all the L2-Betti numbers β

(2)
k (Ao(n)) vanish. Similar argu-

ments lead to the following result, which completes the computation of the L2-Betti numbers
of the Ao(F )’s of Kac type.

Theorem 6.6. For any m ≥ 1 and k ≥ 0, we have β
(2)
k (Ao(J2m)) = 0.

Proof. For m = 1 it is already known [23] that the L2-Betti numbers of Ao(J2) all vanish,
since Ao(J2) is commutative. So we assume that m ≥ 2. First, by Theorem 5.1, we have

β
(2)
k (Ao(J2m)) = 0 for k > 3. We have β

(2)
0 (Ao(J2m)) = 0 by [24] and hence by Poincaré duality

and the fact that the L2-Betti numbers can be defined in terms of L2-cohomology [36] we have

β
(2)
3 (Ao(J2m)) = 0 = β

(2)
0 (Ao(J2m)). Similarly by Poincaré duality we have β

(2)
2 (Ao(J2m)) =

β
(2)
1 (Ao(J2m)). By [41], Theorem 4.4 and the proof of Corollary 5.2 (the proof of Corollary 5.2 in

[41] is valid for Ao(J2m) since it has the property of rapid decay [40]), we have β
(2)
1 (Ao(J2m)) = 0,

and we are done. �

7. Conclusion

We have shown that there might exist strong links between the Hochschild (co)homologies of
Hopf algebras that have equivalent tensor categories of comodules, although the ring-theoretical
properties of the underlying algebras might be very different. We cannot expect to have functo-
riality at the level of the computation of Hochschild (co)homology group, the situation is rather
that if one of the Hopf algebras has a very special homological feature (a free Yetter-Drinfeld
resolution of the counit), then so has the other.

A similar situation had been observed in the work of Voigt [42] on the K-theory of free
orthogonal quantum groups: the existence of a tensor category equivalence does not seem
to imply functoriality at the level of K-theory groups, but is enough to ensure that one can
transport a special homological situation, namely the validity of the Baum-Connes conjecture.

We hope that the present paper will bring further evidence to convince the reader that tensor
category methods can be useful tools in the homological study of Hopf (C∗-)algebras.
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